Tagged: UCSC Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 3:15 pm on September 21, 2017 Permalink | Reply
    Tags: , , , , , UCSC   

    From COSMOS: “Tougher, shinier mirrors boost telescope power” 

    Cosmos Magazine bloc

    COSMOS Magazine

    21 September 2017
    Andrew Masterson

    1
    The 10-metre mirror array at Hawaii’s Keck Telescope. Laurie Hatch, UCSC

    The world’s big astronomical telescopes could soon all get a performance upgrade without the need for installing bigger mirrors, thanks to a collaboration between materials scientists and astronomers at the University of California, Santa Cruz, in the US.

    One key property of the mirrors used in astronomical telescopes is, of course, reflectiveness. Another, however, is durability – and the intersection of the two represents a trade-off.

    Most big telescopes use mirrors coated in aluminium, which is a comparatively tough material that can survive the sometimes harsh environments in which observatories are situated, as well as being able to withstand the potentially damaging effects of being manhandled.

    Silver makes for a much more efficient mirror because it is much more reflective. However, it is also fragile, and prone to damage and corrosion.

    Tackling this problem after a conversation with a despairing astronomer, a team led by materials scientist Nobuhiko Kobayashi has formulated a tough but ultra-thin coating that can keep silver protected without reducing or distorting its reflective properties.

    The team formulated several new alloys, using various combinations of fluoride, magnesium and aluminium oxides. These were then deposited on a silver surface, using an electron beam, in a molecule-by-molecule process called atomic layer deposition.

    The best-performing formulation – which rejoices in the name MgAl2O4, Al2O3 – enabled high reflectance at wavelengths between 340 nanometres and the mid-infrared spectrum. It remained stable even when exposed to 80% humidity and 80 degree Celsius temperatures for 10 days in a row.

    Both the specific formulation and the application method have been patented by their inventors. The mechanical limit of the process at present means the largest mirror that can be coated has a diameter of 0.9 metres.

    Kobayashi and his colleagues are working on doubling this – an upper limit, they say, that will allow the mirrors in even the world’s largest telescopes to be converted to silver. The main mirrors of the Keck Telescope in Hawaii, for instance, comprise a 10-metre span, but are made up of 1.8 metre-wide components.

    “It is by far the cheapest way to make our telescopes effectively bigger,” says co-author Michael Bolte. “The reason we want bigger telescopes is to collect more light, so if your mirrors reflect more light it’s like making them bigger.”

    The research is published in the SPIE Digital Library.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Advertisements
     
  • richardmitnick 2:13 pm on September 8, 2017 Permalink | Reply
    Tags: , , UC Santa Cruz ranked third worldwide for research influence, UCSC   

    From UCSC: “UC Santa Cruz ranked third worldwide for research influence” 

    UC Santa Cruz

    UC Santa Cruz

    September 07, 2017
    Tim Stephens

    1`

    In the latest analysis of the world’s top universities published by Times Higher Education (THE), UC Santa Cruz ranked third in research influence as measured by the number of times its faculty’s published work is cited by scholars around the world.

    Published as part of the THE World University Rankings 2018, the analysis measured overall research influence based on the average number of citations per paper, using a database of almost 62 million citations to more than 12.4 million research publications published over five years, from 2012 to 2016.

    With a citation score of 99.9, UC Santa Cruz is tied for third place with Stanford University. St. George’s University of London and the Massachusetts Institute of Technology were tied for first. UC Berkeley ranked just behind UCSC and Stanford with a citation score of 99.8.

    The 2018 rankings list the top 1,000 universities in the world, comparing them in five areas: teaching (the learning environment); research (volume, income, and reputation); citations (research influence); international outlook (staff, students, and research); and industry income (knowledge transfer).

    The research influence indicator looks at the role of universities in spreading new knowledge and ideas. As explained on the website for the World University Rankings, “The citations help to show us how much each university is contributing to the sum of human knowledge: they tell us whose research has stood out, has been picked up and built on by other scholars and, most importantly, has been shared around the global scholarly community to expand the boundaries of our understanding, irrespective of discipline.”

    UCSC’s overall ranking in the THE World University Rankings 2018 was 162 out of 1,000 institutions worldwide. In the United States, UC Santa Cruz ranked 55 out of 154 institutions.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UCO Lick Shane Telescope
    UCO Lick Shane Telescope interior
    Shane Telescope at UCO Lick Observatory, UCSC

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    UC Santa Cruz campus
    The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
    Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow
    1
    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch) UCSC Lick Nickel telescope

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    5
    UCSC alumna Shelley Wright, now an assistant professor of physics at UC San Diego, discusses the dichroic filter of the NIROSETI instrument. (Photo by Laurie Hatch)

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

    The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UCSC is the home base for the Lick Observatory.

     
  • richardmitnick 1:39 pm on September 2, 2017 Permalink | Reply
    Tags: , , , , FOLO- Friends of Lick Observatory, , , UCO - University of California Observatories, UCSC   

    From UCSC: “UC Santa Cruz hosts international workshop for Thirty Meter Telescope” 

    UC Santa Cruz

    UC Santa Cruz

    September 01, 2017
    Tim Stephens
    stephens@ucsc.edu

    1
    The TMT Future Leaders Workshop brought together graduate students and postdocs from Canada, China, India, Japan, UC, and Caltech. (Photo by Carolyn Lagattuta)

    An international training program for the Thirty Meter Telescope (TMT) project brought more than 40 graduate students and postdoctoral researchers to UC Santa Cruz in August for an eight-day scientific and technical workshop.

    TMT-Thirty Meter Telescope, proposed for Mauna Kea, Hawaii, USA

    Workshop participants, representing all of the TMT International Observatory’s partners (Canada, China, India, Japan, UC, and Caltech), worked on projects in small teams, visited astronomical laboratory facilities, toured Lick Observatory, and met with numerous scientists and engineers involved in TMT.

    Lick Observatory, Mt Hamilton, in San Jose, California

    At a symposium on August 25, TMT project manager Gary Sanders gave the group an overview of the work now under way around the globe as progress on TMT moves through the final design and production phases for various components of the telescope and its instruments.

    “We’re very far along. A lot of work is going on globally in a big and powerful international collaboration,” Sanders said.

    The TMT Future Leaders Workshop was organized and led by the Institute for Scientist & Engineer Educators (ISEE) at UC Santa Cruz. ISEE director Lisa Hunter said the workshop emphasized international collaboration and provided many opportunities for participants to apply what they learned by working in teams to propose solutions to problems currently being tackled by TMT. The intention is to train TMT’s future scientific and technical leaders.

    2
    The workshop emphasized international collaboration, project management, and other professional skills, with the intention of training TMT’s future scientific and technical leaders. (Photo by Carolyn Lagattuta)

    “We want to prepare these early-career scientists and engineers to do team science in cross-cultural collaborations,” Hunter said. “There are huge challenges in coordinating a large international project like TMT, and we hope this workshop will help stimulate collaborations across the partnership.”

    3
    The UCSC Laboratory for Adaptive Optics was among the facilities toured by workshop participants. (Photo by Austin Barnes)

    Workforce development

    ISEE has a long history of working with major telescopes on education and workforce development programs. The institute got its start as part of the Center for Adaptive Optics at UC Santa Cruz and has been working with telescopes in Hawaii since 2002 and with TMT since 2009.

    In Hawaii, ISEE is best known for the Akamai Workforce Initiative, which provides internships, mentoring, and support for college students in science, technology, engineering, and math (STEM) fields. Telescopes face special challenges in creating a local workforce due to their remote sites and need for highly trained workers. Akamai prepares local college students for jobs in telescope operations and contributes to the regional workforce by supporting students across a broad range of STEM fields.

    TMT is currently the major funder of the Akamai program, which has provided more than 350 internships to students from Hawaii. More than a quarter of the participants are native Hawaiian, and more than 140 Akamai alumni are now working in scientific and technical jobs in Hawaii.

    Maunakea in Hawaii was chosen in 2009 as the preferred site to build and operate TMT, but in 2015 the Hawaii Supreme Court ruled that the state’s permitting process was flawed. While proceedings to re-obtain the required permit move forward in Hawaii, TMT has also investigated alternative sites and last year chose a site in La Palma, on the Canary Islands, as the alternate site for TMT.

    “We are working on two options,” Sanders said. “Maunakea is still the preferred site, but we are also working hard in the Canary Islands. Meanwhile, most of the project continues to move forward.”

    New opportunities

    When completed, TMT will provide new observational opportunities in essentially every field of astronomy and astrophysics. Its 30-meter primary mirror, composed of 492 hexagonal segments, will have nine times the light-collecting area of today’s largest optical telescopes, allowing TMT to reach further and see more clearly than previous telescopes by a factor of 10 to 100 depending on the observation.

    The segmented-mirror design, pioneered on the 10-meter Keck telescopes, was conceived by the late Jerry Nelson, a professor emeritus of astronomy and astrophysics at UC Santa Cruz and TMT project scientist, who died in June. Sanders paid homage to Nelson at the symposium, as did UCSC Chancellor George Blumenthal in his opening remarks.

    “His work empowered astronomers throughout the UC system and helped put us where we are today,” Blumenthal said.

    The light collected by TMT’s enormous primary mirror will be directed to a sophisticated adaptive optics system and a powerful suite of scientific instruments located around the telescope. The three “first-light” instruments to be deployed when the telescope begins operations—two infrared spectrometers and one optical spectrometer—will provide unparalleled science and imaging capabilities. Work on the Wide-Field Optical Spectrometer (WFOS) is being led from UC Santa Cruz by principal investigator Kevin Bundy, one of many TMT collaborators who met with the workshop participants.

    The TMT Future Leaders Workshop was sponsored by TMT and co-sponsored by University of California Observatories (UCO). It is part of an International Training Program ISEE is developing in collaboration with the TMT Workforce, Education, Public Outreach, and Communication (WEPOC) committee.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UCO Lick Shane Telescope
    UCO Lick Shane Telescope interior
    Shane Telescope at UCO Lick Observatory, UCSC

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    UC Santa Cruz campus
    The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
    Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow
    1
    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch) UCSC Lick Nickel telescope

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    5
    UCSC alumna Shelley Wright, now an assistant professor of physics at UC San Diego, discusses the dichroic filter of the NIROSETI instrument. (Photo by Laurie Hatch)

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

    The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UCSC is the home base for the Lick Observatory.

     
  • richardmitnick 2:00 pm on July 21, 2017 Permalink | Reply
    Tags: Cosmic high noon, , Supernova DES15E2mlf, UCSC   

    From UCSC: “Superluminous supernova marks the death of a star at cosmic high noon” 

    UC Santa Cruz

    UC Santa Cruz

    July 21, 2017
    Tim Stephens
    stephens@ucsc.edu

    At a distance of 10 billion light years, a supernova detected by the Dark Energy Survey team is one of the most distant ever discovered and confirmed.

    1
    The yellow arrow marks the superluminous supernova DES15E2mlf in this false-color image of the surrounding field. This image was observed with the Dark Energy Camera (DECam) gri-band filters mounted on the Blanco 4-meter telescope on December 28, 2015, around the time when the supernova reached its peak luminosity. (Observers: D. Gerdes and S. Jouvel)

    The death of a massive star in a distant galaxy 10 billion years ago created a rare superluminous supernova that astronomers say is one of the most distant ever discovered. The brilliant explosion, more than three times as bright as the 100 billion stars of our Milky Way galaxy combined, occurred about 3.5 billion years after the big bang at a period known as “cosmic high noon,” when the rate of star formation in the universe reached its peak.

    Superluminous supernovae are 10 to 100 times brighter than a typical supernova resulting from the collapse of a massive star. But astronomers still don’t know exactly what kinds of stars give rise to their extreme luminosity or what physical processes are involved.

    The supernova known as DES15E2mlf is unusual even among the small number of superluminous supernovae astronomers have detected so far. It was initially detected in November 2015 by the Dark Energy Survey (DES) collaboration using the Blanco 4-meter telescope at Cerro Tololo Inter-American Observatory in Chile.

    Dark Energy Survey


    Dark Energy Camera [DECam], built at FNAL


    NOAO/CTIO Victor M Blanco 4m Telescope which houses the DECam at Cerro Tololo, Chile, housing DECam

    Follow-up observations to measure the distance and obtain detailed spectra of the supernova were conducted with the Gemini Multi-Object Spectrograph on the 8-meter Gemini South telescope.

    Gemini Observatory GMOS on Gemini South


    Gemini South telescope, Cerro Tololo Inter-American Observatory (CTIO) campus near La Serena, Chile

    The investigation was led by UC Santa Cruz astronomers Yen-Chen Pan and Ryan Foley as part of an international team of DES collaborators. The researchers reported their findings in a paper published July 21 in the Monthly Notices of the Royal Astronomical Society.

    The new observations may provide clues to the nature of stars and galaxies during peak star formation. Supernovae are important in the evolution of galaxies because their explosions enrich the interstellar gas from which new stars form with elements heavier than helium (which astronomers call “metals”).

    “It’s important simply to know that very massive stars were exploding at that time,” said Foley, an assistant professor of astronomy and astrophysics at UC Santa Cruz. “What we really want to know is the relative rate of superluminous supernovae to normal supernovae, but we can’t yet make that comparison because normal supernovae are too faint to see at that distance. So we don’t know if this atypical supernova is telling us something special about that time 10 billion years ago.”

    Previous observations of superluminous supernovae found they typically reside in low-mass or dwarf galaxies, which tend to be less enriched in metals than more massive galaxies. The host galaxy of DES15E2mlf, however, is a fairly massive, normal-looking galaxy.

    “The current idea is that a low-metal environment is important in creating superluminous supernovae, and that’s why they tend to occur in low mass galaxies, but DES15E2mlf is in a relatively massive galaxy compared to the typical host galaxy for superluminous supernovae,” said Pan, a postdoctoral researcher at UC Santa Cruz and first author of the paper.

    Foley explained that stars with fewer heavy elements retain a larger fraction of their mass when they die, which may cause a bigger explosion when the star exhausts its fuel supply and collapses.

    “We know metallicity affects the life of a star and how it dies, so finding this superluminous supernova in a higher-mass galaxy goes counter to current thinking,” Foley said. “But we are looking so far back in time, this galaxy would have had less time to create metals, so it may be that at these earlier times in the universe’s history, even high-mass galaxies had low enough metal content to create these extraordinary stellar explosions. At some point, the Milky Way also had these conditions and might have also produced a lot of these explosions.”

    “Although many puzzles remain, the ability to observe these unusual supernovae at such great distances provides valuable information about the most massive stars and about an important period in the evolution of galaxies,” said Mat Smith, a postdoctoral researcher at University of Southampton. The Dark Energy Survey has discovered a number of superluminous supernovae and continues to see more distant cosmic explosions revealing how stars exploded during the strongest period of star formation.

    In addition to Pan, Foley, and Smith, the coauthors of the paper include Lluís Galbany of the University of Pittsburgh, and other members of the DES collaboration from more than 40 institutions. This research was funded the National Science Foundation, The Alfred P. Sloan Foundation, and the David and Lucile Packard Foundation.

    The Dark Energy Survey is a collaboration of more than 400 scientists from 26 institutions in seven countries. Its primary instrument, the 570-megapixel Dark Energy Camera, is mounted on the 4-meter Blanco telescope at the National Optical Astronomy Observatory’s Cerro Tololo Inter-American Observatory in Chile, and its data are processed at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign. Funding for the DES Projects has been provided by the U.S. Department of Energy Office of Science, U.S. National Science Foundation, Ministry of Science and Education of Spain, Science and Technology Facilities Council of the United Kingdom, Higher Education Funding Council for England, ETH Zurich for Switzerland, National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, Kavli Institute of Cosmological Physics at the University of Chicago, Center for Cosmology and Astro-Particle Physics at Ohio State University, Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and Ministério da Ciência e Tecnologia, Deutsche Forschungsgemeinschaft, and the collaborating institutions in the Dark Energy Survey, the list of which can be found at http://www.darkenergysurvey.org/collaboration.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UCO Lick Shane Telescope
    UCO Lick Shane Telescope interior
    Shane Telescope at UCO Lick Observatory, UCSC

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    UC Santa Cruz campus
    The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
    Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow
    1
    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch) UCSC Lick Nickel telescope

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    5
    UCSC alumna Shelley Wright, now an assistant professor of physics at UC San Diego, discusses the dichroic filter of the NIROSETI instrument. (Photo by Laurie Hatch)

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

    The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UCSC is the home base for the Lick Observatory.

     
  • richardmitnick 12:35 pm on June 17, 2017 Permalink | Reply
    Tags: Axion theory, , , , , Helen Quinn and Roberto Peccei, Peccei-Quinn symmetry, , , UCSC   

    From Quanta: “Roberto Peccei and Helen Quinn, Driving Around Stanford in a Clunky Jeep” 

    Quanta Magazine
    Quanta Magazine

    June 15, 2017
    Thomas Lin
    Olena Shmahalo, Art Director
    Lucy Reading-Ikkanda, graphics

    1
    Ryan Schude for Quanta Magazine
    Helen Quinn and Roberto Peccei walking toward Stanford University’s new science and engineering quad. Behind them is the main quad, the oldest part of the campus. “If you look at a campus map,” said Quinn, who along with Peccei proposed Peccei-Quinn symmetry, “you will see the axis that goes through the middle of both quadrangle areas. We are on that line between the two.”

    Four decades ago, Helen Quinn and Roberto Peccei took on one of the great problems in theoretical particle physics: the strong charge-parity (CP) problem. Why does the symmetry between matter and antimatter break in weak interactions, which are responsible for nuclear decay, but not in strong interactions, which hold matter together?

    “The academic year 1976-77 was particularly exciting for me because Helen Quinn and Steven Weinberg were visiting the Stanford department of physics,” Peccei told Quanta in an email. “Helen and I had similar interests and we soon started working together.”

    Encouraged by Weinberg, who would go on to win a Nobel Prize in physics in 1979 for his work on the unification of electroweak interactions, Quinn and Peccei zeroed in on a CP-violating interaction whose strength can be characterized by an angular variable, theta. They knew theta had to be small, but no one had an elegant mechanism for explaining its smallness.

    “Steve liked to discuss physics over lunch, and Helen and I often joined him,” Peccei said. “Steve invariably brought up the theta problem in our lunch discussions, urging us to find a natural solution for why it was so small.”

    Quinn said by email that she and Peccei knew two things: The problem goes away if any quarks have zero mass (which seems to make theta irrelevant), and “in the very early hot universe all the quarks have zero mass.” They wondered how it could be that “theta is irrelevant in the early universe but matters once it cools enough that the quarks get their masses?”

    They proceeded to draft a “completely wrong paper based on conclusions we drew from this set of facts,” Quinn said. They went to Weinberg, whose comments helped clarify their thinking and, she said, “put us on the right track.”

    They realized they could naturally arrive at a zero value for theta by requiring a new symmetry, now known as the Peccei-Quinn mechanism. Besides being one of the popular proposed solutions to the strong CP problem, Peccei-Quinn symmetry also predicts the existence of a hypothetical “axion” particle, which has become a mainstay in theories of supersymmetry and cosmic inflation and has been proposed as a candidate for dark matter.

    2
    Peccei and Quinn discussing their proposed symmetry with the aid of a sombrero. Ryan Schude for Quanta Magazine

    That year at Stanford, Quinn and Peccei regularly interacted with the theory group at the Stanford Linear Accelerator Center (SLAC) as well as with another group from the University of California, Santa Cruz.

    “We formed a large and active group of theorists, which created a wonderful atmosphere of open discussion and collaboration,” Quinn said, adding that she recalls “riding with Roberto back and forth from Stanford to SLAC in his yellow and clunky Jeep, talking physics ideas as we went.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Formerly known as Simons Science News, Quanta Magazine is an editorially independent online publication launched by the Simons Foundation to enhance public understanding of science. Why Quanta? Albert Einstein called photons “quanta of light.” Our goal is to “illuminate science.” At Quanta Magazine, scientific accuracy is every bit as important as telling a good story. All of our articles are meticulously researched, reported, edited, copy-edited and fact-checked.

     
  • richardmitnick 3:53 pm on June 10, 2017 Permalink | Reply
    Tags: A giant black hole ripped apart a star and then gorged on its remains for about a decade, , , , Black hole meal sets record for length and size, , UCSC   

    From UCSC: “Black hole meal sets record for length and size” 

    UC Santa Cruz

    UC Santa Cruz

    February 06, 2017
    Tim Stephens

    New observations confirm a theoretical model developed by UCSC astrophysicists of ‘tidal disruption events,’ when the tidal forces of a black hole tear apart a star

    1
    XJ1500+0154. This artist’s illustration depicts a “tidal disruption event” (TDE), when a star wanders too close to a black hole and is destroyed by tidal forces generated from the black hole’s intense gravitational forces. During a TDE, some of the stellar debris is flung outward at high speeds, while the rest (shown as the red material in the illustration) becomes hotter as it falls toward the black hole, generating a distinct x-ray flare. A wind blowing away from this infalling material is shown in blue. (Credits: Illustration: CXC/M. Weiss; X-ray: NASA/CXC/UNH/D. Lin et al, Optical: CFHT)

    NASA/Chandra Telescope

    CFHT Telescope, Mauna Kea, Hawaii, USA

    A giant black hole ripped apart a star and then gorged on its remains for about a decade, according to astronomers. This is more than ten times longer than any observed episode of a star’s death by black hole.

    Researchers made this discovery using data from NASA’s Chandra X-ray Observatory and Swift satellite as well as ESA’s XMM-Newton. They published their findings February 6 in Nature Astronomy.

    NASA/SWIFT Telescope

    ESA/XMM Newton

    The trio of orbiting X-ray telescopes found evidence for a “tidal disruption event” (TDE), wherein the tidal forces due to the intense gravity from a black hole can destroy an object – such as a star – that wanders too close. During a TDE, some of the stellar debris is flung outward at high speeds, while the rest falls toward the black hole. As it travels inwards to be ingested by the black hole, the material heats up to millions of degrees and generates a distinct x-ray flare.

    “We have witnessed a star’s spectacular and prolonged demise,” said Dacheng Lin from the University of New Hampshire in Durham, who led the study. “Dozens of tidal disruption events have been detected since the 1990s, but none that remained bright for nearly as long as this one.”

    According to coauthor Enrico Ramirez-Ruiz, professor and chair of astronomy and astrophysics at UC Santa Cruz, the observations of this TDE with a long-lasting bright phase fit the theoretical predications made in a 2015 paper he wrote with a former graduate student, coauthor James Guillochon, now at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass.

    “We correctly predicted in advance of observations that some TDEs would be discovered with long-lived light curves,” Ramirez-Ruiz said. “The pieces of the star have to make an accretion disk promptly in order for the material to be digested by the black hole. With a lower mass black hole, stars can get disrupted farther away from the event horizon, and as a result we expect circularization and accretion to be slow.”

    The extraordinary long bright phase of this event spanning over ten years means that a large amount of mass had to be digested by the black hole. The theoretical model supports either the complete digestion of a star with twice the mass of the sun, or the partial disruption of a much more massive star, Ramirez-Ruiz said, adding that he favors the full disruption of a lower mass star.

    The X-ray source containing this force-fed black hole, known by its abbreviated name of XJ1500+0154, is located in a small galaxy about 1.8 billion light years from Earth.

    The source was not detected in a Chandra observation on April 2nd, 2005, but was detected in an XMM-Newton observation on July 23rd, 2005, and reached peak brightness in a Chandra observation on June 5, 2008. These observations show that the source became at least 100 times brighter in x-rays. Since then, Chandra, Swift, and XMM-Newton have observed it multiple times.

    The sharp x-ray vision of Chandra data shows that XJ1500+0154 is located at the center of its host galaxy, the expected location for a supermassive black hole. The x-ray data also indicate that radiation from material surrounding this black hole has consistently surpassed the so-called Eddington limit, defined by a balance between the outward pressure of radiation from the hot gas and the inward pull of the gravity of the black hole.

    “For most of the time we’ve been looking at this object, it has been growing rapidly,” Guillochon said. “This tells us something unusual—like a star twice as heavy as our Sun—is being fed into the black hole.”

    This TDE may help answer the question as to how supermassive black holes in the early universe grow. If supermassive black holes can grow from TDEs or other means faster than the Eddington limit, this could explain how supermassive black holes were able to reach masses about a billion times higher than the sun when the universe was only about a billion years old.

    “This event shows that black holes really can grow at extraordinarily high rates,” said co-author Stefanie Komossa of QianNan Normal University for Nationalities in Duyun City, China. “This may help understand how precocious black holes came to be.”

    Based on the modeling by the researchers, the black hole’s feeding supply should be significantly reduced in the next decade. This would result in XJ1500+0154 fading in x-ray brightness over the next several years.

    NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra’s science and flight operations.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UCO Lick Shane Telescope
    UCO Lick Shane Telescope interior
    Shane Telescope at UCO Lick Observatory, UCSC

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    UC Santa Cruz campus
    The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    Friends of Lick Observatory is celebratinc its fifth annivrsary.

    Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
    Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow
    1
    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch) UCSC Lick Nickel telescope

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    5
    UCSC alumna Shelley Wright, now an assistant professor of physics at UC San Diego, discusses the dichroic filter of the NIROSETI instrument. (Photo by Laurie Hatch)

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

    The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UCSC is the home base for the Lick Observatory.

     
  • richardmitnick 8:45 pm on May 22, 2017 Permalink | Reply
    Tags: , “Driver” mutations, “Passenger” mutations, , Cancer is a disease of the genome, Genomic medicine requires massive data sharing and analysis, , Slit/Robo signaling, Treehouse Childhood Cancer Initiative, UCSC, Understanding the pathways that drive cancer   

    From UCSC: Cancer in the Cross Hairs” 

    UC Santa Cruz

    UC Santa Cruz

    1

    UC Santa Cruz may not have a medical school, but its scientists are tackling some of the most challenging problems in cancer genomics, drug discovery, and basic cancer biology

    5.18.17
    Tim Stephens

    Scott Lokey is not easily discouraged. In fact, he seems to thrive on scientific challenges, like taking on what the pharmaceutical industry calls “undruggable targets.” The term applies to molecules known to play a key role in disease but not susceptible to control by the kinds of small molecules that make good drugs.

    Lokey, a professor of chemistry and biochemistry and director of the Chemical Screening Center at UC Santa Cruz, is working with compounds that he thinks could overcome the obstacles presented by “undruggable” targets. If successful, his work could lead to a whole new class of drugs to fight cancer and other diseases.

    One such target is the retinoblastoma tumor suppressor protein, which normally puts the brakes on cell division. Its function is disrupted in most human cancers, allowing cancer cells to proliferate.


    Scott Lokey, professor of chemistry and biochemistry at UC Santa Cruz and director of the UCSC Chemical Screening Center, discusses how UCSC researchers are taking on “undruggable” targets.

    “The retinoblastoma protein is just the tip of the iceberg. There’s a huge inventory of potential targets that we haven’t been able to get at with conventional drugs,” says Lokey. “I actually get the majority of my funding from pharmaceutical companies for work on undruggable targets.”

    Taking on challenging drug targets is just one way to make progress against cancer. Researchers at UC Santa Cruz are attacking the disease from every angle. While the Chemical Screening Center searches for new cancer-fighting compounds, biologists are identifying new targets for the next generation of cancer drugs, and genomics experts are harnessing the power of big data to usher in a new era of precision therapies. The campus may not have a medical school, but that doesn’t keep its scientists and engineers from working at the cutting edge of biomedical research.

    All advances in cancer treatment­—from the development of new therapies and diagnostic tools to the use of genomics to guide treatment decisions—are rooted in understanding the fundamental biology of cancer cells.

    Cancer is a disease of the genome, caused by genetic changes that lead to uncontrolled growth and proliferation of tumor cells. Genomic analysis of tumor cells can reveal the genetic errors driving a patient’s cancer, but the enormous diversity of genetic abnormalities found in cancer cells makes interpreting the genomic data a huge challenge. Researchers at the UC Santa Cruz Genomics Institute are developing sophisticated computational methods for analyzing genomic data to help doctors choose the most effective drugs for individual patients.

    Known as “cancer genomics,” it’s a powerful approach that builds on decades of ongoing work by biologists to understand exactly how genetic changes drive cancer.

    Pathways to cancer

    The genetic abnormalities in cancer cells disrupt the signaling networks or “pathways” that regulate cellular activities. The life of a cell is orchestrated by a vast interconnected web of these pathways. Each pathway involves a complex series of interactions between cellular proteins, complete with feedback loops, cascading amplifications, and intersections with other pathways. Some of the proteins in these pathways have crucial interactions with the cell’s genetic material: the chromosomal DNA where genes are encoded and the RNA molecules involved in gene expression.

    Biologists like Lindsay Hinck, Doug Kellogg, Jeremy Sanford, and others in UCSC’s Department of Molecular, Cell, and Developmental Biology (MCD Biology) have made remarkable progress in unraveling the details of signaling pathways and their roles in cancer. Hinck’s lab, for example, has been studying the “Slit/Robo” pathway, which controls breast development and is disrupted in breast cancer and other cancers.


    Lindsay Hinck, professor of molecular, cell and developmental biology at UC Santa Cruz and co-director of the Institute for the Biology of Stem Cells discusses how understanding the fundamentals of cancer biology is the key to developing new cancer therapies.

    Slit/Robo signaling is actually involved in several critical pathways controlling cell proliferation and migration. The tumor suppressing effects of these pathways make them potential targets for drug development efforts. Hinck’s investigations of these pathways continue to reveal new insights, most recently on their roles in hormonal regulation of breast cancer cells.

    “Understanding how subpopulations of breast cancer cells respond to hormones such as estrogen and develop resistance to anti-estrogen treatments is likely to be very important for the next level of drug targets,” Hinck says.

    Clinical applications

    Working out the cellular signaling pathways involved in cancer can lead to clinical applications in a variety of ways. The most obvious is identifying a key molecule as a promising target for drug development, which often leads to more focused research on that particular molecule.

    Much of Seth Rubin’s research, for example, is focused on the retinoblastoma tumor suppressor protein (called Rb). Rb is a central player in many signaling pathways that are disrupted in cancer cells. It is called a tumor suppressor because it blocks the proliferation of abnormal cancer cells.

    “Rb is a stop sign that keeps cells from proliferating, so cancer cells have to turn it into a go sign,” explains Rubin, a professor of chemistry and biochemistry who has worked out the detailed structure of Rb and how it interacts with other proteins.

    Rubin has been working with Lokey’s lab and the Chemical Screening Center, developing a strategy to directly activate the Rb protein with a drug and turn it back into a stop sign. There are two issues that make this especially challenging. One is the goal of activating a protein that isn’t functioning properly. Most drugs are inhibitors that interfere with the function of their target; many cancer therapies target overactive pathways and aim to shut them down using inhibitors.

    “It’s a lot easier to knock down the function of something with a drug, because you’re basically just throwing a wrench into the system, whereas fixing something that’s not working is a lot harder to do,” Rubin explains.

    The other challenge is structural. Most drugs are small molecules that easily penetrate cells and block the target molecule by binding to its active site, typically just a deep pocket in its structure. “The standard analogy is that it fits like a lock and key, but it’s more like a baseball in a glove. That describes the vast majority of drugs and their targets,” Lokey says.

    But the active sites of many undruggable targets like Rb are large and complex, so an effective drug would have to be correspondingly large and interact with the target in complex ways, not just fit into a pocket. Lokey’s lab is working on the synthesis of large molecules that can bind to more complex targets and can also penetrate cells.

    In work led by Cameron Pye, a graduate student in Lokey’s lab, the team developed an assay to screen large numbers of these compounds (called cyclic peptides) for their ability to activate Rb. The lab has begun preliminary screening through a collaboration with Roche NimbleGen.

    “We’ve gone from no hits with small molecules to getting some hits for Seth’s target through this collaboration,” Lokey says. “Industry funding has been good for us. They have amazing technology for building these libraries of compounds.”

    Marking the way

    Understanding the pathways that drive cancer cells can yield not only drug targets but also clinically useful “biomarkers” to guide prognosis and therapeutic decision-making. In Zhu Wang’s research on prostate cancer, for example, he is studying the molecular mechanisms that make some prostate cancers highly aggressive. Many prostate cancers are slow-growing and may never threaten a patient’s health.

    “My work focuses on the cell types and molecular mechanisms that give rise to more aggressive cancers. The clinical applications could be new biomarkers that can be used to distinguish aggressive cancers from indolent cancers,” says Wang, an assistant professor of MCD biology. “Finding a molecular signature that is predictive of aggressive prostate cancer would have great prognostic value.”

    Pathway analysis plays a critical role in cancer genomics and has been a major focus of research in Josh Stuart’s lab. Stuart, the Baskin Professor of biomolecular engineering, recently published a study of metastatic prostate cancer yielding a detailed map of the abnormal signaling pathways that enable prostate cancer cells to proliferate and evade treatment. In collaboration with a team at UCLA, Stuart’s lab developed a novel computational analysis to produce personalized diagrams of the signaling pathways driving a patient’s cancer cells.

    “For now it’s a research tool, but the hope is to have a strategy like this to use in the clinic,” Stuart says. “These mutations in the genome create a lot of havoc in the cell, and trying to interpret the genomic information can be overwhelming. You need the computer to help you make sense of it and find the Achilles heel in the network that you can hit with a drug.”

    Drivers and passengers

    A persistent problem in cancer genomics has been distinguishing “driver” mutations from “passenger” mutations. Cancer cells often accumulate large numbers of genetic mutations that do not play a role in driving the uncontrolled growth. These passenger mutations effectively create static that interferes with the signal for mutations that are the real drivers of cancer. Aggregating data from large numbers of patients can give researchers enough statistical power to identify driver mutations.

    “Genomic medicine requires massive data sharing and analysis,” says David Haussler, professor of biomolecular engineering and director of the Genomics Institute. For years, Haussler has been an evangelist for data sharing to advance genomic medicine. In 2012, his team created the first public cancer genome database for the National Cancer Institute, the Cancer Genomics Hub. A year later, he cofounded the Global Alliance for Genomics and Health, an international nonprofit that is helping establish the infrastructure for data sharing in genomic medicine.

    Research led by the Genomics Institute has demonstrated the value of massive datasets in cancer genomics. In 2014, a groundbreaking study led by Stuart’s lab, based on analyses of molecular data from thousands of patients with 12 different tumor types, revealed that classifying tumors based on molecular subtypes, rather than the traditional tissue-of-origin system (i.e., breast cancer, lung cancer, etc.), could lead to different therapeutic options for as many as one in ten cancer patients. This type of “pan-cancer” analysis is only possible with data from large numbers of patients.

    Childhood cancers are rare, which makes it especially hard to assemble data from large numbers of patients. The Genomics Institute launched the Treehouse Childhood Cancer Initiative to address this problem and recently received a major grant from St. Baldrick’s Foundation to support the effort. A clinical pilot project launched in 2015 showed that real-time data sharing can identify new and better treatment options for children with cancer.


    Treehouse Childhood Cancer Initiative aims to make a huge difference in the world of pediatric cancer.

    “We need to think beyond sharing data after the research is published, which can take years, and move toward sharing patient genomic data in real time,” says Treehouse cofounder Olena Morozova, a research scientist at the Genomics Institute. “With real-time data sharing, the pediatric cancer community is poised to lead the way in revolutionizing how we share genomic data to benefit patients right now.”

    No silver bullet

    Experts have long understood that there is no silver bullet for cancer and that it is not, in fact, one disease but hundreds of diseases with different causes requiring different approaches to treatment. At the same time, there are good reasons to be optimistic about the prospects for more effective cancer treatments.

    “People sometimes overlook the fact that we are having success and bringing on new cancer therapies all the time,” Hinck says. “The problem is that every type of cancer is heterogeneous–there are at least five types of breast cancer, and some would say ten or 15, depending on how you classify them. We still have a lot to understand, and that’s why we need to keep doing this fundamental research.”

    Cancer immunotherapy, which uses drugs to coax the patient’s own immune system to eliminate the cancer, has shown particular promise in recent clinical trials. Haussler is collaborating with protein chemist Nik Sgourakis to advance immunotherapy using genomics. They are developing new computational tools for analyzing tumor genomes to predict which mutated proteins are displayed on the surface of tumor cells where they can be “seen” by the body’s immune system. These predictions are then evaluated on patient samples from medical collaborators at NIH, UCLA, and Children’s Hospital of Philadelphia. With this information, it may be possible to more specifically train the immune system to find and eliminate tumor cells, Haussler said.

    Whether in cancer genomics, drug discovery, or basic cancer biology, cancer researchers at UC Santa Cruz tend to tackle the most challenging problems and pursue ambitious projects.

    “We have a unique perspective based on who we are and the expertise we have here at UCSC,” says Kellogg, professor of MCD biology.

    For example, UC Santa Cruz is known as a leading center for research on the biology of RNA, and that has attracted talented young faculty such as Angela Brooks in biomolecular engineering and Jeremy Sanford in MCD biology, who are investigating the role of RNA in gene regulatory networks and cancer. “We’ve always had strength in RNA biology, and now there’s a good core of people here who are thinking more about RNA and disease. It’s an area that has not been well studied in cancer biology,” Sanford says.

    “You could say we tackle the hard problems and take on things that no one else is doing,” says Hinck.

    Most of the cancer researchers at UC Santa Cruz are funded by major grants from the National Institutes of Health (NIH), including the National Cancer Institute. As the single largest funding source for UCSC research, NIH awarded nearly $40 million in grants to support campus research projects in 2015-16.

    Private foundations like St. Baldrick’s are also important sources of funding for cancer research. The Santa Cruz Cancer Benefit Group (SCCBG), a local charity supporting cancer research and patient care, has awarded small grants to a number of UCSC faculty, including Rubin, Lokey, Hinck, and Wang. These grants fund pilot studies, the results of which can lead to much larger grants from NIH and other major funders.

    “That kind of seed funding is really important,” Rubin says.

    SCCBG funding has enabled Lokey to start a new project searching for compounds that could improve the effectiveness of cancer immunotherapy drugs. Immunotherapy drugs known as checkpoint inhibitors have taken the oncology world by storm, he says, but they work for only a subset of patients. Lokey hopes to find compounds that can make tumors more visible to the patient’s immune system.

    “It’s the kind of high risk, high reward research that’s hard to get funding for,” he says. “If we’re successful, though, it could really have a big impact.”

    Credits:

    Writing: Tim Stephens
    Video: Tim Stephens, Lisa Nielsen, Lucid Sound & Picture
    Photos: Carolyn Lagatutta
    Design and development: Rob Knight
    Project managers: Sherry Main, Scott Hernandez-Jason, Tim Stephens

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UCO Lick Shane Telescope
    UCO Lick Shane Telescope interior
    Shane Telescope at UCO Lick Observatory, UCSC

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    UC Santa Cruz campus
    The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
    Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow
    1
    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch) UCSC Lick Nickel telescope

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    5
    UCSC alumna Shelley Wright, now an assistant professor of physics at UC San Diego, discusses the dichroic filter of the NIROSETI instrument. (Photo by Laurie Hatch)

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

    The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UCSC is the home base for the Lick Observatory.

     
  • richardmitnick 2:05 pm on May 17, 2017 Permalink | Reply
    Tags: , , , , Gruber Foundation Prise, , UCSC   

    From Gruber Foundation via UCSC: “Congratulations Sandy Faber!!!” 

    UC Santa Cruz

    UC Santa Cruz

    1

    Gruber Foundation

    2017 Gruber Cosmology Prize Press Release

    Sandra Faber Receives $500,000 Gruber Cosmology Prize for Career Achievements

    2
    Dr. Sandra Faber, UCSC

    The 2017 Gruber Foundation Cosmology Prize recognizes Sandra M. Faber for a body of work that has helped establish many of the foundational principles underlying the modern understanding of the universe on the largest scales.

    The citation praises Faber for “her groundbreaking studies of the structure, dynamics, and evolution of galaxies.” That work has led to the widespread acceptance of the need to study dark matter, to an appreciation of the inextricable relationship between the presence of dark matter and the formation of galaxies, and to the recognition that black holes reside at the heart of most large galaxies. She has also made significant contributions to the innovations in telescope technology that have revolutionized modern astronomy. Through these myriad achievements, the Gruber citation adds, Faber has “aided and inspired the work of astronomers and cosmologists worldwide.”

    Faber will receive the $500,000 award as well as a gold medal at a ceremony this fall.

    Less than a hundred years ago, astronomers were still debating whether our Milky Way Galaxy was the entirety of the universe or if other galaxies existed beyond our own. Today astronomers estimate the number of galaxies within the visible universe at somewhere between 200 billion and 2 trillion. For more than four decades Faber—now Professor Emerita at the University of California, Santa Cruz, and Astronomer Emerita of the University of California Observatories—has served as a pivotal figure in leading and guiding the exploration of this unimaginably vast virgin scientific territory.

    A partial summary of her achievements includes:

    • In 1976 Faber and Robert Earl Jackson discovered a relation between the orbital speeds of stars in elliptical galaxies and the galaxy’s mass. Other such laws have emerged since then, but the Faber-Jackson relation was the first.

    • In 1979 Faber and John S. Gallagher published a paper that provided a comprehensive review of the evidence for the existence of dark matter. Among astronomers this paper is regarded as the turning point in the debate about whether 80 percent of the mass in the universe is “missing”—mysterious, invisible, and impervious to direct detection.

    • Faber’s discovery of large amounts of dark matter (using indirect methods of detection) in a certain exotic species of galaxy led her to conclude, in a 1983 paper with Douglas Lin, that dark matter could not be neutrinos, a subatomic particle that travels close to the speed of light (“hot,” in cosmological parlance), but might be another species of subatomic particle, not yet known, that travels at a much slower rate (“cold”).

    • The following year Faber was part of a four-member collaboration that presented a comprehensive theory of how cold dark matter could explain the structure and behavior of galaxies and superclusters of galaxies that we actually observe in the universe. This theory remains the paradigm underpinning all modern models of galaxy formation.

    • In 1985 Faber emerged as the leading science advocate for the construction of the 10-meter Keck telescope in Hawaii (the most powerful on the planet when it went online in 1993) and, with Harland Epps, developed the optical design. She later served as the co-chair of the Keck Science Steering Committee and went on to lead construction of the DEIMOS spectrograph on Keck, one of the largest and most innovative astronomical instruments in the world.

    • During that same period Faber was a member of the collaboration developing the Wide-Field Camera for the Hubble Space Telescope. (She may have been the only astronomer to play a major role on both Keck and Hubble.)

    NASA’ESA Hubble Telescope

    Keck Observatory, Mauna Kea, Hawaii, USA

    After the launch of the Hubble telescope a few years later, she and postdoc Jon Holtzman diagnosed the spherical aberration that was compromising the telescope’s image quality. Faber then led the replanning of the entire suite of early observations.

    • In 1988 Faber was the Principal Investigator among the so-called Seven Samurai, a collaboration that discovered irregularities in the rate of the universe’s expansion that apparently depend on the distribution of matter, and therefore the distribution of gravitational effects, on the largest scales.

    • From 1985 to 2002 Faber served as the Principal Investigator for a collaboration that came to call themselves the “Nukers”—because they were studying the nuclei of galaxies.

    Among the discoveries that the Nuker collaboration made under Faber’s leadership were that the center of every large galaxy harbors a massive black hole and that the mass of that central black hole closely correlates to the orbital speed of stars within the galaxy as a whole.

    • Since 2010 Faber has served as co-Principal Investigator, with Henry Ferguson, on the CANDELS (Cosmic Assembly Near-infrared Deep Extragalactic Survey) collaboration, the largest project in the history of the Hubble Space Telescope.

    3

    Over the course of more than 900 Earth orbits, the team collected data on the most distant, and therefore (because the light from the galaxies takes billions of years to reach us) among the youngest, galaxies. By comparing those data with the already existing voluminous data about galaxies near to us, astronomers can trace the evolution of galaxies throughout cosmic time.

    As a body of work, these advances and discoveries, both observational and technological, have helped define how scientists think about and investigate galaxies and superclusters of galaxies, the largest structures in the universe.

    For Faber, though, they have also helped define how civilization can conceive of its place in the cosmos. In recent years she has become a prolific public speaker, delivering her lecture “Cosmic Knowledge and the Future of the Human Race” around the world. That title speaks volumes about her own philosophy.

    “Astronomical knowledge,” she says, “is probably the most important single discipline that you need to know in order to be an informed citizen of earth.” The reason, she says, is that developments in astronomy over the past few decades have shown us that we have been given “the precious gift of cosmic time”—the concept that the universe exists on a scale of billions of years and that planet Earth will be a safe haven for us for hundreds of millions of years into the future. “Astronomical knowledge tells us how we got here and furthermore, having understood that, we can extrapolate more confidently for the future.”

    Few if any astronomers have done more to make that understanding possible than Sandra Faber.

    n addition to the cash award, the recipient will receive a gold laureate pin and a citation that reads:

    The Gruber Foundation proudly presents the 2017 Cosmology Prize to Sandra Faber for her groundbreaking studies of the structure, dynamics, and evolution of galaxies. Her research ranges from detailed studies of the stellar populations, masses, dark matter content, and supermassive black holes in nearby galaxies, to surveys of distant galaxies over cosmic time. The results of these investigations have aided and inspired the work of astronomers and cosmologists worldwide.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UCO Lick Shane Telescope
    UCO Lick Shane Telescope interior
    Shane Telescope at UCO Lick Observatory, UCSC

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    UC Santa Cruz campus
    The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
    Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow
    1
    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch) UCSC Lick Nickel telescope

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    5
    UCSC alumna Shelley Wright, now an assistant professor of physics at UC San Diego, discusses the dichroic filter of the NIROSETI instrument. (Photo by Laurie Hatch)

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

    The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UCSC is the home base for the Lick Observatory.

     
  • richardmitnick 3:08 pm on April 28, 2017 Permalink | Reply
    Tags: PCDP - Professional Career Development Program, UC Santa Cruz’s STEM Diversity Program, UCSC, Undocumented students thrive at UCSC   

    From UCSC: “Cultivating potential: How UC Santa Cruz is helping undocumented students thrive” 

    UC Santa Cruz

    UC Santa Cruz

    April 27, 2017
    Peggy Townsend
    gwenj@ucsc.edu

    Thanks to more than a half-dozen programs, undocumented students on campus have been able to get support, assistance, and encouragement—and the campus benefits from nurturing their passion and talent.

    In her third year at UC Santa Cruz, Amy is doing research on the universe’s most violent events. She is about to publish a paper on the topic, is headed to Harvard for a summer research program, has a 3.7 GPA, and plans to go to graduate school.

    But a decision her parents made to bring Amy to the U.S. at the age of 4 leaves her with worries and obstacles many other students don’t face.

    Amy (not her real name) is undocumented, which means she is ineligible for some scholarships, may be hampered in her graduate studies because she isn’t allowed to get federal research funds, and, in the current political climate, lives with an undercurrent of anxiety that her family could be deported.

    But thanks to more than a half-dozen programs at UC Santa Cruz, Amy and approximately 400 other undocumented students on campus have been able not only to survive, but to thrive.

    The programs—funded by the University of California and some private donations—provide counseling, internships, legal help, support groups, an extended orientation program, and even a lending library of 3,000 textbooks for undocumented students to borrow. The campus’s Educational Opportunity Programs office (EOP) carries out these programs, which were developed by and, now, implemented by, students and counselors.

    “Why is it critical to have these services?” says Pablo Reguerín (Oakes ’94, Latin American and Latino studies), who is assistant vice provost for student success at UC Santa Cruz. “Because undocumented students represent an enormous asset in terms of their intellectual, academic, and human capital for the state. Aside from these benefits, this is a matter of our own humanity and social justice.”
    Changing policies

    The history of undocumented students at UC campuses is a checkered one. Before 1991, undocumented students were allowed to pay in-state tuition at UC institutions provided they could prove they had lived in the state for a year and a day and planned to make California their home. Then, in 1990, an employee at the UCLA Office of the Registrar sued, saying he was forced to quit because he could not follow those rules. The employee won an injunction and soon undocumented students were being charged out-of-state tuition rates, which basically barred them from a UC education.

    A 2001 state law, AB 540, changed the rule so that undocumented students could again pay in-state fees. More state laws, passed in 2011, allowed these students to receive some state financial aid. Finally, in 2012, President Barack Obama signed an executive order dubbed DACA, or Deferred Action for Childhood Arrivals, which prevented young people who were brought to this country as children from being deported while they were in school.

    College seemed within reach for more undocumented students until the election of Donald Trump, who had called for a hard line on immigration policy. That prompted UC President Janet Napolitano, in November 2016, to not only reiterate the UC system’s support of undocumented students and but also allocate money for undocumented student programs. UC Santa Cruz will receive $275,000 in each of the next three years.
    Harvesting talent

    Santa Cruz programs funded by this money, along with private donations, include free legal services for students and their families, peer counseling, support groups, a textbook lending library that hands out about 650 textbooks each quarter, and an intense five-day orientation program for undocumented students. Besides learning how to navigate the wooded campus and schedule classes, the orientation gives undocumented students information on renewing their DACA status, negotiating with landlords who may be averse to renting to undocumented students, budgeting, getting emotional support, and finding financial aid, among other subjects.

    Most importantly, the UC Santa Cruz Career Center also offers an internship program available to undocumented students through the Professional Career Development Program (PCDP). These internships are especially important for undocumented students, who may come from low-income families and find themselves facing a funding gap of $7,000 to $9,000 a year, according to Reguerín.

    For five undocumented members of UC Santa Cruz’s STEM Diversity Program this year, the PCDP program means an opportunity to not only do hands-on research in fields like neurodegenerative diseases and gene expression but also receive a stipend for their work, according to Yulianna Ortega (Merrill ’05, biology and Latin American and Latino studies), director of the STEM Diversity Program. Two other undocumented STEM students are working on administrative projects.

    In addition, a program called Lamat, funded by philanthropist Julie Packard (Crown ’74, biology; M.A. ’78) allows community college students, including those who are undocumented, to be part of a summer research session in astrophysics.

    “I see these efforts as an opportunity, especially in the sciences, to find and harvest the remarkable talent we have in these communities,” says UC Santa Cruz Professor of Astronomy and Astrophysics Enrico Ramirez-Ruiz.
    Have potential, need opportunity.

    While UC Santa Cruz sometimes lost capable students from wealthier schools to institutions like Harvard, Stanford, and Princeton, Ramirez-Ruiz says, he and others have been able to attract a pool of equally talented students, many undocumented, who are ready to bring their differing viewpoints in order to find solutions to complex astrophysical problems that are often more innovative and creative.

    The students attacked problems with vigor and were quick to think on their feet, Ramirez-Ruiz says, but their status in society often made them feel unwelcome.

    “They knew, in order to stand out, they had to do better than everyone else because of the excessive resistance they are constantly confronting,” Ramirez-Ruiz says.

    Undocumented students from UC Santa Cruz have not only gone on to graduate school, but also a number are working in fields like education, biotechnology, public health, and in the nonprofit sector.

    Says Ortega: “These students have so much potential. They just need the opportunity.”

    “The fact is, the talent is already here, already contributing positively to society, and some of these students are just brilliant,” Ramirez-Ruiz says. “There is a clear message from society to them that they are second class and that they don’t belong here. But despite this unyielding defiance, the level of determination shown by these students is basically unmatched. We need to give them an opportunity because in terms of market value, they are an investment that will give you the highest return.”

    UC Santa Cruz Chancellor George Blumenthal agrees.

    “UC Santa Cruz is committed to supporting these hard-working, talented students who continue to make valuable contributions to the campus and to their fields of study,” Blumenthal says.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UCO Lick Shane Telescope
    UCO Lick Shane Telescope interior
    Shane Telescope at UCO Lick Observatory, UCSC

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    UC Santa Cruz campus
    The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
    Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow
    1
    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch) UCSC Lick Nickel telescope

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    5
    UCSC alumna Shelley Wright, now an assistant professor of physics at UC San Diego, discusses the dichroic filter of the NIROSETI instrument. (Photo by Laurie Hatch)

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

    The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UCSC is the home base for the Lick Observatory.

     
  • richardmitnick 7:35 am on April 28, 2017 Permalink | Reply
    Tags: , , , , Quasar pairs, , , , , UCSC   

    From UCSC: “Ripples in cosmic web measured using rare double quasars” 

    UC Santa Cruz

    UC Santa Cruz

    [PREVIOUSLY COVERED HERE .]

    April 27, 2017
    Julie Cohen
    stephens@ucsc.edu

    1
    Astronomers identified rare pairs of quasars right next to each other on the sky and measured subtle differences in the absorption of intergalactic atoms measured along the two sightlines. This enabled them to detect small-scale fluctuations in primeval hydrogen gas.(Credit: UC Santa Barbara)

    2
    Snapshot of a supercomuter simulation showing part of the cosmic web, 11.5 billion years ago. The researchers created this and other models of the universe and directly compared them with quasar pair data in order to measure the small-scale ripples in the cosmic web. The cube is 24 million light-years on a side. © J. Oñorbe / MPIA

    The most barren regions of the universe are the far-flung corners of intergalactic space. In these vast expanses between the galaxies, a diffuse haze of hydrogen gas left over from the Big Bang is spread so thin there’s only one atom per cubic meter. On the largest scales, this diffuse material is arranged in a vast network of filamentary structures known as the “cosmic web,” its tangled strands spanning billions of light years and accounting for the majority of atoms in the Universe.

    Now a team of astronomers including J. Xavier Prochaska, professor of astronomy and astrophysics at UC Santa Cruz, has made the first measurements of small-scale ripples in this primeval hydrogen gas. Although the regions of cosmic web they studied lie nearly 11 billion light years away, they were able to measure variations in its structure on scales a 100,000 times smaller, comparable to the size of a single galaxy. The researchers presented their findings in a paper published April 27 in Science.

    Intergalactic gas is so tenuous that it emits no light of its own. Instead astronomers study it indirectly, by observing how it selectively absorbs the light coming from faraway sources known as quasars. Quasars constitute a brief hyper-luminous phase of the galactic life-cycle, powered by the infall of matter onto a galaxy’s central supermassive black hole. They thus act like cosmic lighthouses—bright, distant beacons that allow astronomers to study intergalactic atoms residing between the quasars location and Earth.

    Because these hyper-luminous episodes last only a tiny fraction of a galaxy’s lifetime, quasars are correspondingly rare on the sky, and are typically separated by hundreds of millions of light years from each other. In order to probe the cosmic web on much smaller scales, the astronomers exploited a fortuitous cosmic coincidence: they identified exceedingly rare pairs of quasars, right next to each other on the sky, and measured subtle differences in the absorption of intergalactic atoms measured along the two sightlines.

    “One of the biggest challenges was developing the mathematical and statistical tools to quantify the tiny differences we measure in this new kind of data,” said Alberto Rorai, a post-doctoral researcher at Cambridge university and lead author of the study. Rorai developed these tools as part of the research for his doctoral degree, and applied his tools to spectra of quasars obtained by the team on the largest telescopes in the world, including the 10-meter Keck telescopes at the W. M. Keck Observatory on Mauna Kea, Hawaii.

    The astronomers compared their measurements to supercomputer models that simulate the formation of cosmic structures from the Big Bang to the present.

    “The input to our simulations are the laws of physics and the output is an artificial universe which can be directly compared to astronomical data. I was delighted to see that these new measurements agree with the well-established paradigm for how cosmic structures form,” said Jose Oñorbe, a post-doctoral researcher at the Max Planck Institute for Astronomy, who led the supercomputer simulation effort. On a single laptop, these complex calculations would have required almost a thousand years to complete, but modern supercomputers enabled the researchers to carry them out in just a few weeks.

    “One reason why these small-scale fluctuations are so interesting is that they encode information about the temperature of gas in the cosmic web just a few billion years after the Big Bang,” said Joseph Hennawi, a professor of physics at UC Santa Barbara who led the search for quasar pairs.

    Astronomers believe that the matter in the universe went through phase transitions billions of years ago, which dramatically changed its temperature. These phase transitions, known as cosmic reionization, occurred when the collective ultraviolet glow of all stars and quasars in the universe became intense enough to strip electrons off of the atoms in intergalactic space. How and when reionization occurred is one of the biggest open questions in the field of cosmology, and these new measurements provide important clues that will help narrate this chapter of the history of the universe.

    Telescopes in this study:

    Keck Observatory, Mauna Kea, Hawaii, USA

    ESO/VLT at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level

    Carnegie 6.5 meter Magellan Baade and Clay Telescopes located at Carnegie’s Las Campanas Observatory, Chile.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UCO Lick Shane Telescope
    UCO Lick Shane Telescope interior
    Shane Telescope at UCO Lick Observatory, UCSC

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    UC Santa Cruz campus
    The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
    Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow
    1
    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch) UCSC Lick Nickel telescope

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    5
    UCSC alumna Shelley Wright, now an assistant professor of physics at UC San Diego, discusses the dichroic filter of the NIROSETI instrument. (Photo by Laurie Hatch)

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

    The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UCSC is the home base for the Lick Observatory.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: