Tagged: Universe Today Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:01 am on March 15, 2017 Permalink | Reply
    Tags: Canada to get its own spaceport, Rocketry, Universe Today   

    From Universe Today: “Canada To Get Its Own Spaceport” 

    universe-today

    Universe Today

    14 Mar , 2017
    Evan Gough

    1
    8 Ukrainian-built Cyclone 4 rockets will be launched each year from Maritime Launch Services’ planned spaceport in Nova Scotia, Canada. Image: Maritime Launch Services

    Canada is getting its own rocket-launching facility. Maritime Launch Services (MLS) has confirmed its plans to build and operate a commercial launch facility in Nova Scotia, on Canada’s east coast. The new spaceport should begin construction in 1 year, and should be in operation by 2022.

    The facility will be built near Canso, in the province of Nova Scotia. Maritime Launch Services hopes to launch 8 rockets per year to place satellites in orbit. The Ukrainian Cyclone 4M medium-class rockets that will lift-off from Canso will have a payload of up to 3,350 kg.

    Spaceports have certain requirements that make some locations more desirable. They need to be near transportation infrastructure so that rockets, payloads, and other materials can be transported to the site. They need to be away from major population centres in case of accidents. And they need to provide trajectories that give them access to desirable orbits.

    The Nova Scotia site isn’t the only location considered by MLS. They evaluated 14 sites in North America before settling on the Canso, NS site, including ones in Mexico and the US. But it appears that interest and support from local governments helped MLS settle on Canso.

    The Ukrainian Cyclone M4 rockets have an excellent track record for safety. The company who builds it, Yuzhnoye, has been in operation for 62 years and has launched 875 vehicles and built and launched over 400 spacecraft. Cyclone rockets have launched successfully 221 times.

    2
    The Cyclone 4. The Cyclone family of rockets have over 200 successful launches to their credit. Image: Yuzhnoye Design Office

    MLS is a group of American aerospace experts including people who have worked with NASA. They are working with the makers of the Cyclone 4 rocket, who have wanted to open up operations in North America for some time.

    The Cyclone rocket family first started operating in 1969. The Cyclone 4 is the newest and most powerful rocket in the Cyclone family. It’s a 3-stage rocket that runs on UDMH fuel and uses nitrogen tetroxide for an oxidizer.

    There have been other proposals for a Canadian spaceport. The Canadian Space Agency was interested in Cape Breton, also in Nova Scotia, as a launch site for small satellites in 2010. A Canadian-American consortium called PlanetSpace also looked at a Nova Scotia site for a launch facility, but they failed to get the necessary funding from NASA in 2008. Fort Churchill, in the Province of Manitoba, was the site of over 3,500 sub-orbital flights before being shut down in 1985.

    The Canso launch facility is an entirely private business proposal. Neither the Canadian government nor the Canadian Space Agency are partners. It’s not clear if having a launch facility on Canadian soil will impact the CSA’s activities in any way.

    But at least Canadians won’t have to leave home to watch rocket launches.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 2:38 pm on March 14, 2017 Permalink | Reply
    Tags: , , , , , NANOSwarm, Universe Today   

    From Universe Today: “Are You Ready For The NanoSWARM?” 

    universe-today

    Universe Today

    1
    CubeSats NODes 1 & 2 and STMSat-1 are deployed from the International Space Station during Expedition 47. Image: NASA

    14 Mar , 2017
    Evan Gough

    We’re accustomed to the ‘large craft’ approach to exploring our Solar System. Probes like the Voyagers, the Mariners, and the Pioneers have written their place in the history of space exploration. Missions like Cassini and Juno are carrying on that work. But advances in technology mean that Nanosats and Cubesats might write the next chapter in the exploration of our Solar System.

    Nanosats and Cubesats are different than the probes of the past. They’re much smaller and cheaper, and they offer some flexibility in our approach to exploring the Solar System. A Nanosat is defined as a satellite with a mass between 1 and 10 kg. A CubeSat is made up of multiple cubes of roughly 10cm³ (10cm x 10cm x 11.35cm). Together, they hold the promise of rapidly expanding our understanding of the Solar System in a much more flexible way.

    3
    A cubesat structure, made by ClydeSpace, 1U in size. Credit: Wikipedia Commons/Svobodat

    NASA has been working on smaller satellites for a few years, and the work is starting to bear some serious fruit. A group of scientists at JPL predicts that by 2020 there will be 10 deep space CubeSats exploring our Solar System, and by 2030 there will be 100 of them. NASA, as usual, is developing NanoSat and CubeSat technologies, but so are private companies like Scotland’s Clyde Space.

    INSPIRE and MarCO

    NASA has built 2 Interplanetary NanoSpacecraft Pathfinder In Relevant Environment (INSPIRE) CubeSats to be launched in 2017. They will demonstrate what NASA calls the “revolutionary capability of deep space CubeSats.” They’ll be placed in earth-escape orbit to show that they can withstand the rigors of space, and can operate, navigate, and communicate effectively.

    Following in INSPIRE’s footsteps will be the Mars Cube One (MarCO) CubeSats. MarCO will demonstrate one of the most attractive aspects of CubeSats and NanoSats: their ability to hitch a ride with larger missions and to augment the capabilities of those missions.

    In 2018, NASA plans to send a stationary lander to Mars, called Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight). The MarCO CubeSats will be along for the ride, and will act as communications relays, though they aren’t needed for mission success. They will be the first CubeSats to be sent into deep space.


    So what are some specific targets for this new class of small probes? The applications for NanoSats and CubeSats are abundant.

    Other NanoSat and CubeSat Missions

    NASA’s Europa Clipper Mission, planned for the 2020’s, will likely have CubeSats along for the ride as it scrutinizes Europa for conditions favorable for life. NASA has contracted 10 academic institutes to study CubeSats that would allow the mission to get closer to Europa’s frozen surface.

    The ESA’s AIM asteroid probe will launch in 2020 to study a binary asteroid system called the Didymos system. AIM will consist of the main spacecraft, a small lander, and at least two CubeSats. The CubeSats will act as part of a deep space communications network.

    4
    ESA’s Asteroid Impact Mission is joined by two triple-unit CubeSats to observe the impact of the NASA-led Demonstration of Autonomous Rendezvous Technology (DART) probe with the secondary Didymos asteroid, planned for late 2022. Image: ESA

    The challenging environment of Venus is also another world where CubeSats and NanoSats can play a prominent role. Many missions make use of a gravity assist from Venus as they head to their main objective. The small size of NanoSats means that one or more of them could be released at Venus. The thick atmosphere at Venus gives us a chance to demonstrate aerocapture and to place NanoSats in orbit around our neighbor planet. These NanoSats could take study the Venusian atmosphere and send the results back to Earth.

    NanoSWARM

    But the proposed NanoSWARM might be the most effective demonstration of the power of NanoSats yet. The NanoSWARM mission would have a fleet of small satellites sent to the Moon with a specific set of objectives. Unlike other missions, where NanoSats and CubeSats would be part of a mission centered around larger payloads, NanoSWARM would be only small satellites.

    NanoSWARM is a forward thinking mission that is so far only a concept. It would be a fleet of CubeSats orbiting the Moon and addressing questions around planetary magnetism, surface water on airless bodies, space weathering, and the physics of small-scale magnetospheres. NanoSWARM would target features on the Moon called “swirls“, which are high-albedo features correlated with strong magnetic fields and low surficial water. NanoSWARM CubeSats will make the first near-surface measurements of solar wind flux and magnetic fields at swirls.

    4
    This is an image of the Reiner Gamma lunar swirl from NASA’s Lunar Reconnaissance Orbiter.
    Credits: NASA LRO WAC science team

    NanoSWARM would have a mission architecture referred to as “mother with many children.” The mother ship would release two sets of CubeSats. One set would be released with impact trajectories and would gather data on magnetism and proton fluxes right up until impact. A second set would orbit the Moon to measure neutron fluxes. NanoSWARM’s results would tell us a lot about the geophysics, volatile distribution, and plasma physics of other bodies, including terrestrial planets and asteroids.

    Space enthusiasts know that the Voyager probes had less computing power than our mobile phones. It’s common knowledge that our electronics are getting smaller and smaller. We’re also getting better at all the other technologies necessary for CubeSats and NanoSats, like batteries, solar arrays, and electrospray thrusters. As this trend continues, expect nanosatellites and cubesats to play a larger and more prominent role in space exploration.

    And get ready for the NanoSTORM.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 5:55 pm on March 13, 2017 Permalink | Reply
    Tags: , , , CFBDSIR 2149-0403, , Strange Loner Planet Gets Astronomers’ Attention, Universe Today   

    From Universe Today: “Strange Loner Planet Gets Astronomers’ Attention” 

    universe-today

    Universe Today

    13 Mar 2017
    Matt Williams

    1
    Artist’s impression of the free-floating object known as CFBDSIR J~214947.2-040308.9. Credit: ESO/L. Calçada/P. Delorme/R. Saito/VVV Consortium.

    In the hunt for exoplanets, some rather strange discoveries have been made. Beyond our Solar System, astronomers have spotted gas giants and terrestrial planets that appear to be many orders of magnitude larger than what we are used to (aka. “Super-Jupiters” and “Super-Earths”). And in some cases, it has not been entirely clear what our instruments have been detecting.

    For instance, in some cases, astronomers have not been if an exoplanet candidate was a super-Jupiter or a brown dwarf. Not only do these substellar-mass stars fall into the same temperature range as massive gas giants, they also share many of their physical properties. Such was the conundrum addressed by international team of scientists who recently conduced a study of the object known as CFBDSIR 2149-0403.

    Located between 117 and 143 light years from Earth, this mysterious object is what’s called a “free-floating planetary mass object”. It was originally discovered in 2012 by a team of French and Canadian astronomers led by Dr. Phillipe Delorme of the University Grenoble Alpes using the Canada-France Brown Dwarfs Survey – a near infrared sky survey conducted using the Canada-France Hawaii Telescope [CFHT] at Mauna Kea.


    CFHT Telescope, Mauna Kea, Hawaii, USA

    The existence of this object was then confirmed using data by the Wide-field Infrared Survey Explorer (WISE), and was believed at the time to be part of a group of stars known as the AB Doradus Moving Group (30 stars that are moving through space).


    NASA/WISE Telescope

    3
    AB Doradus Moving Group. http://memim.com/ab-doradus-moving-group.html

    This was the first time that such an object had constraints placed upon its mass and age using spectral data. However, questions remained about its true nature – whether it was a low mass, high-metallicity brown dwarf or a isolated planetary mass. For the sake of their study, Delorme and the international team conducted a multi-wavelength, multi-instrument observational characterization of CFBDSIR 2149-0403.

    The data collected on this object placed its mass between 4 and 7 Jupiter masses, its age at 20 to 200 million years, and its surface temperature at about 650-750 K.

    This consisted of x-ray data from the X-Shooter instrument on the ESO’s Very Large Telescope (VLT), near-infrared data from the VLT’s Hawk-1 instrument, and infrared data from the Spitzer Space Telescope and the CFHT’s Wide-field InfraRed Camera (WIRCam) imager.


    ESO X-shooter on VLT at Cerro Paranal, Chile


    ESO/VLT at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level


    ESO HAWK-I

    As Delorme told Tomasz Nowakowski of Phys.org:

    “The X-Shooter data enabled a detailed study of the physical properties of this object. However, all the data presented in the paper is really necessary for the study, especially the follow-up to obtain the parallax of the object, as well as the Spitzer photometry. Together, they enable us to get the bolometric flux of the object, and hence constraints that are almost independent from atmosphere model assumptions.”

    From the combined data, they were able to characterize the absolute flux of the CFBDSIR 2149-0403, obtain readings on its spectrum, and even determine the radial velocity of the object. They were therefore able to determine that it not likely a member of a moving population of stars, as was previously expected.

    “We now reject our initial hypothesis that CFBDSIR 2149-0403 would be a member of the AB Doradus moving group,” said Delorme. “This removes the most robust age constraint we had. Though determining that certainly improved our knowledge of the object it also made it more difficult to study, by adding age as a free parameter.”

    As for what it is, they narrowed that down to one of two possibilities. Basically, it could be a planetary-mass object with a mass of between 2 and 13 Jupiters that is less than 500 million years in age, or a high metallicity brown dwarf that is between 2 and 40 Jupiter masses and two to three billion years of age. Ultimately, they acknowledge that this uncertainty is due to the fact that our theoretical understanding of cool, low-gravity, and metallicity-enhanced bodies is not be robust enough yet.

    Much of this has to do with the fact that brown dwarfs and super gas giants have common physical parameters that produce very similar effects in the spectra of their atmospheres. But as astronomers gain more of an understanding of planetary formation, which is made possible thanks to the discovery of so many extra-solar planetary systems, we might just find where the line between the smallest of stars and the largest of gas giants is drawn.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 5:50 pm on March 8, 2017 Permalink | Reply
    Tags: , , , , , Universe Today   

    From Universe Today: “The James Webb Space Telescope” 

    universe-today

    Universe Today

    8 Mar , 2017
    Evan Gough

    1
    A full-scale model of the JWST went on a bit of a World Tour. Here it is in Munich, Germany. Image Credit: EADS Astrium


    NASA/ESA/CSA Webb Telescope annotated

    The James Webb Space Telescope (JWST, or the Webb) may be the most eagerly anticipated of the Super Telescopes. Maybe because it has endured a tortured path on its way to being built. Or maybe because it’s different than the other Super Telescopes, what with it being 1.5 million km (1 million miles) away from Earth once it’s operating.

    2
    The JWST will do its observing while in what’s called a halo orbit at L2, a sort of gravitationally neutral point 1.5 million km from Earth. Image: NASA/JWST


    LaGrange Points map. NASA

    If you’ve been following the drama behind the Webb, you’ll know that cost overruns almost caused it to be cancelled. That would’ve been a real shame.

    The JWST has been brewing since 1996, but has suffered some bumps along the road. That road and its bumps have been discussed elsewhere, so what follows is a brief rundown.

    Initial estimates for the JWST were a $1.6 billion price tag and a launch date of 2011. But the costs ballooned, and there were other problems. This caused the House of Representatives in the US to move to cancel the project in 2011. However, later that same year, US Congress reversed the cancellation. Eventually, the final cost of the Webb came to $8.8 billion, with a launch date set for October, 2018. That means the JWST’s first light will be much sooner than the other Super Telescopes.

    The Webb was envisioned as a successor to the Hubble Space Telescope, which has been in operation since 1990. But the Hubble is in Low Earth Orbit, and has a primary mirror of 2.4 meters. The JWST will be located in orbit at the LaGrange 2 point, and its primary mirror will be 6.5 meters. The Hubble observes in the near ultraviolet, visible, and near infrared spectra, while the Webb will observe in long-wavelength (orange-red) visible light, through near-infrared to the mid-infrared. This has some important implications for the science yielded by the Webb.

    The Webb’s Instruments

    The James Webb is built around four instruments:

    The Near-Infrared Camera (NIRCam)
    The Near-Infrared Spectrograph (NIRSpec)
    The Mid-Infrared Instrument(MIRI)
    The Fine Guidance Sensor/ Near InfraRed Imager and Slitless Spectrograph (FGS/NIRISS)

    2
    This image shows the wavelengths of the infrared spectrum that Webb’s instruments can observe. Image: NASA/JWST

    The NIRCam is Webb’s primary imager. It will observe the formation of the earliest stars and galaxies, the population of stars in nearby galaxies, Kuiper Belt Objects, and young stars in the Milky Way. NIRCam is equipped with coronagraphs, which block out the light from bright objects in order to observe dimmer objects nearby.

    NIRSpec will operate in a range from 0 to 5 microns. Its spectrograph will split the light into a spectrum. The resulting spectrum tells us about an objects, temperature, mass, and chemical composition. NIRSpec will observe 100 objects at once.

    MIRI is a camera and a spectrograph. It will see the redshifted light of distant galaxies, newly forming stars, objects in the Kuiper Belt, and faint comets. MIRI’s camera will provide wide-field, broadband imaging that will rank up there with the astonishing images that Hubble has given us a steady diet of. The spectrograph will provide physical details of the distant objects it will observe.

    The Fine Guidance Sensor part of FGS/NIRISS will give the Webb the precision required to yield high-quality images. NIRISS is a specialized instrument operating in three modes. It will investigate first light detection, exoplanet detection and characterization, and exoplanet transit spectroscopy.

    The Science

    The over-arching goal of the JWST, along with many other telescopes, is to understand the Universe and our origins. The Webb will investigate four broad themes:

    First Light and Re-ionization: In the early stages of the Universe, there was no light. The Universe was opaque. Eventually, as it cooled, photons were able to travel more freely. Then, probably hundreds of millions of years after the Big Bang, the first light sources formed: stars. But we don’t know when, or what types of stars.
    How Galaxies Assemble: We’re accustomed to seeing stunning images of the grand spiral galaxies that exist in the Universe today. But galaxies weren’t always like that. Early galaxies were often small and clumpy. How did they form into the shapes we see today?

    The Birth of Stars and Protoplanetary Systems: The Webb’s keen eye will peer straight through clouds of dust that ‘scopes like the Hubble can’t see through. Those clouds of dust are where stars are forming, and their protoplanetary systems. What we see there will tell us a lot about the formation of our own Solar System, as well as shedding light on many other questions.

    Planets and the Origins of Life: We now know that exoplanets are common. We’ve found thousands of them orbiting all types of stars. But we still know very little about them, like how common atmospheres are, and if the building blocks of life are common.

    These are all obviously fascinating topics. But in our current times, one of them stands out among the others: Planets and the Origins of Life.

    The recent discovery the TRAPPIST 1 system has people excited about possibly discovering life in another solar system. TRAPPIST 1 has 7 terrestrial planets, and 3 of them are in the habitable zone. It was huge news in February 2017. The buzz is still palpable, and people are eagerly awaiting more news about the system. That’s where the JWST comes in.

    One big question around the TRAPPIST system is “Do the planets have atmospheres?” The Webb can help us answer this.

    The NIRSpec instrument on JWST will be able to detect any atmospheres around the planets. Maybe more importantly, it will be able to investigate the atmospheres, and tell us about their composition. We will know if the atmospheres, if they exist, contain greenhouse gases. The Webb may also detect chemicals like ozone and methane, which are biosignatures and can tell us if life might be present on those planets.

    You could say that if the James Webb were able to detect atmospheres on the TRAPPIST 1 planets, and confirm the existence of biosignature chemicals there, it will have done its job already. Even if it stopped working after that. That’s probably far-fetched. But still, the possibility is there.

    Launch and Deployment

    The science that the JWST will provide is extremely intriguing. But we’re not there yet. There’s still the matter of JWST’s launch, and it’s tricky deployment.

    The JWST’s primary mirror is much larger than the Hubble’s. It’s 6.5 meters in diameter, versus 2.4 meters for the Hubble. The Hubble was no problem launching, despite being as large as a school bus. It was placed inside a space shuttle, and deployed by the Canadarm in low earth orbit. That won’t work for the James Webb.

    The Webb has to be launched aboard a rocket to be sent on its way to L2, it’s eventual home. And in order to be launched aboard its rocket, it has to fit into a cargo space in the rocket’s nose. That means it has to be folded up.

    The mirror, which is made up of 18 segments, is folded into three inside the rocket, and unfolded on its way to L2. The antennae and the solar cells also need to unfold.

    Unlike the Hubble, the Webb needs to be kept extremely cool to do its work. It has a cryo-cooler to help with that, but it also has an enormous sunshade. This sunshade is five layers, and very large.

    We need all of these components to deploy for the Webb to do its thing. And nothing like this has been tried before.

    The Webb’s launch is only 7 months away. That’s really close, considering the project almost got cancelled. There’s a cornucopia of science to be done once it’s working.

    But we’re not there yet, and we’ll have to go through the nerve-wracking launch and deployment before we can really get excited.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 9:03 pm on March 7, 2017 Permalink | Reply
    Tags: , Universe Today   

    From Universe Today- “Rise of the Super Telescopes: The Thirty Meter Telescope” 

    universe-today

    Universe Today

    7 Mar 2017
    Evan Gough


    TMT

    The Thirty Meter Telescope (TMT) is being built by an international group of countries and institutions, like a lot of Super Telescopes are. In fact, they’re proud of pointing out that the international consortium behind the TMT represents almost half of the world’s population; China, India, the USA, Japan, and Canada. The project needs that many partners to absorb the cost; an estimated $1.5 billion.

    The heart of any of the world’s Super Telescopes is the primary mirror, and the TMT is no different. The primary mirror for the TMT is, obviously, 30 meters in diameter. It’s a segmented design consisting of 492 smaller mirrors, each one a 1.4 meter hexagon.

    The light collecting capability of the TMT will be 10 times that of the Keck Telescope, and more than 144 times that of the Hubble Space Telescope.

    But the TMT is more than just an enormous ‘light bucket.’ It also excels with other capabilities that define a super telescope’s effectiveness. One of those is what’s called diffraction-limited spatial resolution (DLSR).

    2
    An illustration of the segmented primary mirror of the Thirty Meter Telescope. Image Courtesy TMT International Observatory

    When a telescope is pointed at distant objects that appear close together, the light from both can scatter enough to make the two objects appear as one. Diffraction-limited spatial resolution means that when a ‘scope is observing a star or other object, none of the light from that object is scattered by defects in the telescope. The TMT will more easily distinguish objects that are close to each other. When it comes to DLSR, the TMT will exceed the Keck by a factor of 3, and will exceed the Hubble by a factor of 10 at some wavelengths.

    Crucial to the function of large, segmented mirrors like the TMT is active optics. By controlling the shape and position of each segment, active optics allows the primary mirror to compensate for changes in wind, temperature, or mechanical stress on the telescope. Without active optics, and its sister technology adaptive optics, which compensates for atmospheric disturbance, any telescope larger than about 8 meters would not function properly.

    The TMT will operate in the near-ultraviolet, visible, and near-infrared wavelengths. It will be smaller than the European Extremely Large Telescope (E-ELT), which will have a 39 meter primary mirror. The E-ELT will operate in the optical and infrared wavelengths.


    ESO/E-ELT,to be on top of Cerro Armazones in the Atacama Desert of northern Chile

    The world’s Super Telescopes are behemoths. Not just in the size of their mirrors, but in their mass. The TMT’s moving mass will be about 1,420 tonnes. Moving the TMT quickly is part of the design of the TMT, because it must respond quickly when something like a supernova is spotted. The detailed science case calls for the TMT to acquire a new target within 5 to 10 minutes.

    This requires a complex computer system to coordinate the science instruments, the mirrors, the active optics, and the adaptive optics. This was one of the initial challenges of the TMT project. It will allow the TMT to respond to transient phenomena like supernovae when spotted by other telescopes like the Large Synoptic Survey Telescope.



    LSST/Camera, built at SLAC

    LSST telescope, currently under construction at Cerro Pachón Chile, a 2,682-meter-high mountain in Coquimbo Region, in northern Chile, alongside the existing Gemini South and Southern Astrophysical Research Telescopes.

    The Science

    The TMT will investigate most of the important questions in astronomy and cosmology today. Here’s an overview of major topics that the TMT will address:

    The Nature of Dark Matter
    The Physics of Extreme Objects like Neutron Stars
    Early galaxies and Cosmic Reionization
    Galaxy Formation
    Super-Massive Black Holes
    Exploration of the Milky Way and Nearby Galaxies
    The Birth and Early Lives of Stars and Planets
    Time Domain Science: Supernovae and Gamma Ray Bursts
    Exo-planets
    Our Solar System

    This is a comprehensive list of topics, to be sure. It leaves very little out, and is a testament to the power and effectiveness of the TMT.

    The raw power of the TMT is not in question. Once in operation it will advance our understanding of the Universe on multiple fronts. But the actual location of the TMT could still be in question.

    Where Will the TMT Be Built?

    The original location for the TMT was Mauna Kea, the 4,200 meter summit in Hawaii. Mauna Kea is an excellent location, and is the home of several telescopes, most notably the Keck Observatory, the Gemini Telescope, the Subaru Telescope, the Canada-France-Hawaii Telescope, and the James Clerk Maxwell Telescope. Mauna Kea is also the site of the westernmost antenna of the Very Long Baseline Array.

    3
    The top of Mauna Kea is a prime site for telescopes, as shown in this image. Image Courtesy Mauna Kea Observatories

    The dispute between some of the Hawaiian people and the TMT has been well-documented elsewhere, but the basic complaint about the TMT is that the top of Mauna Kea is sacred land, and they would like the TMT to be built elsewhere.

    The organizations behind the TMT would still like it to be built at Mauna Kea, and a legal process is unfolding around the dispute. During that process, they identified several possible alternate sites for the telescope, including La Palma in the Canary Islands. Universe Today contacted TMT Observatory Scientist Christophe Dumas, PhD., about the possible relocation of the TMT to another site.

    Dr. Dumas told us that “Mauna Kea remains the preferred location for the TMT because of its superb observing conditions, and because of the synergy with other TMT partner facilities already present on the mountain. Its very high elevation of almost 14,000 feet makes it the premier astronomical site in the northern hemisphere. The sky above Mauna Kea is very stable, which allows very sharp images to be obtained. It has also excellent transparency, low light pollution and stable cold temperatures that improves sensitivity for observations in the infrared.”

    The preferred secondary site at La Palma is home to over 10 other telescopes, but would relocation to the Canary Islands affect the science done by the TMT? Dr. Dumas says that the Canary Islands site is excellent as well, with similar atmospheric characteristics to Mauna Kea, including stability, transparency, darkness, and fraction of clear-nights.

    4
    The Gran Telescopio Canarias (Great Canary Telescope) is the largest ‘scope currently at La Palma. At 10m diameter, it would be dwarfed by the TMT. Image: By Pachango – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6880933

    As Dr. Dumas explains, “La Palma is at a lower elevation site and on average warmer than Mauna Kea. These two factors will reduce TMT sensitivity at some wavelengths in the infrared region of the spectrum.”

    Dr. Dumas told Universe Today that this reduced sensitivity in the infrared can be overcome somewhat by scheduling different observing tasks. “This specific issue can be partly mitigated by implementing an adaptive scheduling of TMT observations, to match the execution of the most demanding infrared programs with the best atmospheric conditions above La Palma.”

    Court Proceedings End

    On March 3rd, 44 days of court hearings into the TMT wrapped up. In that time, 71 people testified for and against the TMT being constructed on Mauna Kea. Those against the telescope say that the site is sacred land and shouldn’t have any more telescope construction on it. Those for the TMT spoke in favor of the science that the TMT will deliver to everyone, and the education opportunities it will provide to Hawaiians.

    Though construction has been delayed, and people have gone to court to have the project stopped, it seems like the TMT will definitely be built—somewhere. The funding is in place, the design is finalized, and manufacturing of the components is underway. The delays mean that the TMT’s first light is still uncertain, but once we get there, the TMT will be another game-changer, just like the world’s other Super Telescopes.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 10:27 pm on March 3, 2017 Permalink | Reply
    Tags: , , , , , , Universe Today   

    From Universe Today: “Rise of the Super Telescopes”: LSST 

    universe-today

    Universe Today

    3 Mar , 2017
    Evan Gough

    LSST
    LSST/Camera, built at SLAC
    LSST/Camera, built at SLAC
    LSST Interior
    LSST telescope, currently under construction at Cerro Pachón Chile, a 2,682-meter-high mountain in Coquimbo Region, in northern Chile, alongside the existing Gemini South and Southern Astrophysical Research Telescopes.
    LSST telescope, currently under construction at Cerro Pachón Chile, a 2,682-meter-high mountain in Coquimbo Region, in northern Chile, alongside the existing Gemini South and Southern Astrophysical Research Telescopes

    Gemini South telescope, Cerro Tololo Inter-American Observatory (CTIO) campus near La Serena, Chile
    Gemini South telescope, Cerro Tololo Inter-American Observatory (CTIO) campus near La Serena, Chile

    NOAO/ Southern Astrophysical Research Telescope (SOAR)telescope situated on Cerro Pachón - IV Región - Chile, at 2,700 meters (8,775 feet)
    NOAO/ Southern Astrophysical Research Telescope (SOAR)telescope situated on Cerro Pachón – IV Región – Chile, at 2,700 meters (8,775 feet)

    While the world’s other Super Telescopes rely on huge mirrors to do their work, the LSST is different. It’s a huge panoramic camera that will create an enormous moving image of the Universe. And its work will be guided by three words: wide, deep, and fast.

    While other telescopes capture static images, the LSST will capture richly detailed images of the entire available night sky, over and over. This will allow astronomers to basically “watch” the movement of objects in the sky, night after night. And the imagery will be available to anyone.

    The LSST is being built by a group of institutions in the US, and even got some money from Bill Gates. It will be situated atop Cerro Pachon, a peak in Northern Chile. The Gemini South and Southern Astrophysical Research Telescopes are also situated there.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 10:36 pm on March 1, 2017 Permalink | Reply
    Tags: , Universe Today   

    From Universe Today- “Rise of the Super Telescopes: The European Extremely Large Telescope 

    universe-today

    Universe Today

    1 Mar , 2017
    Evan Gough

    ESO/E-ELT,to be on top of Cerro Armazones in the Atacama Desert of northern Chile
    ESO/E-ELT,to be on top of Cerro Armazones in the Atacama Desert of northern Chile

    The European Extremely Large Telescope

    The European Extremely Large Telescope (E-ELT) is an enormous ‘scope being built by the European Southern Observatory. It’s under construction right now in the high-altitude Atacama Desert of northern Chile. The ESO, with its partners, has built some of the largest and most technically advanced telescopes in the world, like the Atacama Large Millimeter Array (ALMA) and the Very Large Telescope (VLT.) But with a 39 meter primary mirror, the E-ELT will dwarf the other telescopes in the ESO’s fleet.

    As Dr Michele Cirasuolo, Programme Scientist for the ELT told Universe Today, “The Extremely Large Telescope (ELT) is the flagship project of the European Southern Observatory (ESO), and when completed in 2024 will be the largest optical/infrared telescope in the world. It represents the next step forward and it will complement the research done with the GMT (Giant Magellan Telescope) and other large telescopes being built.”

    ESO E-ELT Interior

    The E-ELT is the successor to the Overwhelmingly Large Telescope (OWL), which was the ESO backed away from due to its €1.5 billion price tag. Instead, the ESO focussed on the E-ELT. The site for the E-ELT was selected in 2010, and over the next couple years the design was finalized.

    Like other telescopes—including the Keck Telescope—the E-ELT’s primary mirror will be made up of individually manufactured hexagonal segments; 798 of them.

    Keck Observatory, Mauna Kea, Hawaii, USA
    Keck Observatory, Mauna Kea, Hawaii, USA

    Keck mirror
    Keck mirror

    The primary mirror will be fitted with edge sensors to ensure that each segment of the mirror is corrected in relation to its neighbours as the scope is aimed or moved, or as it is disturbed by temperature changes, wind, or vibrations.

    The E-ELT is actually a 5 mirror system. Along with the enormous primary mirror, and the secondary mirror, there are three other mirrors. An unusual aspect of the E-ELT’s design is its tertiary mirror. This tertiary mirror will give the E-ELT better image quality over a larger field of view than a primary and secondary mirror can.

    The ‘scope also has two other mirrors which provide adaptive optics and image stabilization, as well as allowing more large science instruments to be mounted to the ‘scope simultaneously.

    5
    This diagram shows the novel 5-mirror optical system of ESO’s Extremely Large Telescope (ELT). Before reaching the science instruments the light is first reflected from the telescope’s giant concave 39-metre segmented primary mirror (M1), it then bounces off two further 4-metre-class mirrors, one convex (M2) and one concave (M3). The final two mirrors (M4 and M5) form a built-in adaptive optics system to allow extremely sharp images to be formed at the final focal plane. Image By ESO – https://www.eso.org/public/images/eso1704a/, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=55268266

    The Science: What Will the E-ELT Study?

    The E-ELT is designed for an ambitious science agenda. One of the most exciting aspects of the E-ELT is its potential to capture images of extra-solar planets. The 39 meter mirror will not only collect more light from distant, faint objects, but will provide an increase in angular resolution. This means that the telescope will be capable of distinguishing objects that are close together.

    As Dr. Cirasuolo explains, “This will allow the ELT to image exoplanets nearer to the star they are orbiting. We aim to probe planets in the so called habitable zone (where liquid water could exist on their surfaces) and take spectra to analyse the composition of their atmospheres.”

    The E-ELT has other goals as well. It aims to probe the formation and evolution of planetary systems, and to detect water and organic molecules in protoplanetary disks around stars as they form. It will look at some of the most distant objects possible—the first stars, galaxies, and black holes—to try to understand the relationships between them.

    The telescope is also designed to study the first galaxies, and to chart their evolution over time. As if this list of science goals isn’t impressive enough, the E-ELT holds out the hope of directly measuring the acceleration in the expansion of the Universe.


    Access mp4 video here .

    These are all fascinating goals, but for many of us the most compelling question we face is “Are We Alone?” Dr. Cirasuolo feels the same. As he told Universe Today, “The ultimate goal is finding signs of life. Certainly the next generation of telescopes will provide a huge leap forward in our understanding of extra solar planets and for the search for life in the Universe.”

    The E-ELT won’t be working alone. Other Super Telescopes, like the Giant Magellan Telescope, the Thirty Meter Telescope, and even the Large Synoptic Survey Telescope, will all be working in conjunction to expand the frontier of knowledge.

    It may be a very long time, if ever, before we find life somewhere else in the Universe. But by expanding our knowledge of exo-planets, the E-ELT is going to be a huge part of the ongoing effort. A few years ago, we weren’t even certain that we would find many planets around other stars. Now the discovery of exoplanets is almost commonplace. If the E-ELT lives up to its promise, then capturing actual images of exoplanets may become commonplace as well.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 8:49 am on February 28, 2017 Permalink | Reply
    Tags: , , , , , The Giant Magellan Telescope, Universe Today   

    From Universe Today: “Rise of the Super Telescopes: The Giant Magellan Telescope” 

    universe-today

    Universe Today

    27 Feb , 2017
    Evan Gough

    Giant Magellan Telescope, Las Campanas Observatory, to be built  some 115 km (71 mi) north-northeast of La Serena, Chile
    Giant Magellan Telescope, Las Campanas Observatory, to be built some 115 km (71 mi) north-northeast of La Serena, Chile

    We humans have an insatiable hunger to understand the Universe. As Carl Sagan said, “Understanding is Ecstasy.” But to understand the Universe, we need better and better ways to observe it. And that means one thing: big, huge, enormous telescopes.

    In this series we’ll look at 6 of the world’s Super Telescopes:

    The Giant Magellan Telescope
    The Overwhelmingly Large Telescope [abandoned]

    TMT-Thirty Meter Telescope, proposed for Mauna Kea, Hawaii, USA
    TMT-Thirty Meter Telescope, proposed for Mauna Kea, Hawaii, USA

    ESO/E-ELT,to be on top of Cerro Armazones in the Atacama Desert of northern Chile
    ESO/E-ELT,to be on top of Cerro Armazones in the Atacama Desert of northern Chile

    LSST
    LSST/Camera, built at SLAC
    LSST/Camera, built at SLAC
    LSST Interior
    LSST telescope, currently under construction at Cerro Pachón Chile, a 2,682-meter-high mountain in Coquimbo Region, in northern Chile, alongside the existing Gemini South and Southern Astrophysical Research Telescopes.
    LSST telescope, currently under construction at Cerro Pachón Chile, a 2,682-meter-high mountain in Coquimbo Region, in northern Chile, alongside the existing Gemini South and Southern Astrophysical Research Telescopes

    NASA/ESA/CSA Webb Telescope annotated

    The Giant Magellan Telescope

    The Giant Magellan Telescope (GMT) is being built in Chile, at the Las Campanas Observatory, home of the GMT’s predecessors the Magellan Telescopes. The Atacama region of Chile is an excellent location for telescopes because of its superb seeing conditions. It’s a high-altitude desert, so it’s extremely dry and cool there, with little light pollution.

    The GMT is being built by the USA, Australia, South Korea, and Brazil. It started facility construction in 2015, and first light should be in the early 2020’s. Segmented mirrors are the peak of technology when it comes to super telescopes, and the GMT is built around this technology.

    2
    The heart of the Giant Magellan Telescope is the segmented primary mirror. Image: Giant Magellan Telescope – GMTO Corporation

    The GMT’s primary mirror consists of 7 separate mirrors: one central mirror surrounded by 6 other mirrors. Together they form an optical surface that is 24.5 meters (80 ft.) in diameter. That means the GMT will have a total light collecting area of 368 square meters, or almost 4,000 square feet. The GMT will outperform the Hubble Space Telescope by having a resolving power 10 times greater.

    There’s a limit to the size of single mirrors that can be built, and the 8.4 meter mirrors in the GMT are at the limits of construction methods. That’s why segmented systems are in use in the GMT, and in other super telescopes being designed and built around the world.

    These mirrors are modern feats of engineering. Each one is made of 20 tons of glass, and takes years to build. The first mirror was cast in 2005, and was still being polished 6 years later. In fact, the mirrors are so massive, that they need 6 months to cool when they come out of casting.

    They aren’t just flat, simple mirrors. They’re described as potato chips, rather than being flat. They’re aspheric, meaning the mirrors’ faces have steeply curved surfaces. The mirror’s have to have exactly the same curvature in order to perform together, which requires leading-edge manufacturing. The mirrors’ paraboloidal shape has to be polished to an accuracy greater than 25 nanometers. That’s about 1/25th the wavelength of light itself!

    In fact, if you took one of the GMT’s mirrors and spread it out from the east coast to the west coast of the USA, the height of the tallest mountain on the mirror would be only 1/2 of one inch.

    The plan is for the Giant Magellan Telescope to begin operation with only four of its mirrors. The GMT will also have an extra mirror built, just for contingencies.

    The construction of the GMT’s mirrors required entirely new testing methods and equipment to achieve these demanding accuracies. The entire task fell on the University of Arizona’s Richard F. Caris Mirror Lab.

    But GMT is more than just its primary mirror. It also has a secondary mirror, which is also segmented. Each one of the secondary mirror’s segments must work in concert with its matching segment on the primary mirror, and the distance from secondary mirror to primary mirror has to be measured within one part in 500 million. That requires exacting engineering for the steel structure of the body of the telescope.

    The engineering behind the GMT is extremely demanding, but once it’s in operation, what will it help us learn about the Universe?

    “I think the really exciting things will be things that we haven’t yet though of.” -Dr. Robert Kirshner

    The GMT will help us tackle multiple mysteries in the Universe, as Dr. Robert Kirshner, of the Harvard-Smithsonian Center for Astrophysics, explains in this video.

    The scientific aims of the GMT are well laid out, and there aren’t really any surprises. The goals of the GMT are to increase our understanding of some fundamental aspects of our Universe:

    Star, planet, and disk formation
    Extrasolar planetary systems
    Stellar populations and chemical evolution
    Galaxy assembly and evolution
    Fundamental physics
    First light and reionization

    The GMT will collect more light than any other telescope we have, which is why its development is so keenly followed. It will be the first ‘scope to directly image extrasolar planets, which will be enormously exciting. With the GMT, we may be able to see the color of planets, and maybe even weather systems.

    We’re accustomed to seeing images of Jupiter’s storm bands, and weather phenomena on other planets in our Solar System, but to be able to see something like that on extra-solar planets will be astounding. That’s something that even the casual space-interested person will immediately be fascinated by. It’s like science fiction come to life.

    Of course, we’re still a ways away from any of that happening. With first light not anticipated until the early 2020’s, we’ll have to be very patient.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 9:35 am on February 23, 2017 Permalink | Reply
    Tags: , , Universe Today   

    From Universe Today: “Get Ready for the First Pictures of a Black Hole’s Event Horizon” 

    universe-today

    Universe Today

    22 Feb , 2017
    Evan Gough

    1
    NASA’s Spitzer Space Telescope captured this stunning infrared image of the center of the Milky Way Galaxy, where the black hole Sagitarrius A resides. Image: NASA/JPL-Caltech

    It might sound trite to say that the Universe is full of mysteries. But it’s true.

    Chief among them are things like Dark Matter, Dark Energy, and of course, our old friends the Black Holes. Black Holes may be the most interesting of them all, and the effort to understand them—and observe them—is ongoing.

    That effort will be ramped up in April, when the Event Horizon Telescope (EHT) attempts to capture our first image of a Black Hole and its event horizon. The target of the EHT is none other than Sagittarius A, the monster black hole that lies in the center of our Milky Way Galaxy. Though the EHT will spend 10 days gathering the data, the actual image won’t be finished processing and available until 2018.

    The EHT is not a single telescope, but a number of radio telescopes around the world all linked together. The EHT includes super-stars of the astronomy world like the Atacama Large Millimeter Array (ALMA) as well as lesser known ‘scopes like the South Pole Telescope (SPT.) Advances in very-long-baseline-interferometry (VLBI) have made it possible to connect all these telescopes together so that they act like one big ‘scope the size of Earth.

    The combined power of all these telescopes is essential because even though the EHT’s target, Sagittarius A, has over 4 million times the mass of our Sun, it’s 26,000 light years away from Earth. It’s also only about 20 million km across. Huge but tiny.

    The EHT is impressive for a number of reasons. In order to function, each of the component telescopes is calibrated with an atomic clock. These clocks keep time to an accuracy of about a trillionth of a second per second. The effort requires an army of hard drives, all of which will be transported via jet-liner to the Haystack Observatory at MIT for processing. That processing requires what’s called a grid computer, which is a sort of virtual super-computer comprised of 800 CPUs.

    But once the EHT has done its thing, what will we see? What we might see when we finally get this image is based on the work of three big names in physics: Einstein, Schwarzschild, and Hawking.

    2
    A simulation of what the EHT might show us. Image: Event Horizon Telescope Organization

    As gas and dust approach the black hole, they speed up. They don’t just speed up a little, they speed up a lot, and that makes them emit energy, which we can see. That would be the crescent of light in the image above. The black blob would be a shadow cast over the light by the hole itself.

    Einstein didn’t exactly predict the existence of Black Holes, but his theory of general relativity did. It was the work of one of his contemporaries, Karl Schwarzschild, that actually nailed down how a black hole might work. Fast forward to the 1970s and the work of Stephen Hawking, who predicted what’s known as Hawking Radiation.

    Taken together, the three give us an idea of what we might see when the EHT finally captures and processes its data.

    Einstein’s general relativity predicted that super massive stars would warp space-time enough that not even light could escape them. Schwarzschild’s work was based on Einstein’s equations and revealed that black holes will have event horizons. No light emitted from inside the event horizon can reach an outside observer. And Hawking Radiation is the theorized black body radiation that is predicted to be released by black holes.

    The power of the EHT will help us clarify our understanding of black holes enormously. If we see what we think we’ll see, it confirms Einstein’s Theory of General Relativity, a theory which has been confirmed observationally over and over. If EHT sees something else, something we didn’t expect at all, then that means Einstein’s General Relativity got it wrong. Not only that, but it means we don’t really understand gravity.

    In physics circles they say that it’s never smart to bet against Einstein. He’s been proven right time and time again. To find out if he was right again, we’ll have to wait until 2018.

    Event Horizon Telescope Array

    Event Horizon Telescope map

    The locations of the radio dishes that will be part of the Event Horizon Telescope array. Image credit: Event Horizon Telescope sites, via University of Arizona at https://www.as.arizona.edu/event-horizon-telescope.

    Arizona Radio Observatory
    Arizona Radio Observatory/Submillimeter-wave Astronomy (ARO/SMT)

    ESO/APEX
    Atacama Pathfinder EXperiment (APEX)

    CARMA Array no longer in service
    Combined Array for Research in Millimeter-wave Astronomy (CARMA)

    Atacama Submillimeter Telescope Experiment (ASTE)
    Atacama Submillimeter Telescope Experiment (ASTE)

    Caltech Submillimeter Observatory
    Caltech Submillimeter Observatory (CSO)

    IRAM NOEMA interferometer
    Institut de Radioastronomie Millimetrique (IRAM) 30m

    James Clerk Maxwell Telescope interior, Mauna Kea, Hawaii, USA
    James Clerk Maxwell Telescope interior, Mauna Kea, Hawaii, USA

    Large Millimeter Telescope Alfonso Serrano
    Large Millimeter Telescope Alfonso Serrano

    CfA Submillimeter Array Hawaii SAO
    Submillimeter Array Hawaii SAO

    Future Array/Telescopes

    ESO/NRAO/NAOJ ALMA Array
    ESO/NRAO/NAOJ ALMA Array, Chile

    Plateau de Bure interferometer
    Plateau de Bure interferometer

    South Pole Telescope SPTPOL
    South Pole Telescope SPTPOL

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 10:08 am on September 29, 2016 Permalink | Reply
    Tags: , rans-Neptunian Objects (TNOs), , UH Institute for Astronomy, Universe Today   

    From UH Institute for Astronomy via Universe Today: “Five New Neptunian Trojans Discovered” 

    U Hawaii

    University of Hawaii

    U Hawaii 2.2 meter telescope, Mauna Kea, Hawaii, USA
    U Hawaii 2.2 meter telescope, Mauna Kea, Hawaii, USA

    IFA at Manua Kea

    1

    Universe Today

    23 Sept 2016
    Matt Williams

    The Solar System is filled with what are known as Trojan Asteroids – objects that share the orbit of a planet or larger moon. Whereas the best-known Trojans orbit with Jupiter (over 6000), there are also well-known Trojans orbiting within Saturn’s systems of moons, around Earth, Mars, Uranus, and even Neptune.

    Until recently, Neptune was thought to have 12 Trojans. But thanks to a new study by an international team of astronomers – led by Hsing-Wen Lin of the National Central University in Taiwan – five new Neptune Trojans (NTs) have been identified. In addition, the new discoveries raise some interesting questions about where Neptune’s Trojans may come from.

    For the sake of their study – titled The Pan-STARRS 1 Discoveries of Five New Neptune Trojans– the team relied on data obtained by the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS). This wide-field imaging facility – which was founded by the University of Hawaii’s Institute for Astronomy – has spent the last decade searching the Solar System for asteroids, comets, and Centaurs.

    2
    The PS1 telescope at dawn, with the mountain of Mauna Kea visible in the distance. Credit: pan-starrs.ifa.hawaii.edu

    The team used data obtained by the PS-1 survey, which ran from 2010 to 2014 and utilized the first Pan-STARR telescope on Mount Haleakala, Hawaii. From this, they observed seven Trojan asteroids around Neptune, five of which were previously undiscovered. Four of the TNs were observed orbiting within Neptune’s L4 point, and one within its L5 point.

    The newly detected objects have sizes ranging from 100 to 200 kilometers in diameter, and in the case of the L4 Trojans, the team concluded from the stability of their orbits that they were likely primordial in origin. Meanwhile, the lone L5 Trojan was more unstable than the other four, which led them to hypothesize that it was a recent addition.

    As Professor Lin explained to Universe Today via email:

    “The 2 of the 4 currently known L5 Neptune Trojans, included the one L5 we found in this work, are dynamically unstable and should be temporary captured into Trojan cloud. On the other hand, the known L4 Neptune Trojans are all stable. Does that mean the L5 has higher faction of temporary captured Trojans? It could be, but we need more evidence.”

    3
    Animation showing the path of six of Neptune’s L4 trojans in a rotating frame with a period equal to Neptune’s orbital period.. Credit: Tony Dunn/Wikipedia Commons

    From this, said Lin, they derived two possible explanations:

    “The L4 “Trojan Cloud” is wide in orbital inclination space. If it is not as wide as we thought before, the two observational results are statistically possible to generate from the same intrinsic inclination distribution. The previous study suggested >11 degrees width of inclination, and most likely is ~20 degrees. Our study suggested that it should be 7 to 27 degrees, and the most likely is ~ 10 degrees.”

    “[Or], the previous surveys were used larger aperture telescopes and detected fainter NT than we found in PS1. If the fainter (smaller) NTs have wider inclination distribution than the larger ones, which means the smaller NTs are dynamically “hotter” than the larger NTs, the disagreement can be explained.”

    According to Lin, this difference is significant because the inclination distribution of NTs is related to their formation mechanism and environment. Those that have low orbital inclinations could have formed at Neptune’s Lagrange Points and eventually grew large enough to become Trojans asteroids.

    4
    Illustration of the Sun-Earth Lagrange Points. Credit: NASA

    On the other hand, wide inclinations would serve as an indication that the Trojans were captured into the Lagrange Points, most likely during Neptune’s planetary migration when it was still young. And as for those that have wide inclinations, the degree to which they are inclined could indicate how and where they would have been captured.

    “If the width is ~ 10 degrees,” he said, “the Trojans can be captured from a thin (dynamically cold) planetesimal disk. On the other hand, if the Trojan cloud is very wide (~ 20 degrees), they have to be captured from a thick (dynamically hot) disk. Therefore, the inclination distribution give us an idea of how early Solar system looks like.”

    In the meantime, Li and his research team hope to use the Pan-STARR facility to observe more NTs and hundreds of other Centaurs, Trans-Neptunian Objects (TNOs) and other distant Solar System objects. In time, they hope that further analysis of other Trojans will shed light on whether there truly are two families of Neptune Trojans.

    This was all made possible thanks to the PS1 survey. Unlike most of the deep surveys, which are only ale to observe small areas of the sky, the PS1 is able to monitor the whole visible sky in the Northern Hemisphere, and with considerable depth. Because of this, it is expected to help astronomers spot objects that could teach us a great deal about the history of the early Solar System.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    System Overview

    The University of Hawai‘i System includes 10 campuses and dozens of educational, training and research centers across the Hawaiian Islands. As the public system of higher education in Hawai‘i, UH offers opportunities as unique and diverse as our Island home.

    The 10 UH campuses and educational centers on six Hawaiian Islands provide unique opportunities for both learning and recreation.

    UH is the State’s leading engine for economic growth and diversification, stimulating the local economy with jobs, research and skilled workers.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: