## From Ethan Siegel: “Ask Ethan: Why Do Gravitational Waves Travel Exactly At The Speed Of Light?”

From Ethan Siegel
July 13, 2019

Ripples in spacetime are what gravitational waves are, and they travel through space at the speed of light in all directions. Although the constants of electromagnetism never appear in the equations for Einstein’s General Relativity, gravitational waves undoubtedly move at the speed of light. Here’s why. (EUROPEAN GRAVITATIONAL OBSERVATORY, LIONEL BRET/EUROLIOS)

General Relativity has nothing to do with light or electromagnetism at all. So how to gravitational waves know to travel at the speed of light?

There are two fundamental classes of theories required to describe the entirety of the Universe. On the one hand, there’s quantum field theory, which describes electromagnetism and the nuclear forces, and accounts for all the particles in the Universe and the quantum interactions that govern them. On the other hand, there’s General Relativity, which explains the relationship between matter/energy and space/time, and describes what we experience as gravitation. Within the context of General Relativity, there’s a new type of radiation that arises: gravitational waves. Yet, despite having nothing to do with light, these gravitational waves must travel at the speed of light. Why is that? Roger Reynolds wants to know, asking:

We know that the speed of electromagnetic radiation can be derived from Maxwell’s equation[s] in a vacuum. What equations (similar to Maxwell’s — perhaps?) offer a mathematical proof that Gravity Waves must travel [at the] speed of light?

It’s a deep, deep question. Let’s dive into the details.

It’s possible to write down a variety of equations, like Maxwell’s equations, to describe some aspect of the Universe. We can write them down in a variety of ways, as they are shown in both differential form (left) and integral form (right). It’s only by comparing their predictions with physical observations can we draw any conclusion about their validity. (EHSAN KAMALINEJAD OF UNIVERSITY OF TORONTO)

It’s not apparent, at first glance, that Maxwell’s equations necessarily predict the existence of radiation that travels at the speed of light. What those equations ⁠ — which govern classical electromagnetism ⁠ — clearly tell us are about the behavior of:

stationary electric charges,
electric charges in motion (electric currents),
static (unchanging) electric and magnetic fields,
and how those fields and charges move, accelerate, and change in response to one another.

Now, using the laws of electromagnetism alone, we can set up a physically relevant system: that of a low-mass, negatively charged particle orbiting a high-mass, positively charged one. This was the original model of the Rutherford atom, and it came along with a big, existential crisis. As the negative charge moves through space, it experiences a changing electric field, and accelerates as a result. But when a charged particle accelerates, it has to radiate power away, and the only way to do so is through electromagnetic radiation: i.e., light.

In the Rutherford model of the atom, electrons orbited the positively charged nucleus, but would emit electromagnetic radiation and see that orbit decay. It required the development of quantum mechanics, and the improvements of the Bohr model, to make sense of this apparent paradox. (JAMES HEDBERG / CCNY / CUNY)

This has two effects that are calculable within the framework of classical electrodynamics. The first effect is that the negative charge will spiral into the nucleus, as if you’re radiating power away, you have to get that energy from somewhere, and the only place to take it from is the kinetic energy of the particle in motion. If you lose that kinetic energy, you inevitably will spiral towards the central, attracting object.

The second effect that you can calculate is what’s going on with the emitted radiation. There are two constants of nature that show up in Maxwell’s equations:

ε_0, the permittivity of free space, which is the fundamental constant describing the electric force between two electric charges in a vacuum.
μ_0, the permeability of free space, which you can think of as the constant that defines the magnetic force produced by two parallel conducting wires in a vacuum with a constant current running through them.

When you calculate the properties of the electromagnetic radiation produced, it behaves as a wave whose propagation speed equals (ε_0 · μ_0)^(-1/2), which just happens to equal the speed of light.

Relativistic electrons and positrons can be accelerated to very high speeds, but will emit synchrotron radiation (blue) at high enough energies, preventing them from moving faster. This synchrotron radiation is the relativistic analog of the radiation predicted by Rutherford so many years ago, and has a gravitational analogy if you replace the electromagnetic fields and charges with gravitational ones.(CHUNG-LI DONG, JINGHUA GUO, YANG-YUAN CHEN, AND CHANG CHING-LIN, ‘SOFT-X-RAY SPECTROSCOPY PROBES NANOMATERIAL-BASED DEVICES’)

In electromagnetism, even if the details are quite the exercise to work out, the overall effect is straightforward. Moving electric charges that experience a changing external electromagnetic field will emit radiation, and that radiation both carries energy away and itself moves at a specific propagation speed: the speed of light. This is a classical effect, which can be derived with no references to quantum physics at all.

Now, General Relativity is also a classical theory of gravity, with no references to quantum effects at all. In fact, we can imagine a system very analogous to the one we set up in electromagnetism: a mass in motion, orbiting around another mass. The moving mass will experience a changing external gravitational field (i.e., it will experience a change in spatial curvature) which causes it to emit radiation that carries energy away. This is the conceptual origin of gravitational radiation, or gravitational waves.

There is, perhaps, no better analogy for the radiation-reaction in electromagnetism than the planets orbiting the Sun in gravitational theories. The Sun is the largest source of mass, and curves space as a result. As a massive planet moves through this space, it accelerates, and by necessity that implies it must emit some type of radiation to conserve energy: gravitational waves. (NASA/JPL-CALTECH, FOR THE CASSINI MISSION)

NASA/ESA/ASI Cassini-Huygens Spacecraft

But why ⁠ — as one would be inclined to ask ⁠ — do these gravitational waves have to travel at the speed of light? Why does the speed of gravity, which you might imagine could take on any value at all, have to exactly equal the speed of light? And, perhaps most importantly, how do we know?

Imagine what might happen if you were to suddenly pull the ultimate cosmic magic trick, and made the Sun simply disappear. If you did this, you wouldn’t see the skies go dark for 8 minutes and 20 seconds, which is the amount of time it takes light to travel the ~150 million km from the Sun to Earth. But gravitation doesn’t necessarily need to be the same way. It’s possible, as Newton’s theory predicted, that the gravitational force would be an instantaneous phenomenon, felt by all objects with mass in the Universe across the vast cosmic distances all at once.

An accurate model of how the planets orbit the Sun, which then moves through the galaxy in a different direction-of-motion. If the Sun were to simply wink out of existence, Newton’s theory predicts that they would all instantaneously fly off in straight lines, while Einstein’s predicts that the inner planets would continue orbiting for shorter periods of time than the outer planets. (RHYS TAYLOR)

What would happen under this hypothetical scenario? If the Sun were to somehow disappear at one particular instant, would the Earth fly off in a straight line immediately? Or would the Earth continue to move in its elliptical orbit for another 8 minutes and 20 seconds, only deviating once that changing gravitational signal, propagating at the speed of light, reached our world?

If you ask General Relativity, the answer is much closer to the latter, because it isn’t mass that determines gravitation, but rather the curvature of space, which is determined by the sum of all the matter and energy in it. If you were to take the Sun away, space would go from being curved to being flat, but only in the location where the Sun physically was. The effect of that transition would then propagate radially outwards, sending very large ripples — i.e., gravitational waves — propagating through the Universe like ripples in a 3D pond.

Whether through a medium or in vacuum, every ripple that propagates has a propagation speed. In no cases is the propagation speed infinite, and in theory, the speed at which gravitational ripples propagate should be the same as the maximum speed in the Universe: the speed of light. (SERGIU BACIOIU/FLICKR)

In the context of relativity, whether that’s Special Relativity (in flat space) or General Relativity (in any generalized space), the speed of anything in motion is determined by the same things: its energy, momentum, and rest mass. Gravitational waves, like any form of radiation, have zero rest mass and yet have finite energies and momenta, meaning that they have no option: they must always move at the speed of light.

This has a few fascinating consequences.

Any observer in any inertial (non-accelerating) reference frame would see gravitational waves moving at exactly the speed of light.
Different observers would see gravitational waves redshifting and blueshifting due to all the effects — such as source/observer motion, gravitational redshift/blueshift, and the expansion of the Universe — that electromagnetic waves also experience.
The Earth, therefore, is not gravitationally attracted to where the Sun is right now, but rather where the Sun was 8 minutes and 20 seconds ago.

The simple fact that space and time are related by the speed of light means that all of these statements must be true.

Gravitational radiation gets emitted whenever a mass orbits another one, which means that over long enough timescales, orbits will decay. Before the first black hole ever evaporates, the Earth will spiral into whatever’s left of the Sun, assuming nothing else has ejected it previously. Earth is attracted to where the Sun was approximately 8 minutes ago, not to where it is today. (AMERICAN PHYSICAL SOCIETY)

This last statement, about the Earth being attracted to the Sun’s position from 8 minutes and 20 seconds ago, was a truly revolutionary difference between Newton’s theory of gravity and Einstein’s General Relativity. The reason it’s revolutionary is for this simple fact: if gravity simply attracted the planets to the Sun’s prior location at the speed of light, the planets’ predicted locations would mismatch severely with where they actually were observed to be.

It’s a stroke of brilliance to realize that Newton’s laws require an instantaneous speed of gravity to such precision that if that were the only constraint, the speed of gravity must have been more than 20 billion times faster than the speed of light! [ScienceDirect] But in General Relativity, there’s another effect: the orbiting planet is in motion as it moves around the Sun. When a planet moves, you can think of it riding over a gravitational ripple, coming down in a different location from where it went up.

When a mass moves through a region of curved space, it will experience an acceleration owing to the curved space it inhabits. It also experiences an additional effect due to its velocity as it moves through a region where the spatial curvature is constantly changing. These two effects, when combined, result in a slight, tiny difference from the predictions of Newton’s gravity. (DAVID CHAMPION, MAX PLANCK INSTITUTE FOR RADIO ASTRONOMY)

Max Planck Institute for Radio Astronomy Bonn Germany

In General Relativity, as opposed to Newton’s gravity, there are two big differences that are important. Sure, any two objects will exert a gravitational influence on the other, by either curving space or exerting a long-range force. But in General Relativity, these two extra pieces are at play: each object’s velocity affects how it experiences gravity, and so do the changes that occur in gravitational fields.

The finite speed of gravity causes a change in the gravitational field that departs significantly from Newton’s predictions, and so do the effects of velocity-dependent interactions. Amazingly, these two effects cancel almost exactly. It’s the tiny inexactness of this cancellation that allowed us to first test whether Newton’s “infinite speed” or Einstein’s “speed of gravity equals the speed of light” model matched the physics of our Universe.

To test out what the speed of gravity is, observationally, we’d want a system where the curvature of space is large, where gravitational fields are strong, and where there’s lots of acceleration taking place. Ideally, we’d choose a system with a large, massive object moving with a changing velocity through a changing gravitational field. In other words, we’d want a system with a close pair of orbiting, observable, high-mass objects in a tiny region of space.

Nature is cooperative with this, as binary neutron star and binary black hole systems both exist. In fact, any system with a neutron star has the ability to be measured extraordinarily precisely if one serendipitous thing occurs: if our perspective is exactly aligned with the radiation emitted from the pole of a neutron star. If the path of this radiation intersects us, we can observe a pulse every time the neutron star rotates.

The rate of orbital decay of a binary pulsar is highly dependent on the speed of gravity and the orbital parameters of the binary system. We have used binary pulsar data to constrain the speed of gravity to be equal to the speed of light to a precision of 99.8%, and to infer the existence of gravitational waves decades before LIGO and Virgo detected them. However, the direct detection of gravitational waves was a vital part of the scientific process, and the existence of gravitational waves would still be in doubt without it. (NASA (L), MAX PLANCK INSTITUTE FOR RADIO ASTRONOMY / MICHAEL KRAMER (R))

As the neutron stars orbit, the pulsing one — known as a pulsar — carries extraordinary amounts of information about the masses and orbital periods of both components. If you observe this pulsar in a binary system for a long period of time, because it’s such a perfectly regular emitter of pulses, you should be able to detect whether the orbit is decaying or not. If it is, you can even extract a measurement for the emitted radiation: how quickly does it propagate?

The predictions from Einstein’s theory of gravity are incredibly sensitive to the speed of light, so much so that even from the very first binary pulsar system discovered in the 1980s, PSR 1913+16 (or the Hulse-Taylor binary), we have constrained the speed of gravity to be equal to the speed of light with a measurement error of only 0.2%!

The quasar QSO J0842+1835, whose path was gravitationally altered by Jupiter in 2002, allowing an indirect confirmation that the speed of gravity equals the speed of light. (FOMALONT ET AL. (2000), APJS 131, 95–183)

That’s an indirect measurement, of course. We performed a second type of indirect measurement in 2002, when a chance coincidence lined up the Earth, Jupiter, and a very strong radio quasar (QSO J0842+1835) all along the same line-of-sight. As Jupiter moved between Earth and the quasar, the gravitational bending of Jupiter allowed us to indirectly measure the speed of gravity.

The results were definitive: they absolutely ruled out an infinite speed for the propagation of gravitational effects. Through these observations alone, scientists determined that the speed of gravity was between 2.55 × 10⁸ m/s and 3.81 × 10⁸ m/s, completely consistent with Einstein’s predictions of 299,792,458 m/s.

Artist’s now iconic illustration of two merging neutron stars. The rippling spacetime grid represents gravitational waves emitted from the collision, while the narrow beams are the jets of gamma rays that shoot out just seconds after the gravitational waves (detected as a gamma-ray burst by astronomers). The gravitational waves and the radiation must travel at the same speed to a precision of 15 significant digits. (NSF / LIGO / SONOMA STATE UNIVERSITY / A. SIMONNET)

But the greatest confirmation that the speed of gravity equals the speed of light comes from the 2017 observation of a kilonova: the inspiral and merger of two neutron stars. A spectacular example of multi-messenger astronomy, a gravitational wave signal arrived first, recorded in both the LIGO and Virgo detectors. Then, 1.7 seconds later, the first electromagnetic (light) signal arrived: the high-energy gamma rays from the explosive cataclysm.

UC Santa Cruz

UCSC All the Gold in the Universe

A UC Santa Cruz special report

Tim Stephens

Astronomer Ryan Foley says “observing the explosion of two colliding neutron stars” –the first visible event ever linked to gravitational waves–is probably the biggest discovery he’ll make in his lifetime. That’s saying a lot for a young assistant professor who presumably has a long career still ahead of him.

The first optical image of a gravitational wave source was taken by a team led by Ryan Foley of UC Santa Cruz using the Swope Telescope at the Carnegie Institution’s Las Campanas Observatory in Chile. This image of Swope Supernova Survey 2017a (SSS17a, indicated by arrow) shows the light emitted from the cataclysmic merger of two neutron stars. (Image credit: 1M2H Team/UC Santa Cruz & Carnegie Observatories/Ryan Foley)

Carnegie Institution Swope telescope at Las Campanas, Chile, 100 kilometres (62 mi) northeast of the city of La Serena. near the north end of a 7 km (4.3 mi) long mountain ridge. Cerro Las Campanas, near the southern end and over 2,500 m (8,200 ft) high, at Las Campanas, Chile

A neutron star forms when a massive star runs out of fuel and explodes as a supernova, throwing off its outer layers and leaving behind a collapsed core composed almost entirely of neutrons. Neutrons are the uncharged particles in the nucleus of an atom, where they are bound together with positively charged protons. In a neutron star, they are packed together just as densely as in the nucleus of an atom, resulting in an object with one to three times the mass of our sun but only about 12 miles wide.

“Basically, a neutron star is a gigantic atom with the mass of the sun and the size of a city like San Francisco or Manhattan,” said Foley, an assistant professor of astronomy and astrophysics at UC Santa Cruz.

These objects are so dense, a cup of neutron star material would weigh as much as Mount Everest, and a teaspoon would weigh a billion tons. It’s as dense as matter can get without collapsing into a black hole.

THE MERGER

Like other stars, neutron stars sometimes occur in pairs, orbiting each other and gradually spiraling inward. Eventually, they come together in a catastrophic merger that distorts space and time (creating gravitational waves) and emits a brilliant flare of electromagnetic radiation, including visible, infrared, and ultraviolet light, x-rays, gamma rays, and radio waves. Merging black holes also create gravitational waves, but there’s nothing to be seen because no light can escape from a black hole.

Foley’s team was the first to observe the light from a neutron star merger that took place on August 17, 2017, and was detected by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO).

VIRGO Gravitational Wave interferometer, near Pisa, Italy

Caltech/MIT Advanced aLigo Hanford, WA, USA installation

Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project

Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger-Zib

ESA/eLISA the future of gravitational wave research

Skymap showing how adding Virgo to LIGO helps in reducing the size of the source-likely region in the sky. (Credit: Giuseppe Greco (Virgo Urbino group)

Now, for the first time, scientists can study both the gravitational waves (ripples in the fabric of space-time), and the radiation emitted from the violent merger of the densest objects in the universe.

The UC Santa Cruz team found SSS17a by comparing a new image of the galaxy N4993 (right) with images taken four months earlier by the Hubble Space Telescope (left). The arrows indicate where SSS17a was absent from the Hubble image and visible in the new image from the Swope Telescope. (Image credits: Left, Hubble/STScI; Right, 1M2H Team/UC Santa Cruz & Carnegie Observatories/Ryan Foley)

It’s that combination of data, and all that can be learned from it, that has astronomers and physicists so excited. The observations of this one event are keeping hundreds of scientists busy exploring its implications for everything from fundamental physics and cosmology to the origins of gold and other heavy elements.

A small team of UC Santa Cruz astronomers were the first team to observe light from two neutron stars merging in August. The implications are huge.

ALL THE GOLD IN THE UNIVERSE

It turns out that the origins of the heaviest elements, such as gold, platinum, uranium—pretty much everything heavier than iron—has been an enduring conundrum. All the lighter elements have well-explained origins in the nuclear fusion reactions that make stars shine or in the explosions of stars (supernovae). Initially, astrophysicists thought supernovae could account for the heavy elements, too, but there have always been problems with that theory, says Enrico Ramirez-Ruiz, professor and chair of astronomy and astrophysics at UC Santa Cruz.

The violent merger of two neutron stars is thought to involve three main energy-transfer processes, shown in this diagram, that give rise to the different types of radiation seen by astronomers, including a gamma-ray burst and a kilonova explosion seen in visible light. (Image credit: Murguia-Berthier et al., Science)

A theoretical astrophysicist, Ramirez-Ruiz has been a leading proponent of the idea that neutron star mergers are the source of the heavy elements. Building a heavy atomic nucleus means adding a lot of neutrons to it. This process is called rapid neutron capture, or the r-process, and it requires some of the most extreme conditions in the universe: extreme temperatures, extreme densities, and a massive flow of neutrons. A neutron star merger fits the bill.

Ramirez-Ruiz and other theoretical astrophysicists use supercomputers to simulate the physics of extreme events like supernovae and neutron star mergers. This work always goes hand in hand with observational astronomy. Theoretical predictions tell observers what signatures to look for to identify these events, and observations tell theorists if they got the physics right or if they need to tweak their models. The observations by Foley and others of the neutron star merger now known as SSS17a are giving theorists, for the first time, a full set of observational data to compare with their theoretical models.

According to Ramirez-Ruiz, the observations support the theory that neutron star mergers can account for all the gold in the universe, as well as about half of all the other elements heavier than iron.

RIPPLES IN THE FABRIC OF SPACE-TIME

Einstein predicted the existence of gravitational waves in 1916 in his general theory of relativity, but until recently they were impossible to observe. LIGO’s extraordinarily sensitive detectors achieved the first direct detection of gravitational waves, from the collision of two black holes, in 2015. Gravitational waves are created by any massive accelerating object, but the strongest waves (and the only ones we have any chance of detecting) are produced by the most extreme phenomena.

Two massive compact objects—such as black holes, neutron stars, or white dwarfs—orbiting around each other faster and faster as they draw closer together are just the kind of system that should radiate strong gravitational waves. Like ripples spreading in a pond, the waves get smaller as they spread outward from the source. By the time they reached Earth, the ripples detected by LIGO caused distortions of space-time thousands of times smaller than the nucleus of an atom.

The rarefied signals recorded by LIGO’s detectors not only prove the existence of gravitational waves, they also provide crucial information about the events that produced them. Combined with the telescope observations of the neutron star merger, it’s an incredibly rich set of data.

LIGO can tell scientists the masses of the merging objects and the mass of the new object created in the merger, which reveals whether the merger produced another neutron star or a more massive object that collapsed into a black hole. To calculate how much mass was ejected in the explosion, and how much mass was converted to energy, scientists also need the optical observations from telescopes. That’s especially important for quantifying the nucleosynthesis of heavy elements during the merger.

LIGO can also provide a measure of the distance to the merging neutron stars, which can now be compared with the distance measurement based on the light from the merger. That’s important to cosmologists studying the expansion of the universe, because the two measurements are based on different fundamental forces (gravity and electromagnetism), giving completely independent results.

“This is a huge step forward in astronomy,” Foley said. “Having done it once, we now know we can do it again, and it opens up a whole new world of what we call ‘multi-messenger’ astronomy, viewing the universe through different fundamental forces.”

IN THIS REPORT

Neutron stars
A team from UC Santa Cruz was the first to observe the light from a neutron star merger that took place on August 17, 2017 and was detected by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO)

Graduate students and post-doctoral scholars at UC Santa Cruz played key roles in the dramatic discovery and analysis of colliding neutron stars.Astronomer Ryan Foley leads a team of young graduate students and postdoctoral scholars who have pulled off an extraordinary coup. Following up on the detection of gravitational waves from the violent merger of two neutron stars, Foley’s team was the first to find the source with a telescope and take images of the light from this cataclysmic event. In so doing, they beat much larger and more senior teams with much more powerful telescopes at their disposal.

“We’re sort of the scrappy young upstarts who worked hard and got the job done,” said Foley, an untenured assistant professor of astronomy and astrophysics at UC Santa Cruz.

The discovery on August 17, 2017, has been a scientific bonanza, yielding over 100 scientific papers from numerous teams investigating the new observations. Foley’s team is publishing seven papers, each of which has a graduate student or postdoc as the first author.

“I think it speaks to Ryan’s generosity and how seriously he takes his role as a mentor that he is not putting himself front and center, but has gone out of his way to highlight the roles played by his students and postdocs,” said Enrico Ramirez-Ruiz, professor and chair of astronomy and astrophysics at UC Santa Cruz and the most senior member of Foley’s team.

“Our team is by far the youngest and most diverse of all of the teams involved in the follow-up observations of this neutron star merger,” Ramirez-Ruiz added.

Charles Kilpatrick, postdoctoral scholar

Charles Kilpatrick, a 29-year-old postdoctoral scholar, was the first person in the world to see an image of the light from colliding neutron stars. He was sitting in an office at UC Santa Cruz, working with first-year graduate student Cesar Rojas-Bravo to process image data as it came in from the Swope Telescope in Chile. To see if the Swope images showed anything new, he had also downloaded “template” images taken in the past of the same galaxies the team was searching.

“In one image I saw something there that was not in the template image,” Kilpatrick said. “It took me a while to realize the ramifications of what I was seeing. This opens up so much new science, it really marks the beginning of something that will continue to be studied for years down the road.”

At the time, Foley and most of the others in his team were at a meeting in Copenhagen. When they found out about the gravitational wave detection, they quickly got together to plan their search strategy. From Copenhagen, the team sent instructions to the telescope operators in Chile telling them where to point the telescope. Graduate student David Coulter played a key role in prioritizing the galaxies they would search to find the source, and he is the first author of the discovery paper published in Science.

“It’s still a little unreal when I think about what we’ve accomplished,” Coulter said. “For me, despite the euphoria of recognizing what we were seeing at the moment, we were all incredibly focused on the task at hand. Only afterward did the significance really sink in.”

Just as Coulter finished writing his paper about the discovery, his wife went into labor, giving birth to a baby girl on September 30. “I was doing revisions to the paper at the hospital,” he said.

It’s been a wild ride for the whole team, first in the rush to find the source, and then under pressure to quickly analyze the data and write up their findings for publication. “It was really an all-hands-on-deck moment when we all had to pull together and work quickly to exploit this opportunity,” said Kilpatrick, who is first author of a paper comparing the observations with theoretical models.

Graduate student Matthew Siebert led a paper analyzing the unusual properties of the light emitted by the merger. Astronomers have observed thousands of supernovae (exploding stars) and other “transients” that appear suddenly in the sky and then fade away, but never before have they observed anything that looks like this neutron star merger. Siebert’s paper concluded that there is only a one in 100,000 chance that the transient they observed is not related to the gravitational waves.

Ariadna Murguia-Berthier, a graduate student working with Ramirez-Ruiz, is first author of a paper synthesizing data from a range of sources to provide a coherent theoretical framework for understanding the observations.

Another aspect of the discovery of great interest to astronomers is the nature of the galaxy and the galactic environment in which the merger occurred. Postdoctoral scholar Yen-Chen Pan led a paper analyzing the properties of the host galaxy. Enia Xhakaj, a new graduate student who had just joined the group in August, got the opportunity to help with the analysis and be a coauthor on the paper.

Yen-Chen Pan, postdoctoral scholar

“There are so many interesting things to learn from this,” Foley said. “It’s a great experience for all of us to be part of such an important discovery.”

IN THIS REPORT

Scientific Papers from the 1M2H Collaboration

Shappee et al., Science, Early Spectra of the Gravitational Wave Source GW170817: Evolution of a Neutron Star Merger

Kilpatrick et al., Science, Electromagnetic Evidence that SSS17a is the Result of a Binary Neutron Star Merger

Murguia-Berthier et al., ApJL, A Neutron Star Binary Merger Model for GW170817/GRB170817a/SSS17a

Abbott et al., Nature, A gravitational-wave standard siren measurement of the Hubble constant (The LIGO Scientific Collaboration and The Virgo Collaboration, The 1M2H Collaboration, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration, The DLT40 Collaboration, The Las Cumbres Observatory Collaboration, The VINROUGE Collaboration & The MASTER Collaboration)

Abbott et al., ApJL, Multi-messenger Observations of a Binary Neutron Star Merger

PRESS RELEASES AND MEDIA COVERAGE

Watch Ryan Foley tell the story of how his team found the neutron star merger in the video below. 2.5 HOURS.

Press releases:

UC Santa Cruz Press Release

UC Berkeley Press Release

Carnegie Institution of Science Press Release

LIGO Collaboration Press Release

National Science Foundation Press Release

Media coverage:

The Atlantic – The Slack Chat That Changed Astronomy

San Jose Mercury News – A bright light seen across the universe, proving Einstein right

Scientific American – Gravitational Wave Astronomers Hit Mother Lode

National Geographic – In a First, Gravitational Waves Linked to Neutron Star Crash

Associated Press – Astronomers witness huge cosmic crash, find origins of gold

UCSC press release
First observations of merging neutron stars mark a new era in astronomy

Credits

Writing: Tim Stephens
Video: Nick Gonzales
Photos: Carolyn Lagattuta
Header image: Illustration by Robin Dienel courtesy of the Carnegie Institution for Science
Design and development: Rob Knight
Project managers: Sherry Main, Scott Hernandez-Jason, Tim Stephens

Dark Energy Survey

Dark Energy Camera [DECam], built at FNAL

NOAO/CTIO Victor M Blanco 4m Telescope which houses the DECam at Cerro Tololo, Chile, housing DECam at an altitude of 7200 feet

Gemini South telescope, Cerro Tololo Inter-American Observatory (CTIO) campus near La Serena, Chile, at an altitude of 7200 feet

Noted in the video but not in the article:

NASA/Chandra Telescope

NASA/SWIFT Telescope

NRAO/Karl V Jansky VLA, on the Plains of San Agustin fifty miles west of Socorro, NM, USA

Prompt telescope CTIO Chile

NASA NuSTAR X-ray telescope

Because this event took place some 130 million light-years away, and the gravitational and light signals arrived with less than a two second difference between them, we can constrain the possible departure of the speed of gravity from the speed of light. We now know, based on this, that they differ by less than 1 part in 10¹⁵, or less than one quadrillionth of the actual speed of light.

Illustration of a fast gamma-ray burst, long thought to occur from the merger of neutron stars. The gas-rich environment surrounding them could delay the arrival of the signal, explaining the observed 1.7 second difference between the arrivals of the gravitational and electromagnetic signatures. (ESO)

Of course, we think that these two speeds are exactly identical. The speed of gravity should equal the speed of light so long as both gravitational waves and photons have no rest mass associated with them. The 1.7 second delay is very likely explained by the fact that gravitational waves pass through matter unperturbed, while light interacts electromagnetically, potentially slowing it down as it passes through the medium of space by just the smallest amount.

The speed of gravity really does equal the speed of light, although we don’t derive it in the same fashion. Whereas Maxwell brought together electricity and magnetism — two phenomena that were previously independent and distinct — Einstein simply extended his theory of Special Relativity to apply to all spacetimes in general. While the theoretical motivation for the speed of gravity equaling the speed of light was there from the start, it’s only with observational confirmation that we could know for certain. Gravitational waves really do travel at the speed of light!

five-ways-keep-your-child-safe-school-shootings

Stem Education Coalition

“Starts With A Bang! is a blog/video blog about cosmology, physics, astronomy, and anything else I find interesting enough to write about. I am a firm believer that the highest good in life is learning, and the greatest evil is willful ignorance. The goal of everything on this site is to help inform you about our world, how we came to be here, and to understand how it all works. As I write these pages for you, I hope to not only explain to you what we know, think, and believe, but how we know it, and why we draw the conclusions we do. It is my hope that you find this interesting, informative, and accessible,” says Ethan

## From University of Chicago: “Gravitational waves could soon provide measure of universe’s expansion”

From University of Chicago

Oct 22, 2018
Louise Lerner

Image by Robin Dienel/The Carnegie Institution for Science

UChicago scientists estimate, based on LIGO’s quick first detection of a first neutron star collision, that they could have an extremely precise measurement of the universe’s rate of expansion within five to ten years. [Too bad for me, I’ll be long gone.]

Twenty years ago, scientists were shocked to realize that our universe is not only expanding, but that it’s expanding faster over time.

Pinning down the exact rate of expansion, called the Hubble constant after famed astronomer and UChicago alumnus Edwin Hubble, has been surprisingly difficult. Since then scientists have used two methods to calculate the value, and they spit out distressingly different results. But last year’s surprising capture of gravitational waves radiating from a neutron star collision offered a third way to calculate the Hubble constant.

Edwin Hubble at Caltech Palomar Samuel Oschin 48 inch Telescope, (credit: Emilio Segre Visual Archives/AIP/SPL)

That was only a single data point from one collision, but in a new paper published Oct. 17 in Nature, three University of Chicago scientists estimate that given how quickly researchers saw the first neutron star collision, they could have a very accurate measurement of the Hubble constant within five to ten years.

“The Hubble constant tells you the size and the age of the universe; it’s been a holy grail since the birth of cosmology. Calculating this with gravitational waves could give us an entirely new perspective on the universe,” said study author Daniel Holz, a UChicago professor in physics who co-authored the first such calculation from the 2017 discovery. “The question is: When does it become game-changing for cosmology?”

In 1929, Edwin Hubble announced that based on his observations of galaxies beyond the Milky Way, they seemed to be moving away from us—and the farther away the galaxy, the faster it was receding. This is a cornerstone of the Big Bang theory, and it kicked off a nearly century-long search for the exact rate at which this is occurring.

To calculate the rate at which the universe is expanding, scientists need two numbers. One is the distance to a faraway object; the other is how fast the object is moving away from us because of the expansion of the universe. If you can see it with a telescope, the second quantity is relatively easy to determine, because the light you see when you look at a distant star gets shifted into the red as it recedes. Astronomers have been using that trick to see how fast an object is moving for more than a century—it’s like the Doppler effect, in which a siren changes pitch as an ambulance passes.

Major questions in calculations

But getting an exact measure of the distance is much harder. Traditionally, astrophysicists have used a technique called the cosmic distance ladder, in which the brightness of certain variable stars and supernovae can be used to build a series of comparisons that reach out to the object in question.

“The problem is, if you scratch beneath the surface, there are a lot of steps with a lot of assumptions along the way,” Holz said.

Perhaps the supernovae used as markers aren’t as consistent as thought. Maybe we’re mistaking some kinds of supernovae for others, or there’s some unknown error in our measurement of distances to nearby stars. “There’s a lot of complicated astrophysics there that could throw off readings in a number of ways,” he said.

The other major way to calculate the Hubble constant is to look at the cosmic microwave background [CMB]—the pulse of light created at the very beginning of the universe, which is still faintly detectable.

CMB per ESA/Planck

While also useful, this method also relies on assumptions about how the universe works.

The surprising thing is that even though scientists doing each calculation are confident about their results, they don’t match. One says the universe is expanding almost 10 percent faster than the other. “This is a major question in cosmology right now,” said the study’s first author, Hsin-Yu Chen, then a graduate student at UChicago and now a fellow with Harvard University’s Black Hole Initiative.

Then the LIGO detectors picked up their first ripple in the fabric of space-time from the collision of two stars last year.

VIRGO Gravitational Wave interferometer, near Pisa, Italy

Caltech/MIT Advanced aLigo Hanford, WA, USA installation

Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project

Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger

ESA/eLISA the future of gravitational wave research

Skymap showing how adding Virgo to LIGO helps in reducing the size of the source-likely region in the sky. (Credit: Giuseppe Greco (Virgo Urbino group)

This not only shook the observatory, but the field of astronomy itself: Being able to both feel the gravitational wave and see the light of the collision’s aftermath with a telescope gave scientists a powerful new tool. “It was kind of an embarrassment of riches,” Holz said.

Gravitational waves offer a completely different way to calculate the Hubble constant. When two massive stars crash into each other, they send out ripples in the fabric of space-time that can be detected on Earth. By measuring that signal, scientists can get a signature of the mass and energy of the colliding stars. When they compare this reading with the strength of the gravitational waves, they can infer how far away it is.

This measurement is cleaner and holds fewer assumptions about the universe, which should make it more precise, Holz said. Along with Scott Hughes at MIT, he suggested the idea of making this measurement with gravitational waves paired with telescope readings in 2005. The only question is how often scientists could catch these events, and how good the data from them would be.

Illustration by A. Simon
Unlike previous LIGO detections of black holes merging, the two neutron stars that collided sent out a bright flash of light—making it visible to telescopes on Earth.

‘It’s only going to get more interesting’

The paper predicts that once scientists have detected 25 readings from neutron star collisions, they’ll measure the expansion of the universe within an accuracy of 3 percent. With 200 readings, that number narrows to 1 percent.

“It was quite a surprise for me when we got into the simulations,” Chen said. “It was clear we could reach precision, and we could reach it fast.”

A precise new number for the Hubble constant would be fascinating no matter the answer, the scientists said. For example, one possible reason for the mismatch in the other two methods is that the nature of gravity itself might have changed over time. The reading also might shed light on dark energy, a mysterious force responsible for the expansion of the universe.

“With the collision we saw last year, we got lucky—it was close to us, so it was relatively easy to find and analyze,” said Maya Fishbach, a UChicago graduate student and the other author on the paper. “Future detections will be much farther away, but once we get the next generation of telescopes, we should be able to find counterparts for these distant detections as well.”

The LIGO detectors are planned to begin a new observing run in February 2019, joined by their Italian counterparts at VIRGO. Thanks to an upgrade, the detectors’ sensitivities will be much higher—expanding the number and distance of astronomical events they can pick up.

“It’s only going to get more interesting from here,” Holz said.

The authors ran calculations at the University of Chicago Research Computing Center.

Funding: Kavli Foundation, John Templeton Foundation, National Science Foundation.

five-ways-keep-your-child-safe-school-shootings

Stem Education Coalition

An intellectual destination

One of the world’s premier academic and research institutions, the University of Chicago has driven new ways of thinking since our 1890 founding. Today, UChicago is an intellectual destination that draws inspired scholars to our Hyde Park and international campuses, keeping UChicago at the nexus of ideas that challenge and change the world.

University of Chicago

An intellectual destination

One of the world’s premier academic and research institutions, the University of Chicago has driven new ways of thinking since our 1890 founding. Today, UChicago is an intellectual destination that draws inspired scholars to our Hyde Park and international campuses, keeping UChicago at the nexus of ideas that challenge and change the world.

The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with UChicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

UChicago research has led to such breakthroughs as discovering the link between cancer and genetics, establishing revolutionary theories of economics, and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations with our national and affiliated laboratories: Argonne National Laboratory, Fermi National Accelerator Laboratory, and the Marine Biological Laboratory in Woods Hole, Massachusetts.

The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts.

## From Caltech: “Superfast Jet Observed Streaming Away from Stellar Collision”

From Caltech

09/05/2018
Elise Cutts

An artist’s impression of the jet (pictured as a ball of fire), produced in the neutron star merger first detected on August 17, 2017 by telescopes around the world, as well as LIGO, which detects gravitational waves (green ripples). Credit: James Josephides (Swinburne University of Technology, Australia)

Using a collection of National Science Foundation radio telescopes, researchers have confirmed that a narrow jet of material was ejected at near light speeds from a neutron star collision. The collision, which was observed August 17, 2017 and occurred 130 million miles from Earth, initially produced gravitational waves that were observed by the Laser Interferometry Gravitational-wave Observatory (LIGO), alongside a flood of light in the form of gamma rays, X-rays, visible light, and radio waves. It was the first cosmic event to be observed in both gravitational waves and light waves.

Confirmation that a superfast jet had been produced by the neutron star collision came after radio astronomers discovered that a region of radio emission created by the merger had moved in a seemingly impossible way that only a jet could explain. The radio observations were made using the Very Long Baseline Array (VLBA), the Robert C. Byrd Green Bank Telescope (GBT), and the Very Large Array (VLA). The VLA is operated by the National Radio Astronomy Observatory (NRAO), which is closely associated with the other two telescopes involved in the discovery.

NRAO VLBA

GBO radio telescope, Green Bank, West Virginia, USA

NRAO/Karl V Jansky Expanded Very Large Array, on the Plains of San Agustin fifty miles west of Socorro, NM, USA, at an elevation of 6970 ft (2124 m)

“We measured an apparent motion that is four times faster than light. That illusion, called superluminal motion, results when the jet is pointed nearly toward Earth and the material in the jet is moving close to the speed of light,” says Kunal Mooley, a Caltech postdoctoral scholar with a joint appointment at the NRAO and lead author of a new study about the jet appearing online September 5 in the journal Nature. Mooley and Assistant Professor of Astronomy Gregg Hallinan were part of an international collaboration that observed and interpreted the movement of the radio emission.

“We were lucky to be able to observe this event, because if the jet had been pointed too much farther away from Earth, the radio emission would have been too faint for us to detect,” says Hallinan.

Superfast jets are known to give rise to intense, short-duration gamma-ray bursts or sGRBs, predicted by theorists to be associated with neutron star collisions. The observation of a jet associated with this collision is therefore an important confirmation of theoretical expectations.

Superfast jets are known to give rise to intense, short-duration gamma-ray bursts or sGRBs, predicted by theorists to be associated with neutron star collisions. The observation of a jet associated with this collision is therefore an important confirmation of theoretical expectations.

The aftermath of the merger is now also better understood: the jet likely interacted with surrounding debris, forming a broad “cocoon” of material that expanded outward and accounted for the majority of the radio signal observed soon after the collision. Later on, the observed radio emission came mainly from the jet.

Read the full story from NRAO at https://public.nrao.edu/news/superfast-jet-neutron-star-merger/.

five-ways-keep-your-child-safe-school-shootings

The California Institute of Technology (commonly referred to as Caltech) is a private research university located in Pasadena, California, United States. Caltech has six academic divisions with strong emphases on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. “The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.”

Caltech campus

## From Niels Bohr Institute: “Boosting gravitational wave detectors with quantum tricks”

University of Copenhagen

From Niels Bohr Institute

03 September 2018
Eugene Polzik, professor and head of the Center for Quantum Optics, Quantop at the Niels Bohr Institute, University of Copenhagen
Phone: +45 2338 2045
Email: polzik@nbi.dk

Gravitational wave detectors: Niels Bohr Institute scientists are convinced they can expand space surveillance using a small glass cell filled with caesium atoms.

Eugene Polzik and Farid Khalili from LIGO collaboration and Moscow State University, have recently published in the scientific journal Physical Review Letters how they can improve gravitational wave detectors. Photo: Ola J. Joensen

A group of scientists from the Niels Bohr Institute (NBI) at the University of Copenhagen will soon start developing a new line of technical equipment in order to dramatically improve gravitational wave detectors.

Gravitational wave detectors are extremely sensitive and can e.g. register colliding neutron stars in space. Yet even higher sensitivity is sought for in order to expand our knowledge about the Universe, and the NBI-scientists are convinced that their equipment can improve the detectors, says Professor Eugene Polzik: “And we should be able to show proof of concept within approximately three years”.

If the NBI-scientists are able to improve the gravitational wave detectors as much as they “realistically expect can be done”, the detectors will be able to monitor and carry out measurements in an eight times bigger volume of space than what is currently possible, explains Eugene Polzik: “This will represent a truly significant extension”.

Polzik is head of Quantum Optics (Quantop) at NBI and he will spearhead the development of the tailor made equipment for gravitational wave detectors. The research – which is supported by the EU, the Eureka Network Projects and the US-based John Templeton Foundation with grants totaling DKK 10 million – will be carried out in Eugene Polzik’s lab at NBI.

A collision well noticed

News media all over the world shifted into overdrive in October of 2017 when it was confirmed that a large international team of scientists had indeed measured the collision of two neutron stars; an event which took place 140 million light years from Earth and resulted in the formation of a kilonova.

The international team of scientists – which also included experts from NBI – was able to confirm the collision by measuring gravitational waves from space – waves in the fabric of spacetime itself, moving at the speed of light. The waves were registered by three gravitational wave detectors: the two US-based LIGO-detectors and the European Virgo-detector in Italy.

VIRGO Gravitational Wave interferometer, near Pisa, Italy

Caltech/MIT Advanced aLigo Hanford, WA, USA installation

Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project

Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger-Zib

ESA/eLISA the future of gravitational wave research

Skymap showing how adding Virgo to LIGO helps in reducing the size of the source-likely region in the sky. (Credit: Giuseppe Greco (Virgo Urbino group)

Caesium atoms contained in a spin-protecting cell are expected to enhance the sensitivity of Gravitational Waves Detectors. Photo: Ola J. Joensen

“These gravitational wave detectors represent by far the most sensitive measuring equipment man has yet manufactured – still the detectors are not as accurate as they could possibly be. And this is what we intend to improve”, says Professor Eugene Polzik.

How this can be done is outlined in an article which Eugene Polzik and a colleague, Farid Khalili from LIGO collaboration and Moscow State University, have recently published in the scientific journal Physical Review Letters. And this is not merely a theoretical proposal, says Eugene Polzik:

“We are convinced this will work as intended. Our calculations show that we ought to be able to improve the precision of measurements carried out by the gravitational wave detectors by a factor of two. And if we succeed, this will result in an increase by a factor of eight of the volume in space which gravitational wave detectors are able to examine at present”.

A small glass cell

In July of last year Eugene Polzik and his team at Quantop published a highly noticed article in Nature – and this work is actually the very foundation of their upcoming attempt to improve the gravitational wave detectors.

If laser light used to measure motion of a vibrating membrane (left) is first transmitted through an atom cloud (center) the measurement sensitivity can be better than standard quantum limits envisioned by Bohr and Heisenberg. Photo: Bastian Leonhardt Strube and Mads Vadsholt

The article in Nature centered on ‘fooling’ Heisenberg’s Uncertainty Principle, which basically says that you cannot simultaneously know the exact position and the exact speed of an object.

This has to do with the fact that observations conducted by shining light on an object inevitably will lead to the object being ‘kicked’ in random directions by photons, particles of light. This phenomenon is known as Quantum Back Action (QBA) and these random movements put a limit to the accuracy with which measurements can be carried out at the quantum level.

The article in Nature in the summer of 2017 made headlines because Eugene Polzik and his team were able to show that it is – to a large extent – actually possible to neutralize QBA.

And QBA is the very reason why gravitational wave detectors – that also operate with light, namely laser light – “are not as accurate as they could possibly be”, as professor Polzik says.

Put simply, it is possible to neutralize QBA if the light used to observe an object is initially sent through a ‘filter’. This was what the article in Nature described – and the ‘filter’ which the NBI-scientists at Quantop had developed and described consisted of a cloud of 100 million caesium atoms locked-up in a hermetically closed glass cell just one centimeter long, 1/3 of a millimeter high and 1/3 of a millimeter wide.

The principle behind this ‘filter’ is exactly what Polzik and his team are aiming to incorporate in gravitational wave detectors.

PhD student Tulio Brasil, postdoctoral fellow Michael Zugenmaier and Professor Eugene Polzik in front of the future site of the experiment. Foto: Ola J. Joensen

In theory one can optimize measurements of gravitational waves by switching to stronger laser light than the detectors in both Europe and USA are operating with. However, according to quantum mechanics, that is not an option, says Eugene Polzik:

“Switching to stronger laser light will just make a set of mirrors in the detectors shake more because Quantum Back Action will be caused by more photons. These mirrors are absolutely crucial, and if they start shaking, it will in fact increase inaccuracy”.

Instead, the NBI-scientists have come up with a plan based on the atomic ‘filter’ which they demonstrated in the Nature article: They will send the laser light by which the gravitational wave detectors operate through a tailor made version of the cell with the locked-up atoms, says Eugene Polzik: “And we hope that it will do the job”.

The Niels Bohr Institute (Danish: Niels Bohr Institutet) is a research institute of the University of Copenhagen. The research of the institute spans astronomy, geophysics, nanotechnology, particle physics, quantum mechanics and biophysics.

The Institute was founded in 1921, as the Institute for Theoretical Physics of the University of Copenhagen, by the Danish theoretical physicist Niels Bohr, who had been on the staff of the University of Copenhagen since 1914, and who had been lobbying for its creation since his appointment as professor in 1916. On the 80th anniversary of Niels Bohr’s birth – October 7, 1965 – the Institute officially became The Niels Bohr Institute.[1] Much of its original funding came from the charitable foundation of the Carlsberg brewery, and later from the Rockefeller Foundation.[2]

During the 1920s, and 1930s, the Institute was the center of the developing disciplines of atomic physics and quantum physics. Physicists from across Europe (and sometimes further abroad) often visited the Institute to confer with Bohr on new theories and discoveries. The Copenhagen interpretation of quantum mechanics is named after work done at the Institute during this time.

On January 1, 1993 the institute was fused with the Astronomic Observatory, the Ørsted Laboratory and the Geophysical Institute. The new resulting institute retained the name Niels Bohr Institute.

The University of Copenhagen (UCPH) (Danish: Københavns Universitet) is the oldest university and research institution in Denmark. Founded in 1479 as a studium generale, it is the second oldest institution for higher education in Scandinavia after Uppsala University (1477). The university has 23,473 undergraduate students, 17,398 postgraduate students, 2,968 doctoral students and over 9,000 employees. The university has four campuses located in and around Copenhagen, with the headquarters located in central Copenhagen. Most courses are taught in Danish; however, many courses are also offered in English and a few in German. The university has several thousands of foreign students, about half of whom come from Nordic countries.

The university is a member of the International Alliance of Research Universities (IARU), along with University of Cambridge, Yale University, The Australian National University, and UC Berkeley, amongst others. The 2016 Academic Ranking of World Universities ranks the University of Copenhagen as the best university in Scandinavia and 30th in the world, the 2016-2017 Times Higher Education World University Rankings as 120th in the world, and the 2016-2017 QS World University Rankings as 68th in the world. The university has had 9 alumni become Nobel laureates and has produced one Turing Award recipient

## From Northwestern University: “Dozens of binaries from Milky Way’s globular clusters could be detectable by LISA”

May 11, 2018
Megan Fellman

Next-generation gravitational wave detector in space will complement LIGO on Earth.

ESA/eLISA space based the future of gravitational wave research

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A string of detections — four more binary black holes and a pair of neutron stars — soon followed the Sept. 14, 2015, observation.

UC Santa Cruz

A UC Santa Cruz special report

Tim Stephens

Astronomer Ryan Foley says “observing the explosion of two colliding neutron stars” [see https://sciencesprings.wordpress.com/2017/10/17/from-ucsc-first-observations-of-merging-neutron-stars-mark-a-new-era-in-astronomy ]–the first visible event ever linked to gravitational waves–is probably the biggest discovery he’ll make in his lifetime. That’s saying a lot for a young assistant professor who presumably has a long career still ahead of him.

The first optical image of a gravitational wave source was taken by a team led by Ryan Foley of UC Santa Cruz using the Swope Telescope at the Carnegie Institution’s Las Campanas Observatory in Chile. This image of Swope Supernova Survey 2017a (SSS17a, indicated by arrow) shows the light emitted from the cataclysmic merger of two neutron stars. (Image credit: 1M2H Team/UC Santa Cruz & Carnegie Observatories/Ryan Foley)

Carnegie Institution Swope telescope at Las Campanas, Chile, 100 kilometres (62 mi) northeast of the city of La Serena. near the north end of a 7 km (4.3 mi) long mountain ridge. Cerro Las Campanas, near the southern end and over 2,500 m (8,200 ft) high, at Las Campanas, Chile

A neutron star forms when a massive star runs out of fuel and explodes as a supernova, throwing off its outer layers and leaving behind a collapsed core composed almost entirely of neutrons. Neutrons are the uncharged particles in the nucleus of an atom, where they are bound together with positively charged protons. In a neutron star, they are packed together just as densely as in the nucleus of an atom, resulting in an object with one to three times the mass of our sun but only about 12 miles wide.

“Basically, a neutron star is a gigantic atom with the mass of the sun and the size of a city like San Francisco or Manhattan,” said Foley, an assistant professor of astronomy and astrophysics at UC Santa Cruz.

These objects are so dense, a cup of neutron star material would weigh as much as Mount Everest, and a teaspoon would weigh a billion tons. It’s as dense as matter can get without collapsing into a black hole.

THE MERGER

Like other stars, neutron stars sometimes occur in pairs, orbiting each other and gradually spiraling inward. Eventually, they come together in a catastrophic merger that distorts space and time (creating gravitational waves) and emits a brilliant flare of electromagnetic radiation, including visible, infrared, and ultraviolet light, x-rays, gamma rays, and radio waves. Merging black holes also create gravitational waves, but there’s nothing to be seen because no light can escape from a black hole.

Foley’s team was the first to observe the light from a neutron star merger that took place on August 17, 2017, and was detected by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO).

VIRGO Gravitational Wave interferometer, near Pisa, Italy

Caltech/MIT Advanced aLigo Hanford, WA, USA installation

Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project

Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger-Zib

ESA/eLISA the future of gravitational wave research

Skymap showing how adding Virgo to LIGO helps in reducing the size of the source-likely region in the sky. (Credit: Giuseppe Greco (Virgo Urbino group)

Now, for the first time, scientists can study both the gravitational waves (ripples in the fabric of space-time), and the radiation emitted from the violent merger of the densest objects in the universe.

The UC Santa Cruz team found SSS17a by comparing a new image of the galaxy N4993 (right) with images taken four months earlier by the Hubble Space Telescope (left). The arrows indicate where SSS17a was absent from the Hubble image and visible in the new image from the Swope Telescope. (Image credits: Left, Hubble/STScI; Right, 1M2H Team/UC Santa Cruz & Carnegie Observatories/Ryan Foley)

It’s that combination of data, and all that can be learned from it, that has astronomers and physicists so excited. The observations of this one event are keeping hundreds of scientists busy exploring its implications for everything from fundamental physics and cosmology to the origins of gold and other heavy elements.

A small team of UC Santa Cruz astronomers were the first team to observe light from two neutron stars merging in August. The implications are huge.

ALL THE GOLD IN THE UNIVERSE

It turns out that the origins of the heaviest elements, such as gold, platinum, uranium—pretty much everything heavier than iron—has been an enduring conundrum. All the lighter elements have well-explained origins in the nuclear fusion reactions that make stars shine or in the explosions of stars (supernovae). Initially, astrophysicists thought supernovae could account for the heavy elements, too, but there have always been problems with that theory, says Enrico Ramirez-Ruiz, professor and chair of astronomy and astrophysics at UC Santa Cruz.

The violent merger of two neutron stars is thought to involve three main energy-transfer processes, shown in this diagram, that give rise to the different types of radiation seen by astronomers, including a gamma-ray burst and a kilonova explosion seen in visible light. (Image credit: Murguia-Berthier et al., Science)

A theoretical astrophysicist, Ramirez-Ruiz has been a leading proponent of the idea that neutron star mergers are the source of the heavy elements. Building a heavy atomic nucleus means adding a lot of neutrons to it. This process is called rapid neutron capture, or the r-process, and it requires some of the most extreme conditions in the universe: extreme temperatures, extreme densities, and a massive flow of neutrons. A neutron star merger fits the bill.

Ramirez-Ruiz and other theoretical astrophysicists use supercomputers to simulate the physics of extreme events like supernovae and neutron star mergers. This work always goes hand in hand with observational astronomy. Theoretical predictions tell observers what signatures to look for to identify these events, and observations tell theorists if they got the physics right or if they need to tweak their models. The observations by Foley and others of the neutron star merger now known as SSS17a are giving theorists, for the first time, a full set of observational data to compare with their theoretical models.

According to Ramirez-Ruiz, the observations support the theory that neutron star mergers can account for all the gold in the universe, as well as about half of all the other elements heavier than iron.

RIPPLES IN THE FABRIC OF SPACE-TIME

Einstein predicted the existence of gravitational waves in 1916 in his general theory of relativity, but until recently they were impossible to observe. LIGO’s extraordinarily sensitive detectors achieved the first direct detection of gravitational waves, from the collision of two black holes, in 2015. Gravitational waves are created by any massive accelerating object, but the strongest waves (and the only ones we have any chance of detecting) are produced by the most extreme phenomena.

Two massive compact objects—such as black holes, neutron stars, or white dwarfs—orbiting around each other faster and faster as they draw closer together are just the kind of system that should radiate strong gravitational waves. Like ripples spreading in a pond, the waves get smaller as they spread outward from the source. By the time they reached Earth, the ripples detected by LIGO caused distortions of space-time thousands of times smaller than the nucleus of an atom.

The rarefied signals recorded by LIGO’s detectors not only prove the existence of gravitational waves, they also provide crucial information about the events that produced them. Combined with the telescope observations of the neutron star merger, it’s an incredibly rich set of data.

LIGO can tell scientists the masses of the merging objects and the mass of the new object created in the merger, which reveals whether the merger produced another neutron star or a more massive object that collapsed into a black hole. To calculate how much mass was ejected in the explosion, and how much mass was converted to energy, scientists also need the optical observations from telescopes. That’s especially important for quantifying the nucleosynthesis of heavy elements during the merger.

LIGO can also provide a measure of the distance to the merging neutron stars, which can now be compared with the distance measurement based on the light from the merger. That’s important to cosmologists studying the expansion of the universe, because the two measurements are based on different fundamental forces (gravity and electromagnetism), giving completely independent results.

“This is a huge step forward in astronomy,” Foley said. “Having done it once, we now know we can do it again, and it opens up a whole new world of what we call ‘multi-messenger’ astronomy, viewing the universe through different fundamental forces.”

IN THIS REPORT

Neutron stars
A team from UC Santa Cruz was the first to observe the light from a neutron star merger that took place on August 17, 2017 and was detected by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO)

Graduate students and post-doctoral scholars at UC Santa Cruz played key roles in the dramatic discovery and analysis of colliding neutron stars.Astronomer Ryan Foley leads a team of young graduate students and postdoctoral scholars who have pulled off an extraordinary coup. Following up on the detection of gravitational waves from the violent merger of two neutron stars, Foley’s team was the first to find the source with a telescope and take images of the light from this cataclysmic event. In so doing, they beat much larger and more senior teams with much more powerful telescopes at their disposal.

“We’re sort of the scrappy young upstarts who worked hard and got the job done,” said Foley, an untenured assistant professor of astronomy and astrophysics at UC Santa Cruz.

The discovery on August 17, 2017, has been a scientific bonanza, yielding over 100 scientific papers from numerous teams investigating the new observations. Foley’s team is publishing seven papers, each of which has a graduate student or postdoc as the first author.

“I think it speaks to Ryan’s generosity and how seriously he takes his role as a mentor that he is not putting himself front and center, but has gone out of his way to highlight the roles played by his students and postdocs,” said Enrico Ramirez-Ruiz, professor and chair of astronomy and astrophysics at UC Santa Cruz and the most senior member of Foley’s team.

“Our team is by far the youngest and most diverse of all of the teams involved in the follow-up observations of this neutron star merger,” Ramirez-Ruiz added.

Charles Kilpatrick, postdoctoral scholar

Charles Kilpatrick, a 29-year-old postdoctoral scholar, was the first person in the world to see an image of the light from colliding neutron stars. He was sitting in an office at UC Santa Cruz, working with first-year graduate student Cesar Rojas-Bravo to process image data as it came in from the Swope Telescope in Chile. To see if the Swope images showed anything new, he had also downloaded “template” images taken in the past of the same galaxies the team was searching.

“In one image I saw something there that was not in the template image,” Kilpatrick said. “It took me a while to realize the ramifications of what I was seeing. This opens up so much new science, it really marks the beginning of something that will continue to be studied for years down the road.”

At the time, Foley and most of the others in his team were at a meeting in Copenhagen. When they found out about the gravitational wave detection, they quickly got together to plan their search strategy. From Copenhagen, the team sent instructions to the telescope operators in Chile telling them where to point the telescope. Graduate student David Coulter played a key role in prioritizing the galaxies they would search to find the source, and he is the first author of the discovery paper published in Science.

“It’s still a little unreal when I think about what we’ve accomplished,” Coulter said. “For me, despite the euphoria of recognizing what we were seeing at the moment, we were all incredibly focused on the task at hand. Only afterward did the significance really sink in.”

Just as Coulter finished writing his paper about the discovery, his wife went into labor, giving birth to a baby girl on September 30. “I was doing revisions to the paper at the hospital,” he said.

It’s been a wild ride for the whole team, first in the rush to find the source, and then under pressure to quickly analyze the data and write up their findings for publication. “It was really an all-hands-on-deck moment when we all had to pull together and work quickly to exploit this opportunity,” said Kilpatrick, who is first author of a paper comparing the observations with theoretical models.

Graduate student Matthew Siebert led a paper analyzing the unusual properties of the light emitted by the merger. Astronomers have observed thousands of supernovae (exploding stars) and other “transients” that appear suddenly in the sky and then fade away, but never before have they observed anything that looks like this neutron star merger. Siebert’s paper concluded that there is only a one in 100,000 chance that the transient they observed is not related to the gravitational waves.

Ariadna Murguia-Berthier, a graduate student working with Ramirez-Ruiz, is first author of a paper synthesizing data from a range of sources to provide a coherent theoretical framework for understanding the observations.

Another aspect of the discovery of great interest to astronomers is the nature of the galaxy and the galactic environment in which the merger occurred. Postdoctoral scholar Yen-Chen Pan led a paper analyzing the properties of the host galaxy. Enia Xhakaj, a new graduate student who had just joined the group in August, got the opportunity to help with the analysis and be a coauthor on the paper.

Yen-Chen Pan, postdoctoral scholar

“There are so many interesting things to learn from this,” Foley said. “It’s a great experience for all of us to be part of such an important discovery.”

IN THIS REPORT

Scientific Papers from the 1M2H Collaboration

Shappee et al., Science, Early Spectra of the Gravitational Wave Source GW170817: Evolution of a Neutron Star Merger

Kilpatrick et al., Science, Electromagnetic Evidence that SSS17a is the Result of a Binary Neutron Star Merger

Murguia-Berthier et al., ApJL, A Neutron Star Binary Merger Model for GW170817/GRB170817a/SSS17a

Abbott et al., Nature, A gravitational-wave standard siren measurement of the Hubble constant (The LIGO Scientific Collaboration and The Virgo Collaboration, The 1M2H Collaboration, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration, The DLT40 Collaboration, The Las Cumbres Observatory Collaboration, The VINROUGE Collaboration & The MASTER Collaboration)

Abbott et al., ApJL, Multi-messenger Observations of a Binary Neutron Star Merger

PRESS RELEASES AND MEDIA COVERAGE

Watch Ryan Foley tell the story of how his team found the neutron star merger in the video below. 2.5 HOURS.

Press releases:

UC Santa Cruz Press Release

UC Berkeley Press Release

Carnegie Institution of Science Press Release

LIGO Collaboration Press Release

National Science Foundation Press Release

Media coverage:

The Atlantic – The Slack Chat That Changed Astronomy

San Jose Mercury News – A bright light seen across the universe, proving Einstein right

Scientific American – Gravitational Wave Astronomers Hit Mother Lode

National Geographic – In a First, Gravitational Waves Linked to Neutron Star Crash

Associated Press – Astronomers witness huge cosmic crash, find origins of gold

UCSC press release
First observations of merging neutron stars mark a new era in astronomy

Credits

Writing: Tim Stephens
Video: Nick Gonzales
Photos: Carolyn Lagattuta
Header image: Illustration by Robin Dienel courtesy of the Carnegie Institution for Science
Design and development: Rob Knight
Project managers: Sherry Main, Scott Hernandez-Jason, Tim Stephens

Dark Energy Survey

Dark Energy Camera [DECam], built at FNAL

NOAO/CTIO Victor M Blanco 4m Telescope which houses the DECam at Cerro Tololo, Chile, housing DECam at an altitude of 7200 feet

Gemini South telescope, Cerro Tololo Inter-American Observatory (CTIO) campus near La Serena, Chile, at an altitude of 7200 feet

Noted in the vdeo but not in te article:

NASA/Chandra Telescope

NASA/SWIFT Telescope

NRAO/Karl V Jansky VLA, on the Plains of San Agustin fifty miles west of Socorro, NM, USA

Prompt telescope CTIO Chile

NASA NuSTAR X-ray telescope

Now, another detector is being built to crack this window wider open. This next-generation observatory, called LISA, is expected to be in space in 2034, and it will be sensitive to gravitational waves of a lower frequency than those detected by the Earth-bound Laser Interferometer Gravitational-Wave Observatory (LIGO).

A new Northwestern University study predicts dozens of binaries (pairs of orbiting compact objects) in the globular clusters of the Milky Way will be detectable by LISA (Laser Interferometer Space Antenna). These binary sources would contain all combinations of black hole, neutron star and white dwarf components. Binaries formed from these star-dense clusters will have many different features from those binaries that formed in isolation, far from other stars.

The study is the first to use realistic globular cluster models to make detailed predictions of LISA sources. “LISA Sources in Milky-Way Globular Clusters” was published today, May 11, by the journal Physical Review Letters.

“LISA is sensitive to Milky Way systems and will expand the breadth of the gravitational wave spectrum, allowing us to explore different types of objects that aren’t observable with LIGO,” said Kyle Kremer, the paper’s first author, a Ph.D. student in physics and astronomy in Northwestern’s Weinberg College of Arts and Sciences and a member of a computational astrophysics research collaboration based in Northwestern’s Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA).

In the Milky Way, 150 globular clusters have been observed so far. The Northwestern research team predicts one out of every three clusters will produce a LISA source. The study also predicts that approximately eight black hole binaries will be detectable by LISA in our neighboring galaxy of Andromeda and another 80 in nearby Virgo.

Before the first detection of gravitational waves by LIGO, as the twin detectors were being built in the United States, astrophysicists around the world worked for decades on theoretical predictions of what astrophysical phenomena LIGO would observe. That is what the Northwestern theoretical astrophysicists are doing in this new study, but this time for LISA, which is being built by the European Space Agency with contributions from NASA.

“We do our computer simulations and analysis at the same time our colleagues are bending metal and building spaceships, so that when LISA finally flies, we’re all ready at the same time,” said Shane L. Larson, associate director of CIERA and an author of the study. “This study is helping us understand what science is going to be contained in the LISA data.”

A globular cluster is a spherical structure of hundreds of thousands to millions of stars, gravitationally bound together. The clusters are some of the oldest populations of stars in the galaxy and are efficient factories of compact object binaries.

The Northwestern research team had numerous advantages in conducting this study. Over the past two decades, Frederic A. Rasio and his group have developed a powerful computational tool — one of the best in the world — to realistically model globular clusters. Rasio, the Joseph Cummings Professor in Northwestern’s department of physics and astronomy, is the senior author of the study.

The researchers used more than a hundred fully evolved globular cluster models with properties similar to those of the observed globular clusters in the Milky Way. The models, which were all created at CIERA, were run on Quest, Northwestern’s supercomputer cluster. This powerful resource can evolve the full 12 billion years of a globular cluster’s life in a matter of days.

NASA (ATP grant NNX14AP92G) and the National Science Foundation (grant AST-1716762) supported the research.

Other authors of the paper include Sourav Chatterjee and Katelyn Breivik, both of Northwestern and CIERA, and Carl L. Rodriguez, of the MIT-Kavli Institute for Astrophysics and Space Research.

Stem Education Coalition

South Campus

On May 31, 1850, nine men gathered to begin planning a university that would serve the Northwest Territory.

Given that they had little money, no land and limited higher education experience, their vision was ambitious. But through a combination of creative financing, shrewd politicking, religious inspiration and an abundance of hard work, the founders of Northwestern University were able to make that dream a reality.

In 1853, the founders purchased a 379-acre tract of land on the shore of Lake Michigan 12 miles north of Chicago. They established a campus and developed the land near it, naming the surrounding town Evanston in honor of one of the University’s founders, John Evans. After completing its first building in 1855, Northwestern began classes that fall with two faculty members and 10 students.
Twenty-one presidents have presided over Northwestern in the years since. The University has grown to include 12 schools and colleges, with additional campuses in Chicago and Doha, Qatar.

Northwestern is recognized nationally and internationally for its educational programs.

## From Science: “Neutron star mergers may create much of the universe’s gold”

Mar. 20, 2018
Sid Perkins

R. Hurt/Caltech-JPL

The occasional merger of neutron stars literally shakes the universe by sending out gravitational waves (illustrated above), but these events may also be the main source of gold and other heavy elements in the Milky Way, a new study suggests.

Some elements—such as gold, europium, and many others heavier than iron—are forged by a process dubbed rapid neutron capture, in which an atomic nucleus quickly absorbs a series of neutrons to reach a stable form before it radioactively decays. But debate rages among scientists as to where the largest proportion of such elements in the universe come from: Some suggest it happens deep within collapsing supernovae, and others propose that it occurs during the relatively rare but spectacular merger of neutron stars.

Using data gathered during a neutron star merger that occurred between 85 million and 160 million light-years away in August 2017 (an event in which the colliding stars together weighed about three times the mass of our sun), current astrophysical models suggest that that single event generated between one and five Earth masses of europium and between three and 13 Earth masses of gold, the researchers report this month in The Astrophysical Journal. And if the August 2017 merger is typical for such events, even if there are only one or two such mergers each year in a cube of space 6 million light-years on a side, they would still be the dominant source of europium in the Milky Way, the researchers say.

UC Santa Cruz

A UC Santa Cruz special report

Tim Stephens

Astronomer Ryan Foley says “observing the explosion of two colliding neutron stars” [see https://sciencesprings.wordpress.com/2017/10/17/from-ucsc-first-observations-of-merging-neutron-stars-mark-a-new-era-in-astronomy ]–the first visible event ever linked to gravitational waves–is probably the biggest discovery he’ll make in his lifetime. That’s saying a lot for a young assistant professor who presumably has a long career still ahead of him.

The first optical image of a gravitational wave source was taken by a team led by Ryan Foley of UC Santa Cruz using the Swope Telescope at the Carnegie Institution’s Las Campanas Observatory in Chile. This image of Swope Supernova Survey 2017a (SSS17a, indicated by arrow) shows the light emitted from the cataclysmic merger of two neutron stars. (Image credit: 1M2H Team/UC Santa Cruz & Carnegie Observatories/Ryan Foley)

Carnegie Institution Swope telescope at Las Campanas, Chile, 100 kilometres (62 mi) northeast of the city of La Serena. near the north end of a 7 km (4.3 mi) long mountain ridge. Cerro Las Campanas, near the southern end and over 2,500 m (8,200 ft) high, at Las Campanas, Chile

A neutron star forms when a massive star runs out of fuel and explodes as a supernova, throwing off its outer layers and leaving behind a collapsed core composed almost entirely of neutrons. Neutrons are the uncharged particles in the nucleus of an atom, where they are bound together with positively charged protons. In a neutron star, they are packed together just as densely as in the nucleus of an atom, resulting in an object with one to three times the mass of our sun but only about 12 miles wide.

“Basically, a neutron star is a gigantic atom with the mass of the sun and the size of a city like San Francisco or Manhattan,” said Foley, an assistant professor of astronomy and astrophysics at UC Santa Cruz.

These objects are so dense, a cup of neutron star material would weigh as much as Mount Everest, and a teaspoon would weigh a billion tons. It’s as dense as matter can get without collapsing into a black hole.

THE MERGER

Like other stars, neutron stars sometimes occur in pairs, orbiting each other and gradually spiraling inward. Eventually, they come together in a catastrophic merger that distorts space and time (creating gravitational waves) and emits a brilliant flare of electromagnetic radiation, including visible, infrared, and ultraviolet light, x-rays, gamma rays, and radio waves. Merging black holes also create gravitational waves, but there’s nothing to be seen because no light can escape from a black hole.

Foley’s team was the first to observe the light from a neutron star merger that took place on August 17, 2017, and was detected by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO).

VIRGO Gravitational Wave interferometer, near Pisa, Italy

Caltech/MIT Advanced aLigo Hanford, WA, USA installation

Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project

Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger-Zib

ESA/eLISA the future of gravitational wave research

Skymap showing how adding Virgo to LIGO helps in reducing the size of the source-likely region in the sky. (Credit: Giuseppe Greco (Virgo Urbino group)

Now, for the first time, scientists can study both the gravitational waves (ripples in the fabric of space-time), and the radiation emitted from the violent merger of the densest objects in the universe.

The UC Santa Cruz team found SSS17a by comparing a new image of the galaxy N4993 (right) with images taken four months earlier by the Hubble Space Telescope (left). The arrows indicate where SSS17a was absent from the Hubble image and visible in the new image from the Swope Telescope. (Image credits: Left, Hubble/STScI; Right, 1M2H Team/UC Santa Cruz & Carnegie Observatories/Ryan Foley)

It’s that combination of data, and all that can be learned from it, that has astronomers and physicists so excited. The observations of this one event are keeping hundreds of scientists busy exploring its implications for everything from fundamental physics and cosmology to the origins of gold and other heavy elements.

A small team of UC Santa Cruz astronomers were the first team to observe light from two neutron stars merging in August. The implications are huge.

ALL THE GOLD IN THE UNIVERSE

It turns out that the origins of the heaviest elements, such as gold, platinum, uranium—pretty much everything heavier than iron—has been an enduring conundrum. All the lighter elements have well-explained origins in the nuclear fusion reactions that make stars shine or in the explosions of stars (supernovae). Initially, astrophysicists thought supernovae could account for the heavy elements, too, but there have always been problems with that theory, says Enrico Ramirez-Ruiz, professor and chair of astronomy and astrophysics at UC Santa Cruz.

The violent merger of two neutron stars is thought to involve three main energy-transfer processes, shown in this diagram, that give rise to the different types of radiation seen by astronomers, including a gamma-ray burst and a kilonova explosion seen in visible light. (Image credit: Murguia-Berthier et al., Science)

A theoretical astrophysicist, Ramirez-Ruiz has been a leading proponent of the idea that neutron star mergers are the source of the heavy elements. Building a heavy atomic nucleus means adding a lot of neutrons to it. This process is called rapid neutron capture, or the r-process, and it requires some of the most extreme conditions in the universe: extreme temperatures, extreme densities, and a massive flow of neutrons. A neutron star merger fits the bill.

Ramirez-Ruiz and other theoretical astrophysicists use supercomputers to simulate the physics of extreme events like supernovae and neutron star mergers. This work always goes hand in hand with observational astronomy. Theoretical predictions tell observers what signatures to look for to identify these events, and observations tell theorists if they got the physics right or if they need to tweak their models. The observations by Foley and others of the neutron star merger now known as SSS17a are giving theorists, for the first time, a full set of observational data to compare with their theoretical models.

According to Ramirez-Ruiz, the observations support the theory that neutron star mergers can account for all the gold in the universe, as well as about half of all the other elements heavier than iron.

RIPPLES IN THE FABRIC OF SPACE-TIME

Einstein predicted the existence of gravitational waves in 1916 in his general theory of relativity, but until recently they were impossible to observe. LIGO’s extraordinarily sensitive detectors achieved the first direct detection of gravitational waves, from the collision of two black holes, in 2015. Gravitational waves are created by any massive accelerating object, but the strongest waves (and the only ones we have any chance of detecting) are produced by the most extreme phenomena.

Two massive compact objects—such as black holes, neutron stars, or white dwarfs—orbiting around each other faster and faster as they draw closer together are just the kind of system that should radiate strong gravitational waves. Like ripples spreading in a pond, the waves get smaller as they spread outward from the source. By the time they reached Earth, the ripples detected by LIGO caused distortions of space-time thousands of times smaller than the nucleus of an atom.

The rarefied signals recorded by LIGO’s detectors not only prove the existence of gravitational waves, they also provide crucial information about the events that produced them. Combined with the telescope observations of the neutron star merger, it’s an incredibly rich set of data.

LIGO can tell scientists the masses of the merging objects and the mass of the new object created in the merger, which reveals whether the merger produced another neutron star or a more massive object that collapsed into a black hole. To calculate how much mass was ejected in the explosion, and how much mass was converted to energy, scientists also need the optical observations from telescopes. That’s especially important for quantifying the nucleosynthesis of heavy elements during the merger.

LIGO can also provide a measure of the distance to the merging neutron stars, which can now be compared with the distance measurement based on the light from the merger. That’s important to cosmologists studying the expansion of the universe, because the two measurements are based on different fundamental forces (gravity and electromagnetism), giving completely independent results.

“This is a huge step forward in astronomy,” Foley said. “Having done it once, we now know we can do it again, and it opens up a whole new world of what we call ‘multi-messenger’ astronomy, viewing the universe through different fundamental forces.”

IN THIS REPORT

Neutron stars
A team from UC Santa Cruz was the first to observe the light from a neutron star merger that took place on August 17, 2017 and was detected by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO)

Graduate students and post-doctoral scholars at UC Santa Cruz played key roles in the dramatic discovery and analysis of colliding neutron stars.Astronomer Ryan Foley leads a team of young graduate students and postdoctoral scholars who have pulled off an extraordinary coup. Following up on the detection of gravitational waves from the violent merger of two neutron stars, Foley’s team was the first to find the source with a telescope and take images of the light from this cataclysmic event. In so doing, they beat much larger and more senior teams with much more powerful telescopes at their disposal.

“We’re sort of the scrappy young upstarts who worked hard and got the job done,” said Foley, an untenured assistant professor of astronomy and astrophysics at UC Santa Cruz.

The discovery on August 17, 2017, has been a scientific bonanza, yielding over 100 scientific papers from numerous teams investigating the new observations. Foley’s team is publishing seven papers, each of which has a graduate student or postdoc as the first author.

“I think it speaks to Ryan’s generosity and how seriously he takes his role as a mentor that he is not putting himself front and center, but has gone out of his way to highlight the roles played by his students and postdocs,” said Enrico Ramirez-Ruiz, professor and chair of astronomy and astrophysics at UC Santa Cruz and the most senior member of Foley’s team.

“Our team is by far the youngest and most diverse of all of the teams involved in the follow-up observations of this neutron star merger,” Ramirez-Ruiz added.

Charles Kilpatrick, postdoctoral scholar

Charles Kilpatrick, a 29-year-old postdoctoral scholar, was the first person in the world to see an image of the light from colliding neutron stars. He was sitting in an office at UC Santa Cruz, working with first-year graduate student Cesar Rojas-Bravo to process image data as it came in from the Swope Telescope in Chile. To see if the Swope images showed anything new, he had also downloaded “template” images taken in the past of the same galaxies the team was searching.

“In one image I saw something there that was not in the template image,” Kilpatrick said. “It took me a while to realize the ramifications of what I was seeing. This opens up so much new science, it really marks the beginning of something that will continue to be studied for years down the road.”

At the time, Foley and most of the others in his team were at a meeting in Copenhagen. When they found out about the gravitational wave detection, they quickly got together to plan their search strategy. From Copenhagen, the team sent instructions to the telescope operators in Chile telling them where to point the telescope. Graduate student David Coulter played a key role in prioritizing the galaxies they would search to find the source, and he is the first author of the discovery paper published in Science.

“It’s still a little unreal when I think about what we’ve accomplished,” Coulter said. “For me, despite the euphoria of recognizing what we were seeing at the moment, we were all incredibly focused on the task at hand. Only afterward did the significance really sink in.”

Just as Coulter finished writing his paper about the discovery, his wife went into labor, giving birth to a baby girl on September 30. “I was doing revisions to the paper at the hospital,” he said.

It’s been a wild ride for the whole team, first in the rush to find the source, and then under pressure to quickly analyze the data and write up their findings for publication. “It was really an all-hands-on-deck moment when we all had to pull together and work quickly to exploit this opportunity,” said Kilpatrick, who is first author of a paper comparing the observations with theoretical models.

Graduate student Matthew Siebert led a paper analyzing the unusual properties of the light emitted by the merger. Astronomers have observed thousands of supernovae (exploding stars) and other “transients” that appear suddenly in the sky and then fade away, but never before have they observed anything that looks like this neutron star merger. Siebert’s paper concluded that there is only a one in 100,000 chance that the transient they observed is not related to the gravitational waves.

Ariadna Murguia-Berthier, a graduate student working with Ramirez-Ruiz, is first author of a paper synthesizing data from a range of sources to provide a coherent theoretical framework for understanding the observations.

Another aspect of the discovery of great interest to astronomers is the nature of the galaxy and the galactic environment in which the merger occurred. Postdoctoral scholar Yen-Chen Pan led a paper analyzing the properties of the host galaxy. Enia Xhakaj, a new graduate student who had just joined the group in August, got the opportunity to help with the analysis and be a coauthor on the paper.

Yen-Chen Pan, postdoctoral scholar

“There are so many interesting things to learn from this,” Foley said. “It’s a great experience for all of us to be part of such an important discovery.”

IN THIS REPORT

Scientific Papers from the 1M2H Collaboration

Shappee et al., Science, Early Spectra of the Gravitational Wave Source GW170817: Evolution of a Neutron Star Merger

Kilpatrick et al., Science, Electromagnetic Evidence that SSS17a is the Result of a Binary Neutron Star Merger

Murguia-Berthier et al., ApJL, A Neutron Star Binary Merger Model for GW170817/GRB170817a/SSS17a

Abbott et al., Nature, A gravitational-wave standard siren measurement of the Hubble constant (The LIGO Scientific Collaboration and The Virgo Collaboration, The 1M2H Collaboration, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration, The DLT40 Collaboration, The Las Cumbres Observatory Collaboration, The VINROUGE Collaboration & The MASTER Collaboration)

Abbott et al., ApJL, Multi-messenger Observations of a Binary Neutron Star Merger

PRESS RELEASES AND MEDIA COVERAGE

Watch Ryan Foley tell the story of how his team found the neutron star merger in the video below. 2.5 HOURS.

Press releases:

UC Santa Cruz Press Release

UC Berkeley Press Release

Carnegie Institution of Science Press Release

LIGO Collaboration Press Release

National Science Foundation Press Release

Media coverage:

The Atlantic – The Slack Chat That Changed Astronomy

San Jose Mercury News – A bright light seen across the universe, proving Einstein right

Scientific American – Gravitational Wave Astronomers Hit Mother Lode

National Geographic – In a First, Gravitational Waves Linked to Neutron Star Crash

Associated Press – Astronomers witness huge cosmic crash, find origins of gold

UCSC press release
First observations of merging neutron stars mark a new era in astronomy

Credits

Writing: Tim Stephens
Video: Nick Gonzales
Photos: Carolyn Lagattuta
Header image: Illustration by Robin Dienel courtesy of the Carnegie Institution for Science
Design and development: Rob Knight
Project managers: Sherry Main, Scott Hernandez-Jason, Tim Stephens

Dark Energy Survey

Dark Energy Camera [DECam], built at FNAL

NOAO/CTIO Victor M Blanco 4m Telescope which houses the DECam at Cerro Tololo, Chile, housing DECam at an altitude of 7200 feet

Gemini South telescope, Cerro Tololo Inter-American Observatory (CTIO) campus near La Serena, Chile, at an altitude of 7200 feet

Noted in the video but not in the article:

NASA/Chandra Telescope

NASA/SWIFT Telescope

NRAO/Karl V Jansky VLA, on the Plains of San Agustin fifty miles west of Socorro, NM, USA

CTIO PROMPT telescope telescope built by the University of North Carolina at Chapel Hill at Cerro Tololo Inter-American Observatory in Chilein the Chilean Andes.

PROMPT The six domes at CTIO in Chile.

NASA NuSTAR X-ray telescope

## From Caltech: “A Better Way to Model Stellar Explosions”

Caltech

03/01/2018

Whitney Clavin
(626) 395-1856
wclavin@caltech.edu

Artist’s concept of two neutron stars colliding. Credit: NSF/LIGO/Sonoma State University/A. Simonnet

Caltech scientists create new computer code for calculating neutron stars’ “equation of state”.

Neutron stars consist of the densest form of matter known: a neutron star the size of Los Angeles can weigh twice as much as our sun.

Astrophysicists don’t fully understand how matter behaves under these crushing densities, let alone what happens when two neutron stars smash into each other or when a massive star explodes, creating a neutron star.

One tool scientists use to model these powerful phenomena is the “equation of state.” Loosely, the equation of state describes how matter behaves under different densities and temperatures. The temperatures and densities that occur during these extreme events can vary greatly, and strange behaviors can emerge; for example, protons and neutrons can arrange themselves into complex shapes known as nuclear “pasta.”

But, until now, there were only about 20 equations of state readily available for simulations of astrophysical phenomena. Caltech postdoctoral scholar in theoretical astrophysics Andre da Silva Schneider decided to tackle this problem using computer codes. Over the past three years, he has been developing open-source software that allows astrophysicists to generate their own equations of state. In a new paper in the journal Physical Review C, he and his colleagues describe the code and demonstrate how it works by simulating supernovas of stars 15 and 40 times the mass of the sun.

The research has immediate applications for researchers studying neutron stars, including those analyzing data from the National Science Foundation’s Laser Interferometer Gravitational-wave Observatory, or LIGO, which made the first detection of ripples in space and time, known as gravitational waves, from a neutron star collision, in 2017. That event was also witnessed by a cadre of telescopes around the world, which captured light waves from the same event.

UC Santa Cruz

A UC Santa Cruz special report

Tim Stephens

Astronomer Ryan Foley says “observing the explosion of two colliding neutron stars” [see https://sciencesprings.wordpress.com/2017/10/17/from-ucsc-first-observations-of-merging-neutron-stars-mark-a-new-era-in-astronomy ]–the first visible event ever linked to gravitational waves–is probably the biggest discovery he’ll make in his lifetime. That’s saying a lot for a young assistant professor who presumably has a long career still ahead of him.

The first optical image of a gravitational wave source was taken by a team led by Ryan Foley of UC Santa Cruz using the Swope Telescope at the Carnegie Institution’s Las Campanas Observatory in Chile. This image of Swope Supernova Survey 2017a (SSS17a, indicated by arrow) shows the light emitted from the cataclysmic merger of two neutron stars. (Image credit: 1M2H Team/UC Santa Cruz & Carnegie Observatories/Ryan Foley)

Carnegie Institution Swope telescope at Las Campanas, Chile, 100 kilometres (62 mi) northeast of the city of La Serena. near the north end of a 7 km (4.3 mi) long mountain ridge. Cerro Las Campanas, near the southern end and over 2,500 m (8,200 ft) high, at Las Campanas, Chile

A neutron star forms when a massive star runs out of fuel and explodes as a supernova, throwing off its outer layers and leaving behind a collapsed core composed almost entirely of neutrons. Neutrons are the uncharged particles in the nucleus of an atom, where they are bound together with positively charged protons. In a neutron star, they are packed together just as densely as in the nucleus of an atom, resulting in an object with one to three times the mass of our sun but only about 12 miles wide.

“Basically, a neutron star is a gigantic atom with the mass of the sun and the size of a city like San Francisco or Manhattan,” said Foley, an assistant professor of astronomy and astrophysics at UC Santa Cruz.

These objects are so dense, a cup of neutron star material would weigh as much as Mount Everest, and a teaspoon would weigh a billion tons. It’s as dense as matter can get without collapsing into a black hole.

THE MERGER

Like other stars, neutron stars sometimes occur in pairs, orbiting each other and gradually spiraling inward. Eventually, they come together in a catastrophic merger that distorts space and time (creating gravitational waves) and emits a brilliant flare of electromagnetic radiation, including visible, infrared, and ultraviolet light, x-rays, gamma rays, and radio waves. Merging black holes also create gravitational waves, but there’s nothing to be seen because no light can escape from a black hole.

Foley’s team was the first to observe the light from a neutron star merger that took place on August 17, 2017, and was detected by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO).

VIRGO Gravitational Wave interferometer, near Pisa, Italy

Caltech/MIT Advanced aLigo Hanford, WA, USA installation

Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project

Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger-Zib

ESA/eLISA the future of gravitational wave research

Skymap showing how adding Virgo to LIGO helps in reducing the size of the source-likely region in the sky. (Credit: Giuseppe Greco (Virgo Urbino group)

Now, for the first time, scientists can study both the gravitational waves (ripples in the fabric of space-time), and the radiation emitted from the violent merger of the densest objects in the universe.

The UC Santa Cruz team found SSS17a by comparing a new image of the galaxy N4993 (right) with images taken four months earlier by the Hubble Space Telescope (left). The arrows indicate where SSS17a was absent from the Hubble image and visible in the new image from the Swope Telescope. (Image credits: Left, Hubble/STScI; Right, 1M2H Team/UC Santa Cruz & Carnegie Observatories/Ryan Foley)

It’s that combination of data, and all that can be learned from it, that has astronomers and physicists so excited. The observations of this one event are keeping hundreds of scientists busy exploring its implications for everything from fundamental physics and cosmology to the origins of gold and other heavy elements.

A small team of UC Santa Cruz astronomers were the first team to observe light from two neutron stars merging in August. The implications are huge.

ALL THE GOLD IN THE UNIVERSE

It turns out that the origins of the heaviest elements, such as gold, platinum, uranium—pretty much everything heavier than iron—has been an enduring conundrum. All the lighter elements have well-explained origins in the nuclear fusion reactions that make stars shine or in the explosions of stars (supernovae). Initially, astrophysicists thought supernovae could account for the heavy elements, too, but there have always been problems with that theory, says Enrico Ramirez-Ruiz, professor and chair of astronomy and astrophysics at UC Santa Cruz.

The violent merger of two neutron stars is thought to involve three main energy-transfer processes, shown in this diagram, that give rise to the different types of radiation seen by astronomers, including a gamma-ray burst and a kilonova explosion seen in visible light. (Image credit: Murguia-Berthier et al., Science)

A theoretical astrophysicist, Ramirez-Ruiz has been a leading proponent of the idea that neutron star mergers are the source of the heavy elements. Building a heavy atomic nucleus means adding a lot of neutrons to it. This process is called rapid neutron capture, or the r-process, and it requires some of the most extreme conditions in the universe: extreme temperatures, extreme densities, and a massive flow of neutrons. A neutron star merger fits the bill.

Ramirez-Ruiz and other theoretical astrophysicists use supercomputers to simulate the physics of extreme events like supernovae and neutron star mergers. This work always goes hand in hand with observational astronomy. Theoretical predictions tell observers what signatures to look for to identify these events, and observations tell theorists if they got the physics right or if they need to tweak their models. The observations by Foley and others of the neutron star merger now known as SSS17a are giving theorists, for the first time, a full set of observational data to compare with their theoretical models.

According to Ramirez-Ruiz, the observations support the theory that neutron star mergers can account for all the gold in the universe, as well as about half of all the other elements heavier than iron.

RIPPLES IN THE FABRIC OF SPACE-TIME

Einstein predicted the existence of gravitational waves in 1916 in his general theory of relativity, but until recently they were impossible to observe. LIGO’s extraordinarily sensitive detectors achieved the first direct detection of gravitational waves, from the collision of two black holes, in 2015. Gravitational waves are created by any massive accelerating object, but the strongest waves (and the only ones we have any chance of detecting) are produced by the most extreme phenomena.

Two massive compact objects—such as black holes, neutron stars, or white dwarfs—orbiting around each other faster and faster as they draw closer together are just the kind of system that should radiate strong gravitational waves. Like ripples spreading in a pond, the waves get smaller as they spread outward from the source. By the time they reached Earth, the ripples detected by LIGO caused distortions of space-time thousands of times smaller than the nucleus of an atom.

The rarefied signals recorded by LIGO’s detectors not only prove the existence of gravitational waves, they also provide crucial information about the events that produced them. Combined with the telescope observations of the neutron star merger, it’s an incredibly rich set of data.

LIGO can tell scientists the masses of the merging objects and the mass of the new object created in the merger, which reveals whether the merger produced another neutron star or a more massive object that collapsed into a black hole. To calculate how much mass was ejected in the explosion, and how much mass was converted to energy, scientists also need the optical observations from telescopes. That’s especially important for quantifying the nucleosynthesis of heavy elements during the merger.

LIGO can also provide a measure of the distance to the merging neutron stars, which can now be compared with the distance measurement based on the light from the merger. That’s important to cosmologists studying the expansion of the universe, because the two measurements are based on different fundamental forces (gravity and electromagnetism), giving completely independent results.

“This is a huge step forward in astronomy,” Foley said. “Having done it once, we now know we can do it again, and it opens up a whole new world of what we call ‘multi-messenger’ astronomy, viewing the universe through different fundamental forces.”

IN THIS REPORT

Neutron stars
A team from UC Santa Cruz was the first to observe the light from a neutron star merger that took place on August 17, 2017 and was detected by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO)

Graduate students and post-doctoral scholars at UC Santa Cruz played key roles in the dramatic discovery and analysis of colliding neutron stars.Astronomer Ryan Foley leads a team of young graduate students and postdoctoral scholars who have pulled off an extraordinary coup. Following up on the detection of gravitational waves from the violent merger of two neutron stars, Foley’s team was the first to find the source with a telescope and take images of the light from this cataclysmic event. In so doing, they beat much larger and more senior teams with much more powerful telescopes at their disposal.

“We’re sort of the scrappy young upstarts who worked hard and got the job done,” said Foley, an untenured assistant professor of astronomy and astrophysics at UC Santa Cruz.

The discovery on August 17, 2017, has been a scientific bonanza, yielding over 100 scientific papers from numerous teams investigating the new observations. Foley’s team is publishing seven papers, each of which has a graduate student or postdoc as the first author.

“I think it speaks to Ryan’s generosity and how seriously he takes his role as a mentor that he is not putting himself front and center, but has gone out of his way to highlight the roles played by his students and postdocs,” said Enrico Ramirez-Ruiz, professor and chair of astronomy and astrophysics at UC Santa Cruz and the most senior member of Foley’s team.

“Our team is by far the youngest and most diverse of all of the teams involved in the follow-up observations of this neutron star merger,” Ramirez-Ruiz added.

Charles Kilpatrick, postdoctoral scholar

Charles Kilpatrick, a 29-year-old postdoctoral scholar, was the first person in the world to see an image of the light from colliding neutron stars. He was sitting in an office at UC Santa Cruz, working with first-year graduate student Cesar Rojas-Bravo to process image data as it came in from the Swope Telescope in Chile. To see if the Swope images showed anything new, he had also downloaded “template” images taken in the past of the same galaxies the team was searching.

“In one image I saw something there that was not in the template image,” Kilpatrick said. “It took me a while to realize the ramifications of what I was seeing. This opens up so much new science, it really marks the beginning of something that will continue to be studied for years down the road.”

At the time, Foley and most of the others in his team were at a meeting in Copenhagen. When they found out about the gravitational wave detection, they quickly got together to plan their search strategy. From Copenhagen, the team sent instructions to the telescope operators in Chile telling them where to point the telescope. Graduate student David Coulter played a key role in prioritizing the galaxies they would search to find the source, and he is the first author of the discovery paper published in Science.

“It’s still a little unreal when I think about what we’ve accomplished,” Coulter said. “For me, despite the euphoria of recognizing what we were seeing at the moment, we were all incredibly focused on the task at hand. Only afterward did the significance really sink in.”

Just as Coulter finished writing his paper about the discovery, his wife went into labor, giving birth to a baby girl on September 30. “I was doing revisions to the paper at the hospital,” he said.

It’s been a wild ride for the whole team, first in the rush to find the source, and then under pressure to quickly analyze the data and write up their findings for publication. “It was really an all-hands-on-deck moment when we all had to pull together and work quickly to exploit this opportunity,” said Kilpatrick, who is first author of a paper comparing the observations with theoretical models.

Graduate student Matthew Siebert led a paper analyzing the unusual properties of the light emitted by the merger. Astronomers have observed thousands of supernovae (exploding stars) and other “transients” that appear suddenly in the sky and then fade away, but never before have they observed anything that looks like this neutron star merger. Siebert’s paper concluded that there is only a one in 100,000 chance that the transient they observed is not related to the gravitational waves.

Ariadna Murguia-Berthier, a graduate student working with Ramirez-Ruiz, is first author of a paper synthesizing data from a range of sources to provide a coherent theoretical framework for understanding the observations.

Another aspect of the discovery of great interest to astronomers is the nature of the galaxy and the galactic environment in which the merger occurred. Postdoctoral scholar Yen-Chen Pan led a paper analyzing the properties of the host galaxy. Enia Xhakaj, a new graduate student who had just joined the group in August, got the opportunity to help with the analysis and be a coauthor on the paper.

Yen-Chen Pan, postdoctoral scholar

“There are so many interesting things to learn from this,” Foley said. “It’s a great experience for all of us to be part of such an important discovery.”

IN THIS REPORT

Scientific Papers from the 1M2H Collaboration

Shappee et al., Science, Early Spectra of the Gravitational Wave Source GW170817: Evolution of a Neutron Star Merger

Kilpatrick et al., Science, Electromagnetic Evidence that SSS17a is the Result of a Binary Neutron Star Merger

Murguia-Berthier et al., ApJL, A Neutron Star Binary Merger Model for GW170817/GRB170817a/SSS17a

Abbott et al., Nature, A gravitational-wave standard siren measurement of the Hubble constant (The LIGO Scientific Collaboration and The Virgo Collaboration, The 1M2H Collaboration, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration, The DLT40 Collaboration, The Las Cumbres Observatory Collaboration, The VINROUGE Collaboration & The MASTER Collaboration)

Abbott et al., ApJL, Multi-messenger Observations of a Binary Neutron Star Merger

PRESS RELEASES AND MEDIA COVERAGE

Watch Ryan Foley tell the story of how his team found the neutron star merger in the video below. 2.5 HOURS.

Press releases:

UC Santa Cruz Press Release

UC Berkeley Press Release

Carnegie Institution of Science Press Release

LIGO Collaboration Press Release

National Science Foundation Press Release

Media coverage:

The Atlantic – The Slack Chat That Changed Astronomy

San Jose Mercury News – A bright light seen across the universe, proving Einstein right

Scientific American – Gravitational Wave Astronomers Hit Mother Lode

National Geographic – In a First, Gravitational Waves Linked to Neutron Star Crash

Associated Press – Astronomers witness huge cosmic crash, find origins of gold

UCSC press release
First observations of merging neutron stars mark a new era in astronomy

Credits

Writing: Tim Stephens
Video: Nick Gonzales
Photos: Carolyn Lagattuta
Header image: Illustration by Robin Dienel courtesy of the Carnegie Institution for Science
Design and development: Rob Knight
Project managers: Sherry Main, Scott Hernandez-Jason, Tim Stephens

Dark Energy Survey

Dark Energy Camera [DECam], built at FNAL

NOAO/CTIO Victor M Blanco 4m Telescope which houses the DECam at Cerro Tololo, Chile, housing DECam at an altitude of 7200 feet

Gemini South telescope, Cerro Tololo Inter-American Observatory (CTIO) campus near La Serena, Chile, at an altitude of 7200 feet

Noted in the vdeo but not in te article:

NASA/Chandra Telescope

NASA/SWIFT Telescope

NRAO/Karl V Jansky VLA, on the Plains of San Agustin fifty miles west of Socorro, NM, USA

Prompt telescope CTIO Chile

NASA NuSTAR X-ray telescope

“The equations of state help astrophysicists study the outcome of neutron star mergers—they indicate whether a neutron star is ‘soft’ or ‘stiff,’ which in turn determines whether a more massive neutron star or a black hole forms out of the collision,” says da Silva Schneider. “The more observations we have from LIGO and other light-based telescopes, the more we can refine the equation of state—and update our software so that astrophysicists can generate new and more realistic equations for future studies.”

That event was also witnessed by a cadre of telescopes around the world, which captured light waves from the same event.

Stem Education Coalition

The California Institute of Technology (commonly referred to as Caltech) is a private research university located in Pasadena, California, United States. Caltech has six academic divisions with strong emphases on science and engineering. Its 124-acre (50 ha) primary campus is located approximately 11 mi (18 km) northeast of downtown Los Angeles. “The mission of the California Institute of Technology is to expand human knowledge and benefit society through research integrated with education. We investigate the most challenging, fundamental problems in science and technology in a singularly collegial, interdisciplinary atmosphere, while educating outstanding students to become creative members of society.”

Caltech campus

## From Chandra: “NASA Missions Catch First Light from a Gravitational-Wave Event”

NASA Chandra

October 16, 2017 [Just appeared in social media.]

Credit X-ray: NASA/CXC/Northwestern U./W. Fong & R. Margutti et al. & NASA/GSFC/E. Troja et al.; Optical:NASA/STScI

Astronomers have used Chandra to make the first X-ray detection of a gravitational wave source.

This is the first evidence that the aftermath of gravitational wave events can also emit X-rays.

The data indicate this event was the merger of two neutron stars that produced a jet pointing away from Earth.

Chandra provides the missing observational link between short gamma-ray bursts (GRBs) and gravitational waves from neutron star mergers.

Astronomers have used NASA’s Chandra X-ray Observatory to make the first X-ray detection of a gravitational wave source. Chandra was one of multiple observatories to detect the aftermath of this gravitational wave event, the first to produce an electromagnetic signal of any type. This discovery represents the beginning of a new era in astrophysics.

The gravitational wave source, GW170817, was detected with the advanced Laser Interferometer Gravitational-Wave Observatory, or LIGO, at 8:41am EDT on Thursday August 17, 2017.

VIRGO Gravitational Wave interferometer, near Pisa, Italy

Caltech/MIT Advanced aLigo Hanford, WA, USA installation

Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project

Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger-Zib

ESA/eLISA the future of gravitational wave research

Skymap showing how adding Virgo to LIGO helps in reducing the size of the source-likely region in the sky. (Credit: Giuseppe Greco (Virgo Urbino group)

Two seconds later NASA’s Fermi Gamma-ray Burst Monitor (GBM) detected a weak pulse of gamma-rays.

NASA/Fermi LAT

NASA/Fermi Gamma Ray Space Telescope

Later that morning, LIGO scientists announced that GW170817 had the characteristics of a merger of two neutron stars.

During the evening of August 17, multiple teams of astronomers using ground-based telescopes reported a detection of a new source of optical and infrared light in the galaxy NGC 4993, a galaxy located about 130 million light years from Earth. The position of the new optical and infrared source agreed with the position of the Fermi and the gravitational wave sources. The latter was refined by combining information from LIGO and its European counterpart, Virgo.

Over the following two weeks, Chandra observed NGC 4993 and the source GW170817 four separate times. In the first observation on August 19th (Principal Investigator: Wen-fai Fong from Northwestern University in Evanston, Illinois), no X-rays were detected at the location of GW170817. This observation was obtained remarkably quickly, only 2.3 days after the gravitational source was detected.

On August 26, Chandra observed GW170817 again and this time, X-rays were seen for the first time (PI: Eleonora Troja from Goddard Space Flight Center in Greenbelt, MD, and the University of Maryland, College Park). This new X-ray source was located at the exact position of the optical and infrared source.

“This Chandra detection is very important because it is the first evidence that sources of gravitational waves are also sources of X-ray emission,” said Troja. “This detection is teaching us a great deal of information about the collision and its remnant. It helps to give us an important confirmation that gamma-ray bursts are beamed into narrow jets.”

The accompanying graphic shows both the Chandra non-detection, or upper limit of X-rays from GW170817 on August 19th, and the subsequent detection on August 26th, in the two sides of the inset box. The main panel of the graphic is the Hubble Space Telescope image of NGC 4993, which includes data taken on August 22nd. The variable optical source corresponding to GW170817 is located in the center of the circle in the Hubble image.

Chandra observed GW170817 again on September 1st (PI Eleonora Troja) and September 2nd (PI: Daryl Haggard from McGill University in Montreal, Canada), when the source appeared to have roughly the same level of X-ray brightness as the August 26 observation.

The properties of the source’s X-ray brightness with time matches that predicted by theoretical models of a short gamma-ray burst (GRB). During such an event, a burst of X-rays and gamma rays is generated by a narrow jet, or beam, of high-energy particles produced by the merger of two neutron stars. The initial non-detection by Chandra followed by the detections show that the X-ray emission from GW170817 is consistent with the afterglow from a GRB viewed “off-axis,” that is, with the jet not pointing directly towards the Earth. This is the first time astronomers have ever detected an off-axis short GRB.

“After some thought, we realized that the initial non-detection by Chandra perfectly matches with what we expect,” said Fong. “The fact that we did not see anything at first gives us a very good handle on the orientation and geometry of the system.”

Illustration Credit: NASA/CXC/K.DiVona

The researchers think that initially the jet was narrow, with Chandra viewing it from the side. However, as time passed the material in the jet slowed down and widened as it slammed into surrounding material, causing the X-ray emission to rise as the jet came into direct view. The Chandra data allow researchers to estimate the angle between the jet and our line of sight. The three different Chandra observing teams each estimate angles between 20 and 60 degrees. Future observations may help refine these estimates.

The detection of this off-axis short GRB helps explain the weakness of the gamma-ray signal detected with Fermi GBM for a burst that is so close by. Because our telescopes are not looking straight down the barrel of the jet as they have for other short GRBs, the gamma-ray signal is much fainter.

The optical and infrared light is likely caused by the radioactive glow when heavy elements such as gold and platinum are produced in the material ejected by the neutron star merger. This glow had been predicted to occur after neutron stars merged.

By detecting an off-axis short GRB at the location of the radioactive glow, the Chandra observations provide the missing observational link between short GRBs and gravitational waves from neutron star mergers.

This is the first time astronomers have all of the necessary pieces of information of neutron stars merging — from the production of gravitational waves followed by signals in gamma rays, X-rays, optical and infrared light, that all agree with predictions for a short GRB viewed off-axis.

“This is a big deal because it’s an entirely new level of knowledge,” said Haggard. “This discovery allows us to link this gravitational wave source up to all the rest of astrophysics, stars, galaxies, explosions, growing massive black holes, and of course neutron star mergers.”

Papers describing these results have been accepted for publication in Nature (Troja et al.), and The Astrophysical Journal Letters (Haggard et al. and Margutti et al.). Raffaella Margutti is a collaborator of Fong’s, also from Northwestern.

If you have the time, please visit the very best produced work, from UCSC, on this detection:
https://sciencesprings.wordpress.com/2017/10/20/from-ucsc-neutron-stars-gravitational-waves-and-all-the-gold-in-the-universe/

Stem Education Coalition

NASA’s Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra’s science and flight operations from Cambridge, Mass.

## From Ethan Siegel: “How Does Spinning Affect The Shape Of Pulsars?”

From Ethan Siegel

Jan 13, 2018

A neutron star is one of the densest collections of matter in the Universe, but there is an upper limit to their mass. Exceed it, and the neutron star will further collapse to form a black hole. Image credit: ESO / Luis Calcada.

They’re the fastest rotators of all. So how distorted are they?

There are very few objects in the Universe that stand still; almost everything we know of rotates in some way. Every moon, planet, and star we know of spins on its own axis, meaning that there’s no such thing as a truly perfect sphere in our physical reality. As an object in hydrostatic equilibrium spins, it bulges at the equator while compressing at the poles. Our own Earth is an additional 26 miles (42 km) longer along its equatorial axis than its polar axis due to its once-a-day spin, and there are many things that spin more quickly. What about the objects that spin the fastest? That’s what our Patreon supporter Jason McCampbell wants to know:

[S]ome pulsars have incredible spin rates. How much does this distort the object, and does it shed material this way or is gravity still able to bind all of the material to the object?

There’s a limit to how quickly anything can spin, and while pulsars are no exception, some of them are truly exceptional.

The Vela pulsar, like all pulsars, is an example of a neutron star corpse. The gas and matter surrounding it is quite common, and is capable of providing fuel for the pulsing behavior of these neutron stars. Image credit: NASA/CXC/PSU/G.Pavlov et al.

NASA/Chandra Telescope

Pulsars, or rotating neutron stars, have some of the most incredible properties of any object in the Universe. Formed in the aftermath of a supernova, where the core collapses down to a solid ball of neutrons exceeding the mass of the Sun but just a few kilometers in diameter, neutron stars are the densest known form of matter of all. Although they’re called “neutron stars,” they’re only about 90% neutrons, so when they rotate, the charged particles composing them move rapidly, generating a large magnetic field. When surrounding particles enter this field, they get accelerated, creating a jet of radiation emanating from the neutron star’s poles. And when one of these poles points at us, we see the “pulse” of the pulsar.

A pulsar, made out of neutrons, has an outer shell of protons and electrons, which create an extremely strong magnetic field trillions of times that of our Sun’s at the surface. Note that the spin axis and the magnetic axis are somewhat misaligned. Image credit: Mysid of Wikimedia Commons/Roy Smits.

Most of the neutron stars out there don’t appear as pulsars to us, since most of them aren’t coincidentally aligned with our line-of-sight. It may be the case that all neutron stars are pulsars, but we only see a small fraction of them actually pulsing. Nevertheless, there exists a huge variety of rotational periods found in spinning neutron stars that are observable.

This image of the Crab Nebula’s core, a young, massive star that’s recently died in a spectacular supernova explosion, exhibits these characteristic ripples due to the presence of a pulsing, rapidly rotating neutron star: a pulsar. At just 1,000 years old, this young pulsar, which spins 30 times per second, is typical of ordinary pulsars. Image credit: NASA / ESA.

NASA/ESA Hubble Telescope

Ordinary pulsars, which includes the overwhelming majority of young pulsars, take anywhere from a few hundredths of a second to a few seconds to make a complete rotation, while older, faster, “millisecond” pulsars spin much faster. The fastest known pulsar rotates 766 times per second, while the slowest one ever discovered, at the center of the 2,000 year old supernova remnant RCW 103, takes an incredible 6.7 hours to make a complete rotation about its axis.

The very slowly-rotating neutron star at the core of the supernova remnant RCW 103 is also a magnetar. In 2016, new data from a variety of satellites confirmed this as the slowest-rotating neutron star ever found. Image credit: X-ray: NASA/CXC/University of Amsterdam/N.Rea et al; Optical: DSS.

SDSS Telescope at Apache Point Observatory, near Sunspot NM, USA, Altitude 2,788 meters (9,147 ft)

Apache Point Observatory, Apache Point Observatory, NM, USA. n the Sacramento Mountains in Sunspot, New Mexico, Altitude 2,788 meters (9,147 ft)

A couple of years ago, there was a false story going around that a slowly-rotating star was now the most spherical object known to humanity. Unlikely! While the Sun is very close to a perfect sphere, just 10 km longer in its equatorial plane than the polar direction (or just 0.0007% away from a perfect sphere), that newly-measured star, KIC 11145123, is more than twice the size of the Sun but has a difference of just 3 km between the equator and the poles.

The slowest-rotating star we know of, Kepler/KIC 1145123, differs in its polar and equatorial diameters by just 0.0002%. But neutron stars can be much, much flatter. Image credit: Laurent Gizon et al/Mark A Garlick.

NASA/Kepler Telescope

While a 0.0002% departure from perfect sphericity is pretty good, the slowest-rotating neutron star, known as 1E 1613, has them all beat. If it’s about 20 kilometers in diameter, the difference between the equatorial and the polar radii is approximately the radius of a single proton: a less-than-one-trillionth of 1% flattening. That is, if we can be certain that it’s the rotational dynamics of the neutron star are what dictate its shape.

A neutron star is very small and low in overall luminosity, but it’s very hot, and takes a long time to cool down. If your eyes were good enough, you’d see it shine for millions of times the present age of the Universe. Image credit: ESO/L. Calçada.

Neutron stars have incredibly strong magnetic fields, with normal neutron stars coming in at approximately 100 billion Gauss and magnetars, the most powerful ones, at somewhere between 100 trillion and 1 quadrillion Gauss. (For comparison, the Earth’s magnetic field is about 0.6 Gauss.) While rotation works to flatten a neutron star into a shape known as an oblate spheroid, the magnetic fields ought to have the opposite effect, lengthening the neutron star along the rotating axis into a football-like shape known as a prolate spheroid.

An oblate (L) and prolate (R) spheroid, which are generically flattened or elongated shapes that spheres can become depending on the forces at play on them. Image credit: Ag2gaeh / Wikimedia Commons.

Owing to gravitational wave constraints, we are certain that neutron stars are deformed by less than 10–100 centimeters from their rotationally-caused shape, meaning that they are perfectly spherical to within approximately 0.0001%. But the real deformations should be a lot smaller. The fastest neutron star rotates with a frequency of 766 Hz, or a period of just 0.0013 seconds.

While there are many ways to attempt to calculate the flattening for even the fastest neutron star, with no agreed-upon equation, even this incredible rate, where the equatorial surface moves at about 16% the speed of light, would result in a flattening of only 0.0000001%, give or take an order of magnitude or two. And this is nowhere close to escape velocity; everything on the surface of the neutron star is there to stay.

In the final moments of merging, two neutron stars don’t merely emit gravitational waves, but a catastrophic explosion that echoes across the electromagnetic spectrum and a slew of heavy elements towards the very high end of the periodic table. Image credit: University of Warwick / Mark Garlick.

When two neutron stars merged, however, that may have provided the most extreme example of a rotating neutron star (post-merger) that we’ve ever encountered. Under our standard theories, these neutron stars ought to have collapsed into a black hole past a certain mass: approximately 2.5 times the mass of the Sun. But if these neutron stars rotate rapidly, they can remain in a neutron star state for some time, until enough energy is radiated away via gravitational waves to reach that critical instability. This can increase the mass of an allowable neutron star, at least, temporarily, by up to an additional 10–20%.

When we observed the neutron star-neutron star merger and the gravitational waves from it, this is exactly what we believe happened.

So, post-merger, what was the rotation rate of the neutron star? How distorted was its shape? And what types of gravitational waves do post-merger neutron stars emit in general?

The way we’ll arrive at the answer involves a combination of examining more events in a variety of mass ranges: below a combined mass of 2.5 solar masses (where you should get a stable neutron star), between 2.5 and 3 solar masses (like the event we saw, where you get a temporary neutron star that becomes a black hole), and above 3 solar masses (where you go directly to a black hole), and measuring the light signals. We’ll also learn more by catching the inspiral phase faster, and being able to point towards the anticipated source in advance of the merger. As LIGO/Virgo and other gravitational wave detectors both come online and get more sensitive, we’ll get better and better at this.

VIRGO Gravitational Wave interferometer, near Pisa, Italy

Caltech/MIT Advanced aLigo Hanford, WA, USA installation

Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project

Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger-Zib

ESA/eLISA the future of gravitational wave research

Skymap showing how adding Virgo to LIGO helps in reducing the size of the source-likely region in the sky. (Credit: Giuseppe Greco (Virgo Urbino group)

https://sciencesprings.wordpress.com/2017/10/20/from-ucsc-neutron-stars-gravitational-waves-and-all-the-gold-in-the-universe/

Stem Education Coalition

“Starts With A Bang! is a blog/video blog about cosmology, physics, astronomy, and anything else I find interesting enough to write about. I am a firm believer that the highest good in life is learning, and the greatest evil is willful ignorance. The goal of everything on this site is to help inform you about our world, how we came to be here, and to understand how it all works. As I write these pages for you, I hope to not only explain to you what we know, think, and believe, but how we know it, and why we draw the conclusions we do. It is my hope that you find this interesting, informative, and accessible,” says Ethan

## From The Conversation: “Piercing the mystery of the cosmic origins of gold”

December 17, 2017
Jérôme Margueron

Where does gold, the precious metal coveted by mortals through the ages, come from? How, where and when was it produced? Last August, a single astrophysical observation finally gave us the key to answer these questions. The results of this research were published on October 16, 2017 [Physical Review Letters , The Astrophysical Letters and Nature].

Gold pre-exists the formation of Earth: this is what differentiates it from, for example, diamond. However valuable it may be, this precious stone is born out of mere carbon, whose atomic structure is modified by enormous pressure from the earth’s crust. Gold is totally different – the strongest forces in the earth’s mantle are unable to change the composition of its atomic nucleus. Too bad for the alchemists who dreamed of transforming lead into gold.

Yet there is gold on Earth, both in its deep core, where it has migrated together with heavy elements such as lead or silver, and in the planet’s crust, which is where we extract this precious metal. While the gold in the core was already there at the formation of our planet, that in the crust is mostly extraterrestrial and arrived after the formation of Earth. It was brought by a gigantic meteor shower that bombarded the Earth (and the Moon) about 3.8 billion years ago.

Formation of heavy elements

How gold is produced in the universe? The elements heavier than iron, including gold, are partially produced by the s process during the ultimate evolution phases of the stars. It is a slow process (s stands for slow) that operates in the core of what are referred to as AGB stars – those of low and intermediate mass (less than 10 solar masses) that can produce chemical elements up to polonium. The other half of the heavy elements is produced by the r process (r stands for rapid). But the site where this nucleo-synthesis process takes place has long remained a mystery.

To understand the discovery enabled by the August 17, 2017, observation, we need to understand the scientific status quo that existed beforehand. For about 50 years, the dominant assumption among the scientific community was that the r process took place during the final explosion of massive stars (specialists speak of a core collapse supernova). Indeed, the formation of light elements (those up to iron) implies nuclear reactions that ensure the stability of the stars by counteracting contraction induced by gravity. For heavier elements – those from iron and beyond – it is necessary to add energy or to take very specific paths, such as the s and r processes. Researchers believed that the r process could occur in ejected matter from the explosion of massive stars, capturing a part of the released energy and participating to the dissemination of material in the interstellar medium.

Despite the simplicity of this explanation, numerical modelling of supernovae has proved extremely complicated. After 50 years of efforts, researchers have just begun to understand its mechanism. Most of these simulations do unfortunately not provide the physical conditions for the r process.

These conditions are however quite simple: you need a lot of neutrons and a really warm environment.

Fusion of neutron stars

In the last decade or so, some researchers have begun to seriously investigate an alternative scenario of the heavy-element production site. They focused their attention on neutron stars. As befits their name, they constitute a gigantic reservoir of neutrons, which are released occasionally. The strongest of these releases occurs during their merging, in a binary system, also called kilonova. There are several signatures of this phenomenon that luckily were seen on August 17: a gravitational-wave emission culminating a fraction of a second before the final fusion of the stars and a burst of highly energetic light (known as a gamma-ray burst) emitted by a jet of matter approaching the speed of light. Although these bursts have been observed regularly for several decades, it is only since 2015 that gravitational waves have been detectable on Earth thanks to the Virgo and LIGO interferometers.

August 17 will remain a major date for the scientific community. Indeed, it marks the first simultaneous detection of the arrival of gravitational waves – whose origin in the sky was fairly well identified – and a gamma-ray burst, whose origin was also fairly well localized and coincided with the first one. Gamma-ray burst emissions are focused in a narrow cone, and the astronomers’ lucky break was that this one was emitted in the Earth’s direction.

In the following days, telescopes continuously analysed the light from this kilonova and found confirmation of the production of elements heavier than iron. They were also able to estimate the frequency of the phenomenon and the amount of material ejected. These estimates are consistent with the average abundance of the elements observed in our galaxy.

From UCSC:

UC Santa Cruz

A UC Santa Cruz special report

Tim Stephens

Astronomer Ryan Foley says “observing the explosion of two colliding neutron stars” [see https://sciencesprings.wordpress.com/2017/10/17/from-ucsc-first-observations-of-merging-neutron-stars-mark-a-new-era-in-astronomy ]–the first visible event ever linked to gravitational waves–is probably the biggest discovery he’ll make in his lifetime. That’s saying a lot for a young assistant professor who presumably has a long career still ahead of him.

The first optical image of a gravitational wave source was taken by a team led by Ryan Foley of UC Santa Cruz using the Swope Telescope at the Carnegie Institution’s Las Campanas Observatory in Chile. This image of Swope Supernova Survey 2017a (SSS17a, indicated by arrow) shows the light emitted from the cataclysmic merger of two neutron stars. (Image credit: 1M2H Team/UC Santa Cruz & Carnegie Observatories/Ryan Foley)

Carnegie Institution Swope telescope at Las Campanas, Chile, 100 kilometres (62 mi) northeast of the city of La Serena. near the north end of a 7 km (4.3 mi) long mountain ridge. Cerro Las Campanas, near the southern end and over 2,500 m (8,200 ft) high, at Las Campanas, Chile

A neutron star forms when a massive star runs out of fuel and explodes as a supernova, throwing off its outer layers and leaving behind a collapsed core composed almost entirely of neutrons. Neutrons are the uncharged particles in the nucleus of an atom, where they are bound together with positively charged protons. In a neutron star, they are packed together just as densely as in the nucleus of an atom, resulting in an object with one to three times the mass of our sun but only about 12 miles wide.

“Basically, a neutron star is a gigantic atom with the mass of the sun and the size of a city like San Francisco or Manhattan,” said Foley, an assistant professor of astronomy and astrophysics at UC Santa Cruz.

These objects are so dense, a cup of neutron star material would weigh as much as Mount Everest, and a teaspoon would weigh a billion tons. It’s as dense as matter can get without collapsing into a black hole.

THE MERGER

Like other stars, neutron stars sometimes occur in pairs, orbiting each other and gradually spiraling inward. Eventually, they come together in a catastrophic merger that distorts space and time (creating gravitational waves) and emits a brilliant flare of electromagnetic radiation, including visible, infrared, and ultraviolet light, x-rays, gamma rays, and radio waves. Merging black holes also create gravitational waves, but there’s nothing to be seen because no light can escape from a black hole.

Foley’s team was the first to observe the light from a neutron star merger that took place on August 17, 2017, and was detected by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO).

VIRGO Gravitational Wave interferometer, near Pisa, Italy

Caltech/MIT Advanced aLigo Hanford, WA, USA installation

Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project

Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger-Zib

ESA/eLISA the future of gravitational wave research

Skymap showing how adding Virgo to LIGO helps in reducing the size of the source-likely region in the sky. (Credit: Giuseppe Greco (Virgo Urbino group)

Now, for the first time, scientists can study both the gravitational waves (ripples in the fabric of space-time), and the radiation emitted from the violent merger of the densest objects in the universe.

The UC Santa Cruz team found SSS17a by comparing a new image of the galaxy N4993 (right) with images taken four months earlier by the Hubble Space Telescope (left). The arrows indicate where SSS17a was absent from the Hubble image and visible in the new image from the Swope Telescope. (Image credits: Left, Hubble/STScI; Right, 1M2H Team/UC Santa Cruz & Carnegie Observatories/Ryan Foley)

It’s that combination of data, and all that can be learned from it, that has astronomers and physicists so excited. The observations of this one event are keeping hundreds of scientists busy exploring its implications for everything from fundamental physics and cosmology to the origins of gold and other heavy elements.

A small team of UC Santa Cruz astronomers were the first team to observe light from two neutron stars merging in August. The implications are huge.

ALL THE GOLD IN THE UNIVERSE

It turns out that the origins of the heaviest elements, such as gold, platinum, uranium—pretty much everything heavier than iron—has been an enduring conundrum. All the lighter elements have well-explained origins in the nuclear fusion reactions that make stars shine or in the explosions of stars (supernovae). Initially, astrophysicists thought supernovae could account for the heavy elements, too, but there have always been problems with that theory, says Enrico Ramirez-Ruiz, professor and chair of astronomy and astrophysics at UC Santa Cruz.

The violent merger of two neutron stars is thought to involve three main energy-transfer processes, shown in this diagram, that give rise to the different types of radiation seen by astronomers, including a gamma-ray burst and a kilonova explosion seen in visible light. (Image credit: Murguia-Berthier et al., Science)

A theoretical astrophysicist, Ramirez-Ruiz has been a leading proponent of the idea that neutron star mergers are the source of the heavy elements. Building a heavy atomic nucleus means adding a lot of neutrons to it. This process is called rapid neutron capture, or the r-process, and it requires some of the most extreme conditions in the universe: extreme temperatures, extreme densities, and a massive flow of neutrons. A neutron star merger fits the bill.

Ramirez-Ruiz and other theoretical astrophysicists use supercomputers to simulate the physics of extreme events like supernovae and neutron star mergers. This work always goes hand in hand with observational astronomy. Theoretical predictions tell observers what signatures to look for to identify these events, and observations tell theorists if they got the physics right or if they need to tweak their models. The observations by Foley and others of the neutron star merger now known as SSS17a are giving theorists, for the first time, a full set of observational data to compare with their theoretical models.

According to Ramirez-Ruiz, the observations support the theory that neutron star mergers can account for all the gold in the universe, as well as about half of all the other elements heavier than iron.

RIPPLES IN THE FABRIC OF SPACE-TIME

Einstein predicted the existence of gravitational waves in 1916 in his general theory of relativity, but until recently they were impossible to observe. LIGO’s extraordinarily sensitive detectors achieved the first direct detection of gravitational waves, from the collision of two black holes, in 2015. Gravitational waves are created by any massive accelerating object, but the strongest waves (and the only ones we have any chance of detecting) are produced by the most extreme phenomena.

Two massive compact objects—such as black holes, neutron stars, or white dwarfs—orbiting around each other faster and faster as they draw closer together are just the kind of system that should radiate strong gravitational waves. Like ripples spreading in a pond, the waves get smaller as they spread outward from the source. By the time they reached Earth, the ripples detected by LIGO caused distortions of space-time thousands of times smaller than the nucleus of an atom.

The rarefied signals recorded by LIGO’s detectors not only prove the existence of gravitational waves, they also provide crucial information about the events that produced them. Combined with the telescope observations of the neutron star merger, it’s an incredibly rich set of data.

LIGO can tell scientists the masses of the merging objects and the mass of the new object created in the merger, which reveals whether the merger produced another neutron star or a more massive object that collapsed into a black hole. To calculate how much mass was ejected in the explosion, and how much mass was converted to energy, scientists also need the optical observations from telescopes. That’s especially important for quantifying the nucleosynthesis of heavy elements during the merger.

LIGO can also provide a measure of the distance to the merging neutron stars, which can now be compared with the distance measurement based on the light from the merger. That’s important to cosmologists studying the expansion of the universe, because the two measurements are based on different fundamental forces (gravity and electromagnetism), giving completely independent results.

“This is a huge step forward in astronomy,” Foley said. “Having done it once, we now know we can do it again, and it opens up a whole new world of what we call ‘multi-messenger’ astronomy, viewing the universe through different fundamental forces.”

IN THIS REPORT

Neutron stars
A team from UC Santa Cruz was the first to observe the light from a neutron star merger that took place on August 17, 2017 and was detected by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO)

Graduate students and post-doctoral scholars at UC Santa Cruz played key roles in the dramatic discovery and analysis of colliding neutron stars.Astronomer Ryan Foley leads a team of young graduate students and postdoctoral scholars who have pulled off an extraordinary coup. Following up on the detection of gravitational waves from the violent merger of two neutron stars, Foley’s team was the first to find the source with a telescope and take images of the light from this cataclysmic event. In so doing, they beat much larger and more senior teams with much more powerful telescopes at their disposal.

“We’re sort of the scrappy young upstarts who worked hard and got the job done,” said Foley, an untenured assistant professor of astronomy and astrophysics at UC Santa Cruz.

The discovery on August 17, 2017, has been a scientific bonanza, yielding over 100 scientific papers from numerous teams investigating the new observations. Foley’s team is publishing seven papers, each of which has a graduate student or postdoc as the first author.

“I think it speaks to Ryan’s generosity and how seriously he takes his role as a mentor that he is not putting himself front and center, but has gone out of his way to highlight the roles played by his students and postdocs,” said Enrico Ramirez-Ruiz, professor and chair of astronomy and astrophysics at UC Santa Cruz and the most senior member of Foley’s team.

“Our team is by far the youngest and most diverse of all of the teams involved in the follow-up observations of this neutron star merger,” Ramirez-Ruiz added.

Charles Kilpatrick, postdoctoral scholar

Charles Kilpatrick, a 29-year-old postdoctoral scholar, was the first person in the world to see an image of the light from colliding neutron stars. He was sitting in an office at UC Santa Cruz, working with first-year graduate student Cesar Rojas-Bravo to process image data as it came in from the Swope Telescope in Chile. To see if the Swope images showed anything new, he had also downloaded “template” images taken in the past of the same galaxies the team was searching.

“In one image I saw something there that was not in the template image,” Kilpatrick said. “It took me a while to realize the ramifications of what I was seeing. This opens up so much new science, it really marks the beginning of something that will continue to be studied for years down the road.”

At the time, Foley and most of the others in his team were at a meeting in Copenhagen. When they found out about the gravitational wave detection, they quickly got together to plan their search strategy. From Copenhagen, the team sent instructions to the telescope operators in Chile telling them where to point the telescope. Graduate student David Coulter played a key role in prioritizing the galaxies they would search to find the source, and he is the first author of the discovery paper published in Science.

“It’s still a little unreal when I think about what we’ve accomplished,” Coulter said. “For me, despite the euphoria of recognizing what we were seeing at the moment, we were all incredibly focused on the task at hand. Only afterward did the significance really sink in.”

Just as Coulter finished writing his paper about the discovery, his wife went into labor, giving birth to a baby girl on September 30. “I was doing revisions to the paper at the hospital,” he said.

It’s been a wild ride for the whole team, first in the rush to find the source, and then under pressure to quickly analyze the data and write up their findings for publication. “It was really an all-hands-on-deck moment when we all had to pull together and work quickly to exploit this opportunity,” said Kilpatrick, who is first author of a paper comparing the observations with theoretical models.

Graduate student Matthew Siebert led a paper analyzing the unusual properties of the light emitted by the merger. Astronomers have observed thousands of supernovae (exploding stars) and other “transients” that appear suddenly in the sky and then fade away, but never before have they observed anything that looks like this neutron star merger. Siebert’s paper concluded that there is only a one in 100,000 chance that the transient they observed is not related to the gravitational waves.

Ariadna Murguia-Berthier, a graduate student working with Ramirez-Ruiz, is first author of a paper synthesizing data from a range of sources to provide a coherent theoretical framework for understanding the observations.

Another aspect of the discovery of great interest to astronomers is the nature of the galaxy and the galactic environment in which the merger occurred. Postdoctoral scholar Yen-Chen Pan led a paper analyzing the properties of the host galaxy. Enia Xhakaj, a new graduate student who had just joined the group in August, got the opportunity to help with the analysis and be a coauthor on the paper.

Yen-Chen Pan, postdoctoral scholar

“There are so many interesting things to learn from this,” Foley said. “It’s a great experience for all of us to be part of such an important discovery.”

IN THIS REPORT

Scientific Papers from the 1M2H Collaboration

Shappee et al., Science, Early Spectra of the Gravitational Wave Source GW170817: Evolution of a Neutron Star Merger

Kilpatrick et al., Science, Electromagnetic Evidence that SSS17a is the Result of a Binary Neutron Star Merger

Murguia-Berthier et al., ApJL, A Neutron Star Binary Merger Model for GW170817/GRB170817a/SSS17a

Abbott et al., Nature, A gravitational-wave standard siren measurement of the Hubble constant (The LIGO Scientific Collaboration and The Virgo Collaboration, The 1M2H Collaboration, The Dark Energy Camera GW-EM Collaboration and the DES Collaboration, The DLT40 Collaboration, The Las Cumbres Observatory Collaboration, The VINROUGE Collaboration & The MASTER Collaboration)

Abbott et al., ApJL, Multi-messenger Observations of a Binary Neutron Star Merger

PRESS RELEASES AND MEDIA COVERAGE

Watch Ryan Foley tell the story of how his team found the neutron star merger in the video below. 2.5 HOURS.

Press releases:

UC Santa Cruz Press Release

UC Berkeley Press Release

Carnegie Institution of Science Press Release

LIGO Collaboration Press Release

National Science Foundation Press Release

Media coverage:

The Atlantic – The Slack Chat That Changed Astronomy

San Jose Mercury News – A bright light seen across the universe, proving Einstein right

Scientific American – Gravitational Wave Astronomers Hit Mother Lode

National Geographic – In a First, Gravitational Waves Linked to Neutron Star Crash

Associated Press – Astronomers witness huge cosmic crash, find origins of gold

UCSC press release
First observations of merging neutron stars mark a new era in astronomy

Credits

Writing: Tim Stephens
Video: Nick Gonzales
Photos: Carolyn Lagattuta
Header image: Illustration by Robin Dienel courtesy of the Carnegie Institution for Science
Design and development: Rob Knight
Project managers: Sherry Main, Scott Hernandez-Jason, Tim Stephens

Dark Energy Survey

Dark Energy Camera [DECam], built at FNAL

NOAO/CTIO Victor M Blanco 4m Telescope which houses the DECam at Cerro Tololo, Chile, housing DECam at an altitude of 7200 feet

Gemini South telescope, Cerro Tololo Inter-American Observatory (CTIO) campus near La Serena, Chile, at an altitude of 7200 feet

Noted in the vdeo but not in te article:

NASA/Chandra Telescope

NASA/SWIFT Telescope

NRAO/Karl V Jansky VLA, on the Plains of San Agustin fifty miles west of Socorro, NM, USA

Prompt telescope CTIO Chile

NASA NuSTAR X-ray telescope

In a single observation, the hypothesis that prevailed until now – of a r process occurring exclusively during supernovae – is now seriously under question and it is now certain that the r process also takes place in kilonovae. The respective contribution of supernovae and kilonovae for the heavy elements’ nucleo-synthesis remains to be determined, and it will be done with the accumulation of datum related to the next observations. The August 17 observation alone has already allowed a great scientific advance for the global understanding of the origin of heavy elements, including gold.

This NASA animation is an artist’s view and accelerated version of the first nine days of a kilonova (the merging of two neutron stars) similar to that observed on August 17, 2017 (GW170817). In the approach phase of the two stars, the gravitational waves emitted are coloured pale blue, then after the fusion a jet near the speed of light is emitted (in orange) generating itself a gamma burst (in magenta). The material ejected from the kilonova produces an initially ultraviolet light (violet), then white in the optics, and finally infra-red (red). The jet continues its expansion by emitting light in the X-ray range (blue)

A new window on the Universe

A new window to the universe has just been opened, like the day that Galileo focused the first telescope on the sky. The Virgo and LIGO interferometers now make it possible to “hear” the most violent phenomena of the universe, and immense perspectives have opened up for astronomers, astrophysicists, particle physicists and nuclear physicists. This scientific achievement was only possible thanks to the fruitful collaboration between highly supportive nations, in particular the United States, Germany, France and Italy. As an example, there is only one laboratory in the world capable of reaching the required precision for the mirrors reflecting lasers, LMA in Lyon, France. New interferometers are under development in Japan and Indian, and this list will surely soon become longer given huge discoveries expected for the future.

Stem Education Coalition

The Conversation US launched as a pilot project in October 2014. It is an independent source of news and views from the academic and research community, delivered direct to the public.
Our team of professional editors work with university and research institute experts to unlock their knowledge for use by the wider public.
Access to independent, high quality, authenticated, explanatory journalism underpins a functioning democracy. Our aim is to promote better understanding of current affairs and complex issues. And hopefully allow for a better quality of public discourse and conversation.

c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r