Tagged: UCSC-UC Santa Cruz Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:38 pm on July 16, 2020 Permalink | Reply
    Tags: "How galaxies die: New insights into the quenching of star formation", A simple model explains a wide range of observations by describing a contest between galaxy halos and their central black holes that eventually turns off star formation., , , , Black hole “feedback” the energy released into a galaxy and its surroundings from a central supermassive black hole as matter falls into the black hole and feeds its growth., Bolshoi cosmological simulation- the evolution of the dark matter halos in which galaxies form., CANDELS- the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey), , Faber emphasized that the model does not yet explain in detail the physical mechanisms involved in the quenching of star formation., Larger galaxies have to evolve further and build up a higher stellar mass before their central black holes can grow large enough to quench star formation., The researchers concluded that quenching begins when the total energy emitted from the black hole is approximately four times the gravitational binding energy of the gas in the galactic halo., UCSC-UC Santa Cruz   

    From UC Santa Cruz: “How galaxies die: New insights into the quenching of star formation” 

    From UC Santa Cruz

    July 16, 2020
    Tim Stephens
    stephens@ucsc.edu

    A simple model explains a wide range of observations by describing a contest between galaxy halos and their central black holes that eventually turns off star formation.

    2
    A new theory explains how black holes grow as a function of galaxy mass and eventually quench star formation in their host galaxies. The images on this graph, taken by the Sloan Digital Sky Survey, are of nearby galaxies at the present era chosen to represent galaxy evolution.

    SDSS Telescope at Apache Point Observatory, near Sunspot NM, USA, Altitude2,788 meters (9,147 ft)

    The graph shows how the evolution of small, dense galaxies differs from that of larger, more diffuse galaxies. The denser galaxies have larger black holes for their mass and therefore quench sooner, at a lower mass, whereas the more diffuse galaxies have smaller black holes for their mass and must grow more before quenching occurs. (Credit: Dr.Sandra Faber/Sofia Quiros/SDSS)

    Astronomers studying galaxy evolution have long struggled to understand what causes star formation to shut down in massive galaxies. Although many theories have been proposed to explain this process, known as “quenching,” there is still no consensus on a satisfactory model.

    Now, an international team led by Sandra Faber, professor emerita of astronomy and astrophysics at UC Santa Cruz, has proposed a new model that successfully explains a wide range of observations about galaxy structure, supermassive black holes, and the quenching of star formation.

    Dr. Sandra Faber

    The researchers presented their findings in a paper published July 1 in The Astrophysical Journal.

    The model supports one of the leading ideas about quenching which attributes it to black hole “feedback,” the energy released into a galaxy and its surroundings from a central supermassive black hole as matter falls into the black hole and feeds its growth. This energetic feedback heats, ejects, or otherwise disrupts the galaxy’s gas supply, preventing the infall of gas from the galaxy’s halo to feed star formation.

    “The idea is that in star-forming galaxies, the central black hole is like a parasite that ultimately grows and kills the host,” Faber explained. “That’s been said before, but we haven’t had clear rules to say when a black hole is big enough to shut down star formation in its host galaxy, and now we have quantitative rules that actually work to explain our observations.”

    Size and mass

    The basic idea involves the relationship between the mass of the stars in a galaxy (stellar mass), how spread out those stars are (the galaxy’s radius), and the mass of the central black hole. For star-forming galaxies with a given stellar mass, the density of stars in the center of the galaxy correlates with the radius of the galaxy so that galaxies with bigger radii have lower central stellar densities. Assuming that the mass of the central black hole scales with the central stellar density, star-forming galaxies with larger radii (at a given stellar mass) will have lower black-hole masses.

    What that means, Faber explained, is that larger galaxies (those with larger radii for a given stellar mass) have to evolve further and build up a higher stellar mass before their central black holes can grow large enough to quench star formation. Thus, small-radius galaxies quench at lower masses than large-radius galaxies.

    “That is the new insight, that if galaxies with large radii have smaller black holes at a given stellar mass, and if black hole feedback is important for quenching, then large-radius galaxies have to evolve further,” she said. “If you put together all these assumptions, amazingly, you can reproduce a large number of observed trends in the structural properties of galaxies.”

    This explains, for example, why more massive quenched galaxies have higher central stellar densities, larger radii, and larger central black holes.

    Based on this model, the researchers concluded that quenching begins when the total energy emitted from the black hole is approximately four times the gravitational binding energy of the gas in the galactic halo. The binding energy refers to the gravitational force that holds the gas within the halo of dark matter enveloping the galaxy. Quenching is complete when the total energy emitted from the black hole is twenty times the binding energy of the gas in the galactic halo.

    Physical processes

    Faber emphasized that the model does not yet explain in detail the physical mechanisms involved in the quenching of star formation. “The key physical processes that this simple theory evokes are not yet understood,” she said. “The virtue of this, though, is that having simple rules for each step in the process challenges theorists to come up with physical mechanisms that explain each step.”

    Astronomers are accustomed to thinking in terms of diagrams that plot the relations between different properties of galaxies and show how they change over time. These diagrams reveal the dramatic differences in structure between star-forming and quenched galaxies and the sharp boundaries between them. Because star formation emits a lot of light at the blue end of the color spectrum, astronomers refer to “blue” star-forming galaxies, “red” quiescent galaxies, and the “green valley” as the transition between them. Which stage a galaxy is in is revealed by its star formation rate.

    One of the study’s conclusions is that the growth rate of black holes must change as galaxies evolve from one stage to the next. The observational evidence suggests that most of the black hole growth occurs in the green valley when galaxies are beginning to quench.

    “The black hole seems to be unleashed just as star formation slows down,” Faber said. “This was a revelation, because it explains why black hole masses in star-forming galaxies follow one scaling law, while black holes in quenched galaxies follow another scaling law. That makes sense if black hole mass grows rapidly while in the green valley.”

    CANDELS

    Faber and her collaborators have been discussing these issues for many years. Since 2010, Faber has co-led a major Hubble Space Telescope galaxy survey program (CANDELS, the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey), which produced the data used in this study. In analyzing the CANDELS data, she has worked closely with a team led by Joel Primack, UCSC professor emeritus of physics, which developed the Bolshoi cosmological simulation of the evolution of the dark matter halos in which galaxies form. These halos provide the scaffolding on which the theory builds the early star-forming phase of galaxy evolution before quenching.

    Visualization of the dark matter in 1/1000 of the gigantic Bolshoi cosmological simulation, zooming in on a region centered on the dark matter halo of a very large cluster of galaxies. Visualized by Chris Henze, NASA Ames Research Center. This visualization was narrated in the National Geographic TV special Inside the Milky Way. It was used with the piece Dark Matter in Bjork’s Biophilia concert.

    The central ideas in the paper emerged from analyses of CANDELS data and first struck Faber about four years ago. “It suddenly leaped out at me, and I realized if we put all these things together—if galaxies had a simple trajectory in radius versus mass, and if black hole energy needs to overcome halo binding energy—it can explain all these slanted boundaries in the structural diagrams of galaxies,” she said.

    At the time, Faber was making frequent trips to China, where she has been involved in research collaborations and other activities. She was a visiting professor at Shanghai Normal University, where she met first author Zhu Chen. Chen came to UC Santa Cruz in 2017 as a visiting researcher and began working with Faber to develop these ideas about galaxy quenching.

    “She is mathematically very good, better than me, and she did all of the calculations for this paper,” Faber said.

    Faber also credited her longtime collaborator David Koo, UCSC professor emeritus of astronomy and astrophysics, for first focusing attention on the central densities of galaxies as a key to the growth of central black holes.

    Among the puzzles explained by this new model is a striking difference between our Milky Way galaxy and its very similar neighbor Andromeda. “The Milky Way and Andromeda have almost the same stellar mass, but Andromeda’s black hole is almost 50 times bigger than the Milky Way’s,” Faber said. “The idea that black holes grow a lot in the green valley goes a long way toward explaining this mystery. The Milky Way is just entering the green valley and its black hole is still small, whereas Andromeda is just exiting so its black hole has grown much bigger, and it is also more quenched than the Milky Way.”

    In addition to Faber, Chen, Koo, and Primack, the coauthors of the paper include researchers at some two dozen institutions in seven countries. This work was funded by grants from NASA and the National Science Foundation.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    UCSC Lick Observatory, Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft)

    .

    UC Observatories Lick Autmated Planet Finder, fully robotic 2.4-meter optical telescope at Lick Observatory, situated on the summit of Mount Hamilton, east of San Jose, California, USA

    The UCO Lick C. Donald Shane telescope is a 120-inch (3.0-meter) reflecting telescope located at the Lick Observatory, Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft)

    UC Santa Cruz campus

    The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
    Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow
    1
    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch) UCSC Lick Nickel telescope

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

    The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.

     
  • richardmitnick 10:35 am on July 6, 2020 Permalink | Reply
    Tags: "White dwarfs reveal new insights into the origin of carbon in the universe", 1.5 solar masses represents the minimum mass for a star to spread carbon-enriched ashes upon its death., , Astrophysicists still debate which types of stars are the primary source of the carbon in our own galaxy., , , Carbon in our own galaxy, , Every carbon atom in the universe was created by stars through the fusion of three helium nuclei., UCSC-UC Santa Cruz   

    From UC Santa Cruz: “White dwarfs reveal new insights into the origin of carbon in the universe” 

    From UC Santa Cruz

    July 06, 2020
    Tim Stephens
    stephens@ucsc.edu

    1
    NGC 7789, also known as Caroline’s Rose, is an old open star cluster of the Milky Way, which lies about 8,000 light-years away toward the constellation Cassiopeia. It hosts a few white dwarfs of unusually high mass that were analyzed in this study. (Image credit: Guillaume Seigneuret and NASA)

    A new analysis of white dwarf stars supports their role as a key source of carbon, an element crucial to all life, in the Milky Way and other galaxies.

    1
    White dwarf star in the process of solidifying. Credit: University of Warwick/Mark Garlick

    Approximately 90 percent of all stars end their lives as white dwarfs, very dense stellar remnants that gradually cool and dim over billions of years. With their final few breaths before they collapse, however, these stars leave an important legacy, spreading their ashes into the surrounding space through stellar winds enriched with chemical elements, including carbon, newly synthesized in the star’s deep interior during the last stages before its death.

    Every carbon atom in the universe was created by stars, through the fusion of three helium nuclei. But astrophysicists still debate which types of stars are the primary source of the carbon in our own galaxy, the Milky Way. Some studies favor low-mass stars that blew off their envelopes in stellar winds and became white dwarfs, while others favor massive stars that eventually exploded as supernovae.

    In the new study, published July 6 in Nature Astronomy, an international team of astronomers discovered and analyzed white dwarfs in open star clusters in the Milky Way, and their findings help shed light on the origin of the carbon in our galaxy. Open star clusters are groups of up to a few thousand stars, formed from the same giant molecular cloud and roughly the same age, and held together by mutual gravitational attraction. The study was based on astronomical observations conducted in 2018 at the W. M. Keck Observatory in Hawaii and led by coauthor Enrico Ramirez-Ruiz, professor of astronomy and astrophysics at UC Santa Cruz.

    Keck Observatory, operated by Caltech and the University of California, Maunakea Hawaii USA, 4,207 m (13,802 ft)

    “From the analysis of the observed Keck spectra, it was possible to measure the masses of the white dwarfs. Using the theory of stellar evolution, we were able to trace back to the progenitor stars and derive their masses at birth,” explained Ramirez-Ruiz, who also holds a Niels Bohr Professorship at the University of Copenhagen.

    The relationship between the initial masses of stars and their final masses as white dwarfs is known as the initial-final mass relation, a fundamental diagnostic in astrophysics that integrates information from the entire life cycles of stars, linking birth to death. In general, the more massive the star at birth, the more massive the white dwarf left at its death, and this trend has been supported on both observational and theoretical grounds.

    But analysis of the newly discovered white dwarfs in old open clusters gave a surprising result: the masses of these white dwarfs were notably larger than expected, putting a “kink” in the initial-final mass relation for stars with initial masses in a certain range.

    “Our study interprets this kink in the initial-final mass relationship as the signature of the synthesis of carbon made by low-mass stars in the Milky Way,” said lead author Paola Marigo at the University of Padua in Italy.

    In the last phases of their lives, stars twice as massive as our Sun produced new carbon atoms in their hot interiors, transported them to the surface, and finally spread them into the interstellar medium through gentle stellar winds. The team’s detailed stellar models indicate that the stripping of the carbon-rich outer mantle occurred slowly enough to allow the central cores of these stars, the future white dwarfs, to grow appreciably in mass.

    Analyzing the initial-final mass relation around the kink, the researchers concluded that stars bigger than 2 solar masses also contributed to the galactic enrichment of carbon, while stars of less than 1.5 solar masses did not. In other words, 1.5 solar masses represents the minimum mass for a star to spread carbon-enriched ashes upon its death.

    These findings place stringent constraints on how and when carbon, the element essential to life on Earth, was produced by the stars of our galaxy, eventually ending up trapped in the raw material from which the Sun and its planetary system were formed 4.6 billion years ago.

    “Now we know that the carbon came from stars with a birth mass of not less than roughly 1.5 solar masses,” said Marigo.

    Coauthor Pier-Emmanuel Tremblay at University of Warwick said, “One of most exciting aspects of this research is that it impacts the age of known white dwarfs, which are essential cosmic probes to understand the formation history of the Milky Way. The initial-to-final mass relation is also what sets the lower mass limit for supernovae, the gigantic explosions seen at large distances and that are really important to understand the nature of the universe.”

    By combining the theories of cosmology and stellar evolution, the researchers concluded that bright carbon-rich stars close to their death, quite similar to the progenitors of the white dwarfs analyzed in this study, are presently contributing to a vast amount of the light emitted by very distant galaxies. This light, carrying the signature of newly produced carbon, is routinely collected by large telescopes to probe the evolution of cosmic structures. A reliable interpretation of this light depends on understanding the synthesis of carbon in stars.

    In addition to Marigo, Tremblay, and Ramirez-Ruiz, the coauthors of the paper include scientists at Johns Hopkins University, American Museum of Natural History in New York, Columbia University, Space Telescope Science Institute, University of Warwick, University of Montreal, University of Uppsala, International School for Advanced Studies in Trieste, Italian National Institute for Astrophysics, and the University of Geneva. This research was supported by the European Union through an ERC Consolidator Grant and the DNRF through a Niels Bohr Professorship.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC Lick Observatory, Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft)

    .

    UC Observatories Lick Autmated Planet Finder, fully robotic 2.4-meter optical telescope at Lick Observatory, situated on the summit of Mount Hamilton, east of San Jose, California, USA

    The UCO Lick C. Donald Shane telescope is a 120-inch (3.0-meter) reflecting telescope located at the Lick Observatory, Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft)

    UC Santa Cruz campus

    UCSC is the home base for the Lick Observatory.

    Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
    Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

     
  • richardmitnick 10:48 am on October 2, 2019 Permalink | Reply
    Tags: "Galaxy found to float in a tranquil sea of halo gas", , , , , , , UCSC-UC Santa Cruz   

    From UC Santa Cruz: “Galaxy found to float in a tranquil sea of halo gas” 

    UC Santa Cruz

    From UC Santa Cruz

    September 26, 2019
    Tim Stephens
    stephens@ucsc.edu

    Analysis of radio pulses that passed through a galactic halo reveals a surprisingly quiescent halo with very low density and weak magnetic field.

    1
    This illustration shows the radio signal from the fast radio burst FRB 181112 passing through the halo of a foreground galaxy on its way toward the telescopes that detected it on Earth. (Illustration © J. Josephides, Centre for Astrophysics and Supercomputing, Swinburne University of Technology)

    2
    Imaging with the Very Large Telescope (VLT) in Chile shows the host galaxy of the fast radio burst, with the position of the burst depicted by the red ellipses. The brighter galaxy located nearby is in the foreground, and the sight-line to the burst passes through the halo of this foreground galaxy. (Image credit: Prochaska et al., Science 2019)

    3
    The ASKAP radio telescope array in outback Western Australia detected and localized the fast radio burst. (Image credit: CSIRO/Alex Cherney)

    Using one cosmic mystery to probe another, astronomers have analyzed the signal from a fast radio burst, an enigmatic blast of cosmic radio waves lasting less than a millisecond, to characterize the diffuse gas in the halo of a massive galaxy.

    A vast halo of low-density gas extends far beyond the luminous part of a galaxy where the stars are concentrated. Although this hot, diffuse gas makes up more of a galaxy’s mass than stars do, it is nearly impossible to see. In November 2018, astronomers detected a fast radio burst that passed through the halo of a massive galaxy on its way toward Earth, allowing them for the first time to get clues to the nature of the halo gas from an elusive radio signal.

    “The signal from the fast radio burst exposed the nature of the magnetic field around the galaxy and the structure of the halo gas. The study proves a new and transformative technique for exploring the nature of galaxy halos,” said J. Xavier Prochaska, professor of astronomy and astrophysics at UC Santa Cruz and lead author of a paper on the new findings published online September 26 in Science.

    Astronomers still don’t know what produces fast radio bursts, and only recently have they been able to trace some of these very short, very bright radio signals back to the galaxies in which they originated. The November 2018 burst (named FRB 181112) was detected and localized by the instrument that pioneered this technique, CSIRO’s Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope. Follow-up observations with other telescopes identified not only its host galaxy but also a bright galaxy in front of it.

    “When we overlaid the radio and optical images, we could see straight away that the fast radio burst pierced the halo of this coincident foreground galaxy and, for the first time, we had a direct way of investigating this otherwise invisible matter surrounding this galaxy,” said coauthor Cherie Day at Swinburne University of Technology, Australia.

    A galactic halo contains both dark matter and ordinary (“baryonic”) matter, which is expected to be mostly hot ionized gas. While the luminous part of a massive galaxy might be around 30,000 light-years across, its roughly spherical halo is ten times larger. Halo gas fuels star formation as it falls in toward the center of the galaxy, while other processes (such as supernova explosions) can eject material out of the star-forming regions and into the galactic halo. One reason astronomers want to study the halo gas is to better understand these ejection processes, which can shut down star formation.

    “The halo gas is a fossil record of these ejection processes, so our observations can inform theories about how matter is ejected and how magnetic fields are threaded through galaxies,” Prochaska said.

    Contrary to expectations, the results of the new study indicate a very low density and a feeble magnetic field in the halo of this intervening galaxy.

    “This galaxy’s halo is surprisingly tranquil,” Prochaska said. “The radio signal was largely unperturbed by the galaxy, which is in stark contrast to what previous models predict would have happened to the burst.”

    The signal of FRB 181112 consisted of several pulses, each lasting less than 40 microseconds (ten thousand times shorter than the blink of an eye). The short duration of the pulses puts an upper limit on the density of the halo gas, because passage through a denser medium would lengthen the radio signals. The researchers calculated that the density of the halo gas must be less than a tenth of an atom per cubic centimeter (equivalent to several hundred atoms in a volume the size of a child’s balloon).

    “Like the shimmering air on a hot summer’s day, the tenuous atmosphere in this massive galaxy should warp the signal of the fast radio burst. Instead we received a pulse so pristine and sharp that there is no signature of this gas at all,” said coauthor Jean-Pierre Macquart, an astronomer at the International Center for Radio Astronomy Research at Curtin University, Australia.

    The density constraints also limit the possibility of turbulence or clouds of cool gas within the halo (“cool” being a relative term, referring here to temperatures around 10,000 Kelvin, versus the hot halo gas at around 1 million Kelvin). “One favored model is that halos are pervaded by clouds of clumpy gas. We find no evidence for these clouds whatsoever,” Prochaska said.

    The FRB signal also yields information about the magnetic field in the halo, which affects the polarization of the radio waves. Analyzing the polarization as a function of frequency gives a “rotation measure” for the halo, which the researchers found to be very low. “The weak magnetic field in the halo is a billion times weaker than that of a refrigerator magnet,” Prochaska said.

    At this point, with results from only one galactic halo, the researchers cannot say whether the unexpectedly low density and magnetic field strength are unusual or if previous studies of galactic halos have overestimated these properties. ASKAP and other radio telescopes will use fast radio bursts to study many more galactic halos and resolve their properties.

    “This galaxy may be special,” Prochaska said. “We will need to use FRBs to study tens or hundreds of galaxies over a range of masses and ages to assess the full population.”

    In addition to Prochaska, Day, and Macquart, the coauthors of the paper include UCSC graduate student Sunil Simha and researchers at eight other institutions in Australia, the United States, South Korea, and Chile. This work was funded in part by the U.S. National Science Foundation and the Australian Research Council.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    UCSC Lick Observatory, Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft)

    .

    UC Observatories Lick Autmated Planet Finder, fully robotic 2.4-meter optical telescope at Lick Observatory, situated on the summit of Mount Hamilton, east of San Jose, California, USA

    UCO Lick Shane Telescope
    UCO Lick Shane Telescope interior
    Shane Telescope at UCO Lick Observatory, UCSC

    UC Santa Cruz campus
    The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
    Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

     
  • richardmitnick 1:31 pm on July 18, 2019 Permalink | Reply
    Tags: , , , , , , UCSC-UC Santa Cruz, VERITAS Collaboration added to project   

    From UC Santa Cruz: “Breakthrough Listen launches new optical search with VERITAS Telescope Array” 

    UC Santa Cruz

    From UC Santa Cruz

    July 17, 2019
    Tim Stephens
    stephens@ucsc.edu

    SCIPP (Santa Cruz Institute for Particle Physics) physicist David Williams will help lead effort using four 12-meter telescopes to search for nanosecond flashes of light from extraterrestrial civilizations.

    The Breakthrough Listen initiative to find signs of intelligent life in the universe will collaborate with the VERITAS Collaboration in the search for technosignatures, signs of technology developed by intelligent life beyond the Earth.

    Joining the Breakthrough Listen initiative’s ongoing radio frequency survey and spectroscopic optical laser survey, VERITAS (the Very Energetic Radiation Imaging Telescope Array System) will search for pulsed optical beacons with its array of four 12-meter telescopes at the Fred Lawrence Whipple Observatory in Amado, Arizona.

    VERITAS is the world’s most powerful telescope array for studying high-energy astrophysics with gamma rays. It detects gamma rays coming from space by looking for the extremely brief flashes of blue “Čerenkov” light they create when they hit the top of the Earth’s atmosphere.

    VERITAS will look for pulsed optical beacons with durations as short as several nanoseconds. Over such timescales, artificial beacons could easily outshine any stars that lie in the same direction on the sky. The use of all four telescopes simultaneously allows for very effective discrimination against false positive detections. The VERITAS Collaboration has previously published observations of the mysteriously dimming Boyajian’s Star in search of such optical pulses. The new program of VERITAS observations will provide complementary searches for optical pulse signatures of many more stars from the primary Breakthrough Listen star list.

    “It is impressive how well-suited the VERITAS telescopes are for this project, since they were built only with the purpose of studying very-high-energy gamma rays in mind,” said David Williams, adjunct professor of physics at UC Santa Cruz and the Santa Cruz Institute for Particle Physics (SCIPP) and a member of the VERITAS collaboration.

    Breakthrough Listen’s search for optical technosignatures with VERITAS will be led by Williams at UCSC and Jamie Holder of the University of Delaware, in collaboration with the Listen team at UC Berkeley’s SETI Research Center led by Andrew Siemion.

    “When it comes to intelligent life beyond Earth, we don’t know where it exists or how it communicates,” said Yuri Milner, founder of the Breakthrough Initiatives. “So our philosophy is to look in as many places, and in as many ways, as we can. VERITAS expands our range of observation even further.”

    “Breakthrough Listen is already the most powerful, comprehensive, and intensive search yet undertaken for signs of intelligent life beyond Earth,” Siemion said. “Now, with the addition of VERITAS, we’re sensitive to an important new class of signals: fast optical pulses. Optical communication has already been used by NASA to transmit high definition images to Earth from the moon, so there’s reason to believe that an advanced civilization might use a scaled-up version of this technology for interstellar communication.”

    If a laser comparable to the most powerful lasers on Earth (delivering about 500 terawatts in a pulse lasting a few nanoseconds) were situated at the distance of Boyajian’s Star and pointed in our direction, VERITAS could detect it. But most of the stars in the Listen target list are 10 to 100 times closer than Boyajian’s Star, meaning that the new search will be sensitive to pulses a factor 100 to 10,000 times fainter still.

    “Using the huge mirror area of the four VERITAS telescopes will allow us to search for these extremely faint optical flashes in the night sky, which could correspond to signals from an extraterrestrial civilization,” said Holder.

    Breakthrough Listen Project

    1

    UC Observatories Lick Autmated Planet Finder, fully robotic 2.4-meter optical telescope at Lick Observatory, situated on the summit of Mount Hamilton, east of San Jose, California, USA




    GBO radio telescope, Green Bank, West Virginia, USA


    CSIRO/Parkes Observatory, located 20 kilometres north of the town of Parkes, New South Wales, Australia


    SKA Meerkat telescope, 90 km outside the small Northern Cape town of Carnarvon, SA

    Newly added

    CfA/VERITAS, a major ground-based gamma-ray observatory with an array of four 12m optical reflectors for gamma-ray astronomy in the GeV – TeV energy range. Located at Fred Lawrence Whipple Observatory, Mount Hopkins, Arizona, US in AZ, USA, Altitude 2,606 m (8,550 ft)

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    UCSC Lick Observatory, Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft)

    .

    UCO Lick Shane Telescope
    UCO Lick Shane Telescope interior
    Shane Telescope at UCO Lick Observatory, UCSC

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    UC Santa Cruz campus
    The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
    Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow
    1
    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch) UCSC Lick Nickel telescope

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

    The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.

     
  • richardmitnick 11:43 am on May 15, 2019 Permalink | Reply
    Tags: Cal Teach, , UCSC-UC Santa Cruz   

    From UC Santa Cruz: “NSF grant supports training of math and science teachers at UC Santa Cruz” 

    UC Santa Cruz

    From UC Santa Cruz

    May 13, 2019
    Tim Stephens
    stephens@ucsc.edu

    $1.45 million grant continues NSF support for UCSC’s Cal Teach program, funding an integrated pathway to recruit and train new teachers for the Central Coast region.

    2
    Cal Teach participants at a workshop on active learning strategies.

    UC Santa Cruz has received a $1.45 million grant from the National Science Foundation’s Robert Noyce Teacher Scholarship Program to recruit and prepare new math and science teachers in partnership with regional school districts and community colleges.

    This is the third in a series of five-year NSF grants supporting the UC Santa Cruz Cal Teach program and Education Department in their efforts to increase the number and retention of new, highly qualified science and math teachers in high-need California public schools.

    “The goal for this project is to strengthen the regional pipeline that supports students who are interested in math and science teaching careers,” said Cal Teach Program Director Gretchen Andreasen.

    The Cal Teach program serves UCSC undergraduates in science, mathematics, or engineering majors, as well as prospective transfer students from regional community colleges, who are interested in teaching careers. The program offers a sequence of internship placements in schools during the academic year, as well as summer teaching internships.

    Cal Teach workshops and seminars help to support students and prepare them for teaching careers. The program also provides academic and career advising, enrichment opportunities, and financial support for prospective or novice science and math teachers. In addition to serving undergraduates, the program welcomes STEM professionals who want to explore teaching careers.

    Much of the funding from the Noyce program grant will go toward scholarships for Cal Teach participants to enter the combined M.A./teaching credential program offered by the UC Santa Cruz Education Department.

    “The Noyce Scholarships make a big difference for the credential program in terms of maintaining the size and strength of the math and science cohorts,” Andreasen said.

    The NSF grant also funds stipends for interns and their mentors in partner schools and for early-career professional development for graduates of the program. About 30 percent of Cal Teach participants go on to careers in teaching, Andreasen said.

    “Cal Teach provided me the opportunity to see myself in multiple classroom settings as I considered a career in education,” said Noyce Scholar Madeleine Swift. “From my internships, I knew I wanted to be an educator.”

    UCSC’s community college partners in this project are Hartnell College, Cabrillo College, and San Jose City College. The five school district partners are Gonzales Unified, Salinas Union High School, Pajaro Valley Unified, Santa Cruz City Schools, and East Side Union High School District.

    By recruiting participants from regional community colleges, the Cal Teach program aims to support prospective math and science teachers who are likely to remain in the area and teach in the partner school districts. Dozens of the program’s graduates are now teaching at schools in the Monterey Bay, Salinas Valley, and San Jose regions.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    UCSC Lick Observatory, Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft)

    .

    UCO Lick Shane Telescope
    UCO Lick Shane Telescope interior
    Shane Telescope at UCO Lick Observatory, UCSC

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    UC Santa Cruz campus
    The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
    Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow
    1
    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch) UCSC Lick Nickel telescope

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

    The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.

     
  • richardmitnick 3:03 pm on May 3, 2019 Permalink | Reply
    Tags: , , , UCSC-UC Santa Cruz   

    From UC Santa Cruz: “Microscope expert develops powerful new tools for biologists” 

    UC Santa Cruz

    From UC Santa Cruz

    May 01, 2019
    Tim Stephens
    stephens@ucsc.edu

    With Sara Abrahamsson’s arrival in the Baskin School of Engineering, UC Santa Cruz is becoming a hotbed of advanced microscopy and microscope development.

    1
    Sara Abrahamsson at the nanofabrication facility where her team makes their custom-designed optics components. (Photo by Gustav Pettersson)

    For biologists, the golden age of microscopy is now. Powerful techniques developed in recent decades enable scientists to study living cells in unprecedented detail, and new techniques continue to push the limits of light microscopes.

    Sara Abrahamsson, an assistant professor of electrical and computer engineering at UC Santa Cruz, is at the forefront of innovations in optical microscopy. She invented a technique called aberration-corrected multi-focus microscopy (MFM), which enables 3-dimensional imaging of living cells. More recently (in 2017), she showed that MFM can be combined with another technique, called structured illumination microscopy (SIM), that provides “super-resolution” beyond the classical limits of light microscopes.

    2
    The aberration-corrected multi-focus microscopy (MFM) technology developed by Abrahamsson requires custom-made diffractive gratings. (Photo by Carolyn Lagattuta)

    “The 2017 paper [BOE] was a proof-of-concept study. Now we want to build the microscope and show that it works for 3-D imaging of living cells with super-resolution,” said Abrahamsson, who won a $700,000 major research instrumentation grant from the National Science Foundation to fund the project.

    Her collaborators in the Department of Molecular, Cell, and Developmental (MCD) Biology are thrilled to be working with Abrahamsson. “Sara is a uniquely talented inventor of microscopes,” said Grant Hartzog, professor of MCD biology.

    Hartzog is one of several UCSC biologists who will be using Abrahamsson’s optical technology to study chromatin (the complex of DNA, RNA, and proteins that forms chromosomes) in the cells of various organisms. He explained that Abrahamsson’s MFM technique improves on the widely used technology of confocal microscopy. A confocal microscope blocks out-of-focus light to obtain sharp images of thin sections at different depths in a sample.

    “You can take multiple slices and build up a 3-D image. The problem is the time that elapses between each image when you’re taking multiple slices of a living cell. Because the components of the cell are in constant motion, the resulting image is blurry,” Hartzog said. “Sara figured out how to focus the light so you can collect all the slices in one shot for an instant 3-D image. That’s really important for imaging living cells.”

    UCSC Microscopy Center

    Abrahamsson’s lab has already built one multi-focus microscope and installed it in the UCSC Life Sciences Microscopy Center, where Hartzog and others have started using it and optimizing their techniques. A SIM system currently under construction will add super-resolution capabilities to the multi-focus microscope.

    3
    The M25 multi-focus microscope uses separate cameras to capture images from 25 focal planes at different depths in a sample. (Photo by Eduardo Hirata)

    Super-resolution is important because the dimensions of the structures of interest to the biologists are so small. The resolution of a light microscope is limited by the wavelengths of visible light to about 200 nanometers. Chromatin structures are much smaller than that, on the order of 10 to 30 nanometers in diameter.

    But scientists have developed ways to get past the classical limits of optical microscopy. Structured illumination microscopy is one of several super-resolution techniques that have been developed, with the first practical implementations appearing in the 1990s. By combining multi-focus and structured illumination microscopy, Abrahamsson’s lab is pushing the technology to the limit in terms of both speed and spatial resolution.

    Meanwhile, Abrahamsson’s graduate student Eduardo Hirata-Miyasaki has developed an extended version of MFM, called the M25, which increases the number of focal planes (or “slices”) from nine to 25 and uses separate cameras to capture the images from each focal plane. This instrument does not have super-resolution capability, but is super-fast. It can record live 3-D volumes at more than 100 frames per second and is designed for functional imaging of living neural circuits of the brain and spinal cord.

    “Thanks to the advances in CMOS sensor technology, we can improve the optical design of the MFM system to create a fast and sensitive method for live 3-D imaging,” said Hirata, who presented the new system at a recent Focus on Microscopy conference in London.

    Custom-designed optics

    The MF-SIM microscope requires building and combining two highly specialized, custom-designed optical systems. Abrahamsson’s team designs and fabricates their own optics components, using a nanofabrication facility at UC Santa Barbara to make the diffractive gratings needed for multi-focus microscopy.

    Hirata explained that the diffractive gratings can be easily customized depending on the region of interest and the target depth of the sample. “The M25 images simultaneously at 25 different depths, and we can vary the separation between those focal planes. Having more focal planes allows us to image greater volumes with higher resolutions,” he said.

    The biologists working with Abrahamsson’s lab are using a range of different organisms in their research. Hartzog and Hinrich Boeger study the effects of chromatin packaging on RNA transcription in yeast cells; Needhi Bhalla studies chromosome dynamics during cell division in C. elegans worms; and William Sullivan studies what happens to damaged chromosomes in fruit flies.

    Abrahamsson did some of her early work at the Advanced Imaging Center at HHMI’s Janelia Research Campus in Ashburn, Virginia, and one of Sullivan’s students went there last year to use their specialized systems. The results only reinforced the need for Abrahamsson’s MF-SIM technology.

    “We’re looking at what happens when a chromosome is broken, which can lead to cancerous cells,” said Sullivan, a professor of MCD biology. “We want to follow this in real time in three dimensions, but we haven’t been able to do that. What Sara’s doing is really pretty ground-breaking.”

    Having the microscopy experts here on campus makes a big difference, he added.

    “There’s always a lot of back and forth, the biologists talking to the engineers to figure out how to get the end result we want,” Sullivan said. “Being able to just take our samples downstairs, instead of traveling to Janelia with live flies, we can make much faster progress.”

    Abrahamsson’s expertise in optics is in high demand, and she is developing and teaching new courses in optics and microscopy for students at UC Santa Cruz. She is also starting a project with researchers at NASA’s Jet Propulsion Laboratory working on a planned space probe. In all these projects, Abrahamsson is excited not only about the new technology, but also about what scientists will be able to learn with it.

    “I can’t wait to see my collaborators take the first data set of living cells on the MF-SIM that we are building. Who knows what they are going to be able to discover with it?” she said.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    UCSC Lick Observatory, Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft)

    .

    UCO Lick Shane Telescope
    UCO Lick Shane Telescope interior
    Shane Telescope at UCO Lick Observatory, UCSC

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    UC Santa Cruz campus
    The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
    Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow
    1
    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch) UCSC Lick Nickel telescope

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

    The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.

     
  • richardmitnick 2:44 pm on May 3, 2019 Permalink | Reply
    Tags: , , , , Sandra Faber receives American Philosophical Society's Magellanic Premium Medal, UCSC-UC Santa Cruz   

    From UC Santa Cruz: “Sandra Faber receives American Philosophical Society’s Magellanic Premium Medal” 

    UC Santa Cruz

    From UC Santa Cruz

    April 29, 2019
    Tim Stephens
    stephens@ucsc.edu

    Faber was honored for her transformative research on galaxy formation and evolution.

    1
    Sandra Faber

    The American Philosophical Society awarded its 2018 Magellanic Premium Medal to astronomer Sandra Faber at a meeting of the society in Philadelphia on April 26.

    Faber, a professor emeritus of astronomy and astrophysics at UC Santa Cruz, was recognized “for her contributions to the study of galaxy formation and evolution, which have transformed our understanding of these building blocks of the Universe and set the agenda for years to come. From the discovery of the Faber-Jackson relation to her fundamental contributions to the cold dark matter theory of galaxy formation, she has made galaxy formation and evolution a quantitative science.”

    Faber has been one of the leading optical astronomers since the 1970s, and her contributions have changed the study of galaxies from a qualitative to a quantitative science. Her observations and analysis showed the quantitative relations among mass, size, velocity dispersion, stellar populations, and resident black holes in the massive elliptical galaxies that are the bedrock of extragalactic astronomy. Among the earliest observers to recognize the prevalence and importance of dark matter, she also was among the earliest to note how feedback from supernova winds would alter the evolution of galaxies. Her numerous prescient contributions form the basis on which modern understanding of galaxy evolution now stands.

    Faber has received many awards and honors for her work, including the National Medal of Science in 2013. She was elected a member of the American Philosophical Society in 2001.

    The Magellanic Premium Medal was established in 1786 from a gift of 200 guineas by John Hyacinth de Magellan of London, “for a gold medal to be awarded from time to time under prescribed terms, to the author of the best discovery or most useful invention relating to navigation, astronomy, or natural philosophy (mere natural history only excepted).” First awarded in 1790, it is the oldest medal recognizing scientific achievements given by a North American institution.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    UCSC Lick Observatory, Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft)

    .

    UCO Lick Shane Telescope
    UCO Lick Shane Telescope interior
    Shane Telescope at UCO Lick Observatory, UCSC

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    UC Santa Cruz campus
    The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
    Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow
    1
    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch) UCSC Lick Nickel telescope

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

    The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.

     
  • richardmitnick 10:40 am on May 2, 2019 Permalink | Reply
    Tags: , , , , Hubble Legacy Field. Image contains 265000 galaxies that stretch billions of years back in time., , UCSC-UC Santa Cruz, University of Connecticut,   

    From NASA/ESA Hubble Telescope : “Hubble Astronomers Assemble Wide View of the Evolving Universe” 

    NASA Hubble Banner

    NASA/ESA Hubble Telescope


    From NASA/ESA Hubble Telescope

    May 2, 2019
    Donna Weaver
    Space Telescope Science Institute, Baltimore, Maryland
    410-338-4493
    dweaver@stsci.edu

    Ray Villard
    Space Telescope Science Institute, Baltimore, Maryland
    410-338-4514
    villard@stsci.edu

    Garth Illingworth
    University of California, Santa Cruz; UCO/Lick Observatory, Santa Cruz, California
    831-459-2843
    gdi@ucolick.org

    Bethany Downer
    ESA/Hubble, Public Information Officer
    Garching, Germany
    Email: bethany.downer@partner.eso.org

    Team led by UC Santa Cruz astronomer Garth Illingworth used 16 years of Hubble Space Telescope observations to create a new portrait of the distant universe.

    1
    Hubble Legacy Field. Image contains 265,000 galaxies that stretch billions of years back in time. Image credit: NASA, ESA, G. Illingworth and D. Magee (University of California, Santa Cruz), K. Whitaker (University of Conneticut), R. Bouwens (Leiden University), P. Oesch (University of Geneva), and the Hubble Legacy Field Team.

    Astronomers have put together the largest and most comprehensive “history book” of galaxies into one single image, using 16 years’ worth of observations from NASA’s Hubble Space Telescope.

    The deep-sky mosaic, created from nearly 7,500 individual exposures, provides a wide portrait of the distant universe, containing 265,000 galaxies that stretch back through 13.3 billion years of time to just 500 million years after the big bang. The faintest and farthest galaxies are just one ten-billionth the brightness of what the human eye can see. The universe’s evolutionary history is also chronicled in this one sweeping view. The portrait shows how galaxies change over time, building themselves up to become the giant galaxies seen in the nearby universe.

    This ambitious endeavor, called the Hubble Legacy Field, also combines observations taken by several Hubble deep-field surveys, including the eXtreme Deep Field (XDF), the deepest view of the universe. The wavelength range stretches from ultraviolet to near-infrared light, capturing the key features of galaxy assembly over time.

    “Now that we have gone wider than in previous surveys, we are harvesting many more distant galaxies in the largest such dataset ever produced by Hubble,” said Garth Illingworth of the University of California, Santa Cruz, leader of the team that assembled the image.

    UCSC Lick Observatory, Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft)

    “This one image contains the full history of the growth of galaxies in the universe, from their time as ‘infants’ to when they grew into fully-fledged ‘adults.’

    2
    This graphic shows close-up images of 15 galaxies from the 265,000 galaxies in the Hubble Legacy Field. The galaxies are scattered across time, from 550 million years ago to 13 billion years ago. The top panel of snapshots shows mature “adult” galaxies; the middle panel shows galaxies in their “teenage” years when they are growing and changing dramatically; and the bottom panel shows small, youthful galaxies. [Credits: NASA, ESA, G. Illingworth and D. Magee (University of California, Santa Cruz), K. Whitaker (University of Connecticut), R. Bouwens (Leiden University), P. Oesch (University of Geneva), and the Hubble Legacy Field team] (This image was obtained from https://news.ucsc.edu/2019/05/hubble-legacy-field.html)

    No image will surpass this one until future space telescopes are launched. “We’ve put together this mosaic as a tool to be used by us and by other astronomers,” Illingworth added. “The expectation is that this survey will lead to an even more coherent, in-depth, and greater understanding of the universe’s evolution in the coming years.”

    The image yields a huge catalog of distant galaxies. “Such exquisite high-resolution measurements of the numerous galaxies in this catalog enable a wide swath of extragalactic study,” said catalog lead researcher Katherine Whitaker of the University of Connecticut, in Storrs. “Often, these kinds of surveys have yielded unanticipated discoveries which have had the greatest impact on our understanding of galaxy evolution.”

    Galaxies are the “markers of space,” as astronomer Edwin Hubble once described them a century ago. Galaxies allow astronomers to trace the expansion of the universe, offer clues to the underlying physics of the cosmos, show when the chemical elements originated, and enable the conditions that eventually led to the appearance of our solar system and life.

    Edwin Hubble looking through a 100-inch Hooker telescope at Mount Wilson in Southern California, 1929 discovers the Universe is Expanding

    This wider view contains about 30 times as many galaxies as in the previous deep fields. The new portrait, a mosaic of multiple snapshots, covers almost the width of the full Moon. The XDF, which penetrated deeper into space than this wider view, lies in this region, but it covers less than one-tenth of the full Moon’s diameter. The Legacy Field also uncovers a zoo of unusual objects. Many of them are the remnants of galactic “train wrecks,” a time in the early universe when small, young galaxies collided and merged with other galaxies.

    Assembling all of the observations was an immense task. The image comprises the collective work of 31 Hubble programs by different teams of astronomers. Hubble has spent more time on this tiny area than on any other region of the sky, totaling more than 250 days, representing nearly three-quarters of a year.

    “Our goal was to assemble all 16 years of exposures into a legacy image,” explained Dan Magee, of the University of California, Santa Cruz, the team’s data processing lead. “Previously, most of these exposures had not been put together in a consistent way that can be used by any researcher. Astronomers can select the data in the Legacy Field they want and work with it immediately, as opposed to having to perform a huge amount of data reduction before conducting scientific analysis.”

    The image, along with the individual exposures that make up the new view, is available to the worldwide astronomical community through the Mikulski Archive for Space Telescopes (MAST). MAST, an online database of astronomical data from Hubble and other NASA missions, is located at the Space Telescope Science Institute in Baltimore, Maryland.

    The Hubble Space Telescope has come a long way in taking ever deeper “core samples” of the distant universe. After Hubble’s launch in 1990, astronomers debated if it was worth spending a chunk of the telescope’s time to go on a “fishing expedition” to take a very long exposure of a small, seemingly blank piece of sky. The resulting Hubble Deep Field image in 1995 captured several thousand unseen galaxies in one pointing. The bold effort was a landmark demonstration and a defining proof-of-concept that set the stage for future deep field images. In 2002, Hubble’s Advanced Camera for Surveys went even deeper to uncover 10,000 galaxies in a single snapshot.

    NASA Hubble Advanced Camera forSurveys

    Astronomers used exposures taken by Hubble’s Wide Field Camera 3 (WFC3), installed in 2009, to assemble the eXtreme Deep Field snapshot in 2012.

    NASA/ESA Hubble WFC3

    Unlike previous Hubble cameras, the telescope’s WFC3 covers a broader wavelength range, from ultraviolet to near-infrared.

    This new image mosaic is the first in a series of Hubble Legacy Field images. The team is working on a second set of images, totaling more than 5,200 Hubble exposures, in another area of the sky. In the future, astronomers hope to broaden the multiwavelength range in the legacy images to include longer-wavelength infrared data and high-energy X-ray observations from two other NASA Great Observatories, the Spitzer Space Telescope and Chandra X-ray Observatory.

    NASA/Spitzer Infrared Telescope

    NASA/Chandra X-ray Telescope

    The vast number of galaxies in the Legacy Field image are also prime targets for future telescopes. “This will really set the stage for NASA’s planned Wide Field Infrared Survey Telescope (WFIRST),” Illingworth said.

    NASA/WFIRST

    “The Legacy Field is a pathfinder for WFIRST, which will capture an image that is 100 times larger than a typical Hubble photo. In just three weeks’ worth of observations by WFIRST, astronomers will be able to assemble a field that is much deeper and more than twice as large as the Hubble Legacy Field.”

    In addition, NASA’s upcoming James Webb Space Telescope will allow astronomers to push much deeper into the legacy field to reveal how the infant galaxies actually grew.

    NASA/ESA/CSA Webb Telescope annotated

    Webb’s infrared coverage will go beyond the limits of Hubble and Spitzer to help astronomers identify the first galaxies in the universe.

    For more information about the Hubble Legacy Field and Hubble telescope, visit http://www.nasa.gov/hubble.

    See the full HubbleSite article here .
    See the full ESA/Hubble article here .
    See the full UCSC article here .

    Related Links
    This site is not responsible for content found on external links

    NASA’s Hubble Portal
    Mikulski Archive for Space Telescopes (MAST)
    Hubble Legacy Field (HLF) in MAST
    University of Connecticut’s Release
    Yale University’s Release


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI), is a free-standing science center, located on the campus of The Johns Hopkins University and operated by the Association of Universities for Research in Astronomy (AURA) for NASA, conducts Hubble science operations.

    ESA50 Logo large

    AURA Icon

     
  • richardmitnick 9:00 am on March 29, 2019 Permalink | Reply
    Tags: 51 Pegasi b Fellowship, , , , , UCSC-UC Santa Cruz, , Xinting Yu   

    From UC Santa Cruz: Women in STEM-“Postdoctoral fellowship supports planetary science research” Xinting Yu 

    UC Santa Cruz

    From UC Santa Cruz

    March 27, 2019
    Tim Stephens
    stephens@ucsc.edu

    1
    Xinting Yu

    Xinting Yu wins 51 Pegasi b Fellowship for research at UC Santa Cruz on formation of clouds and hazes on exoplanets.

    The Heising-Simons Foundation has awarded a 51 Pegasi b Fellowship to Xinting Yu to support her postdoctoral research in planetary sciences at UC Santa Cruz starting in fall 2019.

    Established in 2017, the Heising-Simons Foundation 51 Pegasi b Fellowship is named for the first exoplanet discovered orbiting a sun-like star. The fellowship provides up to $375,000 of support for independent research over three years, as well as other benefits including an annual summit to develop professional networks, exchange information and ideas, and foster collaboration.

    In her research at UC Santa Cruz, Yu plans to explore how clouds, hazes, fog, dust, and other matter interact with different wavelengths of light, and how these relationships impact the signals we receive from exoplanets.

    Yu said she is intrigued by the abundant “super-Earths” and “mini-Neptunes” detected by the Kepler space mission. Since these exoplanets are completely unlike anything found in our own solar system, uncovering new information can contribute to a greater understanding of a large and diverse class of objects in the galaxy. As an experimentalist, she aims to generate a more realistic portrait of these exoplanets by expanding upon her research on Titan, Saturn’s largest moon, and reproducing organic particles in exoplanet atmospheres through lab simulations.

    “My goal is to create more self-consistent models of clouds and hazes so we can get realistic simulations of what’s happening on exoplanets,” said Yu, who is currently completing her Ph.D. in planetary science at Johns Hopkins University.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    UCSC Lick Observatory, Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft)

    .

    UCO Lick Shane Telescope
    UCO Lick Shane Telescope interior
    Shane Telescope at UCO Lick Observatory, UCSC

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    UC Santa Cruz campus
    The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
    Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow
    1
    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch) UCSC Lick Nickel telescope

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

    The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.

     
  • richardmitnick 11:53 am on March 9, 2019 Permalink | Reply
    Tags: Advances in artificial intelligence also make government policy changes necessary she said. She plans to set up a think tank centered on issues around AI., Amita Kuttner, Amita Kuttner is a Green Party candidate for a seat in Canada’s House of Commons, Amita Kuttner was away at boarding school in 2005 when the mudslide hit her parents’ home outside of Vancouver Canada., “But when I felt powerless to do anything I thought ‘I can’t stand this. I can’t see something unjust and not want to change it.’”, “I love to do astrophysics” she said “but right now we have to save the planet so that we can do astrophysics.”, “I was sitting in my adviser’s office crying because I felt so powerless and never before then had I ever wanted power” she said., “The climate of the university is such that we are encouraged to not take the world for what it is but to challenge the status quo” she said., “The intention is bigger than the means” she said. “In the end it doesn’t matter how things get accomplished. I’ll just try another way.”, Donald Trump was elected president and she felt she could no longer focus only on her science., Her father survived but suffered permanent brain injuries according to Kuttner, Her platform includes a push to have municipalities prepare better for disasters and to strengthen social safety nets for people whose jobs are eliminated because of automation, Her time at UC Santa Cruz not only led her to a study of black holes which is the focus of her thesis but also birthed her activism., Kuttner is a Ph.D. student in astrophysics at UC Santa Cruz, Kuttner led the Women in Physics and Astronomy group on campus, Kuttner said her campaign is very people centered., Kuttner said she has been fascinated by the universe and the nature of time since she was a young girl, Kuttner wants to establish a guaranteed livable income and to create policy to deal with the changes coming because of leaps in artificial intelligence technology, She pointed herself toward the sciences early on, The disaster left her with post-traumatic stress disorder anxiety and depression., Tons of rocks soil and trees swept through her parent’s hillside house killing Kuttner’s mother Eliza while she slept and tossing her father Michael who was in the bathtub into the maelstrom., UCSC-UC Santa Cruz, Whether she wins the election or not Kuttner said she will continue to work on these issues., , Yet she graduated from high school and eventually landed at UC Santa Cruz where she completed her bachelor’s degree in physics in 2013 and received a master’s in 2016.   

    From UC Santa Cruz: Women in STEM-“Leading the charge for change” Amita Kuttner 

    UC Santa Cruz

    From UC Santa Cruz

    March 08, 2019
    Peggy Townsend
    gwenj@ucsc.edu

    Alumna Amita Kuttner, a current graduate student in astrophysics, is running as a Green Party candidate for a seat in Canada’s House of Commons in order to make policy around climate change—a quest sparked by a devastating loss.

    1
    Alumna Amita Kuttner, current Astrophysics graduate student & Green Party candidate for a seat in Canada’s House of Commons.

    Amita Kuttner was away at boarding school in 2005 when the mudslide hit her parents’ home outside of Vancouver, Canada.

    Tons of rocks, soil, and trees swept through her parent’s hillside house, killing Kuttner’s mother, Eliza, while she slept and tossing her father, Michael, who was in the bathtub, into the maelstrom. He survived but suffered permanent brain injuries, according to Kuttner.

    The slide came after several days of extreme rain, and while Kuttner, a Ph.D. student in astrophysics at UC Santa Cruz, said she can’t specifically blame the disaster on climate change, she’s seen the devastating effects of recent wildfires, hurricanes, and floods that have been sparked by the Earth’s warming. She couldn’t just sit by, she said.

    Today, Kuttner, 28, is not only finishing her Ph.D. thesis but also running as a Green Party candidate for a seat in Canada’s 338-member House of Commons in order to help make policy for the changes we are facing.

    Her platform includes a push to have municipalities prepare better for disasters, to strengthen social safety nets for people whose jobs are eliminated because of automation, to establish a guaranteed livable income, and to create policy to deal with the changes coming because of leaps in artificial intelligence technology.

    “I love to do astrophysics,” she said by telephone from her home in a suburb of Vancouver, “but right now we have to save the planet so that we can do astrophysics.”

    Kuttner said she has been fascinated by the universe and the nature of time since she was a young girl and that she pointed herself toward the sciences early on. She was 14 and attending the private Mount Madonna School in the hills above Watsonville, Calif., when the slide struck her home. If she hadn’t been away at boarding school, she said, she would most likely have become another victim of the slide.

    The disaster left her with post-traumatic stress disorder, anxiety, and depression, she said. Yet, she graduated from high school and eventually landed at UC Santa Cruz, where she completed her bachelor’s degree in physics in 2013 and received a master’s in 2016.

    According to the College Nine grad, her time at UC Santa Cruz not only led her to a study of black holes, which is the focus of her thesis, but also birthed her activism.

    “The climate of the university is such that we are encouraged to not take the world for what it is but to challenge the status quo,” she said.

    Kuttner led the Women in Physics and Astronomy group on campus; learned about pushing back against outdated institutional policy; and spent hours in conversation with her adviser, Professor of Physics Anthony Aguirre, on big-picture topics that ranged from climate change to artificial intelligence. Aguirre is also associate director of the Foundational Questions Institute.

    Then, according to her, Donald Trump was elected president and she felt she could no longer focus only on her science.

    “I was sitting in my adviser’s office, crying because I felt so powerless, and never before then had I ever wanted power,” she said. “But when I felt powerless to do anything I thought, ‘I can’t stand this. I can’t see something unjust and not want to change it.’”

    Kuttner went north to work on her Ph.D. and announce her Green Party candidacy. She will defend her thesis in May. The election is Oct. 21.

    “It’s very easy to feel hopeless about the magnitude of the problems we face and how much we’re heading in the wrong direction,” Aguirre said. “But if you give in to that despair there’s no way those problems will be solved. Amita has taken that truth to heart, and chosen to be motivated rather than devastated. That’s a wonderful thing to see and gives me hope as well.”

    Kuttner said her campaign is very people centered. She believes that municipalities need to better prepare for the extreme weather that is coming by making sure people are ready, that communities can be resilient. She also believes government must address the root causes of people’s inability to make a decent living and also provide a guaranteed livable income, especially as jobs are lost because of automation.

    Advances in artificial intelligence also make government policy changes necessary, she said. She plans to set up a think tank centered on issues around AI.

    But whether she wins the election or not, Kuttner said, she will continue to work on these issues.

    “The intention is bigger than the means,” she said. “In the end, it doesn’t matter how things get accomplished. I’ll just try another way.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    UCSC Lick Observatory, Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft)

    .

    UCO Lick Shane Telescope
    UCO Lick Shane Telescope interior
    Shane Telescope at UCO Lick Observatory, UCSC

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    UC Santa Cruz campus
    The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
    Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow
    1
    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch) UCSC Lick Nickel telescope

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

    The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: