Tagged: Vera Rubin and Dark Matter Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:52 am on March 7, 2019 Permalink | Reply
    Tags: "The hypothetical effect we are investigating is not the result of increased gravity" Budker said., "What if It's Not Dark Matter Making The Universe's Extra 'Gravity' But Light?", As we move out from the galactic centre the orbital motion of the stars and gas in the disc should theoretically slow down with the decrease in velocity proportional to the distance from the centre., , , , But that something might not be dark matter according to a team of researchers specifically plasma physicist Dmitri Ryutov retired from the Lawrence Livermore National Laboratory in California, But unless all our current understanding about the physical Universe (and all the data we've collected on the phenomenon is wrong) something out there is definitely making extra gravity., , , For now dark matter is still king. But there's no harm and potentially a lot of good in looking for other explanations too., , So astrophysicists hypothesised dark matter. We don't know what it is and we can't detect it directly., So the theory would need a bit of work to be compatible with our actual observations of the Universe., Vera Rubin and Dark Matter, What if it's the mass of light?, When placed in the context of a mathematical system called Maxwell-Proca electrodynamics these electromagnetic stresses can generate additional centripetal forces   

    From Science Alert: “What if It’s Not Dark Matter Making The Universe’s Extra ‘Gravity’, But Light?” 

    ScienceAlert

    From Science Alert

    7 MAR 2019
    MICHELLE STARR

    1
    (NASA/ESA/ Hubble)

    NASA/ESA Hubble Telescope

    We’ve been looking for decades for dark matter, yet the mysterious stuff remains undetectable to our instruments. Now, astrophysicists have explored an intriguing possibility: what if it’s not dark matter that’s affecting galactic rotation after all. What if it’s the mass of light instead?

    In a 1980 paper [The Astrophysical Journal], the American astronomer Vera Rubin pretty conclusively proved something really weird about galaxies: their rims are rotating far faster than they should be.

    Fritz Zwicky discovered Dark Matter when observing the movement of the Coma Cluster. But Vera Rubin, Vera Rubin a Woman in STEM denied the Nobel, did most of the work on Dark Matter.

    Fritz Zwicky from http:// palomarskies.blogspot.com

    Coma cluster via NASA/ESA Hubble

    Astronomer Vera Rubin at the Lowell Observatory in 1965, worked on Dark Matter (The Carnegie Institution for Science)


    Vera Rubin measuring spectra, worked on Dark Matter (Emilio Segre Visual Archives AIP SPL)


    Vera Rubin, with Department of Terrestrial Magnetism (DTM) image tube spectrograph attached to the Kitt Peak 84-inch telescope, 1970. https://home.dtm.ciw.edu

    As we move out from the galactic centre, the orbital motion of the stars and gas in the disc should theoretically slow down, with the decrease in velocity proportional to the distance from the centre.

    This is called Keplerian decline, or decreasing rotation curve, and it can be observed quite neatly in planetary systems like our own Solar System. But most galaxies don’t actually do this.

    Instead, their rotation curves either remain flat, or actually increase. Those outer stars are orbiting much more quickly than they should be, based on the gravitational effect of the matter we can observe.

    So astrophysicists hypothesised dark matter. We don’t know what it is, and we can’t detect it directly. But unless all our current understanding about the physical Universe (and all the data we’ve collected on the phenomenon is wrong), something out there is definitely making extra gravity.

    But that something might not be dark matter, according to a team of researchers – specifically, plasma physicist Dmitri Ryutov, who recently retired from the Lawrence Livermore National Laboratory in California, and Dmitry Budker and Victor Flambaum of the Johannes Gutenberg University of Mainz in Germany.

    In a new paper [The Astrophysical Journal], they lay out an argument that light particles (photons) are at least partially the source of the phenomenon – causing an effect that isn’t gravity, but behaves a heck of a lot like it.

    “The hypothetical effect we are investigating is not the result of increased gravity,” Budker said.

    “By assuming a certain photon mass, much smaller than the current upper limit, we can show that this mass would be sufficient to generate additional forces in a galaxy and that these forces would be roughly large enough to explain the rotation curves. This conclusion is extremely exciting.”

    The effect they describe is a sort of “negative pressure” caused by electromagnetic stresses related to the photon mass.

    When placed in the context of a mathematical system called Maxwell-Proca electrodynamics, these electromagnetic stresses can generate additional centripetal forces, acting predominantly on interstellar gas. The team calls this Proca stress, and it acts a lot like gravity.

    So, yes, it’s all purely hypothetical at this point. And it’s not perfect.

    On the one hand, short-lived stars that are born from gas (and rapidly return to gas before completing one orbit) would be strongly coupled with the gas; the Proca stresses acting on the gas would be indirectly also acting on these stars.

    But longer-lived stars create a problem. The Sun, for example, is around 4.6 billion years old, and orbits the galactic centre once every 230 million years, so it’s had a few turns on the roundabout. According to the team’s calculations, it should have a highly elliptical orbit under Proca stresses.

    And yet it does not. So the theory would need a bit of work to be compatible with our actual observations of the Universe. For now, dark matter is still king. But there’s no harm, and potentially a lot of good, in looking for other explanations too.

    “We don’t currently consider photon mass to be the solution to the rotation-curve problem. But it could be part of the solution,” Budker said.

    “However, we need to keep an open mind as long as we do not actually know what dark matter is.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 3:46 pm on October 30, 2018 Permalink | Reply
    Tags: , , Dame Susan Jocelyn Bell Burnell and pulsars, , , , , , Reinhard Genzel of the Max Planck Institute for Extraterrestrial Physics, S0-2, , , Vera Rubin and Dark Matter   

    From The New York Times: “Trolling the Monster in the Heart of the Milky Way” 

    New York Times

    From The New York Times

    Oct. 30, 2018
    Dennis Overbye

    In a dark, dusty patch of sky in the constellation Sagittarius, a small star, known as S2 or, sometimes, S0-2, cruises on the edge of eternity. Every 16 years, it passes within a cosmic whisker of a mysterious dark object that weighs some 4 million suns, and that occupies the exact center of the Milky Way galaxy.

    Star S0-2 Keck/UCLA Galactic Center Group

    For the last two decades, two rival teams of astronomers, looking to test some of Albert Einstein’s weirdest predictions about the universe, have aimed their telescopes at the star, which lies 26,000 light-years away. In the process, they hope to confirm the existence of what astronomers strongly suspect lies just beyond: a monstrous black hole, an eater of stars and shaper of galaxies.

    For several months this year, the star streaked through its closest approach to the galactic center, producing new insights into the behavior of gravity in extreme environments, and offering clues to the nature of the invisible beast in the Milky Way’s basement.

    One of those teams, an international collaboration based in Germany and Chile, and led by Reinhard Genzel, of the Max Planck Institute for Extraterrestrial Physics, say they have found the strongest evidence yet that the dark entity is a supermassive black hole, the bottomless grave of 4.14 million suns.

    ESO VLT at Cerro Paranal in the Atacama Desert, •ANTU (UT1; The Sun ),
    •KUEYEN (UT2; The Moon ),
    •MELIPAL (UT3; The Southern Cross ), and
    •YEPUN (UT4; Venus – as evening star).
    elevation 2,635 m (8,645 ft) from above Credit J.L. Dauvergne & G. Hüdepohl atacama photo

    ESO VLT 4 lasers on Yepun

    The evidence comes in the form of knots of gas that appear to orbit the galactic center. Dr. Genzel’s team found that the gas clouds circle every 45 minutes or so, completing a circuit of 150 million miles at roughly 30 percent of the speed of light. They are so close to the alleged black hole that if they were any closer they would fall in, according to classical Einsteinian physics.

    Astrophysicists can’t imagine anything but a black hole that could be so massive, yet fit within such a tiny orbit.

    The results provide “strong support” that the dark thing in Sagittarius “is indeed a massive black hole,” Dr. Genzel’s group writes in a paper that will be published on Wednesday under the name of Gravity Collaboration, in the European journal Astronomy & Astrophysics.

    “This is the closest yet we have come to see the immediate zone around a supermassive black hole with direct, spatially resolved techniques,” Dr. Genzel said in an email.

    1
    Reinhard Genzel runs the Max Planck Institute for Extraterrestrial Physics in Munich. He has been watching S2, in the constellation Sagittarius, hoping it will help confirm the existence of a supermassive black hole.Credit Ksenia Kuleshova for The New York Times.

    The work goes a long way toward demonstrating what astronomers have long believed, but are still at pains to prove rigorously: that a supermassive black hole lurks in the heart not only of the Milky Way, but of many observable galaxies. The hub of the stellar carousel is a place where space and time end, and into which stars can disappear forever.

    The new data also help to explain how such black holes can wreak havoc of a kind that is visible from across the universe. Astronomers have long observed spectacular quasars and violent jets of energy, thousands of light-years long, erupting from the centers of galaxies.

    Roger Blandford, the director of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, said that there is now overwhelming evidence that supermassive black holes are powering such phenomena.

    “There is now a large burden of proof on claims to the contrary,” he wrote in an email. “The big questions involve figuring out how they work, including disk and jets. It’s a bit like knowing that the sun is a hot, gaseous sphere and trying to understand how the nuclear reactions work.”

    2
    Images of different galaxies — some of which have evocative names like the Black Eye Galaxy, bottom left, or the Sombrero Galaxy, second left — adorn a wall at the Max Planck Institute.Credit Ksenia Kuleshova for The New York Times.

    Sheperd Doeleman, a radio astronomer at the Harvard-Smithsonian Center for Astrophysics, called the work “a tour de force.” Dr. Doeleman studies the galactic center and hopes to produce an actual image of the black hole, using a planet-size instrument called the Event Horizon Telescope.

    Event Horizon Telescope Array

    Arizona Radio Observatory
    Arizona Radio Observatory/Submillimeter-wave Astronomy (ARO/SMT)

    ESO/APEX
    Atacama Pathfinder EXperiment

    CARMA Array no longer in service
    Combined Array for Research in Millimeter-wave Astronomy (CARMA)

    Atacama Submillimeter Telescope Experiment (ASTE)
    Atacama Submillimeter Telescope Experiment (ASTE)

    Caltech Submillimeter Observatory
    Caltech Submillimeter Observatory (CSO)

    IRAM NOEMA interferometer
    Institut de Radioastronomie Millimetrique (IRAM) 30m

    James Clerk Maxwell Telescope interior, Mauna Kea, Hawaii, USA
    James Clerk Maxwell Telescope interior, Mauna Kea, Hawaii, USA

    Large Millimeter Telescope Alfonso Serrano
    Large Millimeter Telescope Alfonso Serrano

    CfA Submillimeter Array Hawaii SAO
    Submillimeter Array Hawaii SAO

    ESO/NRAO/NAOJ ALMA Array
    ESO/NRAO/NAOJ ALMA Array, Chile

    South Pole Telescope SPTPOL
    South Pole Telescope SPTPOL

    NSF CfA Greenland telescope

    Greenland Telescope

    Future Array/Telescopes

    Plateau de Bure interferometer
    Plateau de Bure interferometer

    The study is also a major triumph for the European Southern Observatory, a multinational consortium with headquarters in Munich and observatories in Chile, which had made the study of S2 and the galactic black hole a major priority. The organization’s facilities include the Very Large Telescope [shown above], an array of four giant telescopes in Chile’s Atacama Desert (a futuristic setting featured in the James Bond film “Quantum of Solace”), and the world’s largest telescope, the Extremely Large Telescope, now under construction on a mountain nearby.

    ESO/E-ELT,to be on top of Cerro Armazones in the Atacama Desert of northern Chile. located at the summit of the mountain at an altitude of 3,060 metres (10,040 ft).

    Einstein’s bad dream

    Black holes — objects so dense that not even light can escape them — are a surprise consequence of Einstein’s general theory of relativity, which ascribes the phenomenon we call gravity to a warping of the geometry of space and time. When too much matter or energy are concentrated in one place, according to the theory, space-time can jiggle, time can slow and matter can shrink and vanish into those cosmic sinkholes.

    Einstein didn’t like the idea of black holes, but the consensus today is that the universe is speckled with them. Many are the remains of dead stars; others are gigantic, with the masses of millions to billions of suns. Such massive objects seem to anchor the centers of virtually every galaxy, including our own. Presumably they are black holes, but astronomers are eager to know whether these entities fit the prescription given by Einstein’s theory.

    Andrea Ghez, astrophysicist and professor at the University of California, Los Angeles, who leads a team of scientists observing S2 for evidence of a supermassive black hole UCLA Galactic Center Group

    Although general relativity has been the law of the cosmos ever since Einstein devised it, most theorists think it eventually will have to be modified to explain various mysteries, such as what happens at the center of a black hole or at the beginning of time; why galaxies clump together, thanks to unidentified stuff called dark matter; and how, simultaneously, a force called dark energy is pushing these clumps of galaxies apart.

    Women in STEM – Vera Rubin

    Fritz Zwicky discovered Dark Matter when observing the movement of the Coma Cluster

    Coma cluster via NASA/ESA Hubble

    But most of the real work was done by Vera Rubin

    Fritz Zwicky from http:// palomarskies.blogspot.com


    Astronomer Vera Rubin at the Lowell Observatory in 1965, worked on Dark Matter (The Carnegie Institution for Science)


    Vera Rubin measuring spectra, worked on Dark Matter (Emilio Segre Visual Archives AIP SPL)


    Vera Rubin, with Department of Terrestrial Magnetism (DTM) image tube spectrograph attached to the Kitt Peak 84-inch telescope, 1970. https://home.dtm.ciw.edu

    Dark Energy Survey


    Dark Energy Camera [DECam], built at FNAL


    NOAO/CTIO Victor M Blanco 4m Telescope which houses the DECam at Cerro Tololo, Chile, housing DECam at an altitude of 7200 feet

    The existence of smaller black holes was affirmed two years ago, when the Laser Interferometer Gravitational-Wave Observatory, or LIGO, detected ripples in space-time caused by the collision of a pair of black holes located a billion light-years away.


    VIRGO Gravitational Wave interferometer, near Pisa, Italy

    Caltech/MIT Advanced aLigo Hanford, WA, USA installation


    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project

    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger

    ESA/eLISA the future of gravitational wave research

    1
    Skymap showing how adding Virgo to LIGO helps in reducing the size of the source-likely region in the sky. (Credit: Giuseppe Greco (Virgo Urbino group)

    But those black holes were only 20 and 30 times the mass of the sun; how supermassive black holes behave is the subject of much curiosity among astronomers.

    “We already know Einstein’s theory of gravity is fraying around the edges,” said Andrea Ghez, a professor at the University of California, Los Angeles. “What better places to look for discrepancies in it than a supermassive black hole?” Dr. Ghez is the leader of a separate team that, like Dr. Genzel’s, is probing the galactic center. “What I like about the galactic center is that you get to see extreme astrophysics,” she said.

    Despite their name, supermassive black holes are among the most luminous objects in the universe. As matter crashes down into them, stupendous amounts of energy should be released, enough to produce quasars, the faint radio beacons from distant space that have dazzled and baffled astronomers since the early 1960s.

    Women in STEM – Dame Susan Jocelyn Bell Burnell

    Dame Susan Jocelyn Bell Burnell, discovered pulsars with radio astronomy. Jocelyn Bell at the Mullard Radio Astronomy Observatory, Cambridge University, taken for the Daily Herald newspaper in 1968. Denied the Nobel.

    Dame Susan Jocelyn Bell Burnell 2009

    Dame Susan Jocelyn Bell Burnell (1943 – ), still working from http://www. famousirishscientists.weebly.com

    Astronomers have long suspected that something similar could be happening at the center of the Milky Way, which is marked by a dim source of radio noise called Sagittarius A* (pronounced Sagittarius A-star).

    Sgr A* from ESO VLT


    SgrA* NASA/Chandra


    SGR A* , the supermassive black hole at the center of the Milky Way. NASA’s Chandra X-Ray Observatory

    But the galactic center is veiled by dust, making it all but invisible to traditional astronomical ways of seeing.

    Seeing in the dark

    Reinhard Genzel grew up in Freiburg, Germany, a small city in the Black Forest. As a young man, he was one of the best javelin throwers in Germany, even training with the national team for the 1972 Munich Olympics. Now he is throwing deeper.

    He became interested in the dark doings of the galactic center back in the 1980s, as a postdoctoral fellow at the University of California, Berkeley, under physicist Charles Townes, a Nobel laureate and an inventor of lasers. “I think of myself as a younger son of his,” Dr. Genzel said in a recent phone conversation.

    In a series of pioneering observations in the early 1980s, using detectors that can see infrared radiation, or heat, through galactic dust, Dr. Townes, Dr. Genzel and their colleagues found that gas clouds were zipping around the center of the Milky Way so fast that the gravitational pull of about 4 million suns would be needed to keep it in orbit. But whatever was there, it emitted no starlight. Even the best telescopes, from 26,000 light years away, could make out no more than a blur.

    3
    An image of the central Milky Way, which contains Sagittarius A*, taken by the VISTA telescope at the E.S.O.’s Paranal Observatory, mounted on a peak just next to the Very Large Telescope.CreditEuropean Southern Observatory/VVV Survey/D. Minniti/Ignacio Toledo, Martin Kornmesser


    Part of ESO’s Paranal Observatory, the VLT Survey Telescope (VISTA) observes the brilliantly clear skies above the Atacama Desert of Chile. It is the largest survey telescope in the world in visible light.
    Credit: ESO/Y. Beletsky, with an elevation of 2,635 metres (8,645 ft) above sea level

    Two advances since then have helped shed some figurative light on whatever is going on in our galaxy’s core. One was the growing availability in the 1990s of infrared detectors, originally developed for military use. Another was the development of optical techniques that could drastically increase the ability of telescopes to see small details by compensating for atmospheric turbulence. (It’s this turbulence that blurs stars and makes them twinkle.)

    Glistening against the awesome backdrop of the night sky above ESO_s Paranal Observatory, four laser beams project out into the darkness from Unit Telescope 4 UT4 of the VLT.

    These keen eyes revealed hundreds of stars in the galaxy’s blurry core, all buzzing around in a circle about a tenth of a light year across. One of the stars, which Dr. Genzel calls S2 and Dr. Ghez calls S-02, is a young blue star that follows a very elongated orbit and passes within just 11 billion miles of the mouth of the putative black hole every 16 years.

    During these fraught passages, the star, yanked around an egg-shaped orbit at speeds of up to 5,000 miles per second, should experience the full strangeness of the universe according to Einstein. Intense gravity on the star’s surface should slow the vibration of light waves, stretching them and making the star appear redder than normal from Earth.

    This gravitational redshift, as it is known, was one of the first predictions of Einstein’s theory. The discovery of S2 offered astronomers a chance to observe the phenomenon in the wild — within the grip of gravity gone mad, near a supermassive black hole.

    4
    Left, calculations left out at the Max Planck Institute, viewed from above, right.Credit Ksenia Kuleshova for The New York Times

    In the wheelhouse of the galaxy

    To conduct that experiment, astronomers needed to know the star’s orbit to a high precision, which in turn required two decades of observations with the most powerful telescopes on Earth. “You need twenty years of data just to get a seat at this table,” said Dr. Ghez, who joined the fray in 1995.

    And so, the race into the dark was joined on two different continents. Dr. Ghez worked with the 10-meter Keck telescopes, located on Mauna Kea, on Hawaii’s Big Island.


    Keck Observatory, Maunakea, Hawaii, USA.4,207 m (13,802 ft), above sea level, showing also NASA’s IRTF and NAOJ Subaru


    UCO Keck Laser Guide Star Adaptive Optics

    Dr. Genzel’s group benefited from the completion of the European Southern Observatory’s brand new Very Large Telescope [above] array in Chile.

    The European team was aided further by a new device, an interferometer named Gravity, that combined the light from the array’s four telescopes.

    ESO GRAVITY insrument on The VLTI, interferometric instrument operating in the K band, between 2.0 and 2.4 μm. It combines 4 telescope beams and is designed to peform both interferometric imaging and astrometry by phase referencing. Credit: MPE/GRAVITY team

    Designed by a large consortium led by Frank Eisenhauer of the Max Planck Institute, the instrument enabled the telescope array to achieve the resolution of a single mirror 130 meters in diameter. (The name originally was an acronym for a long phrase that included words such as “general,” “relativity,” and “interferometry,” Dr. Eisenhauer explained in an email.)

    “All of the sudden, we can see 1,000 times fainter than before,” said Dr. Genzel in 2016, when the instrument went into operation. In addition, they could track the movements of the star S2 from day to day.

    Meanwhile, Dr. Ghez was analyzing the changing spectra of light from the star, to determine changes in the star’s velocity. The two teams leapfrogged each other, enlisting bigger and more sophisticated telescopes, and nailing down the characteristics of S2. In 2012 Dr. Genzel and Dr. Ghez shared the Crafoord Prize in astronomy, an award nearly as prestigious as the Nobel. Events came to head this spring and summer, during a six-month period when S2 made its closest approach to the black hole.

    “It was exciting in the middle of April when a signal emerged and we started getting information,” Dr. Ghez said.

    On July 26, Dr. Genzel and Dr. Eisenhauer held a news conference in Munich to announce that they had measured the long-sought gravitational redshift. As Dr. Eisenhauer marked off their measurements, which matched a curve of expected results, the room burst into applause.

    “The road is wide open to black hole physics,” Dr. Eisenhauer proclaimed.

    In an email a month later, Dr. Genzel explained that detecting the gravitational redshift was only the first step: “I am usually a fairly sober, and sometimes pessimistic person. But you may sense my excitement as I write these sentences, because of these wonderful results. As a scientist (and I am 66 years old) one rarely if ever has phases this productive. Carpe Diem!”

    In early October, Dr. Ghez, who had waited to observe one more phase of the star’s trip, said her team soon would publish their own results.

    A monster in the basement

    In the meantime, Dr. Genzel was continuing to harvest what he called “this gift from nature.”

    The big break came when his team detected evidence of hot spots, or “flares,” in the tiny blur of heat marking the location of the suspected black hole. A black hole with the mass of 4 million suns should have a mouth, or event horizon, about 16 million miles across — too small for even the Gravity instrument to resolve from Earth.

    The hot spots were also too small to make out. But they rendered the central blur lopsided, with more heat on one side of the blur than the other. As a result, Dr. Genzel’s team saw the center of that blur of energy shift, or wobble, relative to the position of S2, as the hot spot went around it.

    As a result, said Dr. Genzel, “We see a little loop on the sky.” Later he added, “This is the first time we can study these important magnetic structures in a spatially resolved manner just like in a physics laboratory.”

    He speculated that the hot spots might be produced by shock waves in magnetic fields, much as solar flares erupt from the sun. But this might be an overly simplistic model, the authors cautioned in their paper. The effects of relativity turn the neighborhood around the black hole into a hall of mirrors, Dr. Genzel said: “Our statements currently are still fuzzy. We will have to learn better to reconstruct reality once we better understand exactly these mirages.”

    The star has finished its show for this year. Dr. Genzel hopes to gather more data from the star next year, as it orbits more distantly from the black hole. Additional observations in the coming years may clarify the star’s orbit, and perhaps answer other questions, such as whether the black hole was spinning, dragging space-time with it like dough in a mixer.

    But it may be hard for Dr. Genzel to beat what he has already accomplished, he said by email. For now, shrink-wrapping 4 million suns worth of mass into a volume just 45 minutes around was a pretty good feat “for a small boy from the countryside.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: