Tagged: UCSC Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 2:59 pm on April 22, 2019 Permalink | Reply
    Tags: , , , , , Kavli Summer Program in Astrophysics, UCSC   

    From UC Santa Cruz: “UC Santa Cruz hosts summer program on machine learning in astronomy” 

    UC Santa Cruz

    From UC Santa Cruz

    April 19, 2019
    Tim Stephens
    stephens@ucsc.edu

    The Kavli Summer Program in Astrophysics brings together an international group of scientists and students for a six-week program of learning and research

    1

    2
    An international group of students participated in the 2016 Kavli Summer Program in Astrophysics at UC Santa Cruz.

    The 2019 Kavli Summer Program in Astrophysics at UC Santa Cruz will focus on “Machine Learning in the Era of Large Astronomical Surveys,” bringing together scientists and students from a broad range of backgrounds to learn about machine learning techniques and their applications in astronomy.

    The Kavli Summer Program in Astrophysics combines the concept of a long-term workshop with graduate student training through research projects. Up to 15 established faculty, 15 post-doctoral researchers, and 15 graduate students come from around the world to join local scientists at the host institution for the six-week program, which alternates between UC Santa Cruz and various institutions world-wide.

    The program begins with a one-week workshop on the topic of the year, after which the students are teamed with the senior participants and are expected to make significant progress on their selected project. Each year, the program tackles a different topic in astrophysics.

    This year’s topic addresses the challenges of big data in astronomy. Large astronomical surveys now collect unprecedented amounts of data, while large-scale computer simulations of astrophysical phenomena can also generate enormous datasets. To cope with this torrent of data, astronomers are adopting tools developed in the data science industry, such as machine learning and artificial intelligence.

    “This field is very rapidly emerging in astronomy,” said J. Xavier Prochaska, professor of astronomy and astrophysics at UC Santa Cruz. “Indeed, some of the students attending have more experience than the organizers.”

    Prochaska is a co-director of the 2019 program, along with UCSC astronomers Alexie Leauthaud and Brant Robertson. Prochaska is also a co-founder of the Applied Artificial Intelligence Institute at UC Santa Cruz, one of the sponsors of the summer program. Pascale Garaud, professor of applied mathematics at UC Santa Cruz, started the program in 2010 as the International Summer Institute for Modeling in Astrophysics (ISIMA). The Kavli Foundation has been supporting the program since 2016.

    “The Kavli Foundation is pleased to support innovative projects, and this year’s focus on big data addresses an issue of growing importance to astronomy,” said Christopher Martin, senior science program officer for the Kavli Foundation.

    In Santa Cruz, the Kavli Summer Program in Astrophysics is associated with TASC (Theoretical Astrophysics at Santa Cruz), a multi-departmental research group of UCSC scientists from Applied Mathematics, Astronomy and Astrophysics, Earth and Planetary Sciences, and Physics. Additional support for the 2019 program is provided by the National Science Foundation, UC Santa Cruz, and the UCSC Applied Artificial Intelligence Institute.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    UCSC Lick Observatory, Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft)

    .

    UCO Lick Shane Telescope
    UCO Lick Shane Telescope interior
    Shane Telescope at UCO Lick Observatory, UCSC

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    UC Santa Cruz campus
    The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
    Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow
    1
    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch) UCSC Lick Nickel telescope

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

    The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.

     
  • richardmitnick 3:36 pm on March 6, 2019 Permalink | Reply
    Tags: "Federal funds invested in research infrastructure", A new biolayer interferometer that will serve as a critical tool for biochemistry and drug discovery, A new cryo-electron microscope that will enable biologist to better characterize protein and virus structures as well as image tissue and cell samples, A new multifocus structured illumination microscope, A new state-of-the-art spectrometer that will support research in oceanography earth science paleontology anthropology and ecology, A powerful new supercomputer for researchers in fields ranging from astrophysics to climate science, , , UC Santa Cruz will invest nearly $6 million in its research tools this academic year thanks to awards from the National Science Foundation and the National Institutes for Health., UCSC   

    From UC Santa Cruz: “Federal funds From NSF and NIH invested in research infrastructure” 

    UC Santa Cruz

    From UC Santa Cruz

    March 05, 2019
    Scott Brandt
    vcr@ucsc.edu

    UC Santa Cruz will invest nearly $6 million in its research tools this academic year, thanks to awards from the National Science Foundation and the National Institutes for Health.

    Each year, we can submit three proposals to the NSF’s Major Research Instrumentation program, which typically funds about 20 percent of proposals. This year, we had the unprecedented success of seeing all three proposals funded, totaling $2.8 million. The program requires a 30 percent campus match, so our campus collaborators contributed an additional $1.2 million.

    With the NSF funding, the campus will now have:

    a powerful new supercomputer for researchers in fields ranging from astrophysics to climate science;
    a new state-of-the-art spectrometer that will support research in oceanography, earth science, paleontology, anthropology, and ecology; and
    a new multifocus structured illumination microscope

    The faculty members who submitted the MRI grants span three divisions and eight departments. Some recently joined campus, while others are senior researchers.

    We also secured about $2 million from the National Institutes of Health to support our biologists and biochemists with:

    A new cryo-electron microscope that will enable biologist to better characterize protein and virus structures, as well as image tissue and cell samples.
    A new biolayer interferometer that will serve as a critical tool for biochemistry and drug discovery.

    The funding underscores our excellence in many areas and is critical in ensuring we can continue our track record of groundbreaking research that creates new knowledge for our society.

    I want to thank the faculty members for coming to our office with well-crafted ideas and our Research Development staff, who help in developing proposals.

    Our staff members can help translate creative and innovative ideas into research and scholarly activities, programs, and projects, and are ready to assist our faculty with their ideas and proposals.

    We have selected and submitted three proposals for this year’s round of MRI funding and continue look for other opportunities to support the campus mission.

    With our excellent faculty, talented staff, and commitment to excellence, I’m optimistic we’ll be able to celebrate continued investment in our research infrastructure.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    UCSC Lick Observatory, Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft)

    .

    UCO Lick Shane Telescope
    UCO Lick Shane Telescope interior
    Shane Telescope at UCO Lick Observatory, UCSC

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    UC Santa Cruz campus
    The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
    Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow
    1
    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch) UCSC Lick Nickel telescope

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

    The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.

     
  • richardmitnick 2:33 pm on January 17, 2019 Permalink | Reply
    Tags: , , , , , prototype Schwarzschild-Couder Telescope (pSCT), UCSC,   

    From UC Santa Cruz: “Scientists to inaugurate a new type of gamma ray telescope at Whipple Observatory” 

    UC Santa Cruz

    From UC Santa Cruz

    January 16, 2019
    Tim Stephens
    stephens@ucsc.edu

    1
    The prototype Schwarzschild-Couder Telescope (pSCT) is a novel type of gamma-ray telescope designed for the Cherenkov Telescope Array (CTA). (Photo by Amy Oliver, Fred Lawrence Whipple Observatory, Center for Astrophysics, Harvard & Smithsonian)

    A new type of gamma-ray telescope will be unveiled January 17 in an inauguration event at the Fred Lawrence Whipple Observatory in Amado, Arizona. Expected to see first light in early 2019, the telescope is a prototype Schwarzschild-Couder Telescope (pSCT) designed for the Cherenkov Telescope Array (CTA), the next generation ground-based observatory for gamma-ray astronomy at very high energies.

    David Williams, adjunct professor of physics at UC Santa Cruz, chairs the CTA-US Consortium.

    “The inauguration of the pSCT is an exciting moment for the institutions involved in its development and construction,” Williams said. “The first of its kind in the history of gamma-ray telescopes, the SCT design is expected to boost CTA performance towards the theoretical limit of the technology.”

    The CTA Observatory, for which construction will begin in 2019, will be the world’s largest and most sensitive high-energy gamma-ray observatory, with more than 100 telescopes located in the northern and southern hemispheres.

    The 9.7-meter aperture pSCT is a pathfinder telescope for use in the CTA and exploits a novel optical design. Its complex dual-mirror optical system improves on the single-mirror designs traditionally used in gamma-ray telescopes by dramatically enhancing the optical quality of their focused light over a large region of the sky, and by enabling the use of compact, highly-efficient photo-sensors in the telescope camera.

    “Ultimately, the SCT is designed to improve CTA’s ability to detect very-high-energy gamma-ray sources, which may also be sources of neutrinos and gravitational waves,” said Vladimir Vassiliev, principal investigator of the pSCT. “Once the SCT technology is demonstrated at FLWO, it is hoped that SCTs will become a part of at least one of the two CTA arrays, located in each of the northern and southern hemispheres.”

    The CTA Observatory (CTAO) will consist of 118 telescopes of three different sizes and is expected to detect sources of gamma rays in the energy range 20 GeV to 300 TeV, with about ten times increased sensitivity compared to any current observatory. Notable for providing improved gamma-ray angular resolution and its very-high-resolution camera (more than 11,000 pixels), the SCT is proposed for the medium-sized CTA telescopes and will primarily contribute to the middle of CTA’s energy range (80 GeV to 50 TeV).

    “The SCT and other telescopes at CTA will greatly improve upon current gamma-ray research being conducted at HAWC, HESS, MAGIC, and VERITAS, the last of which is located at the Fred Lawrence Whipple Observatory,” said VERITAS Director Wystan Benbow.

    HAWC High Altitude Cherenkov Experiment, located on the flanks of the Sierra Negra volcano in the Mexican state of Puebla at an altitude of 4100 meters(13,500ft), at WikiMiniAtlas 18°59′41″N 97°18′30.6″W. searches for cosmic rays

    HESS Cherenkov Telescope Array, located on the Cranz family farm, Göllschau, in Namibia, near the Gamsberg searches for cosmic rays, altitude, 1,800 m (5,900 ft)

    MAGIC Cherenkov telescopes at the Observatorio del Roque de los Muchachos (Garfia, La Palma, Spain))

    CfA/VERITAS, a major ground-based gamma-ray observatory with an array of four 12m optical reflectors for gamma-ray astronomy in the GeV – TeV energy range. Located at Fred Lawrence Whipple Observatory,Mount Hopkins, Arizona, US in AZ, USA, Altitude 2,606 m (8,550 ft)

    “Gamma-ray observatories like VERITAS have been operating for 12 to 16 years, and their many successes have brought very-high-energy gamma-ray astronomy into the mainstream, and have made many exciting discoveries. We hope CTA will supersede VERITAS around 2023, and it will be used to continue to build upon the 50 years of gamma-ray research at the Whipple Observatory and elsewhere.”

    The Whipple Observatory is operated by the Harvard-Smithsonian Center for Astrophysics.

    The SCT optical design was first conceptualized by U.S. members of CTA in 2006, and the construction of the pSCT was funded in 2012. Preparation of the pSCT site at the base of Mt. Hopkins in Amado, AZ, began in late 2014, and the steel structure was assembled on site in 2016. The installation of pSCT’s 9.7-meter primary mirror surface, consisting of 48 aspheric mirror panels, occurred in early 2018, and was followed by the camera installation in June 2018 and the 5.4-meter secondary mirror surface installation, consisting of 24 aspheric mirror panels, in August 2018.

    Leading up to the inauguration and in preparation for first light, scientists opened the telescope’s optical surfaces in January 2019. The SCT is based on a 114-year-old dual-mirror optical system first proposed by Karl Schwarzschild in 1905. It became possible to construct only recently as a result of critical research and development progress made at both the Brera Astronomical Observatory and Media Lario Technologies Incorporated in Italy.

    The pSCT was made possible by funding through the U.S. National Science Foundation Major Research Instrumentation program and by the contributions of thirty institutions and five critical industrial partners across the United States, Italy, Germany, Japan, and Mexico.

    More information about the pSCT is available online at http://www.cta-observatory.org/project/technology/sct.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    UCSC Lick Observatory, Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft)

    .

    UCO Lick Shane Telescope
    UCO Lick Shane Telescope interior
    Shane Telescope at UCO Lick Observatory, UCSC

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    UC Santa Cruz campus
    The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
    Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow
    1
    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch) UCSC Lick Nickel telescope

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

    The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.

     
  • richardmitnick 10:55 am on January 7, 2019 Permalink | Reply
    Tags: , , , NSF funds innovative stable isotope equipment at UC Santa Cruz, , Stable Isotope Laboratory, UCSC   

    From UC Santa Cruz: “NSF funds innovative stable isotope equipment at UC Santa Cruz” 

    UC Santa Cruz

    From UC Santa Cruz

    January 02, 2019
    Tom Garlinghouse
    publicaffairs@ucsc.edu

    1
    Ocean Sciences Professor Matthew McCarthy (left) with lab manager Dyke Andreason in the UC Santa Cruz Stable Isotope Laboratory. (Photos by Carolyn Lagattuta)

    2
    With the new grant, the Stable Isotope Lab will acquire a cutting-edge instrument called an isotope-ratio-monitoring mass spectrometer (IRMS).

    A major grant from the National Science Foundation (NSF) will help fund the acquisition of a new state-of-the-art spectrometer for the Stable Isotope Laboratory at UC Santa Cruz.

    The $805,000 project for the new instrument was primarily supported by a $564,184 NSF grant, one of three awards the campus received this year from NSF’s highly competitive Major Research Instrumentation program. In addition, the Office of Research, the Division of Physical and Biological Sciences, the Division of Social Sciences, three departments and a research institute all contributed a total of $241,000 to fully fund the instrument expansion.

    Principal investigator Matthew McCarthy, a professor of ocean sciences, said the new equipment will support research across a wide range of disciplines, ranging from oceanography and earth science, paleontology, anthropology, ecology and fundamental biochemical cycle research.

    “We want our facility to be a place that diverse scientists from UC Santa Cruz and across our region can use,” McCarthy said. “My vision for this is to be a national and international center for novel and leading-edge stable isotope approaches.”

    Powerful tool

    Stable isotope analysis is a powerful tool for tracing carbon and nutrients as they cycle through food webs and the environment. UCSC’s Stable Isotope Laboratory, established in 1994, has been one of the world’s top facilities for research on climatic and oceanographic conditions in Earth’s past (paleoclimatology and paleoceanography). Scientists using the lab are at the forefront of research on, for example, ancient greenhouse climates, El Niño Southern Oscillation events, controls on rainfall in California, the vulnerability of species to global change, and other topics. According to McCarthy, research associated with the laboratory has generated over 165 scientific papers since 2004.

    Isotopes are different forms of the same element. The most common naturally occurring isotope of carbon, for example, is carbon–12 (the 12 refers to the number of protons and neutrons in the nucleus of the atom). Other carbon isotopes include carbon–14, which is unstable and emits radiation as it decays over time, and carbon–13, which is a stable isotope. While carbon–14 is useful for carbon dating, stable isotopes of carbon, nitrogen, and other elements are useful in a wide range of scientific analyses.

    Stable isotopes have proven especially valuable in the analysis of diet, where they can be used to distinguish between different sources of food. Isotopes in the food animals or humans eat are stored in their bones, teeth, and other tissues. By measuring the ratios of certain isotopes in tissue samples, researchers can determine, for example, where an animal fed and whether it ate primarily a marine, terrestrial, or freshwater diet. This ability has made stable isotopes an increasingly invaluable tool for not only ecology, but also paleontology, anthropology, and even forensics.

    With the new grant, the Stable Isotope Lab will acquire a cutting-edge instrument called an isotope-ratio-monitoring mass spectrometer (IRMS). McCarthy explained that the IRMS is a powerful tool for performing compound-specific isotope analysis (CSIA).

    CSIA is a way of measuring isotopes in individual molecules rather than bulk samples, which is the traditional method of stable isotope analysis. This application has proven especially useful for measuring isotope ratios of carbon and nitrogen in amino acids. This type of analysis is a relatively new but very promising field of study that “has exploded in the last 15 years,” McCarthy said.

    Innovative research

    The new spectrometer will also substantially modernize the existing isotope lab, which was last updated in 2004 and contains still usable but rapidly aging instruments that are now limited in their capabilities. With this new equipment, UC Santa Cruz will continue to be in the forefront of innovative research in the years to come, McCarthy said.

    “My vision for this project was really to not just expand things, but to make us a premier, cutting-edge place in the world to do compound-specific isotope analysis across different disciplines,” he said.

    CSIA can be used in a broad range of scientific disciplines, including oceanography, biology, ecology, astrobiology, paleontology, Earth science, and environmental studies. One expanding area at UCSC in which CSIA has proven of particular value is in anthropology and archaeology. Traditionally, bulk sample measurement of ratios between carbon–13 and nitrogen–15 in human bone collagen have helped to distinguish diets composed of, for example, animal protein versus plant protein or terrestrial versus marine diets.

    Recently, however, it is becoming increasingly clear that this technique is failing to provide adequate data in regions with complex ecosystems where diverse dietary resources are available. Compound-specific isotope analysis of individual amino acids, by contrast, can distinguish these more complex dietary regimes.

    Vicky Oelze, assistant professor in biological anthropology, sees great potential for CSIA in her research on the diets and ecology of apes and prehistoric humans. “I want to use the compound-specific approach to answer questions on meat consumption in wild chimpanzees, because the patterns we’re seeing with bulk isotopes are often super confusing,” Oelze said. “If this method works out, we have a much more precise tool we can use for future work on meat consumption frequencies in wild fauna.”

    CSIA will also be useful in a number of other areas, such as McCarthy’s research using deep-sea corals to look at millennial-scale oceanographic change. It can be used to investigate biogeochemical cycles, such as how land use changes have impacted nutrient dynamics in coastal and marine habitats, and for other applications such as studying the changes in food web dynamics in modern populations of marine mammals.

    If all goes well, the new isotope equipment will be installed and ready for use in standard applications in spring 2019, McCarthy said.

    The Stable Isotope Lab in the Earth and Marine Sciences building will be expanded to accommodate the new isotope-ratio-monitoring mass spectrometer. The lab will bring together scientists from different departments, divisions, and regional institutions, and will serve as a training ground for undergraduate and graduate students, as well as visiting researchers.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    UCSC Lick Observatory, Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft)

    .

    UCO Lick Shane Telescope
    UCO Lick Shane Telescope interior
    Shane Telescope at UCO Lick Observatory, UCSC

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    UC Santa Cruz campus
    The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
    Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow
    1
    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch) UCSC Lick Nickel telescope

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

    The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.

     
  • richardmitnick 2:30 pm on December 1, 2018 Permalink | Reply
    Tags: , , , , Kepler Space Telescope’s K2 Supernova Cosmology Experiment, Kepler telescope captures extraordinary observations of a star's death throes, SN 2018oh, , UCSC   

    From UC Santa Cruz: “Kepler telescope captures extraordinary observations of a star’s death throes” 

    UC Santa Cruz

    From UC Santa Cruz

    November 30, 2018
    Tim Stephens
    publicaffairs@ucsc.edu

    Unprecedented images of a Type Ia supernova, from the moment of explosion through the rise and fall of the light curve, show an unexpected early rise in brightness.

    1
    The supernova—known as SN 2018oh—is located in a spiral galaxy called UGC 4780 in the constellation Cancer at a distance of more than 170 million light years.

    An exploding star in another galaxy has been documented with unprecedented precision thanks to the Kepler Space Telescope’s K2 Supernova Cosmology Experiment, one of the telescope’s final missions before running out of fuel late last month.

    Kepler’s observations of the supernova known as SN 2018oh showed an unexpected fast rise in brightness that may be an important clue to understanding the progenitors of Type Ia supernovae, which cosmologists use to study the expansion of the universe and dark energy.

    An international team led by astronomers at the University of California, Santa Cruz, conducted an analysis of SN 2018oh focusing on the first week after the explosion. Their paper, accepted for publication in Astrophysical Journal Letters, is one of a series of papers analyzing SN 2018oh.

    2
    Kepler’s observations of the supernova known as SN 2018oh showed an unexpected fast rise in brightness that may be an important clue to understanding the progenitors of Type Ia supernovae, which cosmologists use to study the expansion of the universe and dark energy.

    “This is an incredibly exciting discovery,” said Georgios Dimitriadis, a postdoctoral researcher at UC Santa Cruz who led the analysis. “When I downloaded the data and started looking at it in detail, my jaw dropped.”

    “The observations are exquisite, because we have images from Kepler every 30 minutes, starting from before the explosion all the way past its peak brightness. And it’s scientifically interesting because the increase in brightness deviates from the expected behavior,” said Ryan Foley, assistant professor of astronomy and astrophysics at UC Santa Cruz.

    The supernova was also extensively monitored by ground-based facilities which provided important complementary observations, including the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS1) at Haleakala Observatory, Hawaii, and the Dark Energy Camera (DECam) at Cerro Tololo Inter-American Observatory in Chile.

    Pannstars telescope, U Hawaii, Mauna Kea, Hawaii, USA

    Dark Energy Survey


    Dark Energy Camera [DECam], built at FNAL


    NOAO/CTIO Victor M Blanco 4m Telescope which houses the DECam at Cerro Tololo, Chile, housing DECam at an altitude of 7200 feet

    The light curve of the supernova shows how its brightness changed over time. A typical supernova gets steadily brighter for almost three weeks, then gradually fades away. SN 2018oh, however, brightened very quickly right after explosion before settling into the normal progression. Because of the fast brightening, SN 2018oh was about 3 times brighter than a typical supernova a few days after explosion.

    “This early bump in the light curve requires an extra source of light, and the question is where does that come from,” Foley said.

    Dimitriadis said the team investigated three possible explanations.

    “We know a Type Ia supernova results from the explosion of a white dwarf that acquires extra mass given to it from a companion star,” he explained. “But we don’t know what kind of star donates this extra mass.”

    One possibility is that the white dwarf accretes matter from a star like our sun. This scenario could give rise to extra light (the bump in the light curve) when the shock wave from the exploding white dwarf runs into the companion star. As the supernova flows around the companion star, it creates an area of extremely hot material on the star which emits light in addition to the light from the supernova.

    “In that scenario, we would expect the observation of excess light to be very dependent on the viewing angle, which may explain why it has not been seen in all supernova observations,” Foley said.

    Another prediction of this scenario is that the excess light would be blue, because of the high shock temperatures. The researchers obtained critical color information for SN 2018oh from ground-based observations. “We observed blue colors at the time of the flux excess, a key clue in understanding what was causing the extra light,” Dimitriadis said.

    The scenario where the supernova runs into its nearby companion star should produce blue light similar to what was seen from the ground. However, the researchers did not rule out other possible explanations. The light from a supernova comes from the radioactive decay of heavy elements such as nickel–56, which tend to be in the center of the star. If nickel accumulates on the surface during the explosion, however, its radioactive decay could also generate excess light at an early stage of the supernova. It could even produce a “double detonation” in which a small explosion on the surface triggers a second explosions that consumes the entire star.

    Another possibility is excess light being emitted when the shock wave from the supernova heats a large shell of material just above the surface of the star. According to Foley, the color information from early ground-based images is critical to distinguishing between these different scenarios.

    “The blue color, in particular, agrees with the scenario in which the supernova interacts with a companion star, and is harder to explain with either nickel on the surface or the heating of circumstellar material,” he said.

    This is significant because it favors one of the two general models for Type Ia supernovae that astrophysicists have been debating for decades. In the “single-degenerate” model, the white dwarf accretes matter from a normal companion star until it reaches a certain limit and explodes. In the “double-degenerate” model, the excess mass results from the merger of two white dwarfs.

    “The interaction with a companion star is a prediction of the single-degenerate model, whereas the other two scenarios for the excess light could fit with either model,” Foley said. “This supernova is consistent with the single-degenerate model, but there are other supernovae where there is strong evidence against a normal companion star, so it remains an open question.”

    Dimitriadis adds that his team continues to observe the supernova, searching for additional clues about how it exploded. He says, “This is an important problem, and we will keep chipping away at it.”

    SN 2018oh is located in a spiral galaxy called UGC 4780 in the constellation Cancer at a distance of more than 170 million light years. This galaxy was included as a target for monitoring by NASA’s Kepler Space Telescope as part of the K2 Supernova Cosmology Experiment. The supernova was discovered in February 2018 by the All Sky Automated Survey for Supernovae (ASAS-SN). Early images were obtained by the Pan-STARRS1 telescope and the CTIO Mayall telescope with DECam.

    “This study was a large collaborative effort involving 150 scientists from a wide range of specialties,” Dimitriadis said. “A lot of credit goes to the people who worked on the Kepler telescope and gave it extra life with the K2 mission. Kepler was not designed to observe supernovae, and we had important contributions from exoplanet scientists because they know the instrument best.”

    The coauthors of the paper include scientists from more than 50 institutions, including UC Santa Cruz, Space Science Telescope Institute, and UC Berkeley. This work was supported in part by NASA, the Gordon and Betty Moore Foundation, the Packard Foundation, the National Science Foundation, and the Heising-Simons Foundation.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    UCSC Lick Observatory, Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft)

    .

    UCO Lick Shane Telescope
    UCO Lick Shane Telescope interior
    Shane Telescope at UCO Lick Observatory, UCSC

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    UC Santa Cruz campus
    The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
    Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow
    1
    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch) UCSC Lick Nickel telescope

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

    The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.

     
  • richardmitnick 9:44 pm on August 30, 2018 Permalink | Reply
    Tags: An endowed chair named in honor of Faber's mentor distinguished astronomer Vera Rubin, Sandra Faber professor emerita of astronomy and astrophysics at UC Santa Cruz and her husband Andrew Faber launched the campaign for the Rubin Chair with an initial gift of $250000, Sandy Faber, UCSC,   

    From UC Santa Cruz: “Gifts to UC Santa Cruz fund new presidential chair for diversity in astronomy” 

    UC Santa Cruz

    From UC Santa Cruz

    August 29, 2018
    Tim Stephens
    stephens@ucsc.edu

    UCSC astronomer Sandra Faber and her husband made the lead gift to establish an endowed chair named in honor of Faber’s mentor, distinguished astronomer Vera Rubin.

    1
    Sandra Faber and Vera Rubin (Photo by Lars Hagberg for the National Post)

    UC Santa Cruz has received gifts and matching funds to establish a $1.5 million endowment for the Vera Rubin Presidential Chair for Diversity in Astronomy.

    The endowed chair was created to advance the cause of diversity, equity, and inclusive excellence in astronomy. The holder of the chair will embody the spirit of diversity in one of a variety of ways, such as their proven ability to attract and train new astronomers from all walks of life.

    Sandra Faber, professor emerita of astronomy and astrophysics at UC Santa Cruz, and her husband Andrew Faber launched the campaign for the Rubin Chair with an initial gift of $250,000. The chair is named for the distinguished astronomer Vera Rubin (1928-2016), who was a champion of inclusivity in science.

    For Sandra Faber, who worked with Rubin at the Carnegie Institution of Washington early in her career, the more experienced astronomer served as a model of a successful woman in a field dominated by men. “At a time when few women succeeded in science, especially astrophysics, Rubin began to pave the way for all members of underrepresented groups,” Faber said.

    Vera Rubin measuring spectra (Emilio Segre Visual Archives AIP SPL)


    Astronomer Vera Rubin at the Lowell Observatory in 1965. (The Carnegie Institution for Science)

    Rubin helped transform modern astrophysics through her research on the rotation rates of galaxies, making crucial contributions to the evidence that galaxies and stars are immersed in the gravitational grip of vast clouds of dark matter. Faber said she learned a lot about how to be an astronomer while working alongside Rubin, from how to give a scientific talk to the importance of careful measurements and respect for the data.

    “She was playing in the big leagues, and she was also raising a family. It told me that I could do this too,” Faber said.

    Dozens of astronomers from varied backgrounds remember with gratitude Rubin’s deep interest and encouragement of their budding careers. Her passion to open doors to all qualified persons makes her the perfect namesake for UC Santa Cruz’s newest endowed chair, according to Enrico Ramirez-Ruiz, professor and chair of the Department of Astronomy and Astrophysics.

    A novel feature of the Rubin Chair is its emphasis on using the proceeds from the endowment to enhance the department’s ability to attract and support aspiring astronomers from underrepresented groups, he said. Endowed chairs are typically used to pay the salary or support the research of the chair holder, whereas the holder of the Rubin Chair might use the funds for graduate and postdoctoral fellowships or undergraduate research internships.

    “The Rubin Chair will be a bridge of support across cultural, ethnic, and economic hurdles to engage the brightest minds in astronomy,” said Ramirez-Ruiz, adding that diversity is a source of strength and excellence for the astronomy department.

    Women have composed half of UC Santa Cruz astronomy Ph.D. students for more than a decade, and 30 percent of current graduate students come from underrepresented backgrounds. The department’s six active women professors are the largest tenured cohort of female astronomers in the nation, led by eminent scientists such as Faber and Claire Max, director of UC Observatories.

    Faber, like Rubin before her, has been honored with the National Medal of Science, the Gruber Prize for Cosmology, and many other awards and honors. Her research interests include cosmology, galaxy formation, and astronomical instrumentation. Faber has also been a driving force in the development and evolution of the Osterbrock Leadership Program, which offers leadership lectures, workshops, field trips, and other opportunities to all interested graduate students in the Department of Astronomy and Astrophysics. This program is unique to UC Santa Cruz and sets the department apart from all other top astronomy programs. It is also testament to Faber’s commitment to advancing the careers of young women and students from diverse backgrounds.

    In addition to the gift from the Fabers, which came from a significant portion of the Gruber Prize, the Rubin Chair endowment fund has received major contributions from the Heising-Simons Foundation, John and Barbara Crary, and an anonymous donor. Other donors include the Rubin family, Mark Headley, Claudia Webster, Joanna Miller, and Loren Kinczel. The UC Office of the President provided matching funds of $500,000.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    UCO Lick Shane Telescope
    UCO Lick Shane Telescope interior
    Shane Telescope at UCO Lick Observatory, UCSC

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    UC Santa Cruz campus
    The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
    Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow
    1
    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch) UCSC Lick Nickel telescope

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

    The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.

     
  • richardmitnick 7:39 am on March 23, 2018 Permalink | Reply
    Tags: , , , , , Seismologists introduce new measure of earthquake ruptures, Shake Alert, UCSC   

    From UCSC: “Seismologists introduce new measure of earthquake ruptures” 

    UC Santa Cruz

    UC Santa Cruz

    March 21, 2018
    Tim Stephens
    stephens@ucsc.edu

    1
    A map summarizing the new REEF measure of seismic energy for events around the Pacific Ring of Fire shows the regional patterns indicating earthquake rupture character is affected by persistent features that differ from region to region. (Credit: Ye et al., Science Advances, 2018)

    A team of seismologists has developed a new measurement of seismic energy release that can be applied to large earthquakes. Called the Radiated Energy Enhancement Factor (REEF), it provides a measure of earthquake rupture complexity that better captures variations in the amount and duration of slip along the fault for events that may have similar magnitudes.

    Magnitude is a measure of the relative size of an earthquake. There are several different magnitude scales (including the original Richter scale), with the “moment magnitude” now the most widely used measure because it is uniformly applicable to all sizes of earthquakes. The seismic energy released in an earthquake can also be measured directly from recorded ground shaking, providing a distinct measure of the earthquake process. Earthquakes of a given magnitude can have very different radiated seismic energy.

    Researchers at UC Santa Cruz and California Institute of Technology (Caltech) devised REEF in an effort to understand variations in the rupture characteristics of the largest and most destructive earthquakes, such as the 2004 Sumatra earthquake (magnitude 9.2) and 2011 Tohoku earthquake in Japan (magnitude 9.1). They introduced the new measurement in a paper published March 21 in Science Advances. First author Lingling Ye, a former UC Santa Cruz graduate student and Caltech postdoctoral researcher, is now at Sun Yat-sen University in China. Her coauthors are Hiroo Kanamori at Caltech and Thorne Lay at UC Santa Cruz.

    REEF is measured by the ratio of the earthquake’s actual measured radiated energy (in seismic waves recorded around the world) to the minimum possible energy that an event of equal seismic moment and rupture duration would produce. If the rupture is jerky and irregular, it radiates more seismic energy, especially at high frequencies, and this indicates frictional conditions and dynamic processes on the fault plane during rupture, Lay explained.

    The researchers made systematic measurements of REEF for 119 recent major earthquakes of magnitudes 7.0 to 9.2. They found clear regional patterns, with some subduction zones having higher REEF ruptures on average than other zones.

    “This indicates, for the first time, that energy release is influenced by regional properties of each fault zone,” said Lay, a professor of Earth and planetary sciences at UCSC.

    The precise cause of some regions radiating higher energy in an event of given size is still under investigation, but may be linked to regional differences in the roughness of the faults, in the fluid distributions on the faults, or in the sediments trapped in the fault zone, he said.

    Further research using REEF could help seismologists achieve better understanding of earthquake mechanics and earthquake hazards around the world.

    This research was supported by the National Science Foundation of China, Chinese Academy of Sciences, and U.S. National Science Foundation.

    See the full article here.

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network projectEarthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UCO Lick Shane Telescope
    UCO Lick Shane Telescope interior
    Shane Telescope at UCO Lick Observatory, UCSC

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    UC Santa Cruz campus
    The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
    Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow
    1
    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch) UCSC Lick Nickel telescope

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    5
    UCSC alumna Shelley Wright, now an assistant professor of physics at UC San Diego, discusses the dichroic filter of the NIROSETI instrument. (Photo by Laurie Hatch)

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

    The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UCSC is the home base for the Lick Observatory.

     
  • richardmitnick 2:55 pm on February 23, 2018 Permalink | Reply
    Tags: , , , , , , UCSC   

    From UCSC: ” Novel search strategy advances the hunt for primordial black holes” 

    UC Santa Cruz

    UC Santa Cruz

    February 21, 2018
    Tim Stephens
    stephens@ucsc.edu

    Some theories of the early universe predict density fluctuations that would have created small “primordial black holes,” some of which could be drifting through our galactic neighborhood today and might even be bright sources of gamma rays.

    Researchers analyzing data from the Fermi Gamma-ray Space Telescope for evidence of nearby primordial black holes have come up empty, but their negative findings still allow them to put an upper limit on the number of these tiny black holes that might be lurking in the vicinity of Earth.

    NASA/Fermi Gamma Ray Space Telescope


    NASA’s Fermi Gamma-ray Space Telescope is a powerful space observatory that opens a wide window on the universe. Primordial black holes are a potential source of gamma rays, the highest-energy form of light. (Illustration credit: NASA)

    “Understanding how many primordial black holes are around today can help us understand the early universe better,” said Christian Johnson, a graduate student in physics at UC Santa Cruz who developed an algorithm to search data from Fermi’s Large Area Telescope (LAT) for the signatures of primordial black holes. Johnson is a corresponding author of a paper on the findings that has been accepted for publication in The Astrophysical Journal.

    Low-mass black holes are expected to emit gamma rays due to Hawking radiation, a theoretical prediction from the work of physicist Stephen Hawking and others. Hawking showed that quantum effects can give rise to particle-antiparticle pairs near the event horizon of a black hole, allowing one of the particles to fall into the black hole and the other to escape. The result is that the black hole emits radiation and loses mass.

    A small black hole that isn’t absorbing enough from its environment to offset the losses from Hawking radiation will steadily lose mass and eventually evaporate entirely. The smaller it gets, the brighter it “burns,” emitting more and more Hawking radiation before exploding in a final cataclysm. Previous searches for primordial black holes using ground-based gamma-ray observatories have looked for these brief explosions, but Fermi should be able to detect the “burn phase” occurring over a period of several years.

    A limitation of the Fermi search was that it could only extend a relatively short distance from Earth (a small fraction of the distance to the nearest star). The advantage of looking nearby, however, is that primordial black holes could be distinguished from other sources of gamma rays by their movement on the sky.

    “It’s like looking at the sky at night and trying to decide if something is an airplane or a star,” Johnson explained. “If it’s an airplane, it will move, and if it’s a star it will stay put.”

    Any primordial black holes still around today would have started out much larger and have been gradually losing mass for billions of years. To detect one with Fermi, it would have to have reached the final burn phase during the roughly four-year observation period of the study. Over a period of a few years, it would go from undetectably dim to extremely bright, and would burn brightly for several years before exploding, Johnson said.

    “Even though we didn’t detect any, the non-detection sets a limit on the rate of explosions and gives us better constraints than previous research,” he said.

    In addition to Johnson, the other corresponding authors of the paper include Steven Ritz, professor of physics and director of the Santa Cruz Institute of Particle Physics at UCSC; and Stefan Funk and Dmitry Malyshev at the Erlangen Centre for Astroparticle Physics in Germany. Other members of the Fermi-LAT Collaboration also contributed to this work and are coauthors of the paper.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UCO Lick Shane Telescope
    UCO Lick Shane Telescope interior
    Shane Telescope at UCO Lick Observatory, UCSC

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    UC Santa Cruz campus
    The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
    Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow
    1
    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch) UCSC Lick Nickel telescope

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    5
    UCSC alumna Shelley Wright, now an assistant professor of physics at UC San Diego, discusses the dichroic filter of the NIROSETI instrument. (Photo by Laurie Hatch)

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

    The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UCSC is the home base for the Lick Observatory.

     
  • richardmitnick 8:12 pm on January 10, 2018 Permalink | Reply
    Tags: , , , , Earliest galaxies in the universe spin like the Milky Way, , UCSC   

    From UCSC: “Earliest galaxies in the universe spin like the Milky Way” 

    UC Santa Cruz

    UC Santa Cruz

    January 10, 2018
    Tim Stephens
    stephens@ucsc.edu

    3
    Artist’s impression of spinning galaxies. Credit: Amanda Smith, University of Cambridge


    A visualization of a simulated young galaxy taken from a recent simulation that shows an early galaxy, thought to be like those studied with ALMA, in the throes of its formation and growth. Video credit: R. Crain (Liverpool John Moores University) and J. Geach (University of Hertfordshire)

    Astronomers looking back to a time soon after the big bang have discovered swirling gas in some of the earliest galaxies to have formed in the universe. These newborn galaxies, observed as they appeared nearly 13 billion years ago, spin like a whirlpool, similar to our own Milky Way galaxy.

    Garth Illingworth, professor emeritus of astronomy and astrophysics at UC Santa Cruz and a member of the international team that made the discovery, explained that light from distant objects takes time to reach Earth, so observing objects that are billions of light years away enables astronomers to look back in time and directly observe the formation of the earliest galaxies.

    Using the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, the team led by Renske Smit at the Kavli Institute of Cosmology, University of Cambridge, identified star-forming galaxies at a very early stage in cosmic history that spin in a way thought not to occur until much later times.


    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    3
    This image from a recent simulation of galaxy formation shows swirling gas in an early galaxy thought to be like the two observed with ALMA in the new study. (Image credit: A. Pallottini, University of Pisa)

    4
    Researchers studied two galaxies shown here in a Hubble image and as detected by ALMA (inset panels). The color gradients in the ALMA images show the motion of the gas, indicative of rotation. Because of their distance, the galaxies are seen as they were nearly 13 billion years ago, 800 million years after the big bang. Image credit: Hubble (NASA/ESA), ALMA (ESO/NAOJ/NRAO), P. Oesch (University of Geneva) and R. Smit (University of Cambridge)

    NASA/ESA Hubble Telescope

    The results are reported in the journal Nature and will be presented January 10 at the 231st meeting of the American Astronomical Society in Washington, D.C.

    “ALMA opens up a new window in the spectrum that allows us to measure motions in these early galaxies in a way that has been impossible to date, even with telescopes as powerful as Hubble. This provides new insights into the dramatic activity in these young galaxies as the gas is being transformed into stars,” Illingworth said.

    Smit and her colleagues used ALMA to observe two small newborn galaxies as they existed just 800 million years after the big bang, which was 13.7 billion years ago. By analyzing the spectral ‘fingerprint’ of the far-infrared light collected by ALMA, the researchers were able to establish the distance to the galaxies and, for the first time, see the internal motion of the gas that fuelled their growth.

    “This is a remarkable discovery given that the team used ALMA to look back through 94 percent of all time to capture the faint signals from these two galaxies,” Illingworth said.

    “Until ALMA, we’ve never been able to see the formation of galaxies in such detail, and we’ve never been able to measure the movement of gas in galaxies so early in the universe’s history,” said coauthor Stefano Carniani at Cambridge’s Cavendish Laboratory and Kavli Institute of Cosmology.

    The researchers found that the gas in these newborn galaxies swirled and rotated in a whirlpool motion, similar to our own spiral galaxy and other mature galaxies much later in the universe’s history. Despite their relatively small size—about five times smaller than the Milky Way—these galaxies were forming stars at a higher rate than other young galaxies. But the researchers were surprised to discover that the galaxies were not as chaotic as expected.

    “In the early Universe, gravity caused gas to flow rapidly into the galaxies, stirring them up and forming lots of new stars. Violent supernova explosions from these stars also makes the gas even more turbulent,” said Smit, who is a Rubicon Fellow at Cambridge sponsored by the Netherlands Organization for Scientific Research. “We expected that young galaxies would be dynamically ‘messy’ due to the havoc caused by exploding young stars, but these mini-galaxies show the ability to retain order and appear well regulated. They are already rapidly growing to become one of the ‘adult’ galaxies like we live in today,” she said.

    The results from this project pave the way for larger studies of newly-forming galaxies during the first billion years of cosmic time with ALMA’s uniquely powerful capabilities and with the upcoming James Webb Space Telescope. The research was funded in part by the European Research Council and the UK Science and Technology Facilities Council (STFC).

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UCO Lick Shane Telescope
    UCO Lick Shane Telescope interior
    Shane Telescope at UCO Lick Observatory, UCSC

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    UC Santa Cruz campus
    The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
    Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow
    1
    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch) UCSC Lick Nickel telescope

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    5
    UCSC alumna Shelley Wright, now an assistant professor of physics at UC San Diego, discusses the dichroic filter of the NIROSETI instrument. (Photo by Laurie Hatch)

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

    The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 12:35 pm on November 29, 2017 Permalink | Reply
    Tags: , , Global SPHERE Network, SPHERE-STEM Programs for High-Schoolers Engaging in Research Early", , UCSC   

    From UCSC: “Global SPHERE Network promotes research opportunities for high school students” 

    UC Santa Cruz

    UC Santa Cruz

    November 29, 2017
    Tim Stephens
    stephens@ucsc.edu

    Coalition of top U.S. educational institutions launches mentor network and online database to increase access to STEM research opportunities for high school students.

    2

    A coalition of U.S. educational institutions has launched an online database of opportunities around the world for high school students to get involved in research in the STEM fields (science, technology, engineering, and mathematics). The database is part of a global network of STEM programs and mentors for high school students.

    By promoting “STEM Programs for High-Schoolers Engaging in Research Early” (SPHERE), the Global SPHERE Network aims to increase both the number of mentors (researchers who engage high school students in their research) and the number and diversity of high school students who participate in authentic STEM research.

    Founding partners in the coalition include the University of California, Santa Cruz; the New York Academy of Sciences; the Bay Area Teen Science Program at UC Berkeley; American Museum of Natural History; RockEDU Science Outreach at the Rockefeller University; and the Harvard-Smithsonian Center for Astrophysics. Since 2015, the Global SPHERE Network has connected with 120 organizations in 20 countries, said cofounder Puragra (Raja) GuhaThakurta.

    “As a STEM researcher, I feel it is very important to mentor today’s youth and get them deeply immersed in authentic research so they can get a taste of how exciting it is to tackle some of the open-ended problems facing the world today,” said GuhaThakurta, a professor of astronomy and astrophysics at UC Santa Cruz and founder of the UCSC Science Internship Program (SIP). He and SIP partner liaison Emily Entress Clark cofounded the Global SPHERE Network.

    The network’s new online database lists available opportunities across the world for high school students to engage in research. It also serves as a networking space for programs and mentors who are already offering research opportunities or are looking to do so. Member programs are encouraged to use the database on an ongoing basis to network with other programs, share resources, and engage with high school students.

    The database will initially offer a few hundred research projects across a dozen established programs in a wide range of STEM disciplines. The goal is to grow the database to five to 10 times its current size over the next few years, GuhaThakurta said. High school science teachers and students interested in these projects can access the database through the student portal on the Global SPHERE Network web site.

    “Many students on a STEM track at school are keen to do research projects, not only for their school work, but to also enter some of the science competitions that offer college scholarships, but they often don’t know how to get started,” said Celina Morgan-Standard, senior vice president of global business development at the New York Academy of Sciences. “The Global SPHERE Network initiative will help to address this opportunity gap while providing a great resource to teachers who’d like to give their students STEM related research projects.”

    GuhaThakurta noted that most established programs find that they have to turn away many qualified students and generally have no systematic way to redirect them to alternate programs. Meanwhile, parents and students tend to be aware of only a small fraction of the available programs. The Global SPHERE Network provides valuable resources for programs and mentors as well as for students, parents, and teachers.

    The network will host the first in a series of webinars on Wednesday, November 29 (1:30 to 2:30 p.m. PST), to give an overview of the network and answer questions for organizations that are interested in joining. Free registration for this and subsequent webinars is available through the prospective partner questionnaire on the network’s web site. Institutions, professionals, and educational groups are encouraged to register to receive invitations to webinars and find out ways they can benefit from the network.

    Additional information about the Global SPHERE Network is available online at http://www.globalspherenetwork.org.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UCO Lick Shane Telescope
    UCO Lick Shane Telescope interior
    Shane Telescope at UCO Lick Observatory, UCSC

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    UC Santa Cruz campus
    The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
    Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow
    1
    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch) UCSC Lick Nickel telescope

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    5
    UCSC alumna Shelley Wright, now an assistant professor of physics at UC San Diego, discusses the dichroic filter of the NIROSETI instrument. (Photo by Laurie Hatch)

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

    The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: