Tagged: Woods Hole Oceanographic Institute Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:08 am on September 27, 2018 Permalink | Reply
    Tags: , , , , Rutgers Receives NSF Award to Continue Pioneering Ocean Initiative, , , Woods Hole Oceanographic Institute   

    From Rutgers University: “Rutgers Receives NSF Award to Continue Pioneering Ocean Initiative” 

    Rutgers smaller
    Our Great Seal.

    From Rutgers University

    September 25, 2018

    Dalya Ewais
    848-445-3153
    dalya.ewais@rutgers.edu

    The project delivers insight to researchers, policymakers and the public worldwide.

    The National Science Foundation this week announced it has awarded a five-year, $220 million contract to a coalition of academic and oceanographic research organizations, including Rutgers University–New Brunswick, to operate and maintain the Ocean Observatories Initiative [OOI].

    The coalition, led by the Woods Hole Oceanographic Institution with direction from the NSF, includes Rutgers, the University of Washington and Oregon State University.

    1

    The initiative includes platforms and sensors that measure physical, chemical, geological and biological properties and processes from the seafloor to the sea surface in key coastal and open-ocean sites of the Atlantic and Pacific. It was designed to address critical questions about the Earth-ocean system, including climate change, ecosystem variability, ocean acidification plate-scale seismicity and submarine volcanoes, and carbon cycling. The goal is to better understand the ocean and our planet.

    3
    The seafloor cable extends off the coast of Oregon and allows real-time communication with the deep sea. University of Washington

    Each institution will continue to operate and maintain the portion of project’s assets for which it is currently responsible. Rutgers will operate the cyberinfrastructure system that ingests and delivers data for the initiative.

    The initiative supports more than 500 autonomous instruments on the seafloor and on moored and free-swimming platforms that are serviced during regular, ship-based expeditions to the array sites. Data from each instrument is transmitted to shore, where it is freely available to users worldwide, including scientists, policy experts, decision-makers, educators and the general public.

    “Rutgers is proud to be a part of this transformative project that provides scientists and educators across the globe access to the richest source of real-time, in-water oceanographic data,” said David Kimball, interim senior vice president for research and economic development at Rutgers.

    Over the last three years, the Rutgers team led by Manish Parashar, director of the Rutgers Discovery Informatics Institute and Distinguished Professor of computer science, designed, built and operated the OOI’s cyberinfrastructure. The team also included Scott Glenn and Oscar Schofield, Distinguished Professors in the Department of Marine and Coastal Sciences and co-founders of Rutgers’ Center for Ocean Observing Leadership, who led the Rutgers data team.

    3
    From left to right: Manish Parashar, director of the Rutgers Discovery Informatics Institute and Distinguished Professor of computer science; Peggy Brennan-Tonetta, associate vice president for economic development at Rutgers’ Office of Research and Economic Development; and Ivan Rodero, project manager.
    Photo: Nick Romanenko/Rutgers University

    For the second phase of the OOI project, which begins on October 1 and runs for five years, Rutgers will receive about $6.6 million and will be responsible for maintaining the cyberinfrastructure and providing a network that allows 24/7 connectivity, ensuring sustained, reliable worldwide ocean observing data any time, any place, on any computer or mobile device. Peggy Brennan-Tonetta, associate vice president for economic development at Rutgers’ Office of Research and Economic Development, will serve as acting principal investigator.

    “Greater awareness and knowledge of the state of our oceans and the effects of their interrelated systems today is critical to a deeper understanding of our changing climate, marine and coastal ecosystems, atmospheric exchanges, and geodynamics. We are pleased to continue our involvement with this project that enables researchers to better understand the state of our oceans,” Brennan-Tonetta said.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    rutgers-campus

    Rutgers, The State University of New Jersey, is a leading national research university and the state’s preeminent, comprehensive public institution of higher education. Rutgers is dedicated to teaching that meets the highest standards of excellence; to conducting research that breaks new ground; and to providing services, solutions, and clinical care that help individuals and the local, national, and global communities where they live.

    Founded in 1766, Rutgers teaches across the full educational spectrum: preschool to precollege; undergraduate to graduate; postdoctoral fellowships to residencies; and continuing education for professional and personal advancement.

    As a ’67 graduate of University college, second in my class, I am proud to be a member of

    Alpha Sigma Lamda, National Honor Society of non-tradional students.

     
  • richardmitnick 10:28 am on January 15, 2018 Permalink | Reply
    Tags: , , , , Woods Hole Oceanographic Institute   

    From COSMOS: “Underwater eruption largest in living memory” 

    Cosmos Magazine bloc

    COSMOS Magazine

    15 January 2018
    Andrew Masterson

    US-Australian team find surprises and complexity at Pacific ocean volcano site.

    1
    A remotely operated vehicle (ROV) lands on the seafloor at Havre submarine volcano to retrieve a heat flow monitor. Woods Hole Oceanographic Institute.

    The first close quarters investigation of what was possibly the largest underwater volcanic eruption in modern history has uncovered a carpet of pumice rocks, some as big as motor vehicles, and unexpected ocean-bed lava flows.

    In a paper published in the journal Science Advances, a research team led by the University of Tasmania in Australia and the Woods Hole Oceanographic Institution (WHOI) in the US report on the use of two autonomous underwater vehicles to explore the aftermath of the eruption of the 2012 Harve volcano, which lies between New Zealand and American Samoa in the southwest Pacific Ocean.

    The volcano blew on July 18, 2012, an event noted only when passengers on an airliner flying above the Kermadec Islands (of which Harve is an underwater component) noticed a huge number of pumice rocks floating on the surface of the ocean. The raft of rocks eventually covered almost 400 square kilometres.

    Three years later, the joint Australian-US expedition headed to the blast site.

    “We knew it was a large-scale eruption, approximately equivalent to the biggest eruption we’ve seen on land in the Twentieth Century,” says Australian volcanologist Rebecca Carey, and co-chief scientist on the expedition.

    Carey and her colleagues suspected they would find evidence of a deep-sea explosive eruption – the commonest form of underwater volcanic activity – but what they discovered was different.

    Instead of the classic blast pattern associated with explosive eruptions, they saw an ocean floor littered with large lumps. So unusual was the find that at first co-author Adam Soule from WHOI thought something had gone wrong with the autonomous vehicles’ imaging system.

    “It turned out that each bump was a giant block of pumice, some of them the size of a van,” he says. “I had never seen anything like it on the seafloor.”

    Having gathered as much evidence as possible, the team concluded that the Harve volcano had undergone an underwater silicic eruption, characterised by the forceful emission of viscous, gas-filled lava.

    This made for an exciting find. Very little is known about silicic eruptions. They are extremely violent acts, but because they take place deep underwater in vast oceans they are very rarely recorded. Most of the current knowledge about their behaviour comes from geologic records rather than observation.

    Already, the team’s findings are adding considerably to the picture. The Harve eruption, they discovered, was a complex affair, with lava emerging from 14 vents, between 900 and 1220 metres below sea level.

    While explosive eruptions produce mainly pumice, this one also produced significant amounts of ash, lava flows and lava domes.

    Although an estimated 75% of the erupted material headed to the sea surface and eventually floated away, that which remained underwater was enough to spread across the ocean floor for several kilometres.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: