Tagged: UCSC Lick Observatory Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 3:23 pm on December 4, 2018 Permalink | Reply
    Tags: Adaptive Optics laser guide star, , , , , , UCSC Lick Observatory   

    From Lawrence Livermore National Laboratory: “Guide star leads to sharper astronomical images” 

    From Lawrence Livermore National Laboratory

    Dec. 4, 2018
    Breanna Bishop
    bishop33@llnl.gov
    925-423-9802

    The laser guide star revolutionized astronomy by revealing large swaths of the sky that had previously been unseen from Earth due to atmospheric distortions. Now astronomy is on the verge of another great leap forward. The Extremely Large Telescope, which is expected to see first light in 2024, will have a 39-meter-diameter primary mirror — more than three times the size of today’s largest ground-based telescopes.

    Glistening against the awesome backdrop of the night sky above ESO_s Paranal Observatory, four laser beams project out into the darkness from Unit Telescope 4 UT4 of the VLT.

    ESO/E-ELT,to be on top of Cerro Armazones in the Atacama Desert of northern Chile. located at the summit of the mountain at an altitude of 3,060 metres (10,040 ft).

    These next-generation telescopes require even more advanced optics to continue delivering clear images of distant stars, planets and interstellar space. To help answer that call, Lawrence Livermore National Laboratory’s (LLNL) National Ignition Facility and Photon Science (NIF&PS) directorate has delivered a first-of-its-kind, high-power, fiber-based sodium laser guide star to the University of California, Santa Cruz (UCSC).

    3
    The Lick Observatory’s Laser Guide Star at the Shane telescope forms a beam of glowing atmospheric sodium ions. This helps astronomers account for distortions caused by the Earth’s atmosphere so they can see farther and more clearly into space. Credit: Laurie Hatch/lauriehatch.com

    “This fiber-based sodium laser guide star is a significant advance for adaptive optics,” said Daren Dillon, a development engineer at UCSC. “We expect it to operate five to 10 times more efficiently than the state-of-the-art dye-based sodium laser guide stars we use at our observatories now. This will enable our adaptive optics to produce much sharper images.”

    Adapting fiber laser to a guide star

    The project has roots in LLNL’s long history of laser development. Claire Max, a UCSC astronomy professor and director of UC observatories, was a physicist at LLNL from 1974 to 2004. She co-authored the original paper proposing sodium guide star lasers for wavefront correction. In the early 1990s, she demonstrated the first high-power sodium laser guide star from technology developed in LLNL’s Atomic Vapor Laser Isotope Separation program. Max was the driving force for integrating sodium guide star laser systems into the astronomical community worldwide.

    To the naked eye, stars appear to twinkle. This is not through any action on the part of the celestial objects, but rather due to atmospheric turbulence — the turbulent mixing of Earth’s atmosphere — that the light rays pass through on their long journey to the eyes of night watchers.

    The sodium laser guide star creates an artificial star by shooting a laser into the sodium layer of the atmosphere, about 90 kilometers up. At a wavelength of 589 nanometers (billionths of a meter), the laser excites the sodium, which fluoresces in return. An artificial star is born.

    This star provides a reference point for an advanced optics system, which uses it to inform a computer-controlled deformable mirror that cancels out the effects of atmospheric turbulence to create a sharp image.

    The first generation of sodium laser guide stars, deployed at the Lick Observatory in Northern California and the Keck Observatory in Hawaii, were dye lasers that served the astronomy community for more than 15 years.

    UCO Keck Laser Guide Star Adaptive Optics

    Their size, weight and power and cooling requirements, however, made them difficult to incorporate with the telescopes, and they utilized flammable materials, which also are undesirable in an observatory setting.

    About 15 years ago, Max made a request of her LLNL colleagues.

    Efficient, compact and rugged

    “She asked us for a solid-state guide star laser that was compact and reliable,” explained Dee Pennington, one of the principal investigators on the project. “We considered several options and settled on a fiber laser because they are efficient, compact and rugged.”

    A fiber laser typically is constructed with an optical fiber doped with rare-earth elements such as erbium, ytterbium and neodymium. These lasers have unmatched beam quality, efficiency, thermal management and reliability as well as lower cost of ownership.

    The project was first funded by Livermore’s Laboratory Directed Research and Development program and later by grants from the National Science Foundation Center for Adaptive Optics, which Max directed, the Association of Universities for Research in Astronomy and the European Southern Observatory.

    At the project’s inception more than 15 years ago, fiber lasers were still an emerging technology. None existed at the 589-nanometer (nm) wavelength needed to interrogate the sodium layer.

    Developing this fiber laser with UCSC meant the researchers had to invent technology. “We had to learn how to cool a fiber laser,” said LLNL materials scientist Steve Payne, another researcher on the project. “If you’re first out of the box, you have to figure everything out on your own.”

    3
    Graham Allen (LLNL), Don Gavel (UCSC), Jay Dawson (LLNL) and Daren Dillon (UCSC) celebrate a milestone: the fiber-based sodium laser guide star achieved 10 watts of power at LLNL, making it ready for UC Santa Cruz.

    The team achieved 589 nm by combining a 938-nm laser and a 1,583-nm laser within a nonlinear crystal. Power scaling proved to be an even bigger challenge.
    “We were trying to scale two lasers to provide 10 watts of power, the minimum necessary to get enough feedback to inform adaptive optics,” said Jay Dawson, the principal investigator in the later years of this project. Dawson has continued working on fiber laser technology in his current role as the NIF&PS acting deputy program director for DoD Technologies.

    Because of the laser’s specialized application, custom optical fibers needed to be developed. LLNL did this in collaboration with existing specialty optical fiber companies.

    A new fabrication capability

    “However, industry was slow to manufacture the fiber we needed,” Dawson said. “They had little motivation, since few R&D fibers turn into significant commercial sales. We realized that if we wanted to advance fiber laser technology for a wide array of applications, LLNL would need its own fabrication capability.”

    As a result, LLNL built its own 8.2-meter fiber draw tower to fabricate the needed specialized fibers. In addition to meeting this need, the draw tower has been the key to success on other important projects. It enabled development of fiber-optic acoustic sensing fibers and the E-band fiber-optic amplifier, two technologies that are revolutionizing laser sensing and communication.

    Since commissioning the fiber draw tower, LLNL has applied NIF optics cleaning techniques to microstructured optical fibers to improve strength, loss and reliability. LLNL also has developed consolidation and grinding processes to further open the design space for new optical fibers.

    To correct ground-based telescopes with primary mirrors in the 30-meter-diameter range, laser guide stars will be essential. “However, a single guide star laser only can interrogate part of the telescope aperture,” Pennington said. “With the huge apertures we anticipate, it will take multiple guide stars to inform adaptive optics for everything the telescope collects.” But discriminating the feedback from each individual beam creates a challenge.

    “One answer is to use pulsed laser guide stars, which allows discrimination by time,” Pennington said. This was the focus of the LLNL fiber guide star laser program.

    Next stop, Lick Observatory

    UCSC astronomers plan to install the fiber-based sodium laser guide star at the Lick Observatory in the spring of 2019. It will be run alongside the existing dye-based sodium laser guide star.

    “We are pretty excited to see what happens when we integrate this fiber-based sodium laser guide star into our adaptive optics system at Lick,” Dillon said. “We think it will produce more detailed images that allow more precise measurements.”

    This technology transfer to UCSC has been a long time in the making. That journey also reflects the advances in fiber laser technology. “As a community, the progress we’ve made is amazing,” Pennington said.

    -Patricia Koning

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LLNL Campus

    Operated by Lawrence Livermore National Security, LLC, for the Department of Energy’s National Nuclear Security Administration
    Lawrence Livermore National Laboratory (LLNL) is an American federal research facility in Livermore, California, United States, founded by the University of California, Berkeley in 1952. A Federally Funded Research and Development Center (FFRDC), it is primarily funded by the U.S. Department of Energy (DOE) and managed and operated by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel, BWX Technologies, AECOM, and Battelle Memorial Institute in affiliation with the Texas A&M University System. In 2012, the laboratory had the synthetic chemical element livermorium named after it.

    LLNL is self-described as “a premier research and development institution for science and technology applied to national security.” Its principal responsibility is ensuring the safety, security and reliability of the nation’s nuclear weapons through the application of advanced science, engineering and technology. The Laboratory also applies its special expertise and multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness.

    The Laboratory is located on a one-square-mile (2.6 km2) site at the eastern edge of Livermore. It also operates a 7,000 acres (28 km2) remote experimental test site, called Site 300, situated about 15 miles (24 km) southeast of the main lab site. LLNL has an annual budget of about $1.5 billion and a staff of roughly 5,800 employees.

    LLNL was established in 1952 as the University of California Radiation Laboratory at Livermore, an offshoot of the existing UC Radiation Laboratory at Berkeley. It was intended to spur innovation and provide competition to the nuclear weapon design laboratory at Los Alamos in New Mexico, home of the Manhattan Project that developed the first atomic weapons. Edward Teller and Ernest Lawrence,[2] director of the Radiation Laboratory at Berkeley, are regarded as the co-founders of the Livermore facility.

    The new laboratory was sited at a former naval air station of World War II. It was already home to several UC Radiation Laboratory projects that were too large for its location in the Berkeley Hills above the UC campus, including one of the first experiments in the magnetic approach to confined thermonuclear reactions (i.e. fusion). About half an hour southeast of Berkeley, the Livermore site provided much greater security for classified projects than an urban university campus.

    Lawrence tapped 32-year-old Herbert York, a former graduate student of his, to run Livermore. Under York, the Lab had four main programs: Project Sherwood (the magnetic-fusion program), Project Whitney (the weapons-design program), diagnostic weapon experiments (both for the Los Alamos and Livermore laboratories), and a basic physics program. York and the new lab embraced the Lawrence “big science” approach, tackling challenging projects with physicists, chemists, engineers, and computational scientists working together in multidisciplinary teams. Lawrence died in August 1958 and shortly after, the university’s board of regents named both laboratories for him, as the Lawrence Radiation Laboratory.

    Historically, the Berkeley and Livermore laboratories have had very close relationships on research projects, business operations, and staff. The Livermore Lab was established initially as a branch of the Berkeley laboratory. The Livermore lab was not officially severed administratively from the Berkeley lab until 1971. To this day, in official planning documents and records, Lawrence Berkeley National Laboratory is designated as Site 100, Lawrence Livermore National Lab as Site 200, and LLNL’s remote test location as Site 300.[3]

    The laboratory was renamed Lawrence Livermore Laboratory (LLL) in 1971. On October 1, 2007 LLNS assumed management of LLNL from the University of California, which had exclusively managed and operated the Laboratory since its inception 55 years before. The laboratory was honored in 2012 by having the synthetic chemical element livermorium named after it. The LLNS takeover of the laboratory has been controversial. In May 2013, an Alameda County jury awarded over $2.7 million to five former laboratory employees who were among 430 employees LLNS laid off during 2008.[4] The jury found that LLNS breached a contractual obligation to terminate the employees only for “reasonable cause.”[5] The five plaintiffs also have pending age discrimination claims against LLNS, which will be heard by a different jury in a separate trial.[6] There are 125 co-plaintiffs awaiting trial on similar claims against LLNS.[7] The May 2008 layoff was the first layoff at the laboratory in nearly 40 years.[6]

    On March 14, 2011, the City of Livermore officially expanded the city’s boundaries to annex LLNL and move it within the city limits. The unanimous vote by the Livermore city council expanded Livermore’s southeastern boundaries to cover 15 land parcels covering 1,057 acres (4.28 km2) that comprise the LLNL site. The site was formerly an unincorporated area of Alameda County. The LLNL campus continues to be owned by the federal government.

    LLNL/NIF


    DOE Seal
    NNSA

     
  • richardmitnick 7:48 pm on September 15, 2018 Permalink | Reply
    Tags: , , UCSC Lick Observatory, Yuri and Julia Milner   

    From UCSC Lick via Hong Kong Tatler: “Meet The Milners: Written In The Stars” 

    UC Santa Cruz

    From UC Santa Cruz

    via

    2

    Hong Kong Tatlar

    1

    September 15, 2018
    Sean Fitzpatrick

    There were too many uncanny signs in the life of billionaire philanthropist Yuri Milner for him to ignore a childhood calling. We travel to Silicon Valley to meet him and his wife, Julia, and find out about their quest to solve the question: Are we alone?

    There could have been a giant pyramid in California. In the late 1800s, James Lick, a property tycoon who had become California’s richest person, wanted to leave a legacy and took inspiration from Egypt’s pharaohs. The Pyramids of Giza have long sparked the collective imagination, with some experts positing that they were built as afterlife launchpads, designed to send the soul of departed rulers shooting up into the stars.

    And, like a modern-day pharaoh, Lick wanted to be buried inside his creation, perhaps harbouring a hope that his soul would be sent on an eternal voyage through the cosmos. However, Lick was talked out of it by an astronomer friend who suggested that a more philanthropic legacy would be to fund the establishment of a world-class observatory.

    Perched atop San Jose’s Mount Hamilton, the Lick Observatory was officially opened in 1887 and housed what was at the time the world’s largest refracting telescope [see below]. But by then its benefactor had passed away; at the base of the telescope mounting—a thick metal column visible in the images on the previous two spreads—hangs a plaque that reads, “Here lies the body of James Lick.”

    UCSC Lick Observatory, Mt Hamilton, in San Jose, California, Altitude 1,283 m (4,209 ft)

    .

    2
    Photo: Austin Hargrave for Hong Kong Tatler

    The couple in the image above are Yuri and Julia Milner, the modern-day philanthropists who are funding one of the projects at the Lick Observatory. Together they form a striking pair, looking as if they have walked out of the latest X-Men movie, he the gifted mastermind and she the lithe heroine with otherworldly powers.

    The Milners are well known in global tech circles; Yuri’s early investments in Facebook, Twitter, WhatsApp, Spotify, Alibaba and JD, as well as his pioneering role in Russia’s nascent tech industry in the ’90s, have earned him a US$4 billion fortune and a place on numerous published lists of the world’s top tech titans. Through the company he founded, DST Global, Yuri has more recently invested in Meituan and Didi.

    But it is for their philanthropic projects that the Milners are perhaps best known. As founders of the Breakthrough Prize, the couple are committed to supporting science with awards and by raising its profile among the influential as well as the general public.

    Julia and Yuri, a former physicist, have pulled together a formidable network of supporters through regular gatherings at their sprawling Los Altos mansion, private screenings of science-themed movies and, surprisingly, through games of their favoured sport, badminton, which is apparently de rigueur in Silicon Valley circles. The couple take the sport so seriously that they receive training from a Chinese coach who worked with the US Olympic team.

    4
    Photo: Austin Hargrave for Hong Kong Tatler

    5
    Photo: Austin Hargrave for Hong Kong Tatler

    The Breakthrough Prize is co-funded by a who’s who of Silicon Valley: Mark Zuckerberg and Priscilla Chan of Facebook, Google’s Sergey Brin, and Anne Wojcicki, the founder of genome-testing company 23andMe. The most recent addition is Tencent co-founder Pony Ma.

    With this calibre of patronage one would expect sizeable financial incentives and indeed there are: the Breakthrough Prize awards six prizes each year to outstanding scientists—four for work in the life sciences, one for physics and one for mathematics. Each award comes with a cash payment of US$3 million, nearly three times that of a Nobel Prize.

    Since 2012, the prizes have been handed out at a lavish event held in Hangar One, the iconic mid-century modern structure in Silicon Valley, which is televised live around the world. Hollywood stars, wrangled by Julia, and tech entrepreneurs, wrangled by Yuri, share the stage with boffins in what is often called the Oscars of science.

    Says Julia, “Who are today’s superstars? Hollywood actors, athletes, Instagram bloggers. Scientists are completely unknown to most people. We wanted—to put it very literally—to make them celebrities too, and in this way popularise science.”

    “If celebrity is the measure of our priorities as a civilisation, then we need science to be more represented because science should be one of the main priorities, if not the priority,” adds Yuri. “And celebrities are now the ones talking to hundreds of millions of people. If we don’t have scientists represented, then their message will get lost. And if their message is lost, there’ll be no public support for science.”

    But the Milners’ efforts to raise awareness are working. In 2015, the foundation created the Breakthrough Junior Challenge for teenagers with the winner receiving a US$250,000 university scholarship, US$50,000 for the teacher who inspired them and a US$100,000 upgrade for their school’s science lab.

    The inaugural recipient, a Cleveland-based 18-year-old named Ryan Chester, was honoured by his hometown in an unexpected way: “The mayor issued a decree for a day of the year to be named after Ryan, to celebrate science. That’s the type of thing we’re looking for. The word spreads,” explains Yuri. “We would like the next generation, the young people to watch this ceremony. And now we are thinking of branching out with a dedicated prize for high-school kids in China.”

    Aside from the Breakthrough Prize, the Milners’ foundation also supports Breakthrough Initiatives, highly ambitious projects designed to help find the answer to what they believe is the most profound question of our time: Are we alone in the universe? It is a question that has fascinated Yuri since childhood.

    Born in Moscow in 1961 to Jewish intellectuals, Yuri—who was named after Yuri Gagarin, the Russian cosmonaut who that same year became the first man in space—reaped the benefit of a well-stocked home library from a young age, “even before I went to school.” His favourite book and the one that inspired his lifelong fascination was Universe, Life, Intelligence, a seminal text by a Soviet astronomer, Iosif Samuilovich Shklovsky. (The book also caught the attention of US astronomer Carl Sagan, who published an English-language edition; Sagan later gained global fame with the TV show Cosmos.)

    Carl Sagan NASA/JPL

    6
    Photo: Austin Hargrave for Hong Kong Tatler

    Yuri’s passion led him to study theoretical physics at Moscow State University and then work as a physicist alongside Nobel Prize winners. Despite his passion, Yuri felt his contributions to the field were limited and he decided to change tack. In 1990, he took an MBA course at the University of Pennsylvania’s Wharton School, becoming the first non-emigre from the Soviet Union to do so. By the time the decade (and millennium) came to close, Yuri had shifted his focus completely onto the internet.

    It was during this period that he found himself at a Moscow gym, standing on a treadmill next to a tall, striking model by the name of Julia Bochkova from Siberia’s capital, Novosibirsk. The two clicked immediately, perhaps in part because she was undergoing a career change of her own.

    Since the age of 14, when she was scouted by an agency, Julia had travelled extensively, dividing her time between the world’s fashion centres, New York, Paris and Tokyo. “Then at about 20 years old I decided to stop my modelling career. Since I had made some money, I could leave and plan what to do next. So I lived in Moscow, where Yuri advised me to study photography,” she says.

    The advice proved to be sound: Julia’s successful studies and apprenticeships under notable artists culminated in her own exhibitions around the world and, in 2007, Julia was invited to participate in the prestigious Venice Biennale, where she was the youngest artist.

    For the show, Julia created an unusual work, one of the first “internet art” installations, Click I Hope, which displays “I hope” in 50 languages on a giant touch screen as well as the internet. As the words glide across the screen, viewers are encouraged to touch the ones in their own language, triggering a live tallied score.

    Although conceived before the Milners’ foundation, the work somehow pre-empts the sense of relentless hopefulness that imbues the Breakthrough Initiatives and the vastness of the search for life in the cosmos.

    For a couple whose work is mired so heavily in science’s immutable axioms of rationality and reason, a series of uncanny coincidences has occurred. When the couple relocated from Tel Aviv to Silicon Valley with their children in 2011, they bought a US$100 million mansion on a hilltop in Los Altos.

    The mansion boasts state-of-the-art technology, including a video-screen ceiling (which typically displays dramatic scenes of supernovas) as well as giant TVs in every room showing Nat Geo or Discovery, the preferred channels of the notoriously sleep-averse Yuri.

    But unbeknown to the couple at the time of purchase, the house played a historic role in the establishment of Seti, the organisation that takes its name from the acronym for Search for Extraterrestrial Intelligence. A previous owner, who was a chief engineer at Hewlett-Packard, willed the house to Seti after his death in order to fund its mission.

    And, in another twist, Seti convened its very first meeting in 1961, which Yuri is quick to point out is the year of his birth.


    8
    Photo: Austin Hargrave for Hong Kong Tatler

    According to him, there’s never been a better time to engage in the search for alien life. Nasa’s Kepler spacecraft observatory, launched in 2009, has shown the world that there are many more planets than previously thought. “It turns out that there are many of them and almost every star-like sun has a planet like Earth, basically. It means that there are dozens of billions of planets like Earth in our galaxy alone. There are a hundred billion galaxies in the visible universe, so you multiply that hundred billion by dozens of billions and you get a very big number of possibilities. A few years ago, we didn’t know that. So now we know,” he says, with a nonchalance that belies the mind-boggling scale of his concept.

    The Milners’ Breakthrough Listen project is designed to harness the world’s best telescopes—from California’s Lick Observatory to the Green Bank Telescope in West Virginia and Australia’s Parkes Observatory—to look for signs of civilisation on one of those many, many billions of planets.

    Breakthrough Listen Project

    1

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA



    GBO radio telescope, Green Bank, West Virginia, USA


    CSIRO/Parkes Observatory, located 20 kilometres north of the town of Parkes, New South Wales, Australia

    The facilities’ operators, mostly academic institutions, were only too happy to accept the foundation’s much-needed funding in return for usage time, especially since “in the last few years there’s been a dramatic improvement in our understanding of the odds and probabilities of [alien life] existing. So that’s why it’s harder and harder to believe that we’re alone. It’s not impossible but it’s less likely than it was a few years ago.”

    One criticism levelled at those searching for alien life stems from what is known as the Fermi paradox: if alien civilisation is so inevitable, then why haven’t we met them yet? Some have countered this with the suggestion that advanced civilisations can often cause their own destruction, a notion not inconceivable given our own relatively recent threats of thermonuclear conflict. With the current political climate charged by global tensions, how do the Milners see themselves?

    “We think about ourselves as the product of globalisation,” says Yuri. “We were born in Russia. I was born into a Jewish family and Julia was born into a Christian family. Julia had her modelling career in Europe and Japan. I studied at Wharton. Our kids were born in Israel and the US. We live in Silicon Valley. We spend time in Asia. So it’s hard for us now to really establish a key affiliation. We see one global civilisation. When you look at our projects, they all assume that our planet is one: we’re looking for [alien] civilisations. And if we establish communication, I don’t think we will be telling them about our different countries. We are not going to be talking about elections. We will be talking about what makes us human. In a thousand years we will be one world. And, by the way, a thousand years is a very short period of time in the 14-billion-year history of our universe.”

    The most astonishing manifestation of Yuri’s cosmic dream falls under Breakthrough Starshot, a US$100 million project so awe-inspiring that it dwarfs the unfettered ambition of James Lick’s giant Californian pyramid by several orders of magnitude.

    Breakthrough Starshot will research the possibility of manufacturing thousands of nano-spaceships resembling microchips. These could be blasted out into space towards Alpha Centauri, the star system closest to our solar system that could potentially harbour life on its planets.

    Breakthrough Starshot Initiative

    Breakthrough Starshot

    ESO 3.6m telescope & HARPS at LaSilla, 600 km north of Santiago de Chile at an altitude of 2400 metres.

    SPACEOBS, the San Pedro de Atacama Celestial Explorations Observatory is located at 2450m above sea level, north of the Atacama Desert, in Chile, near to the village of San Pedro de Atacama and close to the border with Bolivia and Argentina

    SNO Sierra Nevada Observatory is a high elevation observatory 2900m above the sea level located in the Sierra Nevada mountain range in Granada Spain and operated maintained and supplied by IAC

    Teide Observatory in Tenerife Spain, home of two 40 cm LCO telescopes

    Observatori Astronòmic del Montsec (OAdM), located in the town of Sant Esteve de la Sarga (Pallars Jussà), 1,570 meters on the sea level

    Bayfordbury Observatory,approximately 6 miles from the main campus of the University of Hertfordshire

    As the chips hurtle past the celestial bodies at one-fifth the speed of light, they will capture information on their sensors and beam it back to Earth. The journey there will take about 20 years, and the data will take four years to get back to Earth.

    The hope is that it will include intelligence about alien worlds. The laser technology required to blast the chips is still being developed but the clock is ticking; the Milners hope to receive the information about Alpha Centauri within the lifetime of a generation.

    Like James Lick, they may never see the completion of their mission but, as Yuri explains, that is immaterial: “This laser beam will not only send probes to Alpha Centauri, it will continue. The most incredible revelation we realised through calculations is that this beam of light will be the first artefact of our civilisation that can cut across the whole universe. In other words, if there is another galaxy 10 billion light years away, in 10 billion years they will receive it and know that our civilisation existed—even if we don’t exist anymore. It will be something that we will leave behind and will never be erased. If we encode all of our knowledge in this powerful beam of light, it could be our civilisation’s ultimate legacy in the universe.”

    Credits
    Photography: Austin Hargrave | Styling: Tara Nichols | Hair and Make-up: Lisa Strutz | Producer: Joe Daley | Location: Lick Observatory, California

    See the full article here


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    UCO Lick Shane Telescope
    UCO Lick Shane Telescope interior
    Shane Telescope at UCO Lick Observatory, UCSC

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    UC Santa Cruz campus
    The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
    Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow
    1
    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch) UCSC Lick Nickel telescope

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

    The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.

     
  • richardmitnick 9:00 pm on October 20, 2017 Permalink | Reply
    Tags: , , , , , , Neutron stars gravitational waves and all the gold in the universe, , UCSC Lick Observatory   

    From UCSC: “Neutron stars, gravitational waves, and all the gold in the universe” 

    UC Santa Cruz

    UC Santa Cruz

    14

    A UC Santa Cruz special report

    Tim Stephens

    Astronomer Ryan Foley says “observing the explosion of two colliding neutron stars” [see https://sciencesprings.wordpress.com/2017/10/17/from-ucsc-first-observations-of-merging-neutron-stars-mark-a-new-era-in-astronomy ]–the first visible event ever linked to gravitational waves–is probably the biggest discovery he’ll make in his lifetime. That’s saying a lot for a young assistant professor who presumably has a long career still ahead of him.

    2
    The first optical image of a gravitational wave source was taken by a team led by Ryan Foley of UC Santa Cruz using the Swope Telescope at the Carnegie Institution’s Las Campanas Observatory in Chile. This image of Swope Supernova Survey 2017a (SSS17a, indicated by arrow) shows the light emitted from the cataclysmic merger of two neutron stars. (Image credit: 1M2H Team/UC Santa Cruz & Carnegie Observatories/Ryan Foley)

    Carnegie Institution Swope telescope at Las Campanas, Chile, 100 kilometres (62 mi) northeast of the city of La Serena. near the north end of a 7 km (4.3 mi) long mountain ridge. Cerro Las Campanas, near the southern end and over 2,500 m (8,200 ft) high, at Las Campanas, Chile

    A neutron star forms when a massive star runs out of fuel and explodes as a supernova, throwing off its outer layers and leaving behind a collapsed core composed almost entirely of neutrons. Neutrons are the uncharged particles in the nucleus of an atom, where they are bound together with positively charged protons. In a neutron star, they are packed together just as densely as in the nucleus of an atom, resulting in an object with one to three times the mass of our sun but only about 12 miles wide.

    “Basically, a neutron star is a gigantic atom with the mass of the sun and the size of a city like San Francisco or Manhattan,” said Foley, an assistant professor of astronomy and astrophysics at UC Santa Cruz.

    These objects are so dense, a cup of neutron star material would weigh as much as Mount Everest, and a teaspoon would weigh a billion tons. It’s as dense as matter can get without collapsing into a black hole.

    THE MERGER

    Like other stars, neutron stars sometimes occur in pairs, orbiting each other and gradually spiraling inward. Eventually, they come together in a catastrophic merger that distorts space and time (creating gravitational waves) and emits a brilliant flare of electromagnetic radiation, including visible, infrared, and ultraviolet light, x-rays, gamma rays, and radio waves. Merging black holes also create gravitational waves, but there’s nothing to be seen because no light can escape from a black hole.

    Foley’s team was the first to observe the light from a neutron star merger that took place on August 17, 2017, and was detected by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO).


    VIRGO Gravitational Wave interferometer, near Pisa, Italy

    Caltech/MIT Advanced aLigo Hanford, WA, USA installation


    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project

    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger-Zib

    ESA/eLISA the future of gravitational wave research

    1
    Skymap showing how adding Virgo to LIGO helps in reducing the size of the source-likely region in the sky. (Credit: Giuseppe Greco (Virgo Urbino group)

    Now, for the first time, scientists can study both the gravitational waves (ripples in the fabric of space-time), and the radiation emitted from the violent merger of the densest objects in the universe.

    3
    The UC Santa Cruz team found SSS17a by comparing a new image of the galaxy N4993 (right) with images taken four months earlier by the Hubble Space Telescope (left). The arrows indicate where SSS17a was absent from the Hubble image and visible in the new image from the Swope Telescope. (Image credits: Left, Hubble/STScI; Right, 1M2H Team/UC Santa Cruz & Carnegie Observatories/Ryan Foley)

    It’s that combination of data, and all that can be learned from it, that has astronomers and physicists so excited. The observations of this one event are keeping hundreds of scientists busy exploring its implications for everything from fundamental physics and cosmology to the origins of gold and other heavy elements.


    A small team of UC Santa Cruz astronomers were the first team to observe light from two neutron stars merging in August. The implications are huge.

    ALL THE GOLD IN THE UNIVERSE

    It turns out that the origins of the heaviest elements, such as gold, platinum, uranium—pretty much everything heavier than iron—has been an enduring conundrum. All the lighter elements have well-explained origins in the nuclear fusion reactions that make stars shine or in the explosions of stars (supernovae). Initially, astrophysicists thought supernovae could account for the heavy elements, too, but there have always been problems with that theory, says Enrico Ramirez-Ruiz, professor and chair of astronomy and astrophysics at UC Santa Cruz.

    4
    The violent merger of two neutron stars is thought to involve three main energy-transfer processes, shown in this diagram, that give rise to the different types of radiation seen by astronomers, including a gamma-ray burst and a kilonova explosion seen in visible light. (Image credit: Murguia-Berthier et al., Science)

    A theoretical astrophysicist, Ramirez-Ruiz has been a leading proponent of the idea that neutron star mergers are the source of the heavy elements. Building a heavy atomic nucleus means adding a lot of neutrons to it. This process is called rapid neutron capture, or the r-process, and it requires some of the most extreme conditions in the universe: extreme temperatures, extreme densities, and a massive flow of neutrons. A neutron star merger fits the bill.

    Ramirez-Ruiz and other theoretical astrophysicists use supercomputers to simulate the physics of extreme events like supernovae and neutron star mergers. This work always goes hand in hand with observational astronomy. Theoretical predictions tell observers what signatures to look for to identify these events, and observations tell theorists if they got the physics right or if they need to tweak their models. The observations by Foley and others of the neutron star merger now known as SSS17a are giving theorists, for the first time, a full set of observational data to compare with their theoretical models.

    According to Ramirez-Ruiz, the observations support the theory that neutron star mergers can account for all the gold in the universe, as well as about half of all the other elements heavier than iron.

    RIPPLES IN THE FABRIC OF SPACE-TIME

    Einstein predicted the existence of gravitational waves in 1916 in his general theory of relativity, but until recently they were impossible to observe. LIGO’s extraordinarily sensitive detectors achieved the first direct detection of gravitational waves, from the collision of two black holes, in 2015. Gravitational waves are created by any massive accelerating object, but the strongest waves (and the only ones we have any chance of detecting) are produced by the most extreme phenomena.

    Two massive compact objects—such as black holes, neutron stars, or white dwarfs—orbiting around each other faster and faster as they draw closer together are just the kind of system that should radiate strong gravitational waves. Like ripples spreading in a pond, the waves get smaller as they spread outward from the source. By the time they reached Earth, the ripples detected by LIGO caused distortions of space-time thousands of times smaller than the nucleus of an atom.

    The rarefied signals recorded by LIGO’s detectors not only prove the existence of gravitational waves, they also provide crucial information about the events that produced them. Combined with the telescope observations of the neutron star merger, it’s an incredibly rich set of data.

    LIGO can tell scientists the masses of the merging objects and the mass of the new object created in the merger, which reveals whether the merger produced another neutron star or a more massive object that collapsed into a black hole. To calculate how much mass was ejected in the explosion, and how much mass was converted to energy, scientists also need the optical observations from telescopes. That’s especially important for quantifying the nucleosynthesis of heavy elements during the merger.

    LIGO can also provide a measure of the distance to the merging neutron stars, which can now be compared with the distance measurement based on the light from the merger. That’s important to cosmologists studying the expansion of the universe, because the two measurements are based on different fundamental forces (gravity and electromagnetism), giving completely independent results.

    “This is a huge step forward in astronomy,” Foley said. “Having done it once, we now know we can do it again, and it opens up a whole new world of what we call ‘multi-messenger’ astronomy, viewing the universe through different fundamental forces.”

    IN THIS REPORT

    Neutron stars
    A team from UC Santa Cruz was the first to observe the light from a neutron star merger that took place on August 17, 2017 and was detected by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO)

    5
    Graduate students and post-doctoral scholars at UC Santa Cruz played key roles in the dramatic discovery and analysis of colliding neutron stars.Astronomer Ryan Foley leads a team of young graduate students and postdoctoral scholars who have pulled off an extraordinary coup. Following up on the detection of gravitational waves from the violent merger of two neutron stars, Foley’s team was the first to find the source with a telescope and take images of the light from this cataclysmic event. In so doing, they beat much larger and more senior teams with much more powerful telescopes at their disposal.

    “We’re sort of the scrappy young upstarts who worked hard and got the job done,” said Foley, an untenured assistant professor of astronomy and astrophysics at UC Santa Cruz.

    7
    David Coulter, graduate student

    The discovery on August 17, 2017, has been a scientific bonanza, yielding over 100 scientific papers from numerous teams investigating the new observations. Foley’s team is publishing seven papers, each of which has a graduate student or postdoc as the first author.

    “I think it speaks to Ryan’s generosity and how seriously he takes his role as a mentor that he is not putting himself front and center, but has gone out of his way to highlight the roles played by his students and postdocs,” said Enrico Ramirez-Ruiz, professor and chair of astronomy and astrophysics at UC Santa Cruz and the most senior member of Foley’s team.

    “Our team is by far the youngest and most diverse of all of the teams involved in the follow-up observations of this neutron star merger,” Ramirez-Ruiz added.

    8
    Charles Kilpatrick, postdoctoral scholar

    Charles Kilpatrick, a 29-year-old postdoctoral scholar, was the first person in the world to see an image of the light from colliding neutron stars. He was sitting in an office at UC Santa Cruz, working with first-year graduate student Cesar Rojas-Bravo to process image data as it came in from the Swope Telescope in Chile. To see if the Swope images showed anything new, he had also downloaded “template” images taken in the past of the same galaxies the team was searching.

    9
    Ariadna Murguia-Berthier, graduate student

    “In one image I saw something there that was not in the template image,” Kilpatrick said. “It took me a while to realize the ramifications of what I was seeing. This opens up so much new science, it really marks the beginning of something that will continue to be studied for years down the road.”

    At the time, Foley and most of the others in his team were at a meeting in Copenhagen. When they found out about the gravitational wave detection, they quickly got together to plan their search strategy. From Copenhagen, the team sent instructions to the telescope operators in Chile telling them where to point the telescope. Graduate student David Coulter played a key role in prioritizing the galaxies they would search to find the source, and he is the first author of the discovery paper published in Science.

    10
    Matthew Siebert, graduate student

    “It’s still a little unreal when I think about what we’ve accomplished,” Coulter said. “For me, despite the euphoria of recognizing what we were seeing at the moment, we were all incredibly focused on the task at hand. Only afterward did the significance really sink in.”

    Just as Coulter finished writing his paper about the discovery, his wife went into labor, giving birth to a baby girl on September 30. “I was doing revisions to the paper at the hospital,” he said.

    It’s been a wild ride for the whole team, first in the rush to find the source, and then under pressure to quickly analyze the data and write up their findings for publication. “It was really an all-hands-on-deck moment when we all had to pull together and work quickly to exploit this opportunity,” said Kilpatrick, who is first author of a paper comparing the observations with theoretical models.

    11
    César Rojas Bravo, graduate student

    Graduate student Matthew Siebert led a paper analyzing the unusual properties of the light emitted by the merger. Astronomers have observed thousands of supernovae (exploding stars) and other “transients” that appear suddenly in the sky and then fade away, but never before have they observed anything that looks like this neutron star merger. Siebert’s paper concluded that there is only a one in 100,000 chance that the transient they observed is not related to the gravitational waves.

    Ariadna Murguia-Berthier, a graduate student working with Ramirez-Ruiz, is first author of a paper synthesizing data from a range of sources to provide a coherent theoretical framework for understanding the observations.

    Another aspect of the discovery of great interest to astronomers is the nature of the galaxy and the galactic environment in which the merger occurred. Postdoctoral scholar Yen-Chen Pan led a paper analyzing the properties of the host galaxy. Enia Xhakaj, a new graduate student who had just joined the group in August, got the opportunity to help with the analysis and be a coauthor on the paper.

    12
    Yen-Chen Pan, postdoctoral scholar

    “There are so many interesting things to learn from this,” Foley said. “It’s a great experience for all of us to be part of such an important discovery.”

    13
    Enia Xhakaj, graduate student

    IN THIS REPORT

    Scientific Papers from the 1M2H Collaboration

    Coulter et al., Science, Swope Supernova Survey 2017a (SSS17a), the Optical Counterpart to a Gravitational Wave Source

    Drout et al., Science, Light Curves of the Neutron Star Merger GW170817/SSS17a: Implications for R-Process Nucleosynthesis

    Shappee et al., Science, Early Spectra of the Gravitational Wave Source GW170817: Evolution of a Neutron Star Merger

    Kilpatrick et al., Science, Electromagnetic Evidence that SSS17a is the Result of a Binary Neutron Star Merger

    Siebert et al., ApJL, The Unprecedented Properties of the First Electromagnetic Counterpart to a Gravitational-wave Source

    Pan et al., ApJL, The Old Host-galaxy Environment of SSS17a, the First Electromagnetic Counterpart to a Gravitational-wave Source

    Murguia-Berthier et al., ApJL, A Neutron Star Binary Merger Model for GW170817/GRB170817a/SSS17a

    Kasen et al., Nature, Origin of the heavy elements in binary neutron star mergers from a gravitational wave event

    Abbott et al., Nature, A gravitational-wave standard siren measurement of the Hubble constant (The LIGO Scientific Collaboration and The Virgo Collaboration, The 1M2H Collaboration, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration, The DLT40 Collaboration, The Las Cumbres Observatory Collaboration, The VINROUGE Collaboration & The MASTER Collaboration)

    Abbott et al., ApJL, Multi-messenger Observations of a Binary Neutron Star Merger

    PRESS RELEASES AND MEDIA COVERAGE


    Watch Ryan Foley tell the story of how his team found the neutron star merger in the video below. 2.5 HOURS.

    Press releases:

    UC Santa Cruz Press Release

    UC Berkeley Press Release

    Carnegie Institution of Science Press Release

    LIGO Collaboration Press Release

    National Science Foundation Press Release

    Media coverage:

    The Atlantic – The Slack Chat That Changed Astronomy

    Washington Post – Scientists detect gravitational waves from a new kind of nova, sparking a new era in astronomy

    New York Times – LIGO Detects Fierce Collision of Neutron Stars for the First Time

    Science – Merging neutron stars generate gravitational waves and a celestial light show

    CBS News – Gravitational waves – and light – seen in neutron star collision

    CBC News – Astronomers see source of gravitational waves for 1st time

    San Jose Mercury News – A bright light seen across the universe, proving Einstein right

    Popular Science – Gravitational waves just showed us something even cooler than black holes

    Scientific American – Gravitational Wave Astronomers Hit Mother Lode

    Nature – Colliding stars spark rush to solve cosmic mysteries

    National Geographic – In a First, Gravitational Waves Linked to Neutron Star Crash

    Associated Press – Astronomers witness huge cosmic crash, find origins of gold

    Science News – Neutron star collision showers the universe with a wealth of discoveries

    UCSC press release
    First observations of merging neutron stars mark a new era in astronomy

    Credits

    Writing: Tim Stephens
    Video: Nick Gonzales
    Photos: Carolyn Lagattuta
    Header image: Illustration by Robin Dienel courtesy of the Carnegie Institution for Science
    Design and development: Rob Knight
    Project managers: Sherry Main, Scott Hernandez-Jason, Tim Stephens

    Dark Energy Survey


    Dark Energy Camera [DECam], built at FNAL


    NOAO/CTIO Victor M Blanco 4m Telescope which houses the DECam at Cerro Tololo, Chile, housing DECam at an altitude of 7200 feet

    Gemini South telescope, Cerro Tololo Inter-American Observatory (CTIO) campus near La Serena, Chile, at an altitude of 7200 feet

    Noted in the video but not in the article:

    NASA/Chandra Telescope

    NASA/SWIFT Telescope

    NRAO/Karl V Jansky VLA, on the Plains of San Agustin fifty miles west of Socorro, NM, USA

    CTIO PROMPT telescope telescope built by the University of North Carolina at Chapel Hill at Cerro Tololo Inter-American Observatory in Chilein the Chilean Andes.

    PROMPT The six domes at CTIO in Chile.

    NASA NuSTAR X-ray telescope

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UCO Lick Shane Telescope
    UCO Lick Shane Telescope interior
    Shane Telescope at UCO Lick Observatory, UCSC

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    UC Santa Cruz campus
    The University of California, Santa Cruz, opened in 1965 and grew, one college at a time, to its current (2008-09) enrollment of more than 16,000 students. Undergraduates pursue more than 60 majors supervised by divisional deans of humanities, physical & biological sciences, social sciences, and arts. Graduate students work toward graduate certificates, master’s degrees, or doctoral degrees in more than 30 academic fields under the supervision of the divisional and graduate deans. The dean of the Jack Baskin School of Engineering oversees the campus’s undergraduate and graduate engineering programs.

    UCSC is the home base for the Lick Observatory.

    Lick Observatory's Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building
    Lick Observatory’s Great Lick 91-centimeter (36-inch) telescope housed in the South (large) Dome of main building

    Search for extraterrestrial intelligence expands at Lick Observatory
    New instrument scans the sky for pulses of infrared light
    March 23, 2015
    By Hilary Lebow
    1
    The NIROSETI instrument saw first light on the Nickel 1-meter Telescope at Lick Observatory on March 15, 2015. (Photo by Laurie Hatch) UCSC Lick Nickel telescope

    Astronomers are expanding the search for extraterrestrial intelligence into a new realm with detectors tuned to infrared light at UC’s Lick Observatory. A new instrument, called NIROSETI, will soon scour the sky for messages from other worlds.

    “Infrared light would be an excellent means of interstellar communication,” said Shelley Wright, an assistant professor of physics at UC San Diego who led the development of the new instrument while at the University of Toronto’s Dunlap Institute for Astronomy & Astrophysics.

    Wright worked on an earlier SETI project at Lick Observatory as a UC Santa Cruz undergraduate, when she built an optical instrument designed by UC Berkeley researchers. The infrared project takes advantage of new technology not available for that first optical search.

    Infrared light would be a good way for extraterrestrials to get our attention here on Earth, since pulses from a powerful infrared laser could outshine a star, if only for a billionth of a second. Interstellar gas and dust is almost transparent to near infrared, so these signals can be seen from great distances. It also takes less energy to send information using infrared signals than with visible light.

    5
    UCSC alumna Shelley Wright, now an assistant professor of physics at UC San Diego, discusses the dichroic filter of the NIROSETI instrument. (Photo by Laurie Hatch)

    Frank Drake, professor emeritus of astronomy and astrophysics at UC Santa Cruz and director emeritus of the SETI Institute, said there are several additional advantages to a search in the infrared realm.

    “The signals are so strong that we only need a small telescope to receive them. Smaller telescopes can offer more observational time, and that is good because we need to search many stars for a chance of success,” said Drake.

    The only downside is that extraterrestrials would need to be transmitting their signals in our direction, Drake said, though he sees this as a positive side to that limitation. “If we get a signal from someone who’s aiming for us, it could mean there’s altruism in the universe. I like that idea. If they want to be friendly, that’s who we will find.”

    Scientists have searched the skies for radio signals for more than 50 years and expanded their search into the optical realm more than a decade ago. The idea of searching in the infrared is not a new one, but instruments capable of capturing pulses of infrared light only recently became available.

    “We had to wait,” Wright said. “I spent eight years waiting and watching as new technology emerged.”

    Now that technology has caught up, the search will extend to stars thousands of light years away, rather than just hundreds. NIROSETI, or Near-Infrared Optical Search for Extraterrestrial Intelligence, could also uncover new information about the physical universe.

    “This is the first time Earthlings have looked at the universe at infrared wavelengths with nanosecond time scales,” said Dan Werthimer, UC Berkeley SETI Project Director. “The instrument could discover new astrophysical phenomena, or perhaps answer the question of whether we are alone.”

    NIROSETI will also gather more information than previous optical detectors by recording levels of light over time so that patterns can be analyzed for potential signs of other civilizations.

    “Searching for intelligent life in the universe is both thrilling and somewhat unorthodox,” said Claire Max, director of UC Observatories and professor of astronomy and astrophysics at UC Santa Cruz. “Lick Observatory has already been the site of several previous SETI searches, so this is a very exciting addition to the current research taking place.”

    NIROSETI will be fully operational by early summer and will scan the skies several times a week on the Nickel 1-meter telescope at Lick Observatory, located on Mt. Hamilton east of San Jose.

    The NIROSETI team also includes Geoffrey Marcy and Andrew Siemion from UC Berkeley; Patrick Dorval, a Dunlap undergraduate, and Elliot Meyer, a Dunlap graduate student; and Richard Treffers of Starman Systems. Funding for the project comes from the generous support of Bill and Susan Bloomfield.

    UCSC is the home base for the Lick Observatory.

     
  • richardmitnick 7:58 am on July 20, 2017 Permalink | Reply
    Tags: , , , , , Nickel 1-meter telescope at Lick Observatory, NIROSETI-Near-Infrared Optical SETI instrument, Optical SETI, Radio SETI, , Shelley Wright, UCSC Lick Observatory   

    From Centauri Dreams: “Making Optical SETI Happen” 

    Centauri Dreams

    July 18, 2017
    Paul Gilster

    Yesterday I made mention of the Schwartz and Townes paper “Interstellar and Interplanetary Communication by Optical Masers,” which ran in Nature in 1961 (Vol. 190, Issue 4772, pp. 205-208). Whereas the famous Cocconi and Morrison paper that kicked off radio SETI quickly spawned an active search in the form of Project Ozma, optical SETI was much slower to develop. The first search I can find is a Russian project called MANIA, in the hands of V. F. Shvartsman and G. M. Beskin, who searched about 100 objects in the early 1970s, finding no significant brightness variations within the parameters of their search.

    If you want to track this one down, you’ll need a good academic library, as it appears in the conference proceedings for the Third Decennial US-USSR Conference on SETI, published in 1993. Another Shvartsman investigation under the MANIA rubric occurred in 1978. Optical SETI did not seem to seize the public’s imagination, perhaps partially because of the novelty of communications through the recently discovered laser. We do see several optical SETI studies at UC-Berkeley’s Leuschner Observatory and Kitt Peak from 1979 to 1981, the work of Francisco Valdes and Robert Freitas, though these were searches for Bracewell probes within the Solar System rather than attempts to pick up laser transmissions from other star systems.

    1
    Harvard’s Paul Horowitz, a key player in the development of optical SETI. Credit: Harvard University.

    This was an era when radio searches for extraterrestrial technology had begun to proliferate, but despite the advocacy of Townes and others (and three conferences Townes helped create), it wasn’t until the 1990s that optical SETI began to come into its own. Charles Townes himself was involved in a search for laser signals from about 300 nearby stars in the ‘90s, using the 1.7-meter telescope on Mt. Wilson and reported on at the 1993 conference. Stuart Kingsley began an optical SETI search using the 25-centimeter telescope at the Columbus Optical SETI Observatory (COSETI) in 1990, while Gregory Beskin searched for optical signals at the Special Astrophysical Observatory run by the Russian Academy of Sciences in the Caucasus in 1995.

    Optical SETI’s advantages were beginning to be realized, as Andrew Howard (Caltech) commented in a 2004 paper:

    “The rapid development of laser technology since that time—a Moore’s law doubling of capability roughly every year—along with the discovery of many microwave lines of astronomical interest, have lessened somewhat the allure of hydrogen-line SETI. Indeed, on Earth the exploitation of photonics has revolutionized communications technology, with high-capacity fibers replacing both the historical copper cables and the long-haul microwave repeater chains. In addition, the elucidation (Cordes & Lazio 1991) of the consequences to SETI of interstellar dispersion (first seen in pulsar observations) has broadened thinking about optimum wavelengths. Even operating under the prevailing criterion of minimum energy per bit transmitted, one is driven upward to millimetric wavelengths.”

    In the late 90’s, the SETI Institute, as part of a reevaluation of SETI methods, recommended and then co-funded several optical searches including one by Dan Werthimer and colleagues at UC Berkeley and another by a Harvard-Smithsonian team including Paul Horowitz and Andrew Howard. The Harvard-Smithsonian group also worked in conjunction with Princeton University on a detector system similar to the one mounted on Harvard’s 155-centimeter optical telescope. A newer All-Sky Optical SETI (OSETI) telescope, set up at the Oak Ridge Observatory at Harvard and funded by The Planetary Society, dates from 2006.

    4
    http://seti.harvard.edu/oseti/allsky/allsky.htm

    5
    http://www.setileague.org/photos/oseti3.htm

    6
    http://seti.harvard.edu/oseti/

    At Berkeley, the optical SETI effort is led by Werthimer, who had built the laser detector for the Harvard-Smithsonian team. Optical SETI efforts from Leuschner Observatory and Lick Observatory were underway by 1999. Collaborating with Shelley Wright (UC Santa Cruz), Remington Stone (UC Santa Cruz/Lick Observatory), and Frank Drake (SETI Institute), the Berkeley group has gone on to develop new detector systems to improve sensitivity. As I mentioned yesterday, UC-Berkeley’s Nate Tellis, working with Geoff Marcy, has analyzed Keck archival data for 5,600 stars between 2004 and 2016 in search of optical signals.

    Working in the infrared, the Near-Infrared Optical SETI instrument (NIROSETI) is designed to conduct searches at infrared wavelengths. Shelley Wright is the principal investigator for NIROSETI, which is mounted on the Nickel 1-meter telescope at Lick Observatory, seeing first light in March of 2015. The project is designed to search for nanosecond pulses in the near-infrared, with a goal “to search not only for transient phenomena from technological activity, but also from natural objects that might produce very short time scale pulses from transient sources.” The advantage of near-infrared is the decrease in interstellar extinction, the absorption by dust and gas that can sharply impact the strength of a signal.

    7
    Shelley Wright, then a student at UC-Santa Cruz, helped build a detector that divides the light beam from a telescope into three parts, rather than just two, and sends it to three photomultiplier tubes. This arrangement greatly reduces the number of false alarms; very rarely will instrumental noise trigger all three detectors at once. The three-tube detector is in the white box attached here to the back of the 1-meter Nickel Telescope at Lick Observatory. Credit: Seth Shostak.

    8
    UCSC Lick Observatory Nickel Telescope

    I might also mention METI International’s Optical SETI Observatory at Boquete, Panama. The idea is to put the optical SETI effort in context. With the SETI Institute now raising money for its Laser SETI initiative — all-sky all-the-time — the role of private funding in making optical SETI happen is abundantly clear. And now, of course, we also have Breakthrough Listen, which in addition to listening at radio wavelengths at the Parkes instrument in Australia and the Green Bank radio telescope in West Virginia, is using the Automated Planet Finder at Lick Observatory to search for optical laser transmissions.

    CSIRO/Parkes Observatory, located 20 kilometres north of the town of Parkes, New South Wales, Australia



    GBO radio telescope, Green Bank, West Virginia, USA

    Lick Automated Planet Finder telescope, Mount Hamilton, CA, USA

    Funded by the Breakthrough Prize Foundation, the project continues the tradition of private funding from individuals, institutions (the SETI Institute) and organizations like The Planetary Society to get optical SETI done.

    Centauri Dreams


    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Tracking Research into Deep Space Exploration

    Alpha Centauri and other nearby stars seem impossible destinations not just for manned missions but even for robotic probes like Cassini or Galileo. Nonetheless, serious work on propulsion, communications, long-life electronics and spacecraft autonomy continues at NASA, ESA and many other venues, some in academia, some in private industry. The goal of reaching the stars is a distant one and the work remains low-key, but fascinating ideas continue to emerge. This site will track current research. I’ll also throw in the occasional musing about the literary and cultural implications of interstellar flight. Ultimately, the challenge may be as much philosophical as technological: to reassert the value of the long haul in a time of jittery short-term thinking.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: