From University of Arizona via phys.org : “Complex organic molecules detected in the starless core Lynds 1521E”
via
L1521E: A map of the average line-of-sight dust temperature (color scale) and column density (contours) determined from SED fitting of Herschel Space Observatory. Credit: Scibelli et al., 2021.

European Space Agency [Agence spatiale européenne](EU) Herschel spacecraft active from 2009 to 2013.
Using the ARO 12-m telescope, astronomers have investigated a young starless core known as Lynds 1521E (or L1521E). The study resulted in the detection of complex organic molecules in this object. The finding is detailed in a paper April 15 in MNRAS.

ARO 12m Radio Telescope, NOAO Kitt Peak National Observatory(US), in the Arizona-Sonoran Desert on the Tohono O’odham Nation Arizona USA,Altitude 1,914 m (6,280 ft).,
Starless cores are dense, cold regions within interstellar molecular clouds. They represent the earliest observable stage of low-mass star formation. Observations show that even in such cold environments, complex organic molecules can be present. Finding these molecules in starless cores could help us better understand the processes of stellar formation and evolution.
L1521E is a dynamically and chemically young starless core in the Taurus Molecular Cloud, one of the two known in this cloud. It has a modest central density of around 200,000−300,000 cm−3 and it is assumed that it can only have existed at its present density for less than 100,000 years, which makes it one of the youngest starless cores so far detected and an excellent object to study how complex organic molecules form.
So a group of astronomers led by Samantha Scibelli of the University of Arizona searched for complex organic molecules in L1521E using the 12-meter telescope of the Arizona Radio Observatory (ARO), with promising results.
“Molecular line observations were made with the ARO 12m telescope during three separate seasons, two years apart, using two different backend receivers. The first observing shifts between January 12, 2017 and April 27, 2017 with 10 tunings between 84 and 102 GHz (3.6 − 2.9mm),” the researchers explained.
The observations detected dimethyl ether (CH3OCH3), methyl formate (HCOOCH3), and vinyl cyanide (CH2CHCN). Additionally, the study identified eight transitions of acetaldehyde (CH3CHO) and seven transitions of vinyl cyanide.
The study confirmed that the estimated chemical age of L1521E is indeed young, as complex organic molecules first peak at about 60,000 years. This is consistent with the carbon monoxide (CO) depletion age of this starless core.
The astronomers note that the detected abundances of complex organic molecules for L1521E are in general underestimated. This suggests that a desorption mechanism is missing, or the current description of the already considered mechanisms should be revised by further studies.
All in all, the results obtained by the team seem to suggest that complex organic molecules observed in cold gas formed not only in gas-phase reactions, but also on surfaces of interstellar grains. The new findings could also have implications for future studies of starless cores.
The detection of a rich COM [complex organic molecules] chemistry in young cold core L1521E presents an interesting challenge for future modeling efforts, requiring some type of unified approach combining cosmic-ray chemistry, reactive desorption and non-diffusive surface reactions,” the astronomers concluded.
See the full article here .
five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.
As of 2019, the University of Arizona enrolled 45,918 students in 19 separate colleges/schools, including the UArizona College of Medicine in Tucson and Phoenix and the James E. Rogers College of Law, and is affiliated with two academic medical centers (Banner – University Medical Center Tucson and Banner – University Medical Center Phoenix). UArizona is one of three universities governed by the Arizona Board of Regents. The university is part of the Association of American Universities and is the only member from Arizona, and also part of the Universities Research Association(US). The university is classified among “R1: Doctoral Universities – Very High Research Activity”.
Known as the Arizona Wildcats (often shortened to “Cats”), the UArizona’s intercollegiate athletic teams are members of the Pac-12 Conference of the NCAA. UArizona athletes have won national titles in several sports, most notably men’s basketball, baseball, and softball. The official colors of the university and its athletic teams are cardinal red and navy blue.
After the passage of the Morrill Land-Grant Act of 1862, the push for a university in Arizona grew. The Arizona Territory’s “Thieving Thirteenth” Legislature approved the UArizona in 1885 and selected the city of Tucson to receive the appropriation to build the university. Tucson hoped to receive the appropriation for the territory’s mental hospital, which carried a $100,000 allocation instead of the $25,000 allotted to the territory’s only university (Arizona State University(US) was also chartered in 1885, but it was created as Arizona’s normal school, and not a university). Flooding on the Salt River delayed Tucson’s legislators, and by they time they reached Prescott, back-room deals allocating the most desirable territorial institutions had been made. Tucson was largely disappointed with receiving what was viewed as an inferior prize.
With no parties willing to provide land for the new institution, the citizens of Tucson prepared to return the money to the Territorial Legislature until two gamblers and a saloon keeper decided to donate the land to build the school. Construction of Old Main, the first building on campus, began on October 27, 1887, and classes met for the first time in 1891 with 32 students in Old Main, which is still in use today. Because there were no high schools in Arizona Territory, the university maintained separate preparatory classes for the first 23 years of operation.
Research
UArizona is classified among “R1: Doctoral Universities – Very high research activity”. UArizona is the fourth most awarded public university by National Aeronautics and Space Administration(US) for research. UArizona was awarded over $325 million for its Lunar and Planetary Laboratory (LPL) to lead NASA’s 2007–08 mission to Mars to explore the Martian Arctic, and $800 million for its OSIRIS-REx mission, the first in U.S. history to sample an asteroid.
The LPL’s work in the Cassini spacecraft orbit around Saturn is larger than any other university globally. The UArizona laboratory designed and operated the atmospheric radiation investigations and imaging on the probe. UArizona operates the HiRISE camera, a part of the Mars Reconnaissance Orbiter. While using the HiRISE camera in 2011, UArizona alumnus Lujendra Ojha and his team discovered proof of liquid water on the surface of Mars—a discovery confirmed by NASA in 2015. UArizona receives more NASA grants annually than the next nine top NASA/JPL-Caltech(US)-funded universities combined. As of March 2016, the UArizona’s Lunar and Planetary Laboratory is actively involved in ten spacecraft missions: Cassini VIMS; Grail; the HiRISE camera orbiting Mars; the Juno mission orbiting Jupiter; Lunar Reconnaissance Orbiter (LRO); Maven, which will explore Mars’ upper atmosphere and interactions with the sun; Solar Probe Plus, a historic mission into the Sun’s atmosphere for the first time; Rosetta’s VIRTIS; WISE; and OSIRIS-REx, the first U.S. sample-return mission to a near-earth asteroid, which launched on September 8, 2016.
UArizona students have been selected as Truman, Rhodes, Goldwater, and Fulbright Scholars. According to The Chronicle of Higher Education, UArizona is among the top 25 producers of Fulbright awards in the U.S.
UArizona is a member of the Association of Universities for Research in Astronomy(US), a consortium of institutions pursuing research in astronomy. The association operates observatories and telescopes, notably Kitt Peak National Observatory(US) just outside Tucson. Led by Roger Angel, researchers in the Steward Observatory Mirror Lab at UArizona are working in concert to build the world’s most advanced telescope. Known as the Giant Magellan Telescope(CL), it will produce images 10 times sharper than those from the Earth-orbiting Hubble Telescope.
Giant Magellan Telescope, 21 meters, to be at the NOIRLab(US) National Optical Astronomy Observatory(US) Carnegie Institution for Science’s(US) Las Campanas Observatory(CL), some 115 km (71 mi) north-northeast of La Serena, Chile, over 2,500 m (8,200 ft) high.

Giant Magellan Telescope(CL) 21 meters, to be at the Carnegie Institution for Science’s(US) NOIRLab(US) NOAO(US) Las Campanas Observatory(CL), some 115 km (71 mi) north-northeast of La Serena, Chile, over 2,500 m (8,200 ft) high.
The telescope is set to be completed in 2021. GMT will ultimately cost $1 billion. Researchers from at least nine institutions are working to secure the funding for the project. The telescope will include seven 18-ton mirrors capable of providing clear images of volcanoes and riverbeds on Mars and mountains on the moon at a rate 40 times faster than the world’s current large telescopes. The mirrors of the Giant Magellan Telescope will be built at UArizona and transported to a permanent mountaintop site in the Chilean Andes where the telescope will be constructed.
Reaching Mars in March 2006, the Mars Reconnaissance Orbiter contained the HiRISE camera, with Principal Investigator Alfred McEwen as the lead on the project. This National Aeronautics and Space Administration(US) mission to Mars carrying the UArizona-designed camera is capturing the highest-resolution images of the planet ever seen. The journey of the orbiter was 300 million miles. In August 2007, the UArizona, under the charge of Scientist Peter Smith, led the Phoenix Mars Mission, the first mission completely controlled by a university. Reaching the planet’s surface in May 2008, the mission’s purpose was to improve knowledge of the Martian Arctic. The Arizona Radio Observatory(US), a part of UArizona Department of Astronomy Steward Observatory(US), operates the Submillimeter Telescope on Mount Graham.
The National Science Foundation(US) funded the iPlant Collaborative in 2008 with a $50 million grant. In 2013, iPlant Collaborative received a $50 million renewal grant. Rebranded in late 2015 as “CyVerse”, the collaborative cloud-based data management platform is moving beyond life sciences to provide cloud-computing access across all scientific disciplines.
In June 2011, the university announced it would assume full ownership of the Biosphere 2 scientific research facility in Oracle, Arizona, north of Tucson, effective July 1. Biosphere 2 was constructed by private developers (funded mainly by Texas businessman and philanthropist Ed Bass) with its first closed system experiment commencing in 1991. The university had been the official management partner of the facility for research purposes since 2007.

U Arizona mirror lab-Where else in the world can you find an astronomical observatory mirror lab under a football stadium?

University of Arizona’s Biosphere 2, located in the Sonoran desert. An entire ecosystem under a glass dome? Visit our campus, just once, and you’ll quickly understand why the UA is a university unlike any other.
Reply