Tagged: University of Chicago Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 2:19 pm on November 14, 2020 Permalink | Reply
    Tags: "UChicago scientists turn IBM computer into a quantum material", , , , The reason this is so exciting is that it shows you can use quantum computers as programmable experiments themselves., They programmed the computer such that it turned into a type of quantum material called an exciton condensate., University of Chicago   

    From University of Chicago: “UChicago scientists turn IBM computer into a quantum material” 

    U Chicago bloc

    From University of Chicago

    Nov 12, 2020
    Louise Lerner

    1
    UChicago scientists programmed an IBM quantum computer to become a type of material called an exciton condensate. Credit: Andrew Lindemann/IBM.

    Pioneering experiment could help design energy-efficient materials.

    In a groundbreaking study, a group of University of Chicago scientists announced they were able to turn IBM’s largest quantum computer into a quantum material itself.

    They programmed the computer such that it turned into a type of quantum material called an exciton condensate, which has only recently been shown to exist. Such condensates have been identified for their potential in future technology, because they can conduct energy with almost zero loss.

    “The reason this is so exciting is that it shows you can use quantum computers as programmable experiments themselves,” said paper co-author David Mazziotti, a professor in the Department of Chemistry, the James Franck Institute and the Chicago Quantum Exchange, and an expert in molecular electronic structure. “This could serve as a workshop for building potentially useful quantum materials.”

    For several years, Mazziotti has been watching as scientists around the world explore a type of state in physics called an exciton condensate. Physicists are very interested in these kinds of novel physics states, in part because past discoveries have shaped the development of important technology; for example, one such state called a superconductor forms the basis of MRI machines.

    Though exciton condensates had been predicted half a century ago, until recently, no one had been able to actually make one work in the lab without having to use extremely strong magnetic fields. But they intrigue scientists because they can transport energy without any loss at all—something which no other material we know of can do. If physicists understood them better, it’s possible they could eventually form the basis of incredibly energy-efficient materials.

    To make an exciton condensate, scientists take a material made up of a lattice of particles, cool it down to below -270 degrees Fahrenheit, and coax it to form particle pairs called excitons. They then make the pairs become entangled—a quantum phenomenon where the fates of particles are tied together. But this is all so tricky that scientists have only been able to create exciton condensates a handful of times.

    “An exciton condensate is one of the most quantum-mechanical states you can possibly prepare,” Mazziotti said. That means it’s very, very far from the classical everyday properties of physics that scientists are used to dealing with.

    Enter the quantum computer. IBM makes its quantum computers available for people around the world to test their algorithms; the company agreed to “loan” its largest, called Rochester, to UChicago for an experiment.

    Graduate students LeeAnn Sager and Scott Smart wrote a set of algorithms that treated each of Rochester’s quantum bits as an exciton. A quantum computer works by entangling its bits, so once the computer was active, the entire thing became an exciton condensate.

    “It was a really cool result, in part because we found that due to the noise of current quantum computers, the condensate does not appear as a single large condensate, but a collection of smaller condensates,” Sager said. “I don’t think any of us would have predicted that.”

    Mazziotti said the study shows that quantum computers could be a useful platform to study exciton condensates themselves.

    “Having the ability to program a quantum computer to act like an exciton condensate may be very helpful for inspiring or realizing the potential of exciton condensates, like energy-efficient materials,” he said.

    Beyond that, just being able to program such a complex quantum mechanical state on a computer marks an important scientific advance.

    Because quantum computers are so new, researchers are still learning the extent of what we can do with them. But one thing we’ve known for a long time is that there are certain natural phenomena that are virtually impossible to model on a classical computer.

    “On a classical computer, you have to program in this element of randomness that’s so important in quantum mechanics; but a quantum computer has that randomness baked in inherently,” Sager said. “A lot of systems work on paper, but have never been shown to work in practice. So to be able to show we can really do this—we can successfully program highly correlated states on a quantum computer—is unique and exciting.”

    Science paper:
    Preparation of an exciton condensate of photons on a 53-qubit quantum computer
    Physical Review Research

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Chicago Campus

    An intellectual destination

    One of the world’s premier academic and research institutions, the University of Chicago has driven new ways of thinking since our 1890 founding. Today, UChicago is an intellectual destination that draws inspired scholars to our Hyde Park and international campuses, keeping UChicago at the nexus of ideas that challenge and change the world.

    The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

    We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with UChicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

    UChicago research has led to such breakthroughs as discovering the link between cancer and genetics, establishing revolutionary theories of economics, and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations with our national and affiliated laboratories: Argonne National Laboratory, Fermi National Accelerator Laboratory, and the Marine Biological Laboratory in Woods Hole, Massachusetts.

    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts.

     
  • richardmitnick 2:00 pm on November 14, 2020 Permalink | Reply
    Tags: "In new step toward quantum tech scientists synthesize ‘bright’ quantum bits", , , University of Chicago   

    From University of Chicago and Northwestern University: “In new step toward quantum tech scientists synthesize ‘bright’ quantum bits” 

    U Chicago bloc

    From University of Chicago

    and

    Northwestern U bloc
    Northwestern University

    Nov 12, 2020
    Emily Ayshford

    Innovative step by UChicago, Northwestern scientists could boost computing, sensing.

    1
    Graduate student Berk Kovos, postdoctoral scholar Sam Bayliss, and graduate student Peter Mintun (left to right) work on qubit technology in the Awschalom lab in the Pritzker School of Molecular Engineering.

    With their ability to harness the strange powers of quantum mechanics, qubits are the basis for potentially world-changing technologies—like powerful new types of computers or ultra-precise sensors.

    Qubits (short for quantum bits) are often made of the same semiconducting materials as our everyday electronics. But an interdisciplinary team of physicists and chemists at the University of Chicago and Northwestern University has developed a new method to create tailor-made qubits: by chemically synthesizing molecules that encode quantum information into their magnetic, or “spin,” states.

    This new bottom-up approach could ultimately lead to quantum systems that have extraordinary flexibility and control, helping pave the way for next-generation quantum technology.

    “This is a proof-of-concept of a powerful and scalable quantum technology,” said David Awschalom, the Liew Family Professor in Molecular Engineering at University of Chicago’s Pritzker School of Molecular Engineering who led the research along with his colleague Danna Freedman, Professor of Chemistry at Northwestern University. “We can harness the techniques of molecular design to create new atomic-scale systems for quantum information science. Bringing these two communities together will broaden interest and has the potential to enhance quantum sensing and computation.”

    The results were published Nov. 12 in the journal Science.

    Qubits work by harnessing a phenomenon called superposition. While the classical bits used by conventional computers measure either 1 or 0, a qubit can be both 1 and 0 at the same time.

    3
    An interdisciplinary team at the University of Chicago and Northwestern University has developed a way to synthesize tailor-made molecular qubits. Credit: Daniel Laorenza, Northwestern University.

    The team wanted to find a new bottom-up approach to develop molecules whose spin states can be used as qubits, and can be readily interfaced with the outside world. To do so, they used organometallic chromium molecules to create a spin state that they could control with light and microwaves.

    By exciting the molecules with precisely controlled laser pulses and measuring the light emitted, they could “read” the molecules’ spin state after being placed in a superposition—a key requirement for using them in quantum technologies

    By varying just a few different atoms on these molecules through synthetic chemistry, they were also able to modify both their optical and magnetic properties, highlighting the promise for tailor-made molecular qubits.

    “Over the last few decades, optically addressable spins in semiconductors have been shown to be extremely powerful for applications including quantum-enhanced sensing,” said Awschalom, who is also director of the Chicago Quantum Exchange and director of Q-NEXT, a Department of Energy National Quantum Information Science Research Center led by Argonne National Laboratory.

    ANL Q-NEXT

    “Translating the physics of these systems into a molecular architecture opens a powerful toolbox of synthetic chemistry to enable novel functionality that we are only just beginning to explore.”

    “Our results open up a new area of synthetic chemistry. We demonstrated that synthetic control of symmetry and bonding creates qubits that can be addressed in the same way as defects in semiconductors,” Freedman said. “Our bottom-up approach enables both functionalization of individual units as ‘designer qubits’ for target applications and the creation of arrays of readily controllable quantum states, offering the possibility of scalable quantum systems.”

    One potential application for these molecules could be quantum sensors that are designed to target specific molecules. Such sensors could find specific cells within the body, detect when food spoils, or even spot dangerous chemicals.

    This bottom-up approach could also help integrate quantum technologies with existing classical technologies.

    “Some of the challenges facing quantum technologies might be able to be overcome with this very different bottom-up approach,” said Sam Bayliss, a postdoctoral scholar in the Awschalom Group at University of Chicago’s Pritzker School of Molecular Engineering and co first author on the paper. “Using molecular systems in light-emitting diodes was a transformative shift; perhaps something similar could happen with molecular qubits.”

    Daniel Laorenza, a graduate student at Northwestern University and co-first author, sees tremendous potential for chemical innovation in this space. “This chemically specific control over the environment around the qubit provides a valuable feature to integrate optically addressable molecular qubits into a wide range of environments,” he said.

    Other authors on the paper include UChicago graduate students Peter Mintun and Berk Diler Kovos.

    Funding: Office of Naval Research, National Science Foundation, Department of Energy.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Northwestern South Campus
    South Campus

    Northwestern is recognized nationally and internationally for its educational programs.

    On May 31, 1850, nine men gathered to begin planning a university that would serve the Northwest Territory.

    Given that they had little money, no land and limited higher education experience, their vision was ambitious. But through a combination of creative financing, shrewd politicking, religious inspiration and an abundance of hard work, the founders of Northwestern University were able to make that dream a reality.

    In 1853, the founders purchased a 379-acre tract of land on the shore of Lake Michigan 12 miles north of Chicago. They established a campus and developed the land near it, naming the surrounding town Evanston in honor of one of the University’s founders, John Evans. After completing its first building in 1855, Northwestern began classes that fall with two faculty members and 10 students.
    Twenty-one presidents have presided over Northwestern in the years since. The University has grown to include 12 schools and colleges, with additional campuses in Chicago and Doha, Qatar.

    U Chicago Campus

    An intellectual destination

    One of the world’s premier academic and research institutions, the University of Chicago has driven new ways of thinking since our 1890 founding. Today, UChicago is an intellectual destination that draws inspired scholars to our Hyde Park and international campuses, keeping UChicago at the nexus of ideas that challenge and change the world.

    The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

    We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with UChicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

    UChicago research has led to such breakthroughs as discovering the link between cancer and genetics, establishing revolutionary theories of economics, and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations with our national and affiliated laboratories: Argonne National Laboratory, Fermi National Accelerator Laboratory, and the Marine Biological Laboratory in Woods Hole, Massachusetts.

    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts.

     
  • richardmitnick 11:03 am on October 29, 2020 Permalink | Reply
    Tags: "Fireball Meteorite That Struck Michigan Reveals Ancient Extraterrestrial Compounds", , , , University of Chicago   

    From University of Chicago via Science Alert (AU): “Fireball Meteorite That Struck Michigan Reveals Ancient Extraterrestrial Compounds” 

    U Chicago bloc

    From University of Chicago

    via

    ScienceAlert

    Science Alert (AU)

    29 OCTOBER 2020
    MINDY WEISBERGER

    1
    Credit: T. Masterson/American Meteor Society.

    A meteorite that landed on a frozen lake in 2018 contains thousands of organic compounds that formed billions of years ago and could hold clues about the origins of life on Earth.

    The meteor entered Earth’s atmosphere on Jan. 16, 2018, after a very long journey through the freezing vacuum of space, lighting up skies over Ontario, Canada, and the midwestern United States.

    Weather radar tracked the flaming space rock’s descent and breakup, helping meteorite hunters to quickly locate fallen fragments on Strawberry Lake in Hamburg, Michigan.

    An international team of researchers then examined a walnut-size piece of the meteorite “while it was still fresh,” scientists reported in a new study. Their analysis revealed more than 2,000 organic molecules dating to when our Solar System was young; similar compounds may have seeded the emergence of microbial life on our planet, the study authors reported.

    2
    A meteorite found on a frozen Michigan lake. Credit: Field Museum.

    Swift recovery of the meteorite from the lake’s frozen surface prevented liquid water from seeping into cracks and contaminating the sample with terrestrial spores and microbes. This maintained the space rock’s pristine state, enabling experts to more easily evaluate its composition.

    In fact, there was so little terrestrial weathering that the fragment brought to Chicago’s Field Museum looked like it had been collected in space, said study co-author Jennika Greer, a doctoral candidate in the Department of the Geophysical Sciences at the University of Chicago, and a resident graduate student at The Field Museum.

    When space rocks enter the atmosphere at speeds of several miles per second, the air around them becomes ionized. Extreme heat melts away up to 90 percent of the meteor, and the rock that survives atmospheric passage becomes encased in a 1-millimeter-thick fusion crust of melted glass, said lead study author Philipp Heck, a curator of meteorites at the Field Museum and an associate professor at the University of Chicago.

    That surviving fragment inside the glassy crust is a pristine record of the rock’s geochemistry in space. And despite a fiery fall to Earth, after the vaporized external layers are carried away, rocky meteorites such as this one are very, very cold when they land, Heck told Live Science.

    “I’ve heard eyewitness accounts of meteorites falling into puddles after it rained, and the puddle froze because the meteorite was so cold,” he said.

    Mostly unchanged

    The Michigan meteorite’s ratio of uranium (isotopes 238 and 235) to the element’s decayed state as lead (isotopes 207 and 206) told the scientists that the parent asteroid formed about 4.5 billion years ago.

    Around that time, the rock underwent a process called thermal metamorphism, as it was subjected to temperatures of up to 1,300 degrees Fahrenheit (700 degrees Celsius). After that, the asteroid’s composition stayed mostly unchanged for the last 3 billion years.

    Then about 12 million years ago, an impact broke off the chunk of rock that recently fell in Michigan, according to an analysis of the meteorite’s exposure to cosmic rays in space, Heck told Live Science.

    Because the meteorite was altered so little after its initial heating billions of years ago, it was classified as H4: “H” indicates that it’s a rocky meteorite that’s high in iron, while type 4 meteorites have undergone thermal metamorphism sufficient to change their original composition.

    Only about 4 percent of the meteorites that fall to Earth today land in the H4 category.

    “When we’re looking at these meteorites, we’re looking at something that’s close to the material when it formed early in the Solar System’s history,” Greer said.

    The meteorite held 2,600 organic, or carbon-containing compounds, the researchers reported in the study. Because the meteorite was mostly unchanged since 4.5 billion years ago, these compounds likely are similar to the ones that other meteorites brought to a young Earth, some of which “might have been incorporated into life,” Heck said.

    The transformation from extraterrestrial organic compounds into the first microbial life on Earth is “a big step” that is still shrouded in mystery, but evidence suggests that organics are common in meteorites – even in thermally metamorphosed meteorites such as the one that landed in Michigan, he added.

    Meteor bombardment was also more frequent for a young Earth than it is today, “so we are pretty certain that the input from meteorites into the organic inventory on Earth was important,” for seeding life, Heck said.

    The findings were published online Oct. 27 in the journal Meteoritics & Planetary Science.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Chicago Campus

    An intellectual destination

    One of the world’s premier academic and research institutions, the University of Chicago has driven new ways of thinking since our 1890 founding. Today, UChicago is an intellectual destination that draws inspired scholars to our Hyde Park and international campuses, keeping UChicago at the nexus of ideas that challenge and change the world.

    The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

    We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with UChicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

    UChicago research has led to such breakthroughs as discovering the link between cancer and genetics, establishing revolutionary theories of economics, and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations with our national and affiliated laboratories: Argonne National Laboratory, Fermi National Accelerator Laboratory, and the Marine Biological Laboratory in Woods Hole, Massachusetts.

    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts.

     
  • richardmitnick 11:12 am on October 24, 2020 Permalink | Reply
    Tags: "UChicago scientists reveal new clues into how Earth got its oxygen", , University of Chicago   

    From University of Chicago: “UChicago scientists reveal new clues into how Earth got its oxygen” 

    U Chicago bloc

    From University of Chicago

    Oct 23, 2020
    Louise Lerner

    1
    Earth’s thin shell of oxygen atmosphere keeps us alive, though we still don’t know exactly how it formed. A new study from the University of Chicago reveals clues in the role that iron had to play. Credit: NASA.

    Innovative technique analyzes ancient rocks to understand role of iron.

    For much of Earth’s four and a half billion years, the planet was barren and inhospitable; it wasn’t until the world acquired its blanket of oxygen that multicellular life could really get going. But scientists are still trying to understand exactly how—and why—our planet got this beautifully oxygenated atmosphere.

    “If you think about it, this is the most important change that our planet experienced in its lifetime, and we are still not sure exactly how this happened,” said Nicolas Dauphas, the Louis Block Professor of Geophysical Sciences at the University of Chicago. “Any progress you can make toward answering this question is really important.”

    In a new study published Oct. 23 in Science, UChicago graduate student Andy Heard, Dauphas and their colleagues used a pioneering technique to uncover new information about the role of oceanic iron in the rise of Earth’s atmosphere. The findings reveal more about Earth’s history, and can even shed light on the search for habitable planets in other star systems.

    Scientists have painstakingly recreated a timeline of the ancient Earth by analyzing very ancient rocks; the chemical makeup of such rocks changes according to the conditions they formed under.

    “The interesting thing about it is that prior to the permanent Great Oxygenation Event that happened 2.4 billion years ago, you see evidence in the timeline for these tantalizing little bursts of oxygen, where it looks like Earth was trying to set the stage for this atmosphere,” said Heard, the first author on the paper. “But the existing methods weren’t precise enough to tease out the information we needed.”

    It all comes down to a puzzle.

    As bridge engineers and car owners know, if there’s water around, oxygen and iron will form rust. “In the early days, the oceans were full of iron, which could have gobbled up any free oxygen that was hanging around,” Heard said. Theoretically, the formation of rust should consume any excess oxygen, leaving none to form an atmosphere.

    Heard and Dauphas wanted to test a way to explain how oxygen could have accumulated despite this apparent problem: they knew that some of the iron in the oceans was actually combining with sulfur coming out of volcanoes to form pyrite (better known as fool’s gold). That process actually releases oxygen into the atmosphere. The question was which of these processes “wins.”

    To test this, Heard used state-of-the-art facilities in Dauphas’ Origins Lab to develop a rigorous new technique to measure tiny variations in iron isotopes in order to find out which route the iron was taking. Collaborating with world experts at the University of Edinburgh (SC), he also had to flesh out a fuller understanding of how the iron-to-pyrite pathway works. (“In order to make sulfide and run these experiments, you need understanding colleagues, because you make labs smell like rotten eggs,” Heard said.) Then, the scientists used the technique to analyze 2.6 to 2.3 billion-year-old rocks from Australia and South Africa.

    Their analysis showed that, even in oceans that should have tucked away a lot of oxygen into rust, certain conditions could have fostered the formation of enough pyrite to allow oxygen to escape the water and potentially form an atmosphere.

    “It’s a complicated problem with many moving parts, but we’ve been able to solve one part of it,” said Dauphas.

    “Progress on a problem this enormous is really valuable to the community,” Heard said. “Especially as we’re starting to look for exoplanets, we really need to understand every detail about how our own earth became habitable.”

    As telescopes scan the skies for other planets and find thousands, scientists will need to narrow down which to explore further for potential life. By learning more about the way that Earth became habitable, they can look for evidence of similar processes on other planets.

    “The way I like to think about it is, Earth before the rise of oxygen is the best laboratory we have for understanding exoplanets,” said Heard.

    Funding: NASA, NSF, UChicago Eckhardt Scholarship, Canadian Natural Sciences and Engineering Research Council.

    Collaborator Institutions: CNRS Toulouse (FR), IFREMER (FR), University of Edinburgh (SC), University of California, Riverside.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Chicago Campus

    An intellectual destination

    One of the world’s premier academic and research institutions, the University of Chicago has driven new ways of thinking since our 1890 founding. Today, UChicago is an intellectual destination that draws inspired scholars to our Hyde Park and international campuses, keeping UChicago at the nexus of ideas that challenge and change the world.

    The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

    We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with UChicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

    UChicago research has led to such breakthroughs as discovering the link between cancer and genetics, establishing revolutionary theories of economics, and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations with our national and affiliated laboratories: Argonne National Laboratory, Fermi National Accelerator Laboratory, and the Marine Biological Laboratory in Woods Hole, Massachusetts.

    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts.

     
  • richardmitnick 10:53 am on October 24, 2020 Permalink | Reply
    Tags: "UChicago scientists teach a neural net to find baby star flares", , , University of Chicago   

    From University of Chicago: “UChicago scientists teach a neural net to find baby star flares” 

    U Chicago bloc

    From University of Chicago

    Oct 23, 2020
    Louise Lerner

    1
    Image by Scott Wiessinger, Solar Dynamics Observatory at NASA Goddard Space Flight Center.
    An X-class solar flare from our sun in November 2013. Scientists trained a neural network to find such flares in data taken of distant planets around other stars.

    NASA/SDO.

    Artificial intelligence helps understand the evolution of young stars and their planets.

    Like its human counterparts, a young star is cute but prone to temper flares—only a star’s are lethal. A flare from a star can incinerate everything around it, including the atmospheres of any nearby planets starting to form.

    Finding out how often such young stars erupt can help scientists understand where to look for habitable planets. But until now, locating such flares involved poring over thousands of measurements of star brightness variations, called “light curves,” by eye.

    Scientists with the University of Chicago and the University of New South Wales, however, thought this would be a task well suited for machine learning. They taught a type of artificial intelligence called a neural network to detect the telltale light patterns of a stellar flare, then asked it to check the light curves of thousands of young stars; it found more than 23,000 flares.

    Published Oct. 23 in The Astronomical Journal and the Journal of Open Source Software the results offer a new benchmark in the use of AI in astronomy, as well as a better understanding of the evolution of young stars and their planets.

    “When we say young, we mean only a million to 800 million years old,” said Adina Feinstein, a UChicago graduate student and first author on the paper. “Any planets near a star are still forming at this point. This is a particularly fragile time, and a flare from a star can easily evaporate any water or atmosphere that’s been collected.”

    NASA’s TESS telescope, aboard a satellite that has been orbiting Earth since 2018, is specifically designed to search for exoplanets.

    NASA/MIT TESS replaced Kepler in search for exoplanets.

    Flares from faraway stars show up on TESS’s images, but traditional algorithms have a hard time picking out the shape from the background noise of star activity.

    3
    NASA’s Solar Dynamics Observatory captures flares from the sun. Credit: NASA.

    But neural networks are particularly good at looking for patterns—like Google’s AI picking cats out of internet images—and astronomers have increasingly begun to look to them to classify astronomical data. Feinstein worked with a team of scientists from NASA, the Flatiron Institute, Fermi National Accelerator Laboratory, the Massachusetts Institute of Technology and the University of Texas at Austin to pull together a set of identified flares and not-flares to train the neural net.

    “It turned out to be really good at finding small flares,” said study co-author and former UChicago postdoctoral fellow Benjamin Montet, now a Scientia Lecturer at the University of New South Wales in Sydney (AU). “Those are actually really hard to find with other methods.”

    Once the researchers were satisfied with the neural net’s performance, they turned it loose on the full set of data of more than 3,200 stars.

    They found that stars similar to our sun only have a few flares, and those flares seem to drop off after about 50 million years. “This is good for fostering planetary atmospheres—a calmer stellar environment means the atmospheres have a better chance of surviving,” Feinstein said.

    In contrast, cooler stars called red dwarfs tended to flare much more frequently. “Red dwarfs have been seen to host small rocky planets; If those planets are being bombarded when they’re young, this could prove detrimental for retaining any atmosphere,” she said.

    The results help scientists understand the odds of habitable planets surviving around different types of stars, and how atmospheres form. This can help them pinpoint the most likely places to look for habitable planets elsewhere in the universe.

    They also investigated the connection between stellar flares and star spots, like the kind we see on our own sun’s surface. “The spottiest our sun ever gets is maybe 0.3% of the surface,” Montet said. “For some of these stars we’re seeing, the surface is basically all spots. This reinforces the idea that spots and flares are connected, as magnetic events.”

    The scientists next want to adapt the neural net to look for planets lurking around young stars. “Currently we only know of about a dozen younger than 50 million years, but they’re so valuable for learning how planetary atmospheres evolve,” Feinstein said.

    Other UChicago-affiliated scientists on the study included visiting assistant research professor Brian Nord and Assoc. Prof. Jacob Bean.

    Funding: National Science Foundation, NASA.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Chicago Campus

    An intellectual destination

    One of the world’s premier academic and research institutions, the University of Chicago has driven new ways of thinking since our 1890 founding. Today, UChicago is an intellectual destination that draws inspired scholars to our Hyde Park and international campuses, keeping UChicago at the nexus of ideas that challenge and change the world.

    The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

    We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with UChicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

    UChicago research has led to such breakthroughs as discovering the link between cancer and genetics, establishing revolutionary theories of economics, and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations with our national and affiliated laboratories: Argonne National Laboratory, Fermi National Accelerator Laboratory, and the Marine Biological Laboratory in Woods Hole, Massachusetts.

    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts.

     
  • richardmitnick 1:10 pm on October 19, 2020 Permalink | Reply
    Tags: "The scientists who are hoping for a supernova", , , , , , University of Chicago   

    From University of Chicago: “The scientists who are hoping for a supernova” 

    U Chicago bloc

    From University of Chicago

    1
    Only once before have scientists detected the neutrinos emitted by a supernova: During SN 1987A (bright star at center), detectors spotted only about two dozen neutrino interactions. The exploding star was in the Large Magellanic Cloud, 240 times more distant from Earth than Betelguese.
    Credit: European Southern Observatory.

    If star on Orion’s shoulder goes supernova, Fermilab experiment will collect data bonanza.

    In late 2019, Betelgeuse, the star that forms the left shoulder of the constellation Orion, began to noticeably dim, prompting speculation of an imminent supernova. If it exploded, this cosmic neighbor a mere 700 light-years from Earth would be visible in the daytime for weeks. Yet 99% of the energy of the explosion would be carried not by light, but by neutrinos, ghost-like particles that rarely interact with other matter.

    If Betelgeuse does go supernova soon, detecting the emitted neutrinos would “dramatically enhance our understanding of what’s going on deep inside the core of a supernova,” said Sam McDermott, a theorist with the Fermi National Accelerator Laboratory.

    It’s impossible to predict exactly when a star will go supernova. But McDermott and scientists around the world are hoping that it happens when we finally have the right ears to listen to it—the revolutionary Deep Underground Neutrino Experiment, hosted by UChicago-affiliated Fermilab and planned to begin operation in the late 2020s.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA.

    SURF DUNE LBNF Caverns at Sanford Lab.

    DUNE’s far detector—an enormous tank of liquid argon at the Sanford Underground Research Facility in South Dakota—will pick up signals left by neutrinos beamed from Fermilab as well as those arriving from space. A supernova would represent a treasure trove of such neutrinos.

    SURF-Sanford Underground Research Facility, Lead, South Dakota, USA.

    FNAL DUNE Argon tank at SURF.

    If a supernova occurs tens of thousands of light-years away, DUNE would likely detect a few thousand neutrinos. Because of Betelgeuse’s relative proximity, however, scientists expect DUNE to detect around a million neutrinos if the red supergiant explodes in the coming decades, offering a bonanza of data.

    Although the light from the Betelgeuse supernova would linger for weeks, the burst of neutrinos would last only minutes.

    Preparing for a data onslaught

    “Imagine you’re in the forest, and there’s a meadow and there’s fireflies, and it’s the time of night where thousands of them come out,” said Georgia Karagiorgi, a physicist at Columbia University who leads the data selection team at DUNE. “If we could see neutrino interactions with our bare eyes, that’s kind of what it would look like in the DUNE detector.”

    The detector will not directly photograph incoming neutrinos. Rather, it will track the paths of charged particles generated when the neutrinos interact with argon atoms. In most experiments, neutrino interactions will be rare enough to avoid confusion about which neutrino caused which interaction and at what time. But during the Betelgeuse supernova, so many neutrinos arriving so quickly could present a challenge in the data analysis — similar to tracking a single firefly in a meadow teeming with the insects.

    “To remove ambiguities, we rely on light information that we get promptly as soon as the interaction takes place,” Karagiorgi said. Combining the light signature and the charge signature would allow researchers to distinguish when and where each neutrino interaction occurs.

    From there, the researchers would reconstruct how the types, or flavors, and energies of incoming neutrinos varied with time. The resulting pattern could then be compared against theoretical models of the dynamics of supernovae. And it could shed light on the still-unknown masses of neutrinos or reveal new ways that neutrinos interact with each other.

    Of course, astronomers who hope for Betelgeuse to go supernova are also interested in the light generated by the star explosion.

    Lighting the beacons

    When complete, DUNE will join the Supernova Early Warning System (SNEWS), a network of neutrino detectors around the world designed to automatically send an alert when a supernova is in progress in our galaxy. Since neutrinos pass through a supernova unimpeded, while particles of light are continually absorbed and reemitted until reaching the surface, the burst of neutrinos arrives at Earth hours before the light does—hence the early warning.

    SNEWS has never sent out an alert. Although hundreds of supernovae are observed each year, the most recent one close enough to Earth for its neutrinos to be detected occurred in 1987, more than a decade before SNEWS came online. Based on other observations, astronomers expect a supernova to occur in our galaxy several times per century on average.

    “If we run DUNE a few decades, we have pretty good odds of seeing one, and we could extract a lot of science out of it,” said Alec Habig, a physicist at the University of Minnesota, Duluth, who coordinates SNEWS and is involved with data acquisition on DUNE. “So let’s make sure we can do it.”

    Given the enormous radius of the red supergiant, Habig said, DUNE would detect neutrinos from Betelgeuse up to 12 hours before light from the explosion reaches Earth, giving astronomers plenty of time to point their telescopes at Orion’s shoulder.

    Continuing observations of Betelgeuse suggest that its recent dimming was a sign of its natural variability, not an impending supernova. Current estimates give the star up to 100,000 years to live.

    But if scientists get lucky, “an explosion at Betelgeuse would be an amazing opportunity,” McDermott said, “and DUNE would be an incredible machine for the job.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Chicago Campus

    An intellectual destination

    One of the world’s premier academic and research institutions, the University of Chicago has driven new ways of thinking since our 1890 founding. Today, UChicago is an intellectual destination that draws inspired scholars to our Hyde Park and international campuses, keeping UChicago at the nexus of ideas that challenge and change the world.

    The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

    We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with UChicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

    UChicago research has led to such breakthroughs as discovering the link between cancer and genetics, establishing revolutionary theories of economics, and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations with our national and affiliated laboratories: Argonne National Laboratory, Fermi National Accelerator Laboratory, and the Marine Biological Laboratory in Woods Hole, Massachusetts.

    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts.

     
  • richardmitnick 8:18 am on August 15, 2020 Permalink | Reply
    Tags: Advanced Photon Source (APS) synchrotron at Argonne, , , , , Linda Young, University of Chicago, , ,   

    From University of Chicago and Argonne National Laboratory: Women in STEM- “UChicago physicist leaves mark on X-ray sciences as leader, mentor” Linda Young 

    U Chicago bloc

    From University of Chicago

    and

    Argonne Lab
    Argonne National Laboratory

    Aug 10, 2020
    Maggie Hudson

    1
    For decades, Prof. Linda Young has made an impact both as a researcher and a mentor. She is pictured here with (left to right) Argonne colleagues Anthony DiChiara, Maria Chan and Anirudha Sumant. Photo courtesy of Argonne National Laboratory.

    Argonne’s Linda Young searches for new X-ray laser uses and ways to support junior scientists.

    Like many of us, University of Chicago physicist Linda Young is working from home these days, though her home is more unique than most.

    “We live in Enrico Fermi’s old house,” she said. “I always hope that I’ll breathe some inspiration from being in this house, but I’m not sure if I have.”

    Whether through Fermi’s inspiration or her own scientific prowess, Young—a part-time professor in UChicago’s Department of Physics—has built an impressive research career studying the interactions of X-rays with matter. She leads the atomic, molecular and optical (AMO) physics group at Argonne National Laboratory, where she previously served as the head of the X-ray Science Division—overseeing experiments at one of the world’s top X-ray sources.

    Developing X-ray lasers

    X-ray interactions with matter have a long and storied history, beginning with the discovery of X-rays in 1895. Scientists harnessed this very high energy form of light to reveal unseen secrets of our world, allowing us to glimpse the bones beneath our skin and to decode the unique arrangement of atoms that make up different molecules.

    Over the past century, scientists have continuously improved the strength of X-ray light sources and used them in new ways to understand the makeup of materials. Ten years ago, Young said, these experiments took a huge leap forward with the development of a new type of X-ray source: the X-ray free-electron laser [XFEL].

    “Now, because we have X-ray free-electron lasers, new life has been injected into the topic of X-ray interactions with matter,” Young said. “We suddenly can have X-ray pulses that are of very short duration, very short wavelength, and very high intensity.”

    At Argonne, Young plays an instrumental role in understanding how these X-ray lasers work and what they can be used for. “In our group, we work together to figure out how we can really utilize these super strong, coherent X-ray pulses to divine the secrets of matter,” she said.

    Though Young has risen through the ranks to become an expert in X-ray physics, she began her career at Argonne with a background in optical laser spectroscopy. She integrated this knowledge into the AMO physics group’s studies of atomic structure; in 1994, as the youngest scientist in the group, Young was promoted to group leader.

    Young’s tenure as group leader coincided with the opening of the Advanced Photon Source (APS) synchrotron at Argonne [below], a kilometer-long electron storage ring used as a source of bright X-ray beams. To utilize the convenience and capabilities of this world-class laboratory, the group shifted its focus to X-ray science. Young hired new team members with expertise in X-ray physics and led the design of two beamlines—X-ray laboratories within APS with unique instruments and capabilities.

    The AMO physics group pushed the boundaries of the study of X-rays’ interactions with matter, using facilities at the APS as well as other X-ray sources. The group’s success in the field and interest in powerful X-ray techniques led to their involvement with the­­­ first X-ray free-electron laser (XFEL).

    Young travels to international laboratories to do groundbreaking research with the world’s best scientists, but she notes that these experiences have more than just a scientific impact. “I think doing experiments at light sources around the world is very enriching,” she said. “You get to have insight into different international perspectives and make friends around the globe.”

    X-ray scientists compete for funding and acclaim, but when they come together at international laboratories, they work as a team to tackle big problems. Their dream, Young explained, is to use XFELs to look at complex molecules in a new way. The ultra-strong, ultra-short pulses of X-ray light should allow them to take snapshots of the locations of all the atoms in a molecule as it moves around in a solution. Putting these snapshots together could create a 3D image of a huge, complicated molecule like a protein.

    Mentoring the next generation

    Young brings these ideas back to the UChicago, where she teaches a graduate course on X-ray physics and applications. She enjoys sharing her passion for these complex experiments with students who would not typically work with advanced X-ray techniques. As she interacts with students, she adapts her course in response to their feedback and encourages students to pursue their interests through the lens of X-ray sciences.

    3
    Prof. Linda Young (center) at SLAC National Accelerator Laboratory with (left to right) Christoph Bostedt, Steve Southworth, John Bozek, Steve Pratt and Yuelin Li. (Photo by Brad Plummer/SLAC.)

    “I think it’s really invigorating to teach students because they’re so eager to learn, and you learn a lot of things from them,” said Young.

    Her willingness to learn and adapt has served her well as a mentor at both Argonne and UChicago. Young has mentored a number of junior scientists at Argonne, helping them make decisions about their career path and even assisting with connections for future job placements.

    At UChicago, she works to make the physics department supportive of all students and serves as chair of the department’s equity, diversity and inclusion committee. She coordinates seminars with speakers from underrepresented groups in the sciences and hosted the 2020 American Physical Society Conference for Undergraduate Women in Physics at UChicago.

    Young notes that amidst the growing movement against systemic racism, she has realized that these previous activities to promote diversity in the department were not enough. The committee has reached out through student-led town hall meetings and seeking feedback on how they can better support minorities in physics. In the first meeting, students requested more opportunities for mentorship, and Young is excited to help them achieve their goals.

    As more student feedback comes in, Young is listening and ready to work for lasting change in the physics department. “I think that this is a really important time for committees to step up and really do something concrete. I am looking forward to doing whatever I can in my own way.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science. For more visit http://www.anl.gov.

    About the Advanced Photon Source

    The U. S. Department of Energy Office of Science’s Advanced Photon Source (APS) at Argonne National Laboratory is one of the world’s most productive X-ray light source facilities. The APS provides high-brightness X-ray beams to a diverse community of researchers in materials science, chemistry, condensed matter physics, the life and environmental sciences, and applied research. These X-rays are ideally suited for explorations of materials and biological structures; elemental distribution; chemical, magnetic, electronic states; and a wide range of technologically important engineering systems from batteries to fuel injector sprays, all of which are the foundations of our nation’s economic, technological, and physical well-being. Each year, more than 5,000 researchers use the APS to produce over 2,000 publications detailing impactful discoveries, and solve more vital biological protein structures than users of any other X-ray light source research facility. APS scientists and engineers innovate technology that is at the heart of advancing accelerator and light-source operations. This includes the insertion devices that produce extreme-brightness X-rays prized by researchers, lenses that focus the X-rays down to a few nanometers, instrumentation that maximizes the way the X-rays interact with samples being studied, and software that gathers and manages the massive quantity of data resulting from discovery research at the APS.

    This research used resources of the Advanced Photon Source, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
    Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science

    Argonne Lab Campus

    U Chicago Campus

    An intellectual destination

    One of the world’s premier academic and research institutions, the University of Chicago has driven new ways of thinking since our 1890 founding. Today, UChicago is an intellectual destination that draws inspired scholars to our Hyde Park and international campuses, keeping UChicago at the nexus of ideas that challenge and change the world.

    The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

    We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with UChicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

    UChicago research has led to such breakthroughs as discovering the link between cancer and genetics, establishing revolutionary theories of economics, and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations with our national and affiliated laboratories: Argonne National Laboratory, Fermi National Accelerator Laboratory, and the Marine Biological Laboratory in Woods Hole, Massachusetts.

    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts.

     
  • richardmitnick 7:46 am on August 15, 2020 Permalink | Reply
    Tags: "UChicago scientists discover way to make quantum states last 10000 times longer", By precisely tuning this field the scientists could rapidly rotate the electron spins and allow the system to “tune out” the rest of the noise., , , Simple innovation expected to open multiple new avenues for quantum science., The team applied an additional continuous alternating magnetic field., This small change allowed the system to stay coherent up to 22 milliseconds- four orders of magnitude higher than without the modification., University of Chicago   

    From University of Chicago: “UChicago scientists discover way to make quantum states last 10,000 times longer” 

    U Chicago bloc

    From University of Chicago

    Aug 13, 2020
    Louise Lerner

    Simple innovation expected to open multiple new avenues for quantum science.

    1
    Postdoctoral researcher Kevin Miao works on quantum research at the University of Chicago’s Pritzker School of Molecular Engineering. Photo by David Awschalom.

    If we can harness it, quantum technology promises fantastic new possibilities. But first, scientists need to coax quantum systems to stay yoked for longer than a few millionths of a second.

    A team of scientists at the University of Chicago’s Pritzker School of Molecular Engineering announced the discovery of a simple modification that allows quantum systems to stay operational—or “coherent”—10,000 times longer than before. Though the scientists tested their technique on a particular class of quantum systems called solid-state qubits, they think it should be applicable to many other kinds of quantum systems and could thus revolutionize quantum communication, computing and sensing.

    The study was published Aug. 13 in Science.

    “This breakthrough lays the groundwork for exciting new avenues of research in quantum science,” said study lead author David Awschalom, the Liew Family Professor in Molecular Engineering, senior scientist at Argonne National Laboratory and director of the Chicago Quantum Exchange. “The broad applicability of this discovery, coupled with a remarkably simple implementation, allows this robust coherence to impact many aspects of quantum engineering. It enables new research opportunities previously thought impractical.”

    Down at the level of atoms, the world operates according to the rules of quantum mechanics—very different from what we see around us in our daily lives. These different rules could translate into technology like virtually unhackable networks or extremely powerful computers; the U.S. Department of Energy released a blueprint for the future quantum internet in an event at UChicago on July 23. But fundamental engineering challenges remain: Quantum states need an extremely quiet, stable space to operate, as they are easily disturbed by background noise coming from vibrations, temperature changes or stray electromagnetic fields.

    2
    From left: Scientists Kevin Miao, Chris Anderson and Alexandre Bourassa work on quantum research in the Awschalom lab at the University of Chicago’s Pritzker School of Molecular Engineering. Photo by David Awschalom.

    Thus, scientists try to find ways to keep the system coherent as long as possible. One common approach is physically isolating the system from the noisy surroundings, but this can be unwieldy and complex. Another technique involves making all of the materials as pure as possible, which can be costly. The scientists at UChicago took a different tack.

    “With this approach, we don’t try to eliminate noise in the surroundings; instead, we “trick” the system into thinking it doesn’t experience the noise,” said postdoctoral researcher Kevin Miao, the first author of the paper.

    In tandem with the usual electromagnetic pulses used to control quantum systems, the team applied an additional continuous alternating magnetic field. By precisely tuning this field, the scientists could rapidly rotate the electron spins and allow the system to “tune out” the rest of the noise.

    “To get a sense of the principle, it’s like sitting on a merry-go-round with people yelling all around you,” Miao explained. “When the ride is still, you can hear them perfectly, but if you’re rapidly spinning, the noise blurs into a background.”

    This small change allowed the system to stay coherent up to 22 milliseconds, four orders of magnitude higher than without the modification—and far longer than any previously reported electron spin system. (For comparison, a blink of an eye takes about 350 milliseconds). The system is able to almost completely tune out some forms of temperature fluctuations, physical vibrations, and electromagnetic noise, all of which usually destroy quantum coherence.

    The simple fix could unlock discoveries in virtually every area of quantum technology, the scientists said.

    “This approach creates a pathway to scalability,” said Awschalom. “It should make storing quantum information in electron spin practical. Extended storage times will enable more complex operations in quantum computers and allow quantum information transmitted from spin-based devices to travel longer distances in networks.”

    Though their tests were run in a solid-state quantum system using silicon carbide, the scientists believe the technique should have similar effects in other types of quantum systems, such as superconducting quantum bits and molecular quantum systems. This level of versatility is unusual for such an engineering breakthrough.

    “There are a lot of candidates for quantum technology that were pushed aside because they couldn’t maintain quantum coherence for long periods of time,” Miao said. “Those could be re-evaluated now that we have this way to massively improve coherence.

    “The best part is, it’s incredibly easy to do,” he added. “The science behind it is intricate, but the logistics of adding an alternating magnetic field are very straightforward.”

    Other UChicago scientists on the study were graduate student Joseph Blanton, postdoctoral researcher Chris Anderson, graduate students Alexandre Bourassa and Alex Crook, and Argonne scientist Gary Wolfowicz. Hiroshi Abe and Takeshi Ohshima with Japan’s National Institutes for Quantum and Radiological Science and Technology were also co-authors. The team used resources at the Pritzker Nanofabrication Facility. The team is working with the Polsky Center for Entrepreneurship and Innovation to commercialize the discovery.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Chicago Campus

    An intellectual destination

    One of the world’s premier academic and research institutions, the University of Chicago has driven new ways of thinking since our 1890 founding. Today, UChicago is an intellectual destination that draws inspired scholars to our Hyde Park and international campuses, keeping UChicago at the nexus of ideas that challenge and change the world.

    The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

    We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with UChicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

    UChicago research has led to such breakthroughs as discovering the link between cancer and genetics, establishing revolutionary theories of economics, and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations with our national and affiliated laboratories: Argonne National Laboratory, Fermi National Accelerator Laboratory, and the Marine Biological Laboratory in Woods Hole, Massachusetts.

    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts.

     
  • richardmitnick 7:57 am on July 27, 2020 Permalink | Reply
    Tags: "UChicago study illuminates fates of distant planetary atmospheres", , , , , University of Chicago   

    From University of Chicago: “UChicago study illuminates fates of distant planetary atmospheres” 

    U Chicago bloc

    From University of Chicago

    Jul 21, 2020
    Louise Lerner

    1
    An artistic illustration of extrasolar planetary systems. Image courtesy of NASA ESA; and M. Kornmesser/ESO

    Researchers simulate thousands of worlds to see what happens to planets with hydrogen atmospheres.

    When telescopes became powerful enough to find planets orbiting distant stars, scientists were surprised to see that a lot of them didn’t have atmospheres like Earth’s. Instead, they appear to have thick blankets of hydrogen.

    In a new study, two University of Chicago scientists investigated how those planets’ atmospheres evolve, and the likelihood of such planets ever acquiring an atmosphere more like ours. By modeling thousands of simulated planets, they estimated that it would be very rare for a planet that started with a hydrogen atmosphere to evolve into one like Earth’s—and that such planets often wind up losing their atmospheres entirely.

    Published July 21 in the Proceedings of the National Academy of Sciences, the results deepen our understanding of how planetary atmospheres form and grow, and can help astronomers narrow down the best places to search for planets with Earth-like atmospheres.

    “The habitable zone for planets is on a line—a cosmic shoreline between too much and too little atmosphere,” said Asst. Prof. Edwin Kite, first author of the study and an expert on the history of Mars and the climates of other worlds. “Are there lots of planets sitting along that shoreline, or are they rare? This is a big question in planetary science right now.”

    “We know very little about the atmospheres of rocky exoplanets,” said Megan Barnett, a graduate student and second author of the paper. “The planets we’re looking at in this study are too close to their stars to host life, but studying them helps us understand the overall processes that make or destroy atmospheres.”

    2
    An artist’s rendering of L98-59b, a planet spotted in another star system which may have an atmosphere. Two scientists simulated thousands of such planets to better understand how atmospheres form.
    Image courtesy of Chris Smith – NASA Goddard Space Flight Center

    For example, scientists know that many rocky planets form with hydrogen atmospheres, but what happens after that initial formation is much less clear. Do they keep that atmosphere, transition to another kind of atmosphere, or lose it entirely?

    Kite and Barnett took the information we do know, and fed it into a program to run simulations with planets of different sizes and with different kinds of atmospheres. Then they posed different scenarios and observed what would happen to the atmospheres if, say, the nearby star’s brightness changes, changing the amount of radiation received by the planet; or the star dims and the rock of the planet cools down; or volcanoes erupt on the surface.

    Their results suggested that if a planet starts out with a hydrogen-rich atmosphere, there are very few combinations of conditions under which it could eventually transition into an Earth-like atmosphere. “That really just doesn’t happen in our model,” said Kite. “By far the most common outcome is that it loses its atmosphere and stays a bare rock forever.”

    In a handful of cases, however, a planet a little larger than Earth’s size managed to acquire and keep an Earth-like atmosphere by having a lot of volcanic eruptions that pour out gases.

    Kite and Barnett also found that a planet that started out with an initial Earth-like atmosphere was more likely to keep it.

    The results, the scientists said, will help guide searches for habitable planets by new telescopes such as the James Webb Space Telescope, scheduled to launch next year.

    “From our findings, it looks like if we want to find warm exoplanets with Earth-like atmospheres, we should target worlds that started out without hydrogen atmospheres, that orbit less active stars, or are unusually large,” said Kite.

    Funding: NASA.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Chicago Campus

    An intellectual destination

    One of the world’s premier academic and research institutions, the University of Chicago has driven new ways of thinking since our 1890 founding. Today, UChicago is an intellectual destination that draws inspired scholars to our Hyde Park and international campuses, keeping UChicago at the nexus of ideas that challenge and change the world.

    The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

    We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with UChicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

    UChicago research has led to such breakthroughs as discovering the link between cancer and genetics, establishing revolutionary theories of economics, and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations with our national and affiliated laboratories: Argonne National Laboratory, Fermi National Accelerator Laboratory, and the Marine Biological Laboratory in Woods Hole, Massachusetts.

    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts.

     
  • richardmitnick 2:11 pm on April 3, 2020 Permalink | Reply
    Tags: , Some of their most powerful tools are supercomputers and particle accelerators., The search for COVID19 treatments., University of Chicago, X-rays for the cure-first need to find a biochemical “key”—an inhibitor molecule.   

    From University of Chicago: “Supercomputers, giant accelerators lend a hand in the fight against coronavirus” 

    U Chicago bloc

    From University of Chicago

    1
    Researchers are using Argonne’s Advanced Photon Source, a massive kilometer-long accelerator, to analyze proteins that could lead to coronavirus treatments or vaccines. Photo courtesy of the Argonne National Laboratory.

    Scientists at Argonne National Lab, UChicago search for COVID19 treatments and analysis.

    As COVID-19 makes its way around the world, scientists are working around the clock to analyze the virus to find new treatments and cures and predict how it will propagate through the population.

    Some of their most powerful tools are supercomputers and particle accelerators, including those at Argonne National Laboratory, a U.S. Department of Energy laboratory affiliated with the University of Chicago.

    X-rays for the cure

    To make drugs that work against COVID-19, we first need to find a biochemical “key”—an inhibitor molecule that will nestle perfectly into the nooks and crannies of one or more of the 28 proteins that make up the virus. While researchers have already sequenced the genes of the virus, they also need to know what the shape of each protein looks like when it is fully assembled.

    This requires a technique called macromolecular X-ray crystallography, in which scientists grow tiny crystals and then illuminate them in an incredibly high-energy X-ray beam to get a snapshot of its physical structure. Such X-ray beams exist only at a few specialized sites around the world, and one of them is Argonne’s Advanced Photon Source.

    By mid-March, researchers from around the country had used the Advanced Photon Source to characterize roughly a dozen proteins from SARS-CoV-2. They even managed to catch glimpses of several of them with potential inhibitor molecules “in action.”

    3
    This newly mapped coronavirus protein, called Nsp15, helps the virus replicate. Image courtesy Joachimiak et al.

    “The fortunate thing is that we have a bit of a head start,” said Bob Fischetti, who heads the Advanced Photon Source’s efforts in life sciences. “This virus is similar but not identical to the SARS outbreak in 2002, and 70 structures of proteins from several different coronaviruses had been acquired using data from APS beamlines prior to the recent outbreak.”

    That means researchers have background information on how to express, purify and crystallize these proteins, which makes the structures come more quickly, “right now about a few a week,” he said.

    Fischetti compared finding the right inhibitor for a protein to discovering a perfectly sized and shaped Lego brick that would snap perfectly into place. “These viral proteins are like big sticky balls—we call them globular proteins,” he said. “But they have pockets or crevices inside of them where inhibitors might bind.”

    By using the X-rays, scientists can gain an atomic-level view of the recesses of a viral protein and see which possible inhibitors—either pre-existing or yet-to-be-developed—might reside best in the pockets of different proteins.

    The difficulty with pre-existing inhibitors is that they tend to bind only weakly to COVID-19 proteins, which might mean extremely high doses that could cause complications in patients. According to Fischetti, the research teams are looking for an inhibitor that would have a much stronger affinity, enabling it to be administered as a drug that would have many fewer or no side effects.

    Fischetti said the rapid pace of collaborative science with one common essential goal is unlike anything else he has seen in his career. “Everything is just moving so incredibly fast, and there are so many moving pieces that it’s hard to keep up with,” he said.

    Computing the COVID-19 crisis

    Supercomputers can play a role in searching for inhibitors, too. As part of the COVID-19 High Performance Computing Consortium, researchers at Argonne and the University of Chicago are joining forces with researchers from government, academia and industry in an effort that combines the power of 16 different supercomputing systems.

    4
    Supercomputers, such as Argonne’s Theta supercomputer, can whittle down the number of possible molecules for effective treatments. Photo courtesy of the Argonne National Laboratory.

    At Argonne, researchers using the lab’s Theta supercomputer have linked up with other supercomputers from around the country. With their combined might, these supercomputers are powering simulations of how billions of different small molecules from drug libraries could interface and bind with different viral protein regions.

    We already have databases of many potential drug candidates—such “libraries” include catalogs of small molecules that number in the hundreds of millions to billions. The problem, then, is how to narrow them down. Running individual simulations of each and every drug candidate for each viral protein, even with the supercomputers running 24/7, would take many years—a window of time that scientists don’t have.

    Luckily, this is a problem tailor-made for new AI and machine learning techniques. To zero in on the most likely candidates as efficiently as possible, computational biologists can use these techniques to do a kind of educated filtration of possibilities.

    “When we’re looking at this virus, we should be aware that it’s not likely just a single protein we’re dealing with—we need to look at all the viral proteins as a whole,” said Arvind Ramanathan, a computational biologist in Argonne’s Data Science and Learning division. “By using machine learning and artificial intelligence methods to screen for drugs across multiple target proteins in the virus, we may have a better pathway to an antiviral drug.”

    Ten billion configurations are quickly whittled down to roughly six million positions that researchers can then do more intensive simulations on to see which would be the best candidates.

    At the end of the day, they identify a handful of inhibitor candidates that can be fed back to scientists who can then actually make these molecules, inject them into viral proteins, and then use the Advanced Photon Source to check how well the molecules work. “It’s an iterative process,” said Rick Stevens, associate laboratory director of Argonne’s Computing, Environment and Life Sciences directorate. “They feed structures to us, we feed our models to them—eventually we hope to find something that works well.”

    Agents make the model

    Computers can also help scientists simulate the spread of COVID-19 through the population. Argonne specializes in a kind of model called an “agent-based model.” Instead of just assuming a population of “average” people that do the same thing, agent-based models create a virtual crowd of people that act independently. The agent-based model that Argonne researchers have developed includes almost 3 million separate agents, each of whom can travel to any of 1.2 million different locations. The actions of each agent are determined by hourly schedules.

    They are modifying this model to incorporate on-the-fly reports of the properties of the virus’s virulence that are being published every day in the scientific literature.

    Currently, the Argonne team is developing a baseline simulation—in essence, to see what would happen to our communities if people carried on with business as usual. But the true goal is to be able to extensively model the various interventions—or possible additional interventions—that decisionmakers can implement in order to slow the virus’s spread.

    “Our models simulate individuals in a city interacting with each other,” said Argonne computational scientist Jonathan Ozik, who helps to lead Argonne’s epidemiological modeling research. “If there’s a school closure, we see people who are supposed to go to school not go to school, and we can look at population level outcomes, such as how does the school closure affect how many people get exposed to the virus.”

    The advantage of having a computer model of an entire city is that it represents a “laboratory” for decisionmakers to see how different decisions might affect a population without actually having to implement them. “Knowing what decisions to make on a regional or national scale and when are crucial in this worldwide fight,” said Argonne scientist and pioneer in agent-based modeling Charles (Chick) Macal, who also leads the research. “We’re developing a model that will help give information about what decisions will be most effective.”

    Funding for these efforts includes support from the National Institutes of Health and the U.S. Department of Energy, among many others.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Chicago Campus

    An intellectual destination

    One of the world’s premier academic and research institutions, the University of Chicago has driven new ways of thinking since our 1890 founding. Today, UChicago is an intellectual destination that draws inspired scholars to our Hyde Park and international campuses, keeping UChicago at the nexus of ideas that challenge and change the world.

    The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

    We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with UChicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

    UChicago research has led to such breakthroughs as discovering the link between cancer and genetics, establishing revolutionary theories of economics, and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations with our national and affiliated laboratories: Argonne National Laboratory, Fermi National Accelerator Laboratory, and the Marine Biological Laboratory in Woods Hole, Massachusetts.

    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: