From The University of California-Santa Cruz (US) : “Mirror-image peptides form ‘rippled sheet’ structure predicted in 1953”
From The University of California-Santa Cruz (US)
December 17, 2021
Tim Stephens
stephens@ucsc.edu
A UCSC team obtained an x-ray ‘snapshot’ of a novel protein structure with potential applications in biomedicine and materials science.
This illustration shows the “left-handed” and “right-handed” triphenylalanine peptides which bond together to form a rippled beta sheet. Illustration by Jevgenij Raskatov.
The dimeric rippled sheets assembled into a layered crystal structure with a herringbone pattern. Image credit: Kuhn et al., Chemical Science 2021.
By mixing a small peptide with equal amounts of its mirror image, a team of scientists at UC Santa Cruz has created an unusual protein structure known as a “rippled beta sheet” and obtained images of it using x-ray crystallography. They reported their findings in a paper published December 8 in Chemical Science.
The rippled sheet is a distinctive variation on the pleated beta sheet, which is a well-known structural motif found in thousands of proteins, including important disease-related proteins. Linus Pauling and Robert Corey described the rippled beta sheet in 1953, two years after introducing the concept of the pleated beta sheet.
While the pleated beta sheet (often called simply the beta sheet) quickly became a textbook example of a common protein structure, the rippled sheet has languished in obscurity as a rarely studied and largely theoretical structure. Previous studies have found experimental evidence of rippled sheet formation, but none using x-ray crystallography, which is the gold standard for determining protein structures.
“Now, for the first time, we have the crystal structure of a rippled sheet, which is like a snapshot of it, and the structure closely matches the predictions of Pauling and Corey,” said Jevgenij Raskatov, associate professor of chemistry and biochemistry at UC Santa Cruz and corresponding author of the paper.
“The rippled sheet paradigm may have significance for both materials research and biomedical applications, and having the crystal structure is important for the rational design of rippled sheet materials,” Raskatov noted.
Proteins consist of long chains of amino acids folded into complex three-dimensional shapes that enable them to carry out a huge variety of functions in all living things. A pleated beta sheet is composed of linear strands (called beta strands) bonded together side by side to form a 2-dimensional sheet-like structure. A rippled beta sheet is similar except that alternate strands are mirror images of each other.
The amino acids that make up proteins can have either a “left-handed” (L) or “right-handed” (D) orientation in the arrangement of their atoms—the same in all respects but mirror images, like left and right hands. All natural proteins are made with left-handed amino acids, but synthetic proteins can be made with either L or D amino acids.
In the new study, the researchers used mirror-image forms of triphenylalanine, a short peptide consisting of three phenylalanine amino acids. When mixed in equal amounts, the mirror-image peptides joined in pairs, which then packed together into herringbone layer structures.
“They pack together to form a crystal, so we could use x-ray crystallography to see that rippled sheet structure,” said coauthor Timothy Johnstone, assistant professor of chemistry and biochemistry. “It’s a highly enabling discovery that opens up new avenues for exploration, because it gives us a new building block, or a new way to put building blocks together, for creating novel polypeptide structures with desirable properties.”
Having determined the crystal structure, the researchers then searched the Protein Data Bank, an online archive of structural data, for other proteins involving mirror-image peptides. They found three additional crystal structures containing rippled sheets that had not been recognized when the structures were originally analyzed.
The co-first authors of the paper are Ariel Kuhn, a Ph.D. student in Raskatov’s lab, and Beatriz Ehlke, a Ph.D. student in the lab of coauthor Scott Oliver, professor of chemistry and biochemistry.
“It was a great collaborative effort between the three labs, as well as demonstrating the incredible capabilities of our new single crystal XRD instrument for x-ray crystallography,” Kuhn said.
This work was supported by The National Institutes of Health (US) and The National Science Foundation (US).
See the full article here .
five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.
Stem Education Coalition
UC Santa Cruz (US) Lick Observatory Since 1888 Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft)
UC Observatories Lick Automated Planet Finder fully robotic 2.4-meter optical telescope at Lick Observatory, situated on the summit of Mount Hamilton, east of San Jose, California, USA.
The UCO Lick C. Donald Shane telescope is a 120-inch (3.0-meter) reflecting telescope located at the Lick Observatory, Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft).
UC Santa Cruz (US) campus.
The University of California-Santa Cruz (US) , opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.
UCSC is the home base for the Lick Observatory.
UCO Lick Observatory’s 36-inch Great Refractor telescope housed in the South (large) Dome of main building.
Search for extraterrestrial intelligence expands at Lick Observatory
New instrument scans the sky for pulses of infrared light
March 23, 2015
By Hilary Lebow
Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds. “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego (US) who led the development of the new instrument while at the U Toronto Dunlap Institute for Astronomy and Astrophysics (CA).
Shelley Wright of UC San Diego with (US) NIROSETI, developed at U Toronto Dunlap Institute for Astronomy and Astrophysics (CA) at the 1-meter Nickel Telescope at Lick Observatory at UC Santa Cruz
Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by University of California-Berkeley (US) researchers. The infrared project takes advantage of new technology not available for that first optical search.
Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.
Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.
“The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.
The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”
Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.
“We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”
Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.
“This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”
NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.
“Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”
NIROSETI will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.
Reply