Tagged: Woods Hole Oceanographic Institution (US) Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 3:56 pm on July 29, 2021 Permalink | Reply
    Tags: "What happens to marine life when oxygen is scarce?", All of the macro-organisms are trying to get away from this deoxygenated water and those that cannot escape essentially suffocate., , Benthic Life, , Coral, How sudden deoxygenation events affect tropical marine ecosystems is poorly understood., Hypoxic ocean waters: there is little to no oxygen in that area., , Ocean Chemistry, , Woods Hole Oceanographic Institution (US)   

    From Woods Hole Oceanographic Institution (US) : “What happens to marine life when oxygen is scarce?” 

    From Woods Hole Oceanographic Institution (US)

    July 26, 2021
    Media Relations Office
    media@whoi.edu
    (508) 289-3340

    1
    Brittle sea stars, which usually are in hiding, perch on top of coral to attempt to escape from hypoxic ocean waters, which have little to no oxygen in that area. Sadly, those that cannot escape essentially suffocate. Image Credit: Maggie Johnson © Woods Hole Oceanographic Institution.

    In September of 2017, Woods Hole Oceanographic Institution postdoctoral scholar Maggie Johnson was conducting an experiment with a colleague in Bocas del Toro off the Caribbean coast of Panama. After sitting on a quiet, warm open ocean, they snorkeled down to find a peculiar layer of murky, foul-smelling water about 10 feet below the surface, with brittle stars and sea urchins, which are usually in hiding, perching on the tops of coral.

    This unique observation prompted a collaborative study explained in a new paper published today in Nature Communications analyzing what this foggy water layer is caused by, and the impact it has on life at the bottom of the seafloor.

    “What we’re seeing are hypoxic ocean waters, meaning there is little to no oxygen in that area. All of the macro-organisms are trying to get away from this deoxygenated water and those that cannot escape essentially suffocate. I have never seen anything like that on a coral reef,” said Johnson.

    “There is a combination of stagnant water from low wind activity, warm water temperatures, and nutrient pollution from nearby plantations, which contributes to a stratification of the water column. From this, we see these hypoxic conditions form that start to expand and infringe on nearby shallow habitats,” explained Johnson.

    Investigators suggest that loss of oxygen in the global ocean is accelerating due to climate change and excess nutrients, but how sudden deoxygenation events affect tropical marine ecosystems is poorly understood. Past research shows that rising temperatures can lead to physical alterations in coral, such as bleaching, which occurs when corals are stressed and expel algae that live within their tissues. If conditions don’t improve, the bleached corals then die. However, the real-time changes caused by decreasing oxygen levels in the tropics have seldom been observed.

    At a local scale, hypoxic events may pose a more severe threat to coral reefs than the warming events that cause mass bleaching. These sudden events impact all oxygen-requiring marine life and can kill reef ecosystems quickly.

    Investigators reported coral bleaching and mass mortality due to this occurrence, causing a 50% loss of live coral, which did not show signs of recovery until a year after the event, and a drastic shift in the seafloor community. The shallowest measurement with hypoxic waters was about 9 feet deep and about 30 feet from the Bocas del Toro shore.

    What about the 50% of coral that survived? Johnson and her fellow investigators found that the coral community they observed in Bocas del Toro is dynamic, and some corals have the potential to withstand these conditions. This discovery sets the stage for future research to identify which coral genotypes or species have adapted to rapidly changing environments and the characteristics that help them thrive.

    Investigators also observed that the microorganisms living in the reefs restored to a normal state within a month, as opposed to the macro-organisms, like the brittle stars, who perished in these conditions. By collecting sea water samples and analyzing microbial DNA, they were able to conclude that these microbes did not necessarily adjust to their environment, but rather were “waiting” for their time to shine in these low-oxygen conditions.

    “The take home message here is that you have a community of microbes; it has a particular composition and plugs along, then suddenly, all of the oxygen is removed and you get a replacement of community members. They flourish for a while, and eventually hypoxia goes away, oxygen comes back, and that community rapidly shifts back to what it was before due to the change in resources. This is very much in contrast to what you see with macro-organisms,” said Jarrod Scott, paper co-author and postdoctoral fellow at the Smithsonian Tropical Research Institute in the Republic of Panama.

    Scott and Johnson agree that human activity can contribute to the nutrient pollution and warming waters which then lead to hypoxic ocean conditions. Activities such as coastal land development and farming can be better managed and improved, which will reduce the likelihood of deoxygenation events occurring.

    The study provides insight to the fate of microbe communities on a coral reef during an acute deoxygenation event. Reef microbes respond rapidly to changes in physicochemical conditions, providing reliable indications of both physical and biological processes in nature.

    The shift the team detected from the hypoxic microbial community to a normal condition community after the event subsided suggests that the recovery route of reef microbes is independent and decoupled from the benthic macro-organisms. This may facilitate the restart of key microbial processes that influence the recovery of other aspects of the reef community.

    Matthieu Leray: Smithsonian Tropical Research Institute [Instituto Smithsonian de Investigaciones Tropicales(US) (PA).

    Noelle Lucey Smithsonian Tropical Research Institute, Republic of Panama.

    Lucia M. Rodriguez Bravo: Smithsonian Tropical Research Institute, Republic of Panama & Facultad de Ciencias Marinas, Autonomous University of Baja California [Universidad Autónoma de Baja California] (MX).

    William L. Wied: Smithsonian Tropical Research Institute, Republic of Panama & Department of Biological Sciences, Center for Coastal Oceans Research, Florida International University (US).

    Andrew H. Altieri: Smithsonian Tropical Research Institute, Republic of Panama & Department of Environmental Engineering Sciences, University of Florida (US).

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Woods Hole Oceanographic Institute

    Mission Statement

    The Woods Hole Oceanographic Institution (US) is dedicated to advancing knowledge of the ocean and its connection with the Earth system through a sustained commitment to excellence in science, engineering, and education, and to the application of this knowledge to problems facing society.

    Vision & Mission

    The ocean is a defining feature of our planet and crucial to life on Earth, yet it remains one of the planet’s last unexplored frontiers. For this reason, WHOI scientists and engineers are committed to understanding all facets of the ocean as well as its complex connections with Earth’s atmosphere, land, ice, seafloor, and life—including humanity. This is essential not only to advance knowledge about our planet, but also to ensure society’s long-term welfare and to help guide human stewardship of the environment. WHOI researchers are also dedicated to training future generations of ocean science leaders, to providing unbiased information that informs public policy and decision-making, and to expanding public awareness about the importance of the global ocean and its resources.

    The Institution is organized into six departments, the Cooperative Institute for Climate and Ocean Research, and a marine policy center. Its shore-based facilities are located in the village of Woods Hole, Massachusetts(US) and a mile and a half away on the Quissett Campus. The bulk of the Institution’s funding comes from grants and contracts from the National Science Foundation(US) and other government agencies, augmented by foundations and private donations.

    WHOI scientists, engineers, and students collaborate to develop theories, test ideas, build seagoing instruments, and collect data in diverse marine environments. Ships operated by WHOI carry research scientists throughout the world’s oceans. The WHOI fleet includes two large research vessels (R/V Atlantis and R/V Neil Armstrong); the coastal craft Tioga; small research craft such as the dive-operation work boat Echo; the deep-diving human-occupied submersible Alvin; the tethered, remotely operated vehicle Jason/Medea; and autonomous underwater vehicles such as the REMUS and SeaBED.
    WHOI offers graduate and post-doctoral studies in marine science. There are several fellowship and training programs, and graduate degrees are awarded through a joint program with the Massachusetts Institute of Technology(US). WHOI is accredited by the New England Association of Schools and Colleges (US). WHOI also offers public outreach programs and informal education through its Exhibit Center and summer tours. The Institution has a volunteer program and a membership program, WHOI Associate.

    On October 1, 2020, Peter B. de Menocal became the institution’s eleventh president and director.

    History

    In 1927, a National Academy of Sciences(US) committee concluded that it was time to “consider the share of the United States of America in a worldwide program of oceanographic research.” The committee’s recommendation for establishing a permanent independent research laboratory on the East Coast to “prosecute oceanography in all its branches” led to the founding in 1930 of the Woods Hole Oceanographic Institution(US).

    A $2.5 million grant from the Rockefeller Foundation supported the summer work of a dozen scientists, construction of a laboratory building and commissioning of a research vessel, the 142-foot (43 m) ketch R/V Atlantis, whose profile still forms the Institution’s logo.

    WHOI grew substantially to support significant defense-related research during World War II, and later began a steady growth in staff, research fleet, and scientific stature. From 1950 to 1956, the director was Dr. Edward “Iceberg” Smith, an Arctic explorer, oceanographer and retired Coast Guard rear admiral.

    In 1977 the institution appointed the influential oceanographer John Steele as director, and he served until his retirement in 1989.

    On 1 September 1985, a joint French-American expedition led by Jean-Louis Michel of IFREMER and Robert Ballard of the Woods Hole Oceanographic Institution identified the location of the wreck of the RMS Titanic which sank off the coast of Newfoundland 15 April 1912.

    On 3 April 2011, within a week of resuming of the search operation for Air France Flight 447, a team led by WHOI, operating full ocean depth autonomous underwater vehicles (AUVs) owned by the Waitt Institute discovered, by means of sidescan sonar, a large portion of debris field from flight AF447.

    In March 2017 the institution effected an open-access policy to make its research publicly accessible online.

    The Institution has maintained a long and controversial business collaboration with the treasure hunter company Odyssey Marine. Likewise, WHOI has participated in the location of the San José galleon in Colombia for the commercial exploitation of the shipwreck by the Government of President Santos and a private company.

    In 2019, iDefense reported that China’s hackers had launched cyberattacks on dozens of academic institutions in an attempt to gain information on technology being developed for the United States Navy. Some of the targets included the Woods Hole Oceanographic Institution. The attacks have been underway since at least April 2017.

     
  • richardmitnick 2:39 pm on July 17, 2021 Permalink | Reply
    Tags: "Study Examines the Role of Deep-Sea Microbial Predators at Hydrothermal Vents", Among the creatures having a field day feasting at the Gorda Ridge vents is a diverse assortment of microbial eukaryotes-or protists-that graze on chemosynthetic bacteria and archaea., , , , , Researchers Emphasize the Need for Baseline Information of Microbial Food Webs., Woods Hole Oceanographic Institution (US)   

    From Woods Hole Oceanographic Institution (US) : “Study Examines the Role of Deep-Sea Microbial Predators at Hydrothermal Vents” 

    From Woods Hole Oceanographic Institution (US)

    July 15, 2021

    Media Relations Office
    media@whoi.edu
    (508) 289-3340

    1
    A view of the Apollo Vent Field at the northern Gorda Ridge, where samples were collected by the ROV Hercules for studying microbial predators. Image credit: OET/Nautilus Live

    Researchers Emphasize the Need for Baseline Information of Microbial Food Webs.

    The hydrothermal vent fluids from the Gorda Ridge spreading center in the northeast Pacific Ocean create a biological hub of activity in the deep sea. There, in the dark ocean, a unique food web thrives not on photosynthesis but rather on chemical energy from the venting fluids. Among the creatures having a field day feasting at the Gorda Ridge vents is a diverse assortment of microbial eukaryotes-or protists-that graze on chemosynthetic bacteria and archaea.

    This protistan grazing, which is a key mechanism for carbon transport and recycling in microbial food webs, exerts a higher predation pressure at hydrothermal vent sites than in the surrounding deep-sea environment, a new paper finds.

    “Our findings provide a first estimate of protistan grazing pressure within hydrothermal vent food webs, highlighting the important role that diverse deep-sea protistan communities play in deep-sea carbon cycling,” according to the paper, Protistan grazing impacts microbial communities and carbon cycling ad deep-sea hydrothermal vents published in the PNAS.

    [Authors :

    Sarah K. Hu1*, Erica L. Herrera1, Amy R. Smith [1], Maria G. Pachiadaki [2], Virginia P. Edgcomb [3], Sean P. Sylva [1], Eric W. Chan [4], Jeffrey S. Seewald [1], Christopher R. German [3], and Julie A. Huber [1]

    Affiliations :

    1 Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA

    2 Department of Biology, Woods Hole Oceanographic Institution, Woods Hole MA, USA

    3 Department of Geology & Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA

    4 School of Earth, Environment & Marine Sciences, University of Texas-Rio Grande Valley (US), Edinburg, TX, USA

    *corresponding author]

    Protists serve as a link between primary producers and higher trophic levels, and their grazing is a key mechanism for carbon transport and recycling in microbial food webs, the paper states.

    The research found that protists consume 28-62% of the daily stock of bacteria and archaea biomass within discharging hydrothermal vent fluids from the Gorda Ridge, which is located about 200 kilometers off the coast of southern Oregon. In addition, researchers estimate that protistan grazing could account for consuming or transferring up to 22% or carbon that is fixed by the chemosynthetic population in the discharging vent fluids. Though the fate of all of that carbon is unclear, “protistan grazing will release a portion of the organic carbon into the microbial loop as a result of excretion, egestion, and sloppy feeding,” and some of the carbon will be taken up by larger organisms that consume protistan cells, the paper states.

    After collecting vent fluid samples from the Sea Cliff and Apollo hydrothermal vent fields in the Gorda Ridge, researchers conducted grazing experiments, which presented some technical challenges that needed to be overcome. For instance, “prepping a quality meal for these protists is very difficult,” said lead author Sarah Hu, a postdoctoral investigator in the Marine Chemistry and Geochemistry Department at the Woods Hole Oceanographic Institution (WHOI).

    “Being able to do this research at a deep-sea vent site was really exciting because the food web there is so fascinating, and it’s powered by what’s happening at this discharging vent fluid,” said Hu, who was onboard the E/V Nautilus during the May-June 2019 cruise. “There is this whole microbial system and community that’s operating there below the euphotic zone outside of the reach of sunlight. I was excited to expand what we know about the microbial communities at these vents.”

    Hu and co-author Julie Huber said that quantitative measurements are important to understand how food webs operate at pristine and undisturbed vent sites.

    “The ocean provides us with a number of ecosystem services that many people are familiar with, such as seafood and carbon sinks. Yet, when we think about microbial ecosystem services, especially in the deep sea, we just don’t have that much data about how those food webs work,” said Huber, associate scientist in WHOI’s Marine Chemistry and Geochemistry Department.

    Obtaining baseline measurements “is increasingly important as these habitats are being looked at for deep-sea mining or carbon sequestration. How might that impact how much carbon is produced, exported, or recycled?” she said.

    “We need to understand these habitats and the ecosystems they support,” Huber said. “This research is connecting some new dots that we weren’t able to connect before.”

    The research was supported by National Aeronautics Space Agency (US), the National Oceanic and Atmospheric Administration (US), Ocean Exploration Trust (US), the National Science Foundation (US), and WHOI.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Woods Hole Oceanographic Institute

    Mission Statement

    The Woods Hole Oceanographic Institution (US) is dedicated to advancing knowledge of the ocean and its connection with the Earth system through a sustained commitment to excellence in science, engineering, and education, and to the application of this knowledge to problems facing society.

    Vision & Mission

    The ocean is a defining feature of our planet and crucial to life on Earth, yet it remains one of the planet’s last unexplored frontiers. For this reason, WHOI scientists and engineers are committed to understanding all facets of the ocean as well as its complex connections with Earth’s atmosphere, land, ice, seafloor, and life—including humanity. This is essential not only to advance knowledge about our planet, but also to ensure society’s long-term welfare and to help guide human stewardship of the environment. WHOI researchers are also dedicated to training future generations of ocean science leaders, to providing unbiased information that informs public policy and decision-making, and to expanding public awareness about the importance of the global ocean and its resources.

    The Institution is organized into six departments, the Cooperative Institute for Climate and Ocean Research, and a marine policy center. Its shore-based facilities are located in the village of Woods Hole, Massachusetts(US) and a mile and a half away on the Quissett Campus. The bulk of the Institution’s funding comes from grants and contracts from the National Science Foundation(US) and other government agencies, augmented by foundations and private donations.

    WHOI scientists, engineers, and students collaborate to develop theories, test ideas, build seagoing instruments, and collect data in diverse marine environments. Ships operated by WHOI carry research scientists throughout the world’s oceans. The WHOI fleet includes two large research vessels (R/V Atlantis and R/V Neil Armstrong); the coastal craft Tioga; small research craft such as the dive-operation work boat Echo; the deep-diving human-occupied submersible Alvin; the tethered, remotely operated vehicle Jason/Medea; and autonomous underwater vehicles such as the REMUS and SeaBED.
    WHOI offers graduate and post-doctoral studies in marine science. There are several fellowship and training programs, and graduate degrees are awarded through a joint program with the Massachusetts Institute of Technology(US). WHOI is accredited by the New England Association of Schools and Colleges (US). WHOI also offers public outreach programs and informal education through its Exhibit Center and summer tours. The Institution has a volunteer program and a membership program, WHOI Associate.

    On October 1, 2020, Peter B. de Menocal became the institution’s eleventh president and director.

    History

    In 1927, a National Academy of Sciences(US) committee concluded that it was time to “consider the share of the United States of America in a worldwide program of oceanographic research.” The committee’s recommendation for establishing a permanent independent research laboratory on the East Coast to “prosecute oceanography in all its branches” led to the founding in 1930 of the Woods Hole Oceanographic Institution(US).

    A $2.5 million grant from the Rockefeller Foundation supported the summer work of a dozen scientists, construction of a laboratory building and commissioning of a research vessel, the 142-foot (43 m) ketch R/V Atlantis, whose profile still forms the Institution’s logo.

    WHOI grew substantially to support significant defense-related research during World War II, and later began a steady growth in staff, research fleet, and scientific stature. From 1950 to 1956, the director was Dr. Edward “Iceberg” Smith, an Arctic explorer, oceanographer and retired Coast Guard rear admiral.

    In 1977 the institution appointed the influential oceanographer John Steele as director, and he served until his retirement in 1989.

    On 1 September 1985, a joint French-American expedition led by Jean-Louis Michel of IFREMER and Robert Ballard of the Woods Hole Oceanographic Institution identified the location of the wreck of the RMS Titanic which sank off the coast of Newfoundland 15 April 1912.

    On 3 April 2011, within a week of resuming of the search operation for Air France Flight 447, a team led by WHOI, operating full ocean depth autonomous underwater vehicles (AUVs) owned by the Waitt Institute discovered, by means of sidescan sonar, a large portion of debris field from flight AF447.

    In March 2017 the institution effected an open-access policy to make its research publicly accessible online.

    The Institution has maintained a long and controversial business collaboration with the treasure hunter company Odyssey Marine. Likewise, WHOI has participated in the location of the San José galleon in Colombia for the commercial exploitation of the shipwreck by the Government of President Santos and a private company.

    In 2019, iDefense reported that China’s hackers had launched cyberattacks on dozens of academic institutions in an attempt to gain information on technology being developed for the United States Navy. Some of the targets included the Woods Hole Oceanographic Institution. The attacks have been underway since at least April 2017.

     
  • richardmitnick 3:47 pm on July 16, 2021 Permalink | Reply
    Tags: "Nereid Under Ice" vehicle, "Spock versus the volcano"", A team of scientists and engineers are headed to the active volcano site as part of a NASA-funded program that will attempt to answer a number of key questions., , , During Kolumbo volcano's last eruption in 1650 CE things got ugly. It blasted pumice and ash as far as neighboring Turkey and triggered a tsunami that inundated the flat coastal areas., Kolumbo volcano-500 meters below the surface within the fault-heavy Hellenic Volcanic Arc just off Santorini—is the Aegean Sea’s most active and potentially dangerous volcano., , , Questions: What can these organisms us about life on Earth and beyond? Are there signs of geohazards to predict the next eruption? Can we allow decision-making to robots letting them explore?, The ability of marine organisms to take CO2 and convert it to food without photosynthesis is a phenomenon that has caught the attention of planetary scientists., The poisonous cloud hung heavy in the air from September through December of that year a four-month period of Greek history known as the “Time of Evil.”, The WHOI-developed robotic vehicle is a hybrid—it can operate as an autonomous underwater vehicle (AUV) following a pre-programmed mission; or as a remotely operated vehicle (ROV)., Thick carpets of chemical-craving microbes blanket the benthos in red; orange; and white., Woods Hole Oceanographic Institution (US)   

    From Woods Hole Oceanographic Institution (US) : “Spock versus the volcano” 

    From Woods Hole Oceanographic Institution (US)

    January 15, 2019 [Re-presented 7.15.21]
    Evan Lubofsky

    1
    Ocean robots are becoming so intelligent, they’re starting to make decisions on where to explore and what to focus on below the surface. Illustration by Natalie Reiner, © Woods Hole Oceanographic Institution.

    Far below the steep, whitewashed villages of Greece’s famed Santorini Island lies an ancient submarine volcano with a violent past.

    3
    Kolumbo volcano—which sits 500 meters below the surface within the fault-heavy Hellenic Volcanic Arc just off Santorini—is the Aegean Sea’s most active and potentially dangerous volcano. It’s been quiet over the past few centuries. But during its last eruption in 1650 CE things got ugly. The volcano blasted pumice and ash as far as neighboring Turkey and triggered a tsunami that inundated the flat coastal areas surrounding the island.

    “Beyond the natural devastation it caused, Kolumbo burped up CO2 and other gasses that asphyxiated people and animals on Santorini,” says Rich Camilli, an associate scientist at Woods Hole Oceanographic Institution (WHOI).

    The poisonous cloud hung heavy in the air from September through December of that year a four-month period of Greek history known as the “Time of Evil.”

    5
    The surface waters off Santorini Island are calm, but Kolumbo volcano—the region’s most dangerous—is active 500 meters below. Photo by Evan Lubofsky, © Woods Hole Oceanographic Institution.

    Now, Camilli and a team of scientists and engineers are headed to the active volcano site as part of a NASA-funded program that will attempt to answer a number of key questions: What can the organisms living in the extremes of this dark and chemical-laden underworld tell us about life on Earth and beyond? Are there signs of geohazards down there that may help predict the next eruption? And to what extent can we hand over the decision-making to ocean robots and let them explore without human control?

    The Mediterranean is dead calm as our makeshift research vessel—a cable-laying workhorse named Ocean Link—floats above Kolumbo volcano. The view from the aft deck is idyllic: Santorini’s soaring, multicolored cliffs rise directly to our left, while lower-lying isles are scattered off in the distance.

    But despite the postcard view, there’s trouble in paradise. A month ago, scientists from GEOMAR Helmholtz Centre for Ocean Research Kiel – GEOMAR [ Helmholtz-Zentrum für Ozeanforschung Kiel] (DE) and the National and Kapodistrian University of Athens [Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών](GR) detected the restless rumble of earthquakes right below the placid surface.

    “From a geological point of view, this is the most active volcano in the Aegean Sea,” says Evi Nomikou, a marine geologist from the National and Kapodistrian University of Athens who used ocean bottom seismometers to take the volcano’s pulse. “The cliffs are very steep, so if there’s a large enough earthquake, it could cause landslides and trigger a tsunami.”

    But for now, the conditions are just right for sending Nereid Under Ice—or NUI—into the caldera.

    8
    Nereid Under Ice – Woods Hole Oceanographic Institution.

    9
    WHOI ROV pilots (left to right) Mario Fernandez, Victor Naklicki, Casey Machado, Molly Curran, and Mike Jacuba work on the Ocean Link’s aft deck to get NUI ready to explore the Kolumbo volcano. (Photo courtesy of Mike Toillion, NASA Astrobiology).

    The WHOI-developed robotic vehicle is a hybrid—it can operate as an autonomous underwater vehicle (AUV) following a pre-programmed mission; or as a remotely operated vehicle (ROV) connected to the surface by a wispy optical fiber tether no thicker than a human hair.

    As its name implies, Nereid Under Ice was designed to explore the underside of Artic sea ice, but it’s also well-suited for other types of tough marine environments. Like an active submarine volcano with the shakes.

    “There are a lot of obstacles down there that Nereid Under Ice will have to contend with, including walls that can run hundreds of feet high and other geological features,” says Camilli. “It’s not far from a suicide mission for most ocean robots.”

    Teetering on the winch, Nereid Under Ice looks like a red Smart Car being lowered into the Aegean Sea. Within minutes, it plunges to its target depth of 500 meters. There, the vehicle’s lights pierce the ancient darkness and an otherworldly terrain pops up on the control room monitor.


    NUI teeters above the surface before being eased into the Aegean Sea. Video courtesy of Mike Toillion, NASA Astrobiology.

    Casey Machado a mechanical engineer and ROV pilot at WHOI, moves the vehicle around with an Xbox controller and quickly closes in on a hydrothermal vent jutting out of the lunar-like landscape. Its 10-foot chimney gushes plumes of CO2 and other chemicals from below the seafloor. The infusion of carbon makes the seawater so acidic, it could dissolve a hard-shell clam.

    But hard-shell clams don’t live here. In fact, the chemical soup—which includes traces of hydrogen sulfide and methane—isn’t a viable food source for most living things.

    There are, however, some takers. Thick carpets of chemical-craving microbes blanket the benthos in red; orange; and white. Maria Pachiadaki, a marine biologist at WHOI, perks up at her first glimpse of the microbial mats.

    “These bacteria are oxidizing the inorganic compounds found in the hydrothermal fluids, a process that creates energy that they can use to turn CO2 into biomass,” says Pachiadaki.

    Camilli says the ability of marine organisms to take CO2 and convert it to food without photosynthesis is a phenomenon that has caught the attention of planetary scientists.

    “If organisms possess that capability here on Earth it may be possible to find similar lifeforms on ocean worlds beyond our planet like Jupiter’s moon Europa or Saturn’s moon Enceladus,” he says.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Woods Hole Oceanographic Institute

    Mission Statement

    The Woods Hole Oceanographic Institution (US) is dedicated to advancing knowledge of the ocean and its connection with the Earth system through a sustained commitment to excellence in science, engineering, and education, and to the application of this knowledge to problems facing society.

    Vision & Mission

    The ocean is a defining feature of our planet and crucial to life on Earth, yet it remains one of the planet’s last unexplored frontiers. For this reason, WHOI scientists and engineers are committed to understanding all facets of the ocean as well as its complex connections with Earth’s atmosphere, land, ice, seafloor, and life—including humanity. This is essential not only to advance knowledge about our planet, but also to ensure society’s long-term welfare and to help guide human stewardship of the environment. WHOI researchers are also dedicated to training future generations of ocean science leaders, to providing unbiased information that informs public policy and decision-making, and to expanding public awareness about the importance of the global ocean and its resources.

    The Institution is organized into six departments, the Cooperative Institute for Climate and Ocean Research, and a marine policy center. Its shore-based facilities are located in the village of Woods Hole, Massachusetts(US) and a mile and a half away on the Quissett Campus. The bulk of the Institution’s funding comes from grants and contracts from the National Science Foundation(US) and other government agencies, augmented by foundations and private donations.

    WHOI scientists, engineers, and students collaborate to develop theories, test ideas, build seagoing instruments, and collect data in diverse marine environments. Ships operated by WHOI carry research scientists throughout the world’s oceans. The WHOI fleet includes two large research vessels (R/V Atlantis and R/V Neil Armstrong); the coastal craft Tioga; small research craft such as the dive-operation work boat Echo; the deep-diving human-occupied submersible Alvin; the tethered, remotely operated vehicle Jason/Medea; and autonomous underwater vehicles such as the REMUS and SeaBED.
    WHOI offers graduate and post-doctoral studies in marine science. There are several fellowship and training programs, and graduate degrees are awarded through a joint program with the Massachusetts Institute of Technology(US). WHOI is accredited by the New England Association of Schools and Colleges (US). WHOI also offers public outreach programs and informal education through its Exhibit Center and summer tours. The Institution has a volunteer program and a membership program, WHOI Associate.

    On October 1, 2020, Peter B. de Menocal became the institution’s eleventh president and director.

    History

    In 1927, a National Academy of Sciences(US) committee concluded that it was time to “consider the share of the United States of America in a worldwide program of oceanographic research.” The committee’s recommendation for establishing a permanent independent research laboratory on the East Coast to “prosecute oceanography in all its branches” led to the founding in 1930 of the Woods Hole Oceanographic Institution(US).

    A $2.5 million grant from the Rockefeller Foundation supported the summer work of a dozen scientists, construction of a laboratory building and commissioning of a research vessel, the 142-foot (43 m) ketch R/V Atlantis, whose profile still forms the Institution’s logo.

    WHOI grew substantially to support significant defense-related research during World War II, and later began a steady growth in staff, research fleet, and scientific stature. From 1950 to 1956, the director was Dr. Edward “Iceberg” Smith, an Arctic explorer, oceanographer and retired Coast Guard rear admiral.

    In 1977 the institution appointed the influential oceanographer John Steele as director, and he served until his retirement in 1989.

    On 1 September 1985, a joint French-American expedition led by Jean-Louis Michel of IFREMER and Robert Ballard of the Woods Hole Oceanographic Institution identified the location of the wreck of the RMS Titanic which sank off the coast of Newfoundland 15 April 1912.

    On 3 April 2011, within a week of resuming of the search operation for Air France Flight 447, a team led by WHOI, operating full ocean depth autonomous underwater vehicles (AUVs) owned by the Waitt Institute discovered, by means of sidescan sonar, a large portion of debris field from flight AF447.

    In March 2017 the institution effected an open-access policy to make its research publicly accessible online.

    The Institution has maintained a long and controversial business collaboration with the treasure hunter company Odyssey Marine. Likewise, WHOI has participated in the location of the San José galleon in Colombia for the commercial exploitation of the shipwreck by the Government of President Santos and a private company.

    In 2019, iDefense reported that China’s hackers had launched cyberattacks on dozens of academic institutions in an attempt to gain information on technology being developed for the United States Navy. Some of the targets included the Woods Hole Oceanographic Institution. The attacks have been underway since at least April 2017.

     
  • richardmitnick 1:56 pm on July 16, 2021 Permalink | Reply
    Tags: , Another material in the sediments is cosmogenic dust from outer space-tiny micrometeorites that bombard the Earth each day., , Dust is not only found on land though that is where it is most familiar to us. The pesky particles that build up on coffee tables also infiltrate our oceans., , Knowing how nutrient content levels have changed over millions of years can tell us more about how different plankton communities involved in the biological carbon pump have evolved ., , , Plankton use iron and other nutrients from the tiny specks to grow., , Recent research suggests that vents could be an important source of iron., , The scientists had to trek 10000 nautical miles through the South Pacific to a location near the Point Nemo region-the furthest point in the global ocean from land., There are no near-shore areas that will give you 100 million years of climate history so scientists need to go extreme locations to drill for sediments of that age., Woods Hole Oceanographic Institution (US)   

    From Woods Hole Oceanographic Institution (US) : “Secrets in the Dust” 

    From Woods Hole Oceanographic Institution (US)

    September 24, 2020 [Re-presented 7.15.21]
    Evan Lubofsky

    1
    Credit: Natalie Renier © Woods Hole Oceanographic Institution.

    In the spring of 2010, a satellite the size of a small school bus plunged through the upper atmosphere like a fiery cannonball as it fell to the South Pacific Ocean, hair-raisingly close to where scientists aboard the research vessel (R/V) JOIDES Resolution happened to be working.

    “We got an alert from the European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU) that it was bringing a satellite back down, basically telling us that we had to move within the next 24 hours,” says WHOI deputy director Rick Murray, who was there.

    The ship moved to a new location and avoided a catastrophic, albeit unlikely, collision with spacecraft. But, Murray says, the incident was “a stark reminder of how far away we actually were from everything else on this planet.”

    The researchers were in that desolate stretch of ocean— an area so removed from humanity that it’s become a cemetery for dying spacecraft—to learn about earlier episodes of climate change that can help inform future changes. Specifically, they were coring for ocean sediments, which contain various amounts of dust. “We can use the dust,” Murray says, “to tease out information about how climate changed in the Southern Hemisphere over millions of years.”

    A dusty ocean

    Dust is not only found on land though that is where it is most familiar to us. The pesky particles that build up on coffee tables also infiltrate our oceans, thanks to winds that constantly sweep it off land into the atmosphere. And that’s good, since plankton use iron and other nutrients from the tiny specks to grow. In the process, they draw down heat-trapping carbon dioxide (CO2) from the atmosphere above. When plankton eventually die and sink, some of them become buried in the seafloor. The carbon they’ve captured is buried along with them. As a result, dust has a direct and important impact on climate.

    Scientists at WHOI are investigating the amount of dust blown into the Southern Ocean over tens of millions of years. In doing so, they hope to pinpoint when the Earth went through periods of warm, slightly moister weather, and when the planet turned cooler and drier.

    Ann Dunlea, a marine geochemist at WHOI and one of Murray’s former graduate students when they were at Boston University (US), has been analyzing sediment samples from the 2010 R/V JOIDES Resolution expedition. She says looking at dust fluxes in the ocean over time enables her to understand the climatic history of the Southern Hemisphere and know, for example, at what point Australia became a dry and dusty place. It happened after the land mass dislodged from Antarctica 50-35 million years ago and migrated north, she says.

    3
    WHOI marine geochemist Ann Dunlea samples sediment from a core drilled on the R/V JOIDES Resolution. Analysis of dust in the samples allows her to reconstruct the climatic history of the Southern Hemisphere over tens of millions of years. Photo by Alex Reis.

    “In my data, you can see when the continent became desert-like as it tectonically migrated to 30 degrees south latitude,” Dunlea says. She can tell by the amount of dust that came off and drifted into the open ocean.

    Dust quantities are helping her reconstruct the region’s climactic history, which can inform predictions of future climate. But Dunlea is also analyzing the “oozy clay goo” to understand more about how iron and other micronutrients have cycled across ocean basins and influenced biological productivity in this oceanic desert, where nutrients run scarce. “Knowing how nutrient content levels have changed over millions of years can tell us more about how different plankton communities involved in the biological carbon pump have evolved over these time scales,” she says.

    A place of extremes

    None of these analyses would be possible without ancient ocean sediments, those that go way back to when dinosaurs walked the Earth.

    To collect sediments of that vintage, Murray and his colleagues had to trek 10,000 nautical miles through the South Pacific to a location near the Point Nemo region-the furthest point in the global ocean from land. “The sediment there is unique in that it accumulates incredibly slowly—about a meter per million years,” Murray says. “This means that there is a lot of time for the sediments to collect dust and minerals that we can use for analysis.”

    He says there are no near-shore areas that will give you 100 million years of climate history so scientists need to go extreme locations to drill for sediments of that age.

    “We were so far from anything, we would have been in a lot of trouble if something went wrong during the cruise. Like a satellite crashing down on us,” he laughs.

    Dust isn’t the only thing that persists in these ancient sediments. They also contain dormant deep-sea microbes that researchers from the JAPAN AGENCY FOR MARINE-EARTH SCIENCE AND TECHNOLOGY [国立研究開発法人海洋研究開発機構] (JP) (JAMSTEC) recently incubated, fed, and woke from their 100-million-year snooze fests.

    Another extreme, Murray says, was the tap-water-like clarity of the seawater where they drilled. “At one point we looked over the side of the ship and saw what appeared to be five-inch fish swimming deep down. When they came up to the surface, we couldn’t believe these tiny fish were actually 18-foot sharks!”

    4
    Due to incredibly clear waters, 18-foot sharks like the white-tipped shark shown here, looked like small fish down deep from the side of the ship during the 2010 R/V JOIDES Resolution expedition. Photo by Carlos Alvarez Zarikian, International Ocean Discovery Program, Texas A&M University (US))

    Understanding the sources

    Dunlea has found a window into ancient climate patterns, but the process hasn’t been without challenges. For instance, she has had to develop analytical techniques to distinguish continental dust from volcanic ash, which look identical even under a microscope. She must analyze the chemical composition of the sediments and ferret out hidden trends in the data with advanced statistical techniques.

    “It’s important to know what’s dust and what’s ash, since ash won’t tell us anything about warm or cold periods in the geologic record, and factoring it in will skew our results,” Dunlea says. “The ash can tell us, however, more about the history of volcanism, how many eruptions there have been, and how that may have impacted global climate.”

    Another material she has found in the sediments is cosmogenic dust from outer space-tiny micrometeorites that bombard the Earth each day. Dunlea says the slowly-accumulating sediment in the South Pacific Gyre also allows for a high concentration of these cosmic particles, some of which she can extract with a magnet.

    The next phase of the research will involve investigating how much iron content in the ocean may be coming from another source: metal-rich fluids erupting from hydrothermal vents on the seafloor.

    “It is commonly assumed that almost all iron in surface waters comes from dust, but recent research suggests that vents could be another important source of iron,” Dunlea says. “It’s unclear how far hydrothermal plumes can travel or if iron from them can reach surface waters, so those are some of the questions we’re trying to tackle in order to better understand past climate patterns and improve our predictions of future ones.”

    This research is funded by the National Science Foundation’s Division of Ocean Sciences (US).

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Woods Hole Oceanographic Institute

    Mission Statement

    The Woods Hole Oceanographic Institution (US) is dedicated to advancing knowledge of the ocean and its connection with the Earth system through a sustained commitment to excellence in science, engineering, and education, and to the application of this knowledge to problems facing society.

    Vision & Mission

    The ocean is a defining feature of our planet and crucial to life on Earth, yet it remains one of the planet’s last unexplored frontiers. For this reason, WHOI scientists and engineers are committed to understanding all facets of the ocean as well as its complex connections with Earth’s atmosphere, land, ice, seafloor, and life—including humanity. This is essential not only to advance knowledge about our planet, but also to ensure society’s long-term welfare and to help guide human stewardship of the environment. WHOI researchers are also dedicated to training future generations of ocean science leaders, to providing unbiased information that informs public policy and decision-making, and to expanding public awareness about the importance of the global ocean and its resources.

    The Institution is organized into six departments, the Cooperative Institute for Climate and Ocean Research, and a marine policy center. Its shore-based facilities are located in the village of Woods Hole, Massachusetts(US) and a mile and a half away on the Quissett Campus. The bulk of the Institution’s funding comes from grants and contracts from the National Science Foundation(US) and other government agencies, augmented by foundations and private donations.

    WHOI scientists, engineers, and students collaborate to develop theories, test ideas, build seagoing instruments, and collect data in diverse marine environments. Ships operated by WHOI carry research scientists throughout the world’s oceans. The WHOI fleet includes two large research vessels (R/V Atlantis and R/V Neil Armstrong); the coastal craft Tioga; small research craft such as the dive-operation work boat Echo; the deep-diving human-occupied submersible Alvin; the tethered, remotely operated vehicle Jason/Medea; and autonomous underwater vehicles such as the REMUS and SeaBED.
    WHOI offers graduate and post-doctoral studies in marine science. There are several fellowship and training programs, and graduate degrees are awarded through a joint program with the Massachusetts Institute of Technology(US). WHOI is accredited by the New England Association of Schools and Colleges (US). WHOI also offers public outreach programs and informal education through its Exhibit Center and summer tours. The Institution has a volunteer program and a membership program, WHOI Associate.

    On October 1, 2020, Peter B. de Menocal became the institution’s eleventh president and director.

    History

    In 1927, a National Academy of Sciences(US) committee concluded that it was time to “consider the share of the United States of America in a worldwide program of oceanographic research.” The committee’s recommendation for establishing a permanent independent research laboratory on the East Coast to “prosecute oceanography in all its branches” led to the founding in 1930 of the Woods Hole Oceanographic Institution(US).

    A $2.5 million grant from the Rockefeller Foundation supported the summer work of a dozen scientists, construction of a laboratory building and commissioning of a research vessel, the 142-foot (43 m) ketch R/V Atlantis, whose profile still forms the Institution’s logo.

    WHOI grew substantially to support significant defense-related research during World War II, and later began a steady growth in staff, research fleet, and scientific stature. From 1950 to 1956, the director was Dr. Edward “Iceberg” Smith, an Arctic explorer, oceanographer and retired Coast Guard rear admiral.

    In 1977 the institution appointed the influential oceanographer John Steele as director, and he served until his retirement in 1989.

    On 1 September 1985, a joint French-American expedition led by Jean-Louis Michel of IFREMER and Robert Ballard of the Woods Hole Oceanographic Institution identified the location of the wreck of the RMS Titanic which sank off the coast of Newfoundland 15 April 1912.

    On 3 April 2011, within a week of resuming of the search operation for Air France Flight 447, a team led by WHOI, operating full ocean depth autonomous underwater vehicles (AUVs) owned by the Waitt Institute discovered, by means of sidescan sonar, a large portion of debris field from flight AF447.

    In March 2017 the institution effected an open-access policy to make its research publicly accessible online.

    The Institution has maintained a long and controversial business collaboration with the treasure hunter company Odyssey Marine. Likewise, WHOI has participated in the location of the San José galleon in Colombia for the commercial exploitation of the shipwreck by the Government of President Santos and a private company.

    In 2019, iDefense reported that China’s hackers had launched cyberattacks on dozens of academic institutions in an attempt to gain information on technology being developed for the United States Navy. Some of the targets included the Woods Hole Oceanographic Institution. The attacks have been underway since at least April 2017.

     
  • richardmitnick 1:21 pm on July 11, 2021 Permalink | Reply
    Tags: "A rare mission north", , , Despite the conditions the ship set a new latitude record., , Measuring winter water is important because it contains high levels of nutrients that spur primary production in the spring., Obtaining the wintertime hydrographic data would be valuable., , R/V "Sikuliaq", RiV "Polar Star", The last time a Coast Guard cutter had visited the Arctic in winter was about 40 years ago., The primary objectives of the expedition were to navigate along the international maritime boundary line in order to assert U.S. sovereignty., Woods Hole Oceanographic Institution (US)   

    From Woods Hole Oceanographic Institution (US) : “A rare mission north” 

    From Woods Hole Oceanographic Institution (US)

    July 7, 2021
    Randy Showstack

    1
    U.S. Coast Guard Cutter Polar Star enters the winter pack ice. The crew regularly removed ice that had accumulated on the vessel with mallets and snow shovels. (Photo by Cynthia Oldham, U.S. Coast Guard)

    Bob Pickart was eating lunch in the mess of the R/V Sikuliaq last November 13 when a unique scientific opportunity knocked.

    1
    R/V Sikuliaq at Woods Hole, Massachusetts, USA.

    A colleague on board the ship told him that the U.S. Coast Guard Cutter Polar Star, the United States’ sole heavy icebreaker, would sail to the Arctic from Seattle in early December, instead of traveling to its usual wintertime destination—the National Science Foundation’s (US) McMurdo Station in Antarctica. It turned out, the ship’s resupply mission south wasn’t needed due to coronavirus restrictions, so the Coast Guard decided in October to send the ship north.

    2
    A U.S. Coast Guard HH-52A Seaguard helicopter landing on the icebreaker USCGC Polar Star
    Credit: USCG

    “Are you kidding me?” exclaimed Pickart, a senior scientist in the Woods Hole Oceanographic Institution’s (WHOI) Department of Physical Oceanography.

    “I’ve been studying winter water in the Arctic for the past 20 years, and here is this once-in-a-lifetime opportunity to actually take shipboard measurements at a time of year when no one has them,” he recalled thinking. The last time a Coast Guard cutter had visited the Arctic in winter was about 40 years ago. Polar Star had made that earlier trip in 1982.

    But time was short to get permission and funding to add a science component to the Polar Star before the ship’s launch on December 4. After Sikuliaq docked in Anchorage on November 19, Pickart typed out an NSF RAPID proposal for expedited funding while flying east back to WHOI. It called for measuring winter water in the Northern Bering and Chukchi Seas by releasing into the ocean dozens of expendable conductivity-temperature-depth (XCTD) probes. Because the Polar Star is not outfitted for science and there wasn’t time to arrange for standard CTD probes, expendables were the only viable way to obtain the hydrographic data, including information about the presence of winter water. With time closing in, Lockheed Martin expedited shipment of the probes, and Pickart’s technicians provided portable lab equipment for the ship, no easy task on such a short timetable.

    Just eleven days later, the Coast Guard and NSF gave the go ahead. “And boom, we were in business,” Pickart says.

    Measuring winter water is important because it contains high levels of nutrients that spur primary production in the spring, Pickart says. “Anything we can learn about winter water, including where it’s coming from, where it’s going, and how it evolves is going to tell us a lot about the entire ecosystem, not just where the cold water is.” He added that the formation and transformation of the winter water “is hugely impacted by the climate.”

    Polar Star commanding officer William Woityra, a career icebreaker sailor with an advanced degree in oceanography, had sailed with Pickart in the past, and agreed that obtaining the wintertime hydrographic data would be valuable.

    “It’s a gigantic mystery what the actual processes are and what the properties of the water are once the ice freezes over,” he says. “It’s been 40 years since we’ve had a chance to collect such data. If you think about what the climate was like 40 years ago, particularly in the Arctic, where it’s changing so quickly, the importance of this mission and the chance to go collect those data and bring back that information is going to be revelatory in terms of our understanding of the flows of water and how things have changed over the intervening decades.”

    The primary objectives of the expedition, though, were to navigate along the international maritime boundary line in order to assert U.S. sovereignty and show that the country is interested and invested in the Arctic. It was also an opportunity to train the crew on piloting in harsh winter conditions. And there was another goal: to break the record for the furthest north a U.S. surface vessel has sailed in winter.

    As Polar Star sailed north, several crew members played key roles in deploying the probes in small openings in the ice about every 12 hours above 65 degrees north. Among the crew was Lieutenant Lydia Ames, serving as the National Oceanic and Atmospheric Administration’s (US) science liaison officer, and Evan Neuwirth, a physical scientist and senior ice analyst with the U.S. National Ice Center.

    They, along with several other crew members, released the 18” long probes from a hand-held launcher by leaning over the side of the boat and directing the launcher downward. As a probe slid from the launcher and descended to the seafloor, a thin connected copper wire spooled out to deliver the hydrographic data to a computer onboard the ship until a few minutes later when somebody snipped the wire. Ames says the information from the probes would help to fill “a big vacuum of data.” Pickart was able to monitor the incoming scientific data from his office at WHOI.

    As Polar Star continued north, the ridged sea ice was so hard that the ship would make just a one- or two-mile advance during a four-hour watch. It was “tough sledding,” says Woityra. The loud sound of the ship scraping through the ice around the clock was awful: like nails on a chalkboard, he says. Woityra says the crew had a hard time sleeping because they could feel vibrations in their chests. The temperature got down to negative 11 degrees Fahrenheit. But the biggest difficulty was the unremitting darkness of the far north in winter. Even with the ship’s floodlights and spotlight, they could only see 100 yards in front of the ship. “It was like driving down a road in a snowstorm when you can’t see past the hood of your car. Really challenging,” says Woityra.

    3
    Large ice ridges and rubble, illuminated by the ship’s searchlight, made it extremely challenging for the Polar Star to move northward through the Chukchi Sea. (Photo by Cynthia Oldham, U.S. Coast Guard)

    Despite the conditions, the ship set a new latitude record. The old record, also set by Polar Star, was somewhere around Point Barrow, Alaska. So, the crew kept going until reaching the latitude of 72 degrees 11 minutes north, about 80 miles off the coast of Utqiaġvik, the northernmost town in Alaska, around 7:30 a.m. on Christmas morning.

    Ames found out about the new record that morning, after she climbed up the ladder to the highest vantage point on the ship, the aloft conning tower, known as the aloft conn, where the pilot operates the ship through ice. After entering the tower, gaining situational awareness, and examining the electronic chart display information, Ames said to her colleague up there, Coast Guard Lieutenant (junior grade) Lauren Kowalski, “Oh, we’re going south. Cool. How far north did we get?” They high-fived. More celebrations followed later.

    Some of the difficult environmental conditions onboard the ship felt like “a suffer fest in the moment,” says Neuwirth. “But if you look back, you’re like’ wow, we did this together’. We really accomplished something big and did something cool for our country.”

    And, along the way, they also did something really cool for science.

    As Pickart put it, “We got this once-in-every-40-years snapshot of the winter water formation.” In the coming months, Pickart and his team will be analyzing the data and comparing them to additional data collected in the same region a few months later by Sikuliaq, to help determine how the winter water moderates in spring.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Woods Hole Oceanographic Institute

    Mission Statement

    The Woods Hole Oceanographic Institution (US) is dedicated to advancing knowledge of the ocean and its connection with the Earth system through a sustained commitment to excellence in science, engineering, and education, and to the application of this knowledge to problems facing society.

    Vision & Mission

    The ocean is a defining feature of our planet and crucial to life on Earth, yet it remains one of the planet’s last unexplored frontiers. For this reason, WHOI scientists and engineers are committed to understanding all facets of the ocean as well as its complex connections with Earth’s atmosphere, land, ice, seafloor, and life—including humanity. This is essential not only to advance knowledge about our planet, but also to ensure society’s long-term welfare and to help guide human stewardship of the environment. WHOI researchers are also dedicated to training future generations of ocean science leaders, to providing unbiased information that informs public policy and decision-making, and to expanding public awareness about the importance of the global ocean and its resources.

    The Institution is organized into six departments, the Cooperative Institute for Climate and Ocean Research, and a marine policy center. Its shore-based facilities are located in the village of Woods Hole, Massachusetts(US) and a mile and a half away on the Quissett Campus. The bulk of the Institution’s funding comes from grants and contracts from the National Science Foundation(US) and other government agencies, augmented by foundations and private donations.

    WHOI scientists, engineers, and students collaborate to develop theories, test ideas, build seagoing instruments, and collect data in diverse marine environments. Ships operated by WHOI carry research scientists throughout the world’s oceans. The WHOI fleet includes two large research vessels (R/V Atlantis and R/V Neil Armstrong); the coastal craft Tioga; small research craft such as the dive-operation work boat Echo; the deep-diving human-occupied submersible Alvin; the tethered, remotely operated vehicle Jason/Medea; and autonomous underwater vehicles such as the REMUS and SeaBED.
    WHOI offers graduate and post-doctoral studies in marine science. There are several fellowship and training programs, and graduate degrees are awarded through a joint program with the Massachusetts Institute of Technology(US). WHOI is accredited by the New England Association of Schools and Colleges (US). WHOI also offers public outreach programs and informal education through its Exhibit Center and summer tours. The Institution has a volunteer program and a membership program, WHOI Associate.

    On October 1, 2020, Peter B. de Menocal became the institution’s eleventh president and director.

    History

    In 1927, a National Academy of Sciences(US) committee concluded that it was time to “consider the share of the United States of America in a worldwide program of oceanographic research.” The committee’s recommendation for establishing a permanent independent research laboratory on the East Coast to “prosecute oceanography in all its branches” led to the founding in 1930 of the Woods Hole Oceanographic Institution(US).

    A $2.5 million grant from the Rockefeller Foundation supported the summer work of a dozen scientists, construction of a laboratory building and commissioning of a research vessel, the 142-foot (43 m) ketch R/V Atlantis, whose profile still forms the Institution’s logo.

    WHOI grew substantially to support significant defense-related research during World War II, and later began a steady growth in staff, research fleet, and scientific stature. From 1950 to 1956, the director was Dr. Edward “Iceberg” Smith, an Arctic explorer, oceanographer and retired Coast Guard rear admiral.

    In 1977 the institution appointed the influential oceanographer John Steele as director, and he served until his retirement in 1989.

    On 1 September 1985, a joint French-American expedition led by Jean-Louis Michel of IFREMER and Robert Ballard of the Woods Hole Oceanographic Institution identified the location of the wreck of the RMS Titanic which sank off the coast of Newfoundland 15 April 1912.

    On 3 April 2011, within a week of resuming of the search operation for Air France Flight 447, a team led by WHOI, operating full ocean depth autonomous underwater vehicles (AUVs) owned by the Waitt Institute discovered, by means of sidescan sonar, a large portion of debris field from flight AF447.

    In March 2017 the institution effected an open-access policy to make its research publicly accessible online.

    The Institution has maintained a long and controversial business collaboration with the treasure hunter company Odyssey Marine. Likewise, WHOI has participated in the location of the San José galleon in Colombia for the commercial exploitation of the shipwreck by the Government of President Santos and a private company.

    In 2019, iDefense reported that China’s hackers had launched cyberattacks on dozens of academic institutions in an attempt to gain information on technology being developed for the United States Navy. Some of the targets included the Woods Hole Oceanographic Institution. The attacks have been underway since at least April 2017.

     
  • richardmitnick 3:48 pm on July 8, 2021 Permalink | Reply
    Tags: , , , , , , McMurdo Station-the major U.S. logistics hub on the continent., Ocean science at the extremes, Oceanographers are gaining insights that may answer fundamental questions about life on Earth—and possibly even life beyond., , Phytoplankton: these minuscule organisms form the base of the Antarctic marine food web., SEAWATER COVER MORE THAN 71% OF EARTH'S SURFACE!, , The Long Term Ecological Research (LTER) network focuses on life that exists in and around nearby sea ice., The sea provides food for billions of humans; supplies life-giving oxygen to the atmosphere; and directly affects climate., The sea’s influence touches nearly every corner of the globe., Unraveling the mysteries of a realm this large means entering some of the most remote and dangerous places on the planet., Woods Hole Oceanographic Institution (US)   

    From Woods Hole Oceanographic Institution (US) : “Going the Distance” 

    From Woods Hole Oceanographic Institution (US)

    June 7, 2021
    David Levin

    Ocean science at the extremes

    1
    Through the lens of remotely operated vehicle ROV Jason, anemones and shrimp cluster around a hydrothermal vent along a site called the Piccard Field, 5,000 meters (16,404 feet) deep on the Caribbean seafloor during a 2012 expedition. (Photo courtesy of Chris German, NASA/ROV Jason Team, © Woods Hole Oceanographic Institution.

    Aboard the R/V Atlantis, the HOV Alvin perches neatly inside a small two-story hangar, where it’s draped with ventilation tubes and electrical cables. The streamlined white hull of the sub, which has lately been going through a major overhaul to extend its reach to greater depths, reflects the lights of the deck beyond. Its two robotic arms fold neatly at its sides, framing portholes carved into a gleaming new titanium crew sphere. It looks like science fiction come to life: a small but formidable spacecraft poised to travel to another world.

    IN REALITY, THAT’S NOT FAR FROM THE TRUTH. SEAWATER COVER MORE THAN 71% OF EARTH’S SURFACE, leaving much of the globe unknown and mysterious to humans. Exploring its secrets is a bit like studying the workings of a distant planet.

    “The ocean is so enormous, so vast, that it’s nearly impossible to have a thorough understanding of any one part of it unless you’re actually there,” says Adam Soule, a submarine vulcanologist and former chief scientist for deep submergence at WHOI. “There’s an aspect of exploration and discovery that is inherent in marine research.”

    In their constant search for understanding, oceanographers from WHOI and elsewhere must go to extremes. Some of those scientists board Alvin multiple times every year, diving to some of the deepest and most mysterious areas of the seafloor. Some peer through the eyes of complex robotic vehicles that can travel where humans can’t go. Others travel to the distant edges of the ocean’s reach, trekking across frozen polar landscapes to collect ice cores that reveal what the sea looked like thousands of years ago.

    No matter what aspect of the oceans these scientists study, their work can be a massive undertaking. From the deepest marine trench to the tallest landlocked mountain, the sea’s influence touches nearly every corner of the globe: It provides food for billions of humans, supplies life-giving oxygen to the atmosphere, and directly affects climate from the deserts of Arizona to the icy coasts and frozen interior of Antarctica. Unraveling the mysteries of a realm this large means entering some of the most remote and dangerous places on the planet. But by going to these great lengths, oceanographers are gaining insights that may answer fundamental questions about life on Earth—and possibly even life beyond.

    3
    Submersible Alvin is prepped in the high bay on R/V Atlantis before dive operations along a segment of a deep-sea mountain range known as the East Pacific Rise, off the coast of Costa Rica. Photo by Ken Kostel, © Woods Hole Oceanographic Institution.

    The Poles

    The first thing that hits you when you sail into Antarctica’s Palmer Station is the smell. After five days at sea in some of the roughest waters on Earth, new arrivals are greeted by a whiff of guano—excrement from the massive penguin colonies that inhabit the peninsula. But the view makes up for it, says WHOI marine geochemist Dan Lowenstein.

    “You sail between these sheer walls of rock and snow in the Neumayer Channel, which is the navigational passage along the peninsula, and when you come around one last island, you see this incredibly remote station,” he says. “It’s just a handful of buildings perched on a tiny bit of rock at the bottom of a huge glacier, next to a harbor bordered by 300-foot cliffs of ice.”

    Lowenstein arrived at Palmer in December, 2020 and plans to remain there for at least six months. It’s a position that requires a certain level of comfort in extreme isolation. Although the population of McMurdo Station, the major U.S. logistics hub on the continent, peaks at 1,300 during the Antarctic summer, the peak at Palmer is only about 45 people. During the Covid-19 pandemic, it’s running with an even smaller crew: Lowenstein is one of just 24 scientists and staff currently on hand.

    The global public health crisis not only reduced the number of people allowed at Palmer this year. It also hampered travel to the station. Under normal circumstances, the trip takes about a week. This year, Lowenstein spent more than a month in transit, thanks to multiday quarantine stops in Massachusetts, San Francisco, and Chile.

    It may be tiny and hard to reach but Palmer enjoys an outsized importance in the world of oceanography and climate. It’s home to a Long Term Ecological Research (LTER) network of more than 30 sites across the globe that have been recording continuous environmental data and samples over the past few decades. At Palmer, the LTER focuses on life that exists in and around nearby sea ice.

    4
    A waddle of Gentoo penguins hop around the rocks of the West Antarctic peninsula, where WHOI marine geochemist Dan Lowenstein is currently stationed to study the changing metabolism of the region’s microbial communities. Credit: Dan Lowenstein, © Woods Hole Oceanographic Institution.

    “There’s no place like it,” says WHOI geochemist Ben Van Mooy. “Since going online in 1990, Palmer has provided detailed information about a vast suite of chemical, biological, and physical ocean parameters in the waters that surround it. It’s an incredibly valuable record that doesn’t exist anywhere else.”

    Van Mooy has been to Palmer twice to gather samples of the sea ice that surrounds the station. This year, he sent Lowenstein in his place. Every chunk he collected can reveal volumes of information. Since it lies at the interface of the atmosphere and the ocean, Van Mooy says, sea ice is deeply affected by changes in both environments.

    “As the atmospheric climate changes, ocean circulation and other marine elements change, and those things are all reflected via changes in the sea ice. It’s a really sensitive indicator of both atmospheric and oceanographic processes,” Van Mooy adds.

    Van Mooy is also interested in how these same processes affect tiny plantlike microbes called phytoplankton. These minuscule organisms form the base of the Antarctic marine food web: They’re eaten by animals like krill and shrimp which in turn provide food for whales; fish; penguins; and other large organisms. Like plants on land, they also produce huge amounts of oxygen for the planet. Yet precisely how they’re affected by changing climate is unclear.

    Whatever happens to phytoplankton has a ripple effect across the entire ecosystem of the Antarctic peninsula, Van Mooy says. That means the fate of sea ice at the extreme ends of the world is inextricably connected with the fate of animals like krill, penguins, seabirds, whales, and fish—but to understand this complex ecosystem, Van Mooy first has to venture out into the coastal ice pack to collect samples and data. It’s a dangerous undertaking.

    “The thing people forget about Antarctica is that it’s essentially abandoned,” he says. “You can be a quarter mile away from Palmer Station, but once it’s out of sight, there’s zero indication of humans: No people, no ships, no jets in the sky. Nothing. It’s just you and one or two other people working on a small boat in frigid and tumultuous Antarctic water. We take a lot of precautions, but the consequences of something going wrong are pretty severe—so it forces you to look inside yourself and see how much you truly love what you’re doing.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Woods Hole Oceanographic Institute

    Mission Statement

    The Woods Hole Oceanographic Institution (US) is dedicated to advancing knowledge of the ocean and its connection with the Earth system through a sustained commitment to excellence in science, engineering, and education, and to the application of this knowledge to problems facing society.

    Vision & Mission

    The ocean is a defining feature of our planet and crucial to life on Earth, yet it remains one of the planet’s last unexplored frontiers. For this reason, WHOI scientists and engineers are committed to understanding all facets of the ocean as well as its complex connections with Earth’s atmosphere, land, ice, seafloor, and life—including humanity. This is essential not only to advance knowledge about our planet, but also to ensure society’s long-term welfare and to help guide human stewardship of the environment. WHOI researchers are also dedicated to training future generations of ocean science leaders, to providing unbiased information that informs public policy and decision-making, and to expanding public awareness about the importance of the global ocean and its resources.

    The Institution is organized into six departments, the Cooperative Institute for Climate and Ocean Research, and a marine policy center. Its shore-based facilities are located in the village of Woods Hole, Massachusetts(US) and a mile and a half away on the Quissett Campus. The bulk of the Institution’s funding comes from grants and contracts from the National Science Foundation(US) and other government agencies, augmented by foundations and private donations.

    WHOI scientists, engineers, and students collaborate to develop theories, test ideas, build seagoing instruments, and collect data in diverse marine environments. Ships operated by WHOI carry research scientists throughout the world’s oceans. The WHOI fleet includes two large research vessels (R/V Atlantis and R/V Neil Armstrong); the coastal craft Tioga; small research craft such as the dive-operation work boat Echo; the deep-diving human-occupied submersible Alvin; the tethered, remotely operated vehicle Jason/Medea; and autonomous underwater vehicles such as the REMUS and SeaBED.
    WHOI offers graduate and post-doctoral studies in marine science. There are several fellowship and training programs, and graduate degrees are awarded through a joint program with the Massachusetts Institute of Technology(US). WHOI is accredited by the New England Association of Schools and Colleges (US). WHOI also offers public outreach programs and informal education through its Exhibit Center and summer tours. The Institution has a volunteer program and a membership program, WHOI Associate.

    On October 1, 2020, Peter B. de Menocal became the institution’s eleventh president and director.

    History

    In 1927, a National Academy of Sciences(US) committee concluded that it was time to “consider the share of the United States of America in a worldwide program of oceanographic research.” The committee’s recommendation for establishing a permanent independent research laboratory on the East Coast to “prosecute oceanography in all its branches” led to the founding in 1930 of the Woods Hole Oceanographic Institution(US).

    A $2.5 million grant from the Rockefeller Foundation supported the summer work of a dozen scientists, construction of a laboratory building and commissioning of a research vessel, the 142-foot (43 m) ketch R/V Atlantis, whose profile still forms the Institution’s logo.

    WHOI grew substantially to support significant defense-related research during World War II, and later began a steady growth in staff, research fleet, and scientific stature. From 1950 to 1956, the director was Dr. Edward “Iceberg” Smith, an Arctic explorer, oceanographer and retired Coast Guard rear admiral.

    In 1977 the institution appointed the influential oceanographer John Steele as director, and he served until his retirement in 1989.

    On 1 September 1985, a joint French-American expedition led by Jean-Louis Michel of IFREMER and Robert Ballard of the Woods Hole Oceanographic Institution identified the location of the wreck of the RMS Titanic which sank off the coast of Newfoundland 15 April 1912.

    On 3 April 2011, within a week of resuming of the search operation for Air France Flight 447, a team led by WHOI, operating full ocean depth autonomous underwater vehicles (AUVs) owned by the Waitt Institute discovered, by means of sidescan sonar, a large portion of debris field from flight AF447.

    In March 2017 the institution effected an open-access policy to make its research publicly accessible online.

    The Institution has maintained a long and controversial business collaboration with the treasure hunter company Odyssey Marine. Likewise, WHOI has participated in the location of the San José galleon in Colombia for the commercial exploitation of the shipwreck by the Government of President Santos and a private company.

    In 2019, iDefense reported that China’s hackers had launched cyberattacks on dozens of academic institutions in an attempt to gain information on technology being developed for the United States Navy. Some of the targets included the Woods Hole Oceanographic Institution. The attacks have been underway since at least April 2017.

     
  • richardmitnick 10:24 am on June 20, 2021 Permalink | Reply
    Tags: "Icebergs drifting from Canada to Southern Florida", , , , , Woods Hole Oceanographic Institution (US)   

    From Woods Hole Oceanographic Institution (US) : Women in STEM- Dr. Jenna Hill “Icebergs drifting from Canada to Southern Florida” 

    From Woods Hole Oceanographic Institution (US)

    June 16, 2021
    Media Relations Office
    media@whoi.edu
    (508) 289-3340

    Woods Hole Oceanographic Institution & United States Geological Survey data shows how icebergs drifted more than 5,000km during the last glaciation.

    1
    These 3D perspective views of the seafloor bathymetry from multibeam sonar offshore of South Carolina show numerous grooves carved by drifting icebergs. As iceberg keels plow into the seafloor, they dig deep grooves that push aside boulders and piles of sand and mud along their tracks. Sediment cores from nearby buried iceberg scours were used to determine when these icebergs travelled south along the coast. Credit: Jenna Hill, U.S. Geological Survey, Pacific Coastal & Marine Science Center (US).

    Woods Hole Oceanographic Institution (WHOI) climate modeler Dr. Alan Condron and United States Geological Survey (USGS) research geologist Dr. Jenna Hill have found evidence that massive icebergs from roughly 31,000 years ago drifted more than 5000km (> 3,000 miles) along the eastern United States coast from Northeast Canada all the way to southern Florida. These findings were published today in Nature Communications.

    Using high resolution seafloor mapping, radiocarbon dating and a new iceberg model, the team analyzed about 700 iceberg scours (“plow marks” on the seafloor left behind by the bottom parts of icebergs dragging through marine sediment ) from Cape Hatteras, North Carolina to the Florida Keys. The discovery of icebergs in this area opens a door to understanding the interactions between icebergs/glaciers and climate.

    “The idea that icebergs can make it to Florida is amazing,” said Condron. “The appearance of scours at such low latitudes is highly unexpected not only because of the exceptionally high melt rates in this region, but also because the scours lie beneath the northward flowing Gulf Stream.”

    “We recovered the marine sediment cores from several of these scours, and their ages align with a known period of massive iceberg discharge known as Heinrich Event 3. We also expect that there are younger and older scours features that stem from other discharge events, given that there are hundreds of scours yet to be sampled,” added Hill.

    To study how icebergs reached the scour sites, Condron developed a numerical iceberg model that simulates how icebergs drift and melt in the ocean. The model shows that icebergs can only reach the scour sites when massive amounts of glacial meltwater (or glacial outburst floods) are released from Hudson Bay. “These floods create a cold, fast flowing, southward coastal current that carries the icebergs all the way to Florida” says Condron. “The model also produces ‘scouring’ on the seafloor in the same places as the actual scours”

    The ocean water temperatures south of Cape Hatteras are about 20-25°C (68-77°F). According to Condron and Hill, for icebergs to reach the subtropical scour locations in this region, they must have drifted against the normal northward direction of flow — the opposite direction to the Gulf Stream. This indicates that the transport of icebergs to the south occurs during large-scale, but brief periods of meltwater discharge.

    “What our model suggests is that these icebergs get caught up in the currents created by glacial meltwater, and basically surf their way along the coast. When a large glacial lake dam breaks, and releases huge amounts of fresh water into the ocean, there’s enough water to create these strong coastal currents that basically move the icebergs in the opposite direction to the Gulf Stream, which is no easy task” Condron said.

    While this freshwater is eventually transferred northward by the Gulf Stream, mixing with the surrounding ocean would have caused the meltwater to be considerably saltier by the time it reached the most northern parts of the North Atlantic. Those areas are considered critical for controlling how much heat the ocean transports northward to Europe. If these regions become abundant with freshwater, then the amount of heat transported north by the ocean could significantly weaken, increasing the chance that Europe could get much colder.

    The routing of meltwater into the subtropics – a location very far south of these regions – implies that the influence of meltwater on global climate is more complex than previously thought, according to Condron and Hill. Understanding the timing and circulation of meltwater and icebergs through the global oceans during glacial periods is crucial for deciphering how past changes in high-latitude freshwater forcing influenced shifts in climate.

    “As we are able to make more detailed computer models, we can actually get more accurate features of how the ocean actually circulates, how the currents move, how they peel off and how they spin around. That actually makes a big difference in terms of how that freshwater is circulated and how it can actually impact climate,” Hill added.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Woods Hole Oceanographic Institute

    Mission Statement

    The Woods Hole Oceanographic Institution (US) is dedicated to advancing knowledge of the ocean and its connection with the Earth system through a sustained commitment to excellence in science, engineering, and education, and to the application of this knowledge to problems facing society.

    Vision & Mission

    The ocean is a defining feature of our planet and crucial to life on Earth, yet it remains one of the planet’s last unexplored frontiers. For this reason, WHOI scientists and engineers are committed to understanding all facets of the ocean as well as its complex connections with Earth’s atmosphere, land, ice, seafloor, and life—including humanity. This is essential not only to advance knowledge about our planet, but also to ensure society’s long-term welfare and to help guide human stewardship of the environment. WHOI researchers are also dedicated to training future generations of ocean science leaders, to providing unbiased information that informs public policy and decision-making, and to expanding public awareness about the importance of the global ocean and its resources.

    The Institution is organized into six departments, the Cooperative Institute for Climate and Ocean Research, and a marine policy center. Its shore-based facilities are located in the village of Woods Hole, Massachusetts and a mile and a half away on the Quissett Campus. The bulk of the Institution’s funding comes from grants and contracts from the National Science Foundation(US) and other government agencies, augmented by foundations and private donations.

    WHOI scientists, engineers, and students collaborate to develop theories, test ideas, build seagoing instruments, and collect data in diverse marine environments. Ships operated by WHOI carry research scientists throughout the world’s oceans. The WHOI fleet includes two large research vessels (R/V Atlantis and R/V Neil Armstrong); the coastal craft Tioga; small research craft such as the dive-operation work boat Echo; the deep-diving human-occupied submersible Alvin; the tethered, remotely operated vehicle Jason/Medea; and autonomous underwater vehicles such as the REMUS and SeaBED.

    WHOI offers graduate and post-doctoral studies in marine science. There are several fellowship and training programs, and graduate degrees are awarded through a joint program with the Massachusetts Institute of Technology(US). WHOI is accredited by the New England Association of Schools and Colleges (US). WHOI also offers public outreach programs and informal education through its Exhibit Center and summer tours. The Institution has a volunteer program and a membership program, WHOI Associate.

    On October 1, 2020, Peter B. de Menocal became the institution’s eleventh president and director.

    History

    In 1927, a National Academy of Sciences(US) committee concluded that it was time to “consider the share of the United States of America in a worldwide program of oceanographic research.” The committee’s recommendation for establishing a permanent independent research laboratory on the East Coast to “prosecute oceanography in all its branches” led to the founding in 1930 of the Woods Hole Oceanographic Institution(US).

    A $2.5 million grant from the Rockefeller Foundation supported the summer work of a dozen scientists, construction of a laboratory building and commissioning of a research vessel, the 142-foot (43 m) ketch R/V Atlantis, whose profile still forms the Institution’s logo.

    WHOI grew substantially to support significant defense-related research during World War II, and later began a steady growth in staff, research fleet, and scientific stature. From 1950 to 1956, the director was Dr. Edward “Iceberg” Smith, an Arctic explorer, oceanographer and retired Coast Guard rear admiral.

    In 1977 the institution appointed the influential oceanographer John Steele as director, and he served until his retirement in 1989.

    On 1 September 1985, a joint French-American expedition led by Jean-Louis Michel of IFREMER and Robert Ballard of the Woods Hole Oceanographic Institution identified the location of the wreck of the RMS Titanic which sank off the coast of Newfoundland 15 April 1912.

    On 3 April 2011, within a week of resuming of the search operation for Air France Flight 447, a team led by WHOI, operating full ocean depth autonomous underwater vehicles (AUVs) owned by the Waitt Institute discovered, by means of sidescan sonar, a large portion of debris field from flight AF447.

    In March 2017 the institution effected an open-access policy to make its research publicly accessible online.

    The Institution has maintained a long and controversial business collaboration with the treasure hunter company Odyssey Marine. Likewise, WHOI has participated in the location of the San José galleon in Colombia for the commercial exploitation of the shipwreck by the Government of President Santos and a private company.

    In 2019, iDefense reported that China’s hackers had launched cyberattacks on dozens of academic institutions in an attempt to gain information on technology being developed for the United States Navy. Some of the targets included the Woods Hole Oceanographic Institution. The attacks have been underway since at least April 2017.

     
  • richardmitnick 6:19 pm on June 17, 2021 Permalink | Reply
    Tags: "Underwater robot offers new insight into mid-ocean 'twilight zone'", An innovative underwater robot known as Mesobot is providing researchers with deeper insight into the vast mid-ocean region known as the “twilight zone.”, , , , , Woods Hole Oceanographic Institution (US)   

    From Woods Hole Oceanographic Institution (US) : “Underwater robot offers new insight into mid-ocean ‘twilight zone'” 

    From Woods Hole Oceanographic Institution (US)

    June 16, 2021

    Suzanne Pelisson
    spelisson@WHOI.edu

    Raúl Nava
    raul@mbari.org

    1
    Mesobot

    An innovative underwater robot known as Mesobot is providing researchers with deeper insight into the vast mid-ocean region known as the “twilight zone.” Capable of tracking and recording high-resolution images of slow-moving and fragile zooplankton, gelatinous animals, and particles, Mesobot greatly expands scientists’ ability to observe creatures in their mesopelagic habitat with minimal disturbance. This advance in engineering will enable greater understanding of the role these creatures play in transporting carbon dioxide from the atmosphere to the deep sea, as well as how commercial exploitation of twilight zone fisheries might affect the marine ecosystem.

    In a paper published June 16 in Science Robotics, Woods Hole Oceanographic Institution (WHOI) senior scientist Dana Yoerger presents Mesobot as a versatile vehicle for achieving a number of science objectives in the twilight zone.

    “Mesobot was conceived to complement and fill important gaps not served by existing technologies and platforms,” said Yoerger. “We expect that Mesobot will emerge as a vital tool for observing midwater organisms for extended periods, as well as rapidly identifying species observed from vessel biosonars. Because Mesobot can survey, track, and record compelling imagery, we hope to reveal previously unknown behaviors, species interactions, morphological structures, and the use of bioluminescence.”

    Co-authored by research scientists and engineers from WHOI, MBARI (Monterey Bay Aquarium Research Institute (US)), and Stanford University (US), the paper outlines the robot’s success in autonomously tracking two gelatinous marine creatures during a 2019 research cruise in Monterey Bay. High-definition video revealed a “dinner plate” jellyfish “ramming” a siphonophore, which narrowly escaped the jelly’s venomous tentacles. Mesobot also recorded a 30-minute video of a giant larvacean, which appears to be nearly motionless but is actually riding internal waves that rise and fall 6 meters (20 feet). These observations represent the first time that a self-guided robot has tracked these small, clear creatures as they move through the water column like a “parcel of water,” said Yoerger.

    “Mesobot has the potential to change how we observe animals moving through space and time in a way that we’ve never been able to do before,” said Kakani Katija, MBARI principal engineer. “As we continue to develop and improve on the vehicle, we hope to observe many other mysterious and captivating animals in the midwaters of the ocean, including the construction and disposal of carbon-rich giant larvacean ‘snot palaces.’”

    Packaged in an hydrodynamically efficient yellow case, the hybrid robot is outfitted with a suite of oceanographic and acoustic survey sensors. It may be piloted remotely through a fiberoptic cable attached to a ship or released from its tether to follow pre-programmed missions or autonomously track a target at depths up to 1,000 meters (3,300 feet). This autonomous capability will one day enable Mesobot to follow a target animal for over 24 hours without human intervention, which is enough time to observe its migration from the midwater twilight zone to the surface and back. Future studies with Mesobot could provide researchers with valuable insight into animal behavior during diel vertical migration, known as “the greatest migration on Earth” because of the vast number and diversity of creatures that undertake it each night.

    “By leveraging the data we’ve collected using Mesobot, and other data that we’ve been curating for 30-plus years at MBARI, we hope to integrate smarter algorithms on the vehicle that use artificial intelligence to discover, continuously track, and observe enigmatic animals and other objects in the deep sea,” Kakani said.

    The design, construction, and initial testing for Mesobot was funded by the National Science Foundation (US) program for Ocean Technology and Interdisciplinary Coordination (OTIC). The research in this paper was supported by the David and Lucile Packard Foundation and WHOI’s Ocean Twilight Zone (OTZ) Project, funded as part of The Audacious Project housed at TED.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Woods Hole Oceanographic Institute

    Mission Statement

    The Woods Hole Oceanographic Institution (US) is dedicated to advancing knowledge of the ocean and its connection with the Earth system through a sustained commitment to excellence in science, engineering, and education, and to the application of this knowledge to problems facing society.

    Vision & Mission

    The ocean is a defining feature of our planet and crucial to life on Earth, yet it remains one of the planet’s last unexplored frontiers. For this reason, WHOI scientists and engineers are committed to understanding all facets of the ocean as well as its complex connections with Earth’s atmosphere, land, ice, seafloor, and life—including humanity. This is essential not only to advance knowledge about our planet, but also to ensure society’s long-term welfare and to help guide human stewardship of the environment. WHOI researchers are also dedicated to training future generations of ocean science leaders, to providing unbiased information that informs public policy and decision-making, and to expanding public awareness about the importance of the global ocean and its resources.

    The Institution is organized into six departments, the Cooperative Institute for Climate and Ocean Research, and a marine policy center. Its shore-based facilities are located in the village of Woods Hole, Massachusetts(US) and a mile and a half away on the Quissett Campus. The bulk of the Institution’s funding comes from grants and contracts from the National Science Foundation(US) and other government agencies, augmented by foundations and private donations.

    WHOI scientists, engineers, and students collaborate to develop theories, test ideas, build seagoing instruments, and collect data in diverse marine environments. Ships operated by WHOI carry research scientists throughout the world’s oceans. The WHOI fleet includes two large research vessels (R/V Atlantis and R/V Neil Armstrong); the coastal craft Tioga; small research craft such as the dive-operation work boat Echo; the deep-diving human-occupied submersible Alvin; the tethered, remotely operated vehicle Jason/Medea; and autonomous underwater vehicles such as the REMUS and SeaBED.

    WHOI offers graduate and post-doctoral studies in marine science. There are several fellowship and training programs, and graduate degrees are awarded through a joint program with the Massachusetts Institute of Technology(US). WHOI is accredited by the New England Association of Schools and Colleges. WHOI also offers public outreach programs and informal education through its Exhibit Center and summer tours. The Institution has a volunteer program and a membership program, WHOI Associate.

    On October 1, 2020, Peter B. de Menocal became the institution’s eleventh president and director.

    History

    In 1927, a National Academy of Sciences(US) committee concluded that it was time to “consider the share of the United States of America in a worldwide program of oceanographic research.” The committee’s recommendation for establishing a permanent independent research laboratory on the East Coast to “prosecute oceanography in all its branches” led to the founding in 1930 of the Woods Hole Oceanographic Institution(US).

    A $2.5 million grant from the Rockefeller Foundation supported the summer work of a dozen scientists, construction of a laboratory building and commissioning of a research vessel, the 142-foot (43 m) ketch R/V Atlantis, whose profile still forms the Institution’s logo.

    WHOI grew substantially to support significant defense-related research during World War II, and later began a steady growth in staff, research fleet, and scientific stature. From 1950 to 1956, the director was Dr. Edward “Iceberg” Smith, an Arctic explorer, oceanographer and retired Coast Guard rear admiral.

    In 1977 the institution appointed the influential oceanographer John Steele as director, and he served until his retirement in 1989.

    On 1 September 1985, a joint French-American expedition led by Jean-Louis Michel of IFREMER and Robert Ballard of the Woods Hole Oceanographic Institution identified the location of the wreck of the RMS Titanic which sank off the coast of Newfoundland 15 April 1912.

    On 3 April 2011, within a week of resuming of the search operation for Air France Flight 447, a team led by WHOI, operating full ocean depth autonomous underwater vehicles (AUVs) owned by the Waitt Institute discovered, by means of sidescan sonar, a large portion of debris field from flight AF447.

    In March 2017 the institution effected an open-access policy to make its research publicly accessible online.

    The Institution has maintained a long and controversial business collaboration with the treasure hunter company Odyssey Marine. Likewise, WHOI has participated in the location of the San José galleon in Colombia for the commercial exploitation of the shipwreck by the Government of President Santos and a private company.

    In 2019, iDefense reported that China’s hackers had launched cyberattacks on dozens of academic institutions in an attempt to gain information on technology being developed for the United States Navy. Some of the targets included the Woods Hole Oceanographic Institution. The attacks have been underway since at least April 2017.

     
  • richardmitnick 10:02 pm on June 7, 2021 Permalink | Reply
    Tags: , Antarctica’s McMurdo Station (US), , , , , , , , , , , , The volcanic rock and fluids that well up from below the ocean floor in some regions offer scientists a clear look at geologic processes that have shaped life on our planet., WHOI "ALVIN"submersible, WHOI R/V "Atlantis", Woods Hole Oceanographic Institution (US)   

    From Woods Hole Oceanographic Institution (US) : Women in STEM Sarah Das; Kristin Poinar; Rebecca Carey; Julie Huber “Going the Distance” 

    From Woods Hole Oceanographic Institution (US)

    June 7, 2021
    David Levin

    Ocean science at the extremes

    1
    Through the lens of remotely operated vehicle Jason, anemones and shrimp cluster around a hydrothermal vent along a site called the Piccard Field, 5,000 meters (16,404 feet) deep on the Caribbean seafloor during a 2012 expedition. Photo courtesy of Chris German, National Aeronautics Space Agency (US)/ROV Jason Team, © Woods Hole Oceanographic Institution.

    Aboard the R/V Atlantis, the human-occupied vehicle Alvin perches neatly inside a small two-story hangar, where it’s draped with ventilation tubes and electrical cables.

    The streamlined white hull of the sub, which has lately been going through a major overhaul to extend its reach to greater depths, reflects the lights of the deck beyond. Its two robotic arms fold neatly at its sides, framing portholes carved into a gleaming new titanium crew sphere. It looks like science fiction come to life: a small but formidable spacecraft poised to travel to another world.

    IN REALITY, THAT’S NOT FAR FROM THE TRUTH. SEAWATER COVER MORE THAN 71% OF EARTH’S SURFACE, leaving much of the globe unknown and mysterious to humans. Exploring its secrets is a bit like studying the workings of a distant planet.

    “The ocean is so enormous, so vast, that it’s nearly impossible to have a thorough understanding of any one part of it unless you’re actually there,” says Adam Soule, a submarine vulcanologist and former chief scientist for deep submergence at WHOI. “There’s an aspect of exploration and discovery that is inherent in marine research.”

    In their constant search for understanding, oceanographers from WHOI and elsewhere must go to extremes. Some of those scientists board Alvin multiple times every year, diving to some of the deepest and most mysterious areas of the seafloor. Some peer through the eyes of complex robotic vehicles that can travel where humans can’t go. Others travel to the distant edges of the ocean’s reach, trekking across frozen polar landscapes to collect ice cores that reveal what the sea looked like thousands of years ago.

    No matter what aspect of the oceans these scientists study, their work can be a massive undertaking. From the deepest marine trench to the tallest landlocked mountain, the sea’s influence touches nearly every corner of the globe: It provides food for billions of humans, supplies life-giving oxygen to the atmosphere, and directly affects climate from the deserts of Arizona to the icy coasts and frozen interior of Antarctica. Unraveling the mysteries of a realm this large means entering some of the most remote and dangerous places on the planet. But by going to these great lengths, oceanographers are gaining insights that may answer fundamental questions about life on Earth—and possibly even life beyond.

    2
    Submersible Alvin is prepped in the high bay on R/V Atlantis before dive operations along a segment of a deep-sea mountain range known as the East Pacific Rise, off the coast of Costa Rica. Photo by Ken Kostel, © Woods Hole Oceanographic Institution.

    The poles

    The first thing that hits you when you sail into Antarctica’s Palmer Station is the smell. After five days at sea in some of the roughest waters on Earth, new arrivals are greeted by a whiff of guano—excrement from the massive penguin colonies that inhabit the peninsula. But the view makes up for it, says WHOI marine geochemist Dan Lowenstein.

    “You sail between these sheer walls of rock and snow in the Neumayer Channel, which is the navigational passage along the peninsula, and when you come around one last island, you see this incredibly remote station,” he says. “It’s just a handful of buildings perched on a tiny bit of rock at the bottom of a huge glacier, next to a harbor bordered by 300-foot cliffs of ice.”

    Lowenstein arrived at Palmer in December, 2020 and plans to remain there for at least six months. It’s a position that requires a certain level of comfort in extreme isolation. Although the population of McMurdo Station, the major U.S. logistics hub on the continent, peaks at 1,300 during the Antarctic summer, the peak at Palmer is only about 45 people. During the Covid-19 pandemic, it’s running with an even smaller crew: Lowenstein is one of just 24 scientists and staff currently on hand.

    The global public health crisis not only reduced the number of people allowed at Palmer this year. It also hampered travel to the station. Under normal circumstances, the trip takes about a week. This year, Lowenstein spent more than a month in transit, thanks to multiday quarantine stops in Massachusetts, San Francisco, and Chile.

    It may be tiny and hard to reach, but Palmer enjoys an outsized importance in the world of oceanography and climate. It’s home to a Long Term Ecological Research (LTER) network of more than 30 sites across the globe that have been recording continuous environmental data and samples over the past few decades. At Palmer, the LTER focuses on life that exists in and around nearby sea ice.

    3
    A waddle of Gentoo penguins hop around the rocks of the West Antarctic peninsula, where WHOI marine geochemist Dan Lowenstein is currently stationed to study the changing metabolism of the region’s microbial communities Credit: Dan Lowenstein, © Woods Hole Oceanographic Institution.

    “There’s no place like it,” says WHOI geochemist Ben Van Mooy. “Since going online in 1990, Palmer has provided detailed information about a vast suite of chemical, biological, and physical ocean parameters in the waters that surround it. It’s an incredibly valuable record that doesn’t exist anywhere else.”

    Van Mooy has been to Palmer twice to gather samples of the sea ice that surrounds the station. This year, he sent Lowenstein in his place. Every chunk he collected can reveal volumes of information. Since it lies at the interface of the atmosphere and the ocean, Van Mooy says, sea ice is deeply affected by changes in both environments.

    “As the atmospheric climate changes, ocean circulation and other marine elements change, and those things are all reflected via changes in the sea ice. It’s a really sensitive indicator of both atmospheric and oceanographic processes,” Van Mooy adds.

    Van Mooy is also interested in how these same processes affect tiny plantlike microbes called phytoplankton. These minuscule organisms form the base of the Antarctic marine food web: They’re eaten by animals like krill and shrimp, which in turn provide food for whales, fish, penguins, and other large organisms. Like plants on land, they also produce huge amounts of oxygen for the planet. Yet precisely how they’re affected by changing climate is unclear.

    Whatever happens to phytoplankton has a ripple effect across the entire ecosystem of the Antarctic peninsula, Van Mooy says. That means the fate of sea ice at the extreme ends of the world is inextricably connected with the fate of animals like krill, penguins, seabirds, whales, and fish—but to understand this complex ecosystem, Van Mooy first has to venture out into the coastal ice pack to collect samples and data. It’s a dangerous undertaking.

    “The thing people forget about Antarctica is that it’s essentially abandoned,” he says. “You can be a quarter mile away from Palmer Station, but once it’s out of sight, there’s zero indication of humans: No people, no ships, no jets in the sky. Nothing. It’s just you and one or two other people working on a small boat in frigid and tumultuous Antarctic water. We take a lot of precautions, but the consequences of something going wrong are pretty severe—so it forces you to look inside yourself and see how much you truly love what you’re doing.”

    4
    Glaciologists Sarah Das and Kristin Poinar carrying a crate off the helicopter. (Photo by Chris Linder, © Woods Hole Oceanographic Institution)

    5
    A research team led by Das hikes alongside an icy crevasse in Greenland to study changes in meltwater distribution across the glacier as the climate warms Credit:Sarah Das, © Woods Hole Oceanographic Institution.

    LEARNING FROM ANCIENT ICE

    Studying the ocean’s impact on global climate doesn’t stop at the coast. Deep in the interiors of Antarctica and Greenland, a record of how the oceans behaved thousands of years in the past is preserved deep within layers of buried ice.

    Sarah Das, a WHOI glaciologist who studies climate history, spends her days traveling to some of the most lonely spots on the globe. She and her team have helicoptered into remote mountain glaciers in Greenland, and have flown on small aircraft into isolated corners of Antarctica to gather ice core samples.

    “I’m by definition interested in studying places that humans haven’t been to before. You can only find good climate archives in totally pristine, untouched ice, so wherever I go in the field, I’m usually the first person ever to set foot there,” she says.

    In isolated regions, polar ice sheets can stay untouched for hundreds of thousands of years, providing an incredibly long record of past climate, she notes. Unlike sea ice, which forms annually from seawater itself, glacial ice sheets are created by progressive layers of snow. As each storm blows through, new snowfall buries prior years’ snow layers deeper and deeper, preserving dust and tiny air bubbles in the process. “You essentially get all these bits of the past atmosphere trapped within ice layers. As climate scientists, we collect these clues and can unravel mysteries such as how much snow fell in the past, how many warm events there were, and what atmospheric greenhouse gas levels were during specific times in history. It feels sort of like having access to a time machine,” says Das.

    It turns out the ice layers also trap compounds that can help tease out natural processes happening in the oceans during the same era, she adds. “For example, in Greenland we recently showed how we can use organic compounds in ice to reconstruct the productivity of marine phytoplankton in the past. That extends our knowledge of how climate change impacts the base of the marine food web.”

    Collecting those samples is no small feat. Working in Greenland, Das spends days hauling gear on and off craggy coastal mountaintops to get to undisturbed patches of ice. In those cases, she says, there’s at least a few small communities along the coast that she can use as a base of operation—but when she’s working in Antarctica, her team has had to set up camp on the ice sheet for weeks at a time.

    “You get on a military transport plane in New Zealand where it’s summer, and several hours later, you set down in Antarctica and walk out into blinding snow. It’s like flying to another planet,” she says. “It doesn’t even feel connected to Earth.”

    6
    ROV Jason slowly touches down to take pictures with the “MISO” camera along Havre volcano, northeast of New Zealand. Photo courtesy of Dan Fornari, Chief scientists Adam Soule and Rebecca Carey, © Woods Hole Oceanographic Institution.

    The deep

    When it comes to extreme distances, traveling to the Antarctic ice sheet ranks high on the list. Traveling to the deep ocean, however, is an entirely different—and arguably more dangerous—challenge. It’s an otherworldly place, with crushing pressures, bizarre life, and a trove of hidden scientific secrets waiting to be revealed. To study its inner workings, ocean scientists must descend to its furthest reaches, either via robotic vehicles or by braving its depths in person within the cramped quarters of a research submarine. Once there, it becomes possible to find clues to how the very early Earth may have behaved.

    The volcanic rock and fluids that well up from below the ocean floor in some regions offer scientists a clear look at geologic processes that have shaped life on our planet. In areas called “spreading centers”—mountainous chains that extend for thousands of miles across the ocean floor—magma from the Earth’s mantle rises up from below the seafloor, pushes entire continental plates apart, and introduces key nutrients that enable life to thrive. Studying midocean spreading centers offers a window into that deep world, provided scientists can get there in the first place.

    “We’ve studied so little of the midocean ridge and other spreading centers—but as we keep returning to them we keep finding new things,” says Jeff Seewald, a marine geochemist at WHOI and interim Chief Scientist of the National Deep Submergence Facility.

    In his current post, Seewald spends his days not only studying fluids that well up from the seafloor but also working to make it possible for other scientists to reach those extreme depths.

    Since the HOV Alvin, WHOI’s famed research submersible, was overhauled in 2013, it has completed more than 400 dives, bringing at least 350 researchers on their first trip to the ocean floor. “That’s about the same as the number of U.S. astronauts that have left low Earth orbit since the space program started 60 years ago. In bringing humans to extreme places, the Alvin program punches well above its weight,” adds Adam Soule.

    At the moment, those scientists are able to go as deep as 4,500 meters (14,800 feet), but the sub’s latest overhaul will let it travel even farther—to 6,500 meters (21,325 feet). Th is new range will bring scientists to areas of the seafloor that were previously unreachable, enabling exiting new discoveries in the process.

    “Beyond 6,500 meters, there’s a whole region of the ocean that’s been understudied. We just don’t know what’s down there,” says Seewald.

    DEEP LIFE

    Many of the latest Alvin dives have been to hydrothermal vent sites—hot geysers found mainly in midocean spreading zones. Nearly 2,500 meters (8,200 feet) below the ocean’s surface, in an otherwise barren landscape, the chemicals released by each vent support a strange array of life. Giant tube worms, blind shrimp, huge clams, and other species thrive around the vent’s flanks, fed by microbes that create chemical energy from the venting fluids themselves.

    For many WHOI scientists, however, the extraordinary animals at vent sites aren’t the main attraction. Rather, it’s what exists below them. Vent sites provide a unique portal to the interior of the planet, as the ultrahot fluids that emerge from them contain minerals that are shaped by intense heat and pressure beneath the crust. They also provide clues to even more unusual life-forms—researchers are beginning to fi nd evidence of a hugely diverse array of microbial life both on and underneath the seafloor, where those liquids react with rock.

    To WHOI marine microbiologist Julie Huber, the idea that life exists deep within the crust make perfect sense. Most life-forms on Earth have been here for only a short chunk of the planet’s 4.5 billion-year history. For much of that time, microbes ran the show. “Microbes have likely existed for billions of years in these crustal environments of the deep ocean—so studying them can improve our understanding of the tree of life on our planet,” she says.

    To probe those mysteries, Huber not only samples fluid directly from vent sites but also has supervised even more dramatic eff orts: drilling operations that dig into the seafloor from aboard a specialized ship, tapping hundreds of feet straight down from the deepocean floor to reach fluids percolating through the mud and rock beneath.

    “Studying the sub-seafloor isn’t glamorous, and it’s really hard to reach,” she says. But it can be well worth the intense eff orts. Once a drill hole has been dug, scientists can cap it and sample fluids from below the seafloor on a regular basis, revealing a world that’s largely inaccessible through other methods.

    Ocean worlds

    Whether it’s traveling to the distant poles, the deepest vent sites, or below the ocean floor itself, the lengths to which oceanographers go to study Earth’s processes are helping answer questions not only about our own planet, but about other watery worlds as well.

    Enceladus, a tiny moon of Saturn, is only about 300 miles (500 kilometers) wide yet shares an eerie similarity to some of the regions on Earth that WHOI oceanographers are currently examining. Planetary scientists have recently shown that its surface is made up of slabs of solid water ice sitting atop a liquid saltwater ocean, similar to what you’d fi nd at our own planet’s poles.

    Mysterious geysers on its surface regularly eject material from Enceladus into space—and after NASA’s Cassini spacecraft maneuvered through those plumes in 2015, the data it sent back to Earth raised more than a few eyebrows. Not only did the plumes contain ice, water, and salt, but they also contained chemicals like silica, methane, carbon dioxide, and hydrogen, a suite of compounds that is all too familiar to oceanographers like Chris German.

    “The only place we know where little silica nanoparticles like these form on Earth today is in midtemperature hydrothermal vents” where the escaping fluid is roughly 100 degrees Celsius (212 degrees Fahrenheit), says German, a marine geochemist at WHOI. “It seems like compelling evidence that there could be submarine vents active today on the seafloor of Enceladus.”

    In other words, by studying the ocean’s extremes on Earth, WHOI researchers are setting the stage to examine a world disconnected from ours by more than 746 million miles (1.2 billion kilometers), German adds.

    The vent sites on Enceladus could share an exciting similarity with newly studied sites on our own planet.

    An unusual cluster of deep vents called the Von Damm field, which German helped identify in the Caribbean Sea less than a decade ago, turns out to have a unique chemistry: It emerges from rare ultramafic rock, which is found in the Earth’s mantle today. In the presence of heat and crushing pressures below the ocean floor, those rocks react with seawater to create something truly mind-boggling: organic compounds, the building blocks of life.

    “Based on our measurements, we could make the case definitively that organic compounds are getting synthesized spontaneously, without any input from an existing life-form. Just rocks and water, as a geologic process, are generating the chemical building blocks that are essential to creating life,” German says.

    The same may be happening on Enceladus.

    German and his colleagues are hoping to be among the first oceanographers to peer inside the mysteries of another planet. Th rough WHOI’s Exploring Ocean Worlds program, they’re currently using oceanographic techniques to study water-rich moons like Enceladus in our solar system. (Another 20 ocean worlds in our solar system are under consideration by NASA, five of which are already confirmed: Europa, Ganymede, and Callisto, which are moons of Jupiter; Titan, another moon of Saturn, and Triton, a moon of Neptune.) It’s about as distant as any oceanographer could dream of going, even with robotic means.

    Julie Huber works closely with German. “The space and ocean science communities have really been coming together to study this over the last few years,” she says. “One of NASA’s key missions is exploring the origins of life: Where did we come from? Where are we going? How does life adapt to extreme environments? Lots of scientists are trying to answer those questions here on Earth, but now is the first time we’re poised to go to another place in our solar system and ask those questions.”

    Eventually, researchers like Huber and German want to expand on the undersea robotics knowledge that WHOI has already invested decades in developing. Instead of designing autonomous vehicles for the open ocean on Earth, however, they’re hopeful they can develop a probe that will operate on its own while submerged beneath the ice of Enceladus.

    Creating a robot like this would need to take into account all the insights scientists have gained from studying polar ice and deep vent sites on our own planet. It will need to survive as many as seven years in the vacuum of space, which can reach temperatures that dip near absolute zero (-273 degrees Celsius; -459 degrees Fahrenheit). After that, it’ll need to land successfully on Enceladus, dig through several miles of surface ice, deploy itself into the moon’s ocean, and find vents autonomously. It’s a tall order. But it’s something that German, Huber, and other researchers are confident they can handle within the next decade.

    German points to WHOI’s Nereid Under Ice—or NUI—a new remotely operated vehicle built in 2014.

    It was designed with a similar mission in mind. Although it can be steered by humans directly over a thin fiber-optic cable, NUI is smart enough to operate autonomously on its missions and return safely to the ship from which it was deployed. Forays like this, German says, are dress rehearsals for such projects farther afield on ocean worlds like Enceladus. He believes those future explorations will help answer one of humankind’s most profound questions.

    “I don’t think civilization could ask a bigger question than ‘Are we alone?’” he says. “It’s amazing to know that oceanographers have the skill set to potentially answer that question within the coming decades without even leaving our own solar system.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Woods Hole Oceanographic Institute

    Mission Statement

    The Woods Hole Oceanographic Institution (US) is dedicated to advancing knowledge of the ocean and its connection with the Earth system through a sustained commitment to excellence in science, engineering, and education, and to the application of this knowledge to problems facing society.

    Vision & Mission

    The ocean is a defining feature of our planet and crucial to life on Earth, yet it remains one of the planet’s last unexplored frontiers. For this reason, WHOI scientists and engineers are committed to understanding all facets of the ocean as well as its complex connections with Earth’s atmosphere, land, ice, seafloor, and life—including humanity. This is essential not only to advance knowledge about our planet, but also to ensure society’s long-term welfare and to help guide human stewardship of the environment. WHOI researchers are also dedicated to training future generations of ocean science leaders, to providing unbiased information that informs public policy and decision-making, and to expanding public awareness about the importance of the global ocean and its resources.

    The Institution is organized into six departments, the Cooperative Institute for Climate and Ocean Research, and a marine policy center. Its shore-based facilities are located in the village of Woods Hole, Massachusetts(US) and a mile and a half away on the Quissett Campus. The bulk of the Institution’s funding comes from grants and contracts from the National Science Foundation(US) and other government agencies, augmented by foundations and private donations.

    WHOI scientists, engineers, and students collaborate to develop theories, test ideas, build seagoing instruments, and collect data in diverse marine environments. Ships operated by WHOI carry research scientists throughout the world’s oceans. The WHOI fleet includes two large research vessels (R/V Atlantis and R/V Neil Armstrong); the coastal craft Tioga; small research craft such as the dive-operation work boat Echo; the deep-diving human-occupied submersible Alvin; the tethered, remotely operated vehicle Jason/Medea; and autonomous underwater vehicles such as the REMUS and SeaBED.

    WHOI offers graduate and post-doctoral studies in marine science. There are several fellowship and training programs, and graduate degrees are awarded through a joint program with the Massachusetts Institute of Technology(US). WHOI is accredited by the New England Association of Schools and Colleges. WHOI also offers public outreach programs and informal education through its Exhibit Center and summer tours. The Institution has a volunteer program and a membership program, WHOI Associate.

    On October 1, 2020, Peter B. de Menocal became the institution’s eleventh president and director.

    History

    In 1927, a National Academy of Sciences(US) committee concluded that it was time to “consider the share of the United States of America in a worldwide program of oceanographic research.” The committee’s recommendation for establishing a permanent independent research laboratory on the East Coast to “prosecute oceanography in all its branches” led to the founding in 1930 of the Woods Hole Oceanographic Institution(US).

    A $2.5 million grant from the Rockefeller Foundation supported the summer work of a dozen scientists, construction of a laboratory building and commissioning of a research vessel, the 142-foot (43 m) ketch R/V Atlantis, whose profile still forms the Institution’s logo.

    WHOI grew substantially to support significant defense-related research during World War II, and later began a steady growth in staff, research fleet, and scientific stature. From 1950 to 1956, the director was Dr. Edward “Iceberg” Smith, an Arctic explorer, oceanographer and retired Coast Guard rear admiral.

    In 1977 the institution appointed the influential oceanographer John Steele as director, and he served until his retirement in 1989.

    On 1 September 1985, a joint French-American expedition led by Jean-Louis Michel of IFREMER and Robert Ballard of the Woods Hole Oceanographic Institution identified the location of the wreck of the RMS Titanic which sank off the coast of Newfoundland 15 April 1912.

    On 3 April 2011, within a week of resuming of the search operation for Air France Flight 447, a team led by WHOI, operating full ocean depth autonomous underwater vehicles (AUVs) owned by the Waitt Institute discovered, by means of sidescan sonar, a large portion of debris field from flight AF447.

    In March 2017 the institution effected an open-access policy to make its research publicly accessible online.

    The Institution has maintained a long and controversial business collaboration with the treasure hunter company Odyssey Marine. Likewise, WHOI has participated in the location of the San José galleon in Colombia for the commercial exploitation of the shipwreck by the Government of President Santos and a private company.

    In 2019, iDefense reported that China’s hackers had launched cyberattacks on dozens of academic institutions in an attempt to gain information on technology being developed for the United States Navy. Some of the targets included the Woods Hole Oceanographic Institution. The attacks have been underway since at least April 2017.

     
  • richardmitnick 3:53 pm on June 3, 2021 Permalink | Reply
    Tags: "Some Forams Could Thrive with Climate Change Metabolism Study Finds", , , , , , , Women in STEM-Joan Bernhard and Fatma Gomaa, Woods Hole Oceanographic Institution (US)   

    From Woods Hole Oceanographic Institution (US) : Women in STEM-Joan Bernhard and Fatma Gomaa “Some Forams Could Thrive with Climate Change Metabolism Study Finds” 

    From Woods Hole Oceanographic Institution (US)

    May 27, 2021

    Media Relations Office
    media@whoi.edu
    (508) 289-3340

    1
    Light micrograph of the benthic foraminifer Nonionella stella, which thrives in anoxic sulfidic sediments far below the euphotic zone. Individuals are ~225 microns in diameter. Image credit: J.M. Bernhard.

    With the expansion of oxygen-depleted waters in the oceans due to climate change, some species of foraminifera (forams, a type of protist or single-celled eukaryote) that thrive in those conditions could be big winners, biologically speaking.

    A new paper that examines two foram species found that they demonstrated great metabolic versatility to flourish in hypoxic and anoxic sediments where there is little or no dissolved oxygen, inferring that the forams’ contribution to the marine ecosystem will increase with the expansion of oxygen-depleted habitats.

    In addition, the paper found that the multiple metabolic strategies that these forams exhibit to adapt to low and no oxygen conditions are changing the classical view about the evolution and diversity of eukaryotes. That classical view hypothesizes that the rise of oxygen in Earth’s system led to the acquisition of oxygen-respiring mitochondria, the part of a cell that generates most of the chemical energy that powers a cell’s biochemical reactions. The forams in the study represent “typical” mitochondrial-bearing eukaryotes. However, these two forams respire nitrate and produce energy in the absence of oxygen, with one colonizing an anoxic environment, often with high levels of hydrogen sulfide, a chemical compound typically toxic to eukaryotes.

    “Benthic foraminifera represent truly successful microbial eukaryotes with diverse and sophisticated metabolic adaptive strategies” that scientists are just beginning to discover, the authors noted in the paper, Multiple integrated metabolic strategies allow foraminiferal protists to thrive in anoxic marine sediments appearing in Science Advances.

    This is important because scientists have studied forams extensively for interpreting past oceanographic and climate conditions. Scientists largely have assumed that forams evolved after oxygen was on the planet and likely require oxygen to survive. However, finding that forams can perform the processes described “throws a whole new wrench in interpretations of past environmental conditions on Earth, driven by the foram fossil record,” said co-author and project leader Joan Bernhard, senior scientist in the Geology and Geophysics Department at the Woods Hole Oceanographic Institution (WHOI).

    Bernhard said that over the past several decades she has worked to establish that forams can live where there is little or no oxygen. “We never knew exactly why forams can live where there isn’t any oxygen until molecular methods got good enough that we could really start to ask some of these questions. This is our first paper that’s coming out with some of these insights,” she said. Bernhard added that with thousands of foram species living today, and with hundreds of thousands extinct, it is likely that this is “the tip of the iceberg” in terms of possibly discovering other metabolic strategies invoked by these forams.

    Specific insights from the paper pertain to two highly successful benthic foraminiferal species that inhabit hypoxic or anoxic sediments in the Santa Barbara Basin, a sort of natural laboratory off the coast of California for studying the impact of oxygen depletion in the ocean.

    Through gene expression analysis of the two species—Nonionella stella and Bolivina argentea—scientists found different successful metabolic adaptations that allowed the forams to succeed in oxygen-depleted marine sediments and identified candidate genes involved in anaerobic respiration and energy metabolism.

    The N. stella is a sort of kleptomaniac, utilizing a technique to steal chloroplasts—the structure in a cell where photosynthesis occurs—from a particular diatom genus. What makes this particularly interesting is that N. stella lives well below what is considered to be the zone where photosynthesis can happen. The authors noted that there has been discussion in the literature questioning the functionality of these kleptoplasts in the Santa Barbara Basin N. stella but the new results show that these kleptoplasts are firmly functional, although exact metabolic details remain elusive.

    In addition, the scientists found that the two foram species in the study use different metabolic pathways to incorporate ammonium into organic nitrogen in the form of glutamate, a metabolic strategy that was not previously known to be performed by these organisms.

    “The metabolic variety suggests that at least some species of this diverse protistan group will withstand severe deoxygenation and likely play major roles in oceans affected by climate change,” the authors wrote.

    The study “gives the scientific community a new direction for research,” said lead author Fatma Gomaa, who, at the time of the study, was a postdoctoral investigator at the Geology and Geophysics Department at WHOI. “We are now starting to learn that there are microeukaryotes living in habitats similar to those in Earth’s early history that are performing very interesting biological functions. Learning about these forams is very intriguing and will shed light on how early eukaryotes evolved.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Woods Hole Oceanographic Institute

    Mission Statement

    The Woods Hole Oceanographic Institution (US) is dedicated to advancing knowledge of the ocean and its connection with the Earth system through a sustained commitment to excellence in science, engineering, and education, and to the application of this knowledge to problems facing society.

    Vision & Mission

    The ocean is a defining feature of our planet and crucial to life on Earth, yet it remains one of the planet’s last unexplored frontiers. For this reason, WHOI scientists and engineers are committed to understanding all facets of the ocean as well as its complex connections with Earth’s atmosphere, land, ice, seafloor, and life—including humanity. This is essential not only to advance knowledge about our planet, but also to ensure society’s long-term welfare and to help guide human stewardship of the environment. WHOI researchers are also dedicated to training future generations of ocean science leaders, to providing unbiased information that informs public policy and decision-making, and to expanding public awareness about the importance of the global ocean and its resources.

    The Institution is organized into six departments, the Cooperative Institute for Climate and Ocean Research, and a marine policy center. Its shore-based facilities are located in the village of Woods Hole, Massachusetts(US) and a mile and a half away on the Quissett Campus. The bulk of the Institution’s funding comes from grants and contracts from the National Science Foundation(US) and other government agencies, augmented by foundations and private donations.

    WHOI scientists, engineers, and students collaborate to develop theories, test ideas, build seagoing instruments, and collect data in diverse marine environments. Ships operated by WHOI carry research scientists throughout the world’s oceans. The WHOI fleet includes two large research vessels (R/V Atlantis and R/V Neil Armstrong); the coastal craft Tioga; small research craft such as the dive-operation work boat Echo; the deep-diving human-occupied submersible Alvin; the tethered, remotely operated vehicle Jason/Medea; and autonomous underwater vehicles such as the REMUS and SeaBED.

    WHOI offers graduate and post-doctoral studies in marine science. There are several fellowship and training programs, and graduate degrees are awarded through a joint program with the Massachusetts Institute of Technology(US). WHOI is accredited by the New England Association of Schools and Colleges. WHOI also offers public outreach programs and informal education through its Exhibit Center and summer tours. The Institution has a volunteer program and a membership program, WHOI Associate.

    On October 1, 2020, Peter B. de Menocal became the institution’s eleventh president and director.

    History

    In 1927, a National Academy of Sciences(US) committee concluded that it was time to “consider the share of the United States of America in a worldwide program of oceanographic research.” The committee’s recommendation for establishing a permanent independent research laboratory on the East Coast to “prosecute oceanography in all its branches” led to the founding in 1930 of the Woods Hole Oceanographic Institution(US).

    A $2.5 million grant from the Rockefeller Foundation supported the summer work of a dozen scientists, construction of a laboratory building and commissioning of a research vessel, the 142-foot (43 m) ketch R/V Atlantis, whose profile still forms the Institution’s logo.

    WHOI grew substantially to support significant defense-related research during World War II, and later began a steady growth in staff, research fleet, and scientific stature. From 1950 to 1956, the director was Dr. Edward “Iceberg” Smith, an Arctic explorer, oceanographer and retired Coast Guard rear admiral.

    In 1977 the institution appointed the influential oceanographer John Steele as director, and he served until his retirement in 1989.

    On 1 September 1985, a joint French-American expedition led by Jean-Louis Michel of IFREMER and Robert Ballard of the Woods Hole Oceanographic Institution identified the location of the wreck of the RMS Titanic which sank off the coast of Newfoundland 15 April 1912.

    On 3 April 2011, within a week of resuming of the search operation for Air France Flight 447, a team led by WHOI, operating full ocean depth autonomous underwater vehicles (AUVs) owned by the Waitt Institute discovered, by means of sidescan sonar, a large portion of debris field from flight AF447.

    In March 2017 the institution effected an open-access policy to make its research publicly accessible online.

    The Institution has maintained a long and controversial business collaboration with the treasure hunter company Odyssey Marine. Likewise, WHOI has participated in the location of the San José galleon in Colombia for the commercial exploitation of the shipwreck by the Government of President Santos and a private company.

    In 2019, iDefense reported that China’s hackers had launched cyberattacks on dozens of academic institutions in an attempt to gain information on technology being developed for the United States Navy. Some of the targets included the Woods Hole Oceanographic Institution. The attacks have been underway since at least April 2017.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: