Tagged: UCSB Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:26 am on September 28, 2017 Permalink | Reply
    Tags: 2-D superlattice, , , Band Gaps Made to Order, Could usher a new generation of light-emitting devices for photonics applications, Each quantum dot acts as a quantum well where electron-hole activity occurs, In the quantum realm precision is even more important, , , , The quantum dot is theoretically an artificial “atom.”, UCSB   

    From UCSB: “Band Gaps, Made to Order” 

    UC Santa Barbara Name bloc
    UC Santa Barbara

    September 25, 2017
    James Badham

    1
    This artist’s representation shows an electron beam (in purple) being used to create a 2D superlattice made up of quantum dots having extraordinary atomic-scale precision and placement.
    Photo Credit: PETER ALLEN

    Control is a constant challenge for materials scientists, who are always seeking the perfect material — and the perfect way of treating it — to induce exactly the right electronic or optical activity required for a given application.

    One key challenge to modulating activity in a semiconductor is controlling its band gap. When a material is excited with energy, say, a light pulse, the wider its band gap, the shorter the wavelength of the light it emits. The narrower the band gap, the longer the wavelength.

    As electronics and the devices that incorporate them — smartphones, laptops and the like — have become smaller and smaller, the semiconductor transistors that power them have shrunk to the point of being not much larger than an atom. They can’t get much smaller. To overcome this limitation, researchers are seeking ways to harness the unique characteristics of nanoscale atomic cluster arrays — known as quantum dot superlattices — for building next generation electronics such as large-scale quantum information systems. In the quantum realm, precision is even more important.

    New research conducted by UC Santa Barbara’s Department of Electrical and Computer Engineering reveals a major advance in precision superlattices materials. The findings by Professor Kaustav Banerjee, his Ph.D. students Xuejun Xie, Jiahao Kang and Wei Cao, postdoctoral fellow Jae Hwan Chu and collaborators at Rice University appear in the journal Nature Scientific Reports.

    Their team’s research uses a focused electron beam to fabricate a large-scale quantum dot superlattice on which each quantum dot has a specific pre-determined size positioned at a precise location on an atomically thin sheet of two-dimensional (2-D) semiconductor molybdenum disulphide (MoS2). When the focused electron beam interacts with the MoS2 monolayer, it turns that area — which is on the order of a nanometer in diameter — from semiconducting to metallic. The quantum dots can be placed less than four nanometers apart, so that they become an artificial crystal — essentially a new 2-D material where the band gap can be specified to order, from 1.8 to 1.4 electron volts (eV).

    This is the first time that scientists have created a large-area 2-D superlattice — nanoscale atomic clusters in an ordered grid — on an atomically thin material on which both the size and location of quantum dots are precisely controlled. The process not only creates several quantum dots, but can also be applied directly to large-scale fabrication of 2-D quantum dot superlattices. “We can, therefore, change the overall properties of the 2-D crystal,” Banerjee said.

    Each quantum dot acts as a quantum well, where electron-hole activity occurs, and all of the dots in the grid are close enough to each other to ensure interactions. The researchers can vary the spacing and size of the dots to vary the band gap, which determines the wavelength of light it emits.

    “Using this technique, we can engineer the band gap to match the application,” Banerjee said. Quantum dot superlattices have been widely investigated for creating materials with tunable band gaps but all were made using “bottom-up” methods in which atoms naturally and spontaneously combine to form a macro-object. But those methods make it inherently difficult to design the lattice structure as desired and, thus, to achieve optimal performance.

    As an example, depending on conditions, combining carbon atoms yields only two results in the bulk (or 3-D) form: graphite or diamond. These cannot be ‘tuned’ and so cannot make anything in between. But when atoms can be precisely positioned, the material can be designed with desired characteristics.

    “Our approach overcomes the problems of randomness and proximity, enabling control of the band gap and all the other characteristics you might want the material to have — with a high level of precision,” Xie said. “This is a new way to make materials, and it will have many uses, particularly in quantum computing and communication applications. The dots on the superlattice are so close to each other that the electrons are coupled, an important requirement for quantum computing.”

    The quantum dot is theoretically an artificial “atom.” The developed technique makes such design and “tuning” possible by enabling top-down control of the size and the position of the artificial atoms at large scale.

    To demonstrate the level of control achieved, the authors produced an image of “UCSB” spelled out in a grid of quantum dots. By using different doses from the electron beam, they were able to cause different areas of the university’s initials to light up at different wavelengths.

    “When you change the dose of the electron beam, you can change the size of the quantum dot in the local region, and once you do that, you can control the band gap of the 2-D material,” Banerjee explained. “If you say you want a band gap of 1.6 eV, I can give it to you. If you want 1.5 eV, I can do that, too, starting with the same material.”

    This demonstration of tunable direct band gap could usher a new generation of light-emitting devices for photonics applications.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    UC Santa Barbara Seal
    The University of California, Santa Barbara (commonly referred to as UC Santa Barbara or UCSB) is a public research university and one of the 10 general campuses of the University of California system. Founded in 1891 as an independent teachers’ college, UCSB joined the University of California system in 1944 and is the third-oldest general-education campus in the system. The university is a comprehensive doctoral university and is organized into five colleges offering 87 undergraduate degrees and 55 graduate degrees. In 2012, UCSB was ranked 41st among “National Universities” and 10th among public universities by U.S. News & World Report. UCSB houses twelve national research centers, including the renowned Kavli Institute for Theoretical Physics.

    Advertisements
     
  • richardmitnick 10:29 am on August 23, 2017 Permalink | Reply
    Tags: , NTSs-natural treatment systems, Recovering Runoff, Revolutionize the collection and management of stormwater, UCSB   

    From UCSB: “Recovering Runoff” 

    UC Santa Barbara Name bloc
    UC Santa Barbara

    August 17, 2017
    Shelly Leachman

    1
    Stormwater runoff. Photo Credit: iStock/Resavac

    2
    UCSB doctoral student Marina Feraud, center, is among the researchers involved in a multicampus project to investigate the use of stormwater to combat drought.
    Photo Credit: Matt Perko

    3
    UCSB participants in the project spanning five UC campuses are surveying existing natural treatment systems for possible study. Photo Credit: Matt Perko

    Dumping billions of gallons on California every year, rain is the state’s way out of drought — if only all that water could be captured instead of washing into drains and out to sea.

    An ambitious new collaboration spanning five University of California campuses, including UC Santa Barbara, hopes to do exactly that. The research partnership of UCSB, UC Irvine, UCLA, UC Riverside and UC San Diego aims to revolutionize the collection and management of stormwater — and demonstrate its potential for addressing drought and flood risk. A $1.9 million UC Multicampus Research Programs and Initiatives (MRPI) grant will help get it done.

    The project, “Fighting Drought with Stormwater,” is now underway. Work began in earnest in early August — which happens to be National Water Quality Month. The five Southern California UC campuses will serve as living laboratories for studying natural treatment systems, such as bioswales and biofilters, or rain gardens. The effort is meant to illuminate how well the systems are working now, and how they can be improved in form and function to boost stormwater recovery and bolster water resources.

    “Think about the winter rains in this region — the runoff mainly goes out to the ocean,” said UCSB’s Patricia Holden, a professor in the Bren School of Environmental Science & Management and co-investigator on the grant. “But UCSB and other campuses are increasingly instituting ‘green’ approaches, called natural treatment systems (NTSs), for stormwater management that slow down the runoff, capture it onsite, treat it so that it is less polluting to the ocean, and can recharge shallow groundwater.

    “Many campuses employ NTSs, but how well do they achieve co-benefits of advancing water neutrality, removing pollutants and delivering other ecosystem services?” she added. “How can knowledge — in biogeochemistry, hydrology, ecology and social sciences — assist optimizing designs and NTS management? What incentives are needed, so that stormwater runoff capture and beneficial reuse — at distributed, small scales — becomes more widespread?”

    For UCSB’s part in this multifaceted endeavor, Holden’s team members Dong Li, Marina Feraud and Mitchell Maier are spearheading an investigation into microbial communities in these systems and their impact on nitrogen cycling. By looking into accumulated pollutants in the soil media of NTSs and how they interact with microbes, they hope to ascertain if the level of pollution influences whether NTSs convert nitrate within the system into nitrogen, a harmless gas, or into nitrous oxide, a potent greenhouse gas.

    “The big idea behind the whole project is to advance research on stormwater treatment features that would allow us to capture and treat this water so it can be used as a resource,” said Feraud, a doctoral student. “We hope to increase knowledge of microbial communities in these systems — who’s there and what they’re doing — overlaying that with the level of pollution we might see in the soil media. Ultimately we want to increase overall understanding of these systems, and how design and maintenance choices affect their performance as measured by environmental metrics — in this case the potential to accumulate nitrate or release nitrous oxide. Making more informed choices in how we design and maintain these systems can promote their use and implementation, which we think is very important for treating water and improving water quality, while also allowing for beneficial reuse.”

    The UCSB group, by way of Li, is also bringing a novel line of inquiry to the project: the potential of these systems to reduce or remove disease-causing pathogens from stormwater runoff, through understanding and possibly enhancing natural predator-prey interactions.

    “Sometimes there are human pathogens in stormwater runoff,” said Li, a postdoctoral researcher. “NTSs use bioswales and biofilters to remove these pathogens so that the water can be reclaimed and reused. There are many different pollutants, but human pathogens are particularly important, and we definitely want to reduce their abundances via NTSs. The indigenous microbial ecology may be key to such removal.”

    The many other issues being addressed by this sweeping project include how to effect the removal of chemical pollutants from stormwater; the provision of ecosystem services — and potentially disservices — via these systems; understanding related socioeconomic benefits and drivers; and understanding water budgets in these systems toward achieving water neutrality on campuses and beyond.

    “This is a great demonstration of a collaborative, forward-looking approach to a critical water issue — of both quantity and quality — in Southern California, and one whose discoveries can be informative beyond the campuses,” Holden said. “We aim to use the campuses as testbeds, but produce understanding that can inform sites in surrounding communities.”

    The ultimate, long-range goal?

    Transform the infrastructure of such treatment systems from what today, the researchers say, is a major cause of environmental degradation into a “multifunctional green system that augments urban water supply, protects human and ecosystem health, minimizes flood risk and ensures public safety.”

    Said principal investigator and civil engineer Stanley Grant, of UC Irvine, when the grant was announced, “My hope is that by the end of our project, we will have set the southern UC campuses on a path toward becoming ‘stormwater-neutral,’ by which I mean all rain that falls on the campuses will be captured and used locally. It’s our chance to help the UC maintain its position as a global leader in environmental sustainability research and practice.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    UC Santa Barbara Seal
    The University of California, Santa Barbara (commonly referred to as UC Santa Barbara or UCSB) is a public research university and one of the 10 general campuses of the University of California system. Founded in 1891 as an independent teachers’ college, UCSB joined the University of California system in 1944 and is the third-oldest general-education campus in the system. The university is a comprehensive doctoral university and is organized into five colleges offering 87 undergraduate degrees and 55 graduate degrees. In 2012, UCSB was ranked 41st among “National Universities” and 10th among public universities by U.S. News & World Report. UCSB houses twelve national research centers, including the renowned Kavli Institute for Theoretical Physics.

     
  • richardmitnick 10:34 am on August 18, 2017 Permalink | Reply
    Tags: A Fleeting Blue Glow, , , , , LCO-Las Cumbres Observatory, Supernova, UCSB   

    From UCSB: “A Fleeting Blue Glow” 

    UC Santa Barbara Name bloc
    UC Santa Barbara

    August 14, 2017
    Julie Cohen

    Observations of a supernova colliding with a nearby companion star take UCSB astrophysicists by surprise.

    1
    Only 55 million lightyears away, this is one of the closest supernovae discovered in recent years.

    In the 2009 film “Star Trek,” a supernova hurtles through space and obliterates a planet unfortunate enough to be in its path. Fiction, of course, but it turns out the notion is not so farfetched.

    Using the nearby Las Cumbres Observatory (LCO), astrophysicists from UC Santa Barbara have observed something similar: an exploding star slamming into a nearby companion star.

    LCOGT Las Cumbres Observatory Global Telescope Network, Haleakala Hawaii, USA

    What’s more, they detected the fleeting blue glow from the interaction at an unprecedented level of detail. Their observations revealed surprising information about the mysterious companion star, a feat made possible by recent advances in linking telescopes into a robotic network. The team’s findings appear in the journal Astrophyiscal Journal Letters.

    The identity of this particular companion has been hotly debated for more than 50 years. Prevailing theory over the last few years has held that the supernovae happen when two white dwarfs spiral together and merge. This new study demonstrates that the supernova collided with the companion star that was not a white dwarf. White dwarf stars are the dead cores of what used to be normal stars like the sun.

    “We’ve been looking for this effect — a supernova crashing into its companion star — since it was predicted in 2010,” said lead author Griffin Hosseinzadeh, a UCSB graduate student. “Hints have been seen before, but this time the evidence is overwhelming.”

    The supernova in question is SN 2017cbv, a thermonuclear Type Ia, which astronomers use to measure the acceleration of the expansion of the universe. This kind of supernova is known to be the explosion of a white dwarf star, though it requires additional mass from a companion star to explode.

    The UCSB-led research implies that the white dwarf was stealing matter from a much larger companion star — approximately 20 times the radius of the sun — which caused the white dwarf to explode. The collision of the supernova and the companion star shocked the supernova material, heating it to a blue glow heavy in ultraviolet light. Such a shock could not have been produced if the companion were another white dwarf star.

    “The universe is crazier than science fiction authors have dared to imagine,” said Andy Howell, a staff scientist at LCO and Hosseinzadeh’s Ph.D. adviser. “Supernovae can wreck nearby stars, too, releasing unbelievable amounts of energy in the process.”

    Co-author David Sand, an associate professor at the University of Arizona, discovered the supernova on March 10, 2017, in the galaxy NGC 5643. Only 55 million lightyears away, SN 2017cbv was one of the closest supernovae discovered in recent years, found by the DLT40 survey using the Panchromatic Robotic Optical Monitoring and Polarimetry Telescope (PROMPT) in Chile, which monitors galaxies nightly at distances less than 40 megaparsecs (120 million light-years). This was one of the earliest catches ever — within a day, perhaps even hours, of its explosion. The DLT40 survey was created by Sand and study co-author Stefano Valenti, an assistant professor at UC Davis; both were previously postdoctoral researchers at LCO.

    Within minutes of discovery, Sand activated observations with LCO’s global network of 18 robotic telescopes, spaced around the Earth so that one is always on the night side. This allowed the team to take immediate and near-continuous observations.

    “With LCO’s ability to monitor the supernova every few hours, we were able to see the full extent of the rise and fall of the blue glow for the first time,” Hosseinzadeh said. “Conventional telescopes would have had only a data point or two and missed it.”

    Howell likened the event to gaining astronomical superpowers that give astronomers the ability to see the universe in new ways. “These capabilities were just a dream a few years ago,” he said. “But now we’re living the dream and unlocking the origins of supernovae in the process.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    UC Santa Barbara Seal
    The University of California, Santa Barbara (commonly referred to as UC Santa Barbara or UCSB) is a public research university and one of the 10 general campuses of the University of California system. Founded in 1891 as an independent teachers’ college, UCSB joined the University of California system in 1944 and is the third-oldest general-education campus in the system. The university is a comprehensive doctoral university and is organized into five colleges offering 87 undergraduate degrees and 55 graduate degrees. In 2012, UCSB was ranked 41st among “National Universities” and 10th among public universities by U.S. News & World Report. UCSB houses twelve national research centers, including the renowned Kavli Institute for Theoretical Physics.

     
  • richardmitnick 10:49 am on July 12, 2017 Permalink | Reply
    Tags: , , Tau can in a complex with RNA condense into a highly compact “droplet” while retaining its liquid properties, Tau protein, UCSB   

    From UCSB: “A Biophysical ‘Smoking Gun’ “ 

    UC Santa Barbara Name bloc
    UC Santa Barbara

    July 6, 2017
    Julie Cohen

    1
    Tau was found to belong to proteins that undergo liquid-liquid phase separation upon association with RNAs that establishes a new phase state. Photo Credit: Peter Allen.

    While much about Alzheimer’s disease remains a mystery, scientists do know that part of the disease’s progression involves a normal protein called tau, aggregating to form ropelike inclusions within brain cells that eventually strangle the neurons. Yet how this protein transitions from its soluble liquid state to solid fibers has remained unknown — until now.

    Discovering an unsuspected property of tau, UC Santa Barbara physical chemist Song-I Han and neurobiologist Kenneth S. Kosik have shed new light on the protein’s ability to morph from one state to another.

    Remarkably, tau can, in a complex with RNA, condense into a highly compact “droplet” while retaining its liquid properties. In a phenomenon called phase separation, tau and RNA hold together, without the benefit of a membrane, but remain separate from the surrounding milieu. This novel state highly concentrates tau and creates a set of conditions in which it becomes vulnerable to aggregation. Kosik and Han outline their discoveries in the journal PLOS Biology.

    “Our findings, along with related research in neurodegeneration, posit a biophysical ‘smoking gun’ on the path to tau pathology,” said Kosik, UCSB’s Harriman Professor of Neuroscience and co-director of the campus’s Neuroscience Research Institute. “The signposts on this path are the intrinsic ability of tau to fold into myriad shapes, to bind to RNA and to form compact reversible structures under physiologic conditions, such as the concentration, the temperature and the salinity.”

    The researchers found that, depending on the length and shape of the RNA, up to eight tau molecules bind to the RNA to form an extended fluidic assembly. Several other proteins like tau are known to irreversibly aggregate in other neurodegenerative diseases such as amyotrophic lateral sclerosis, more commonly known as Lou Gehrig’s disease.

    “There is an interesting relationship between intrinsically disordered proteins that are predisposed to become neurodegenerative — in this case tau — and this phase separation state,” said Han, a professor in UCSB’s Department of Chemistry and Biochemistry. “Is this droplet stage a reservoir that protects tau or an intermediate stage that helps transform tau into a disease state with fibrils or both at the same time? Figuring out the exact physiological role of these droplets is the next challenge.”

    Subsequent analysis will consist of an intensive search for the counterpart of tau droplets in living cells. In future work, the researchers also want to explore how and why a cell regulates the formation and dissolution of these droplets and whether this represents a potential inroad toward therapy.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    UC Santa Barbara Seal
    The University of California, Santa Barbara (commonly referred to as UC Santa Barbara or UCSB) is a public research university and one of the 10 general campuses of the University of California system. Founded in 1891 as an independent teachers’ college, UCSB joined the University of California system in 1944 and is the third-oldest general-education campus in the system. The university is a comprehensive doctoral university and is organized into five colleges offering 87 undergraduate degrees and 55 graduate degrees. In 2012, UCSB was ranked 41st among “National Universities” and 10th among public universities by U.S. News & World Report. UCSB houses twelve national research centers, including the renowned Kavli Institute for Theoretical Physics.

     
  • richardmitnick 11:57 am on June 6, 2017 Permalink | Reply
    Tags: , antimicrobial therapy, , , , multidrug-resistant pathogens research, UCSB   

    From UCSB: “Why Antibiotics Fail” 

    UC Santa Barbara Name bloc
    UC Santa Barbara

    June 1, 2017
    Julie Cohen

    1
    Drug testing often excludes potent antibiotics for the treatment of microbial infections (blue plates). Drug testing under conditions that mimic natural infections succeeds in identifying effective antibiotics (red plates), even though these same antibiotics failed standard tests.
    Photo Credit: Peter Allen/Brian Long

    2
    Study authors (L): Michael Mahan, Lucien Barnes, Geneva Tripp and Douglas Heithoff. Photo Credit: Sonia Fernandez

    When a patient is prescribed the wrong antibiotic to treat a bacterial infection, it’s not necessarily the physician who is at fault. The current antibiotic assay — standardized in 1961 by the World Health Organization and used worldwide — is potentially flawed.

    So says UC Santa Barbara biologist Michael Mahan, whose lab has developed a new antimicrobial susceptibility test that could transform the way antibiotics are developed, tested and prescribed.

    The standard test specifies how well drugs kill bacteria on petri plates containing Mueller-Hinton Broth, a nutrient-rich laboratory medium that fails to reproduce most aspects of a natural infection. Now, Mahan and colleagues have used a mouse model to demonstrate that a variety of antibiotics work differently against various pathogens when inside the mammalian body. Their findings appear in the journal EBioMedicine.

    “The message is simple: Physicians may be relying on the wrong test for identifying antibiotics to treat infections,” said Mahan, a professor in UCSB’s Department of Molecular, Cellular and Developmental Biology. “By developing a test that mimics conditions in the body, we have identified antibiotics that effectively treat infections caused by diverse bacteria, including MRSA, the cause of deadly Staphylococcal infections. These drugs have been overlooked because they failed the standard tests, despite being inexpensive, nontoxic and available at local pharmacies.”

    The research has significant implications for public health. If a drug that passed the standard test doesn’t work, physicians can now choose a different drug immediately rather than increase the dose of the same drug when patients return — often in worse condition — after an ineffective first course of treatment.

    Reliance on the standard test may have contributed to the rise in multidrug-resistant bacteria, Mahan noted, due to the continued prescription of ineffective antibiotics. Further, he added, the standard test may also be slowing the discovery of new antibiotics. “These ‘wonder drugs’ may already exist but have been rejected by the standard test and are consequently not used in practice,” Mahan said.

    The scientists also report a way to “fix” the standard test to better predict how well antibiotics will treat infections: Simply add sodium bicarbonate. More commonly known as baking soda, this chemical is found in abundance in the body, where it helps to maintain precise blood pH. “Sodium bicarbonate makes the petri plates behave more like the body and increases the test’s accuracy for assigning the appropriate antibiotic to treat infections,” explained co-lead author Douglas Heithoff, a project scientist at UCSB’s Center for Nanomedicine.

    Mahan also points out that pharmaceutical companies could benefit from using the revised test to rescreen their collections of purified compounds that have failed the standard test. “There could be a treasure trove of compounds that have been shelved but could actually be quite effective against antibiotic-resistant strains,” he said.

    “Things aren’t as gloomy as we thought,” Mahan added. “We just have to be smart about it and change the way we’re using the drugs we already have while we continue to search for new ones.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    UC Santa Barbara Seal
    The University of California, Santa Barbara (commonly referred to as UC Santa Barbara or UCSB) is a public research university and one of the 10 general campuses of the University of California system. Founded in 1891 as an independent teachers’ college, UCSB joined the University of California system in 1944 and is the third-oldest general-education campus in the system. The university is a comprehensive doctoral university and is organized into five colleges offering 87 undergraduate degrees and 55 graduate degrees. In 2012, UCSB was ranked 41st among “National Universities” and 10th among public universities by U.S. News & World Report. UCSB houses twelve national research centers, including the renowned Kavli Institute for Theoretical Physics.

     
  • richardmitnick 12:34 pm on May 25, 2017 Permalink | Reply
    Tags: , , Plate attenuation, UCSB,   

    From UCSB: “The Birth and Death of a Tectonic Plate” 

    UC Santa Barbara Name bloc
    UC Santa Barbara

    May 24, 2017
    Julie Cohen

    Geophysicist Zachary Eilon developed a new technique to investigate the underwater volcanoes that produce Earth’s tectonic plates

    1
    Attenuation values recorded at ocean-bottom stations. Radial spokes show individual arrivals at their incoming azimuth; central circles show averages at each station

    2
    Geophysicist Zachary Eilon. Photo Credit: COURTESY IMAGE

    Several hundred miles off the Pacific Northwest coast, a small tectonic plate called the Juan de Fuca is slowly sliding under the North American continent. This subduction has created a collision zone with the potential to generate huge earthquakes and accompanying tsunamis, which happen when faulted rock abruptly shoves the ocean out of its way.

    In fact, this region represents the single greatest geophysical hazard to the continental United States; quakes centered here could register as hundreds of times more damaging than even a big temblor on the San Andreas Fault. Not surprisingly, scientists are interested in understanding as much as they can about the Juan de Fuca Plate.

    This microplate is “born” just 300 miles off the coast, at a long range of underwater volcanoes that produce new crust from melt generated deep below. Part of the global mid-ocean ridge system that encircles the planet, these regions generate 70 percent of the Earth’s tectonic plates. However, because the chains of volcanoes lie more than a mile beneath the sea surface, scientists know surprisingly little about them.

    UC Santa Barbara geophysicist Zachary Eilon and his co-author Geoff Abers at Cornell University have conducted new research — using a novel measurement technique — that has revealed a strong signal of seismic attenuation or energy loss at the mid-ocean ridge where the Juan de Fuca Plate is created. The researchers’ attenuation data imply that molten rock here is found even deeper within the Earth than scientists had previously thought. This in turn helps scientists understand the processes by which Earth’s tectonic plates are built, as well as the deep plumbing of volcanic systems. The results of the work appear in the journal Science Advances.

    “We’ve never had the ability to measure attenuation this way at a mid-ocean ridge before, and the magnitude of the signal tells us that it can’t be explained by shallow structure,” said Eilon, an assistant professor in UCSB’s Department of Earth Science. “Whatever is down there causing all this seismic energy to be lost extends really deep, at least 200 kilometers beneath the surface. That’s unexpected, because we think of the processes that give rise to this — particularly the effect of melting beneath the surface — as being shallow, confined to 60 km or less.”

    According to Eilon’s calculations, the narrow strip underneath the mid-ocean ridge, where hot rock wells up to generate the Juan de Fuca Plate, has very high attenuation. In fact, its levels are as high as scientists have seen anywhere on the planet. His findings also suggest that the plate is cooling faster than expected, which affects the friction at the collision zone and the resulting size of any potential megaquake.

    Seismic waves begin at an earthquake and radiate away from it. As they disperse, they lose energy. Some of that loss is simply due to spreading out, but another parameter also affects energy loss. Called the quality factor, it essentially describes how squishy the Earth is, Eilon said. He used the analogy of a bell to explain how the quality factor works.

    “If I were to give you a well-made bell and you were to strike it once, it would ring for a long time,” he explained. “That’s because very little of the energy is actually being lost with each oscillation as the bell rings. That’s very low attenuation, very high quality. But if I give you a poorly made bell and you strike it once, the oscillations will die out very quickly. That’s high attenuation, low quality.”

    Eilon looked at the way different frequencies of seismic waves attenuated at different rates. “We looked not only at how much energy is lost but also at the different amounts by which various frequencies are delayed,” he explained. “This new, more robust way of measuring attenuation is a breakthrough that can be applied in other systems around the world.

    “Attenuation is a very hard thing to measure, which is why a lot of people ignore it,” Eilon added. “But it gives us a huge amount of new information about the Earth’s interior that we wouldn’t have otherwise.”

    Next year, Eilon will be part of an international effort to instrument large unexplored swaths of the Pacific with ocean bottom seismometers. Once that data has been collected, he will apply the techniques he developed on the Juan de Fuca in the hope of learning more about what lies beneath the seafloor in the old oceans, where mysterious undulations in the Earth’s gravity field have been measured.

    “These new ocean bottom data, which are really coming out of technological advances in the instrumentation community, will give us new abilities to see through the ocean floor,” Eilon said. “This is huge because 70 percent of the Earth’s surface is covered by water and we’ve largely been blind to it — until now.

    “The Pacific Northwest project was an incredibly ambitious community experiment,” he said. “Just imagine the sort of things we’ll find out once we start to put these instruments in other places.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    UC Santa Barbara Seal
    The University of California, Santa Barbara (commonly referred to as UC Santa Barbara or UCSB) is a public research university and one of the 10 general campuses of the University of California system. Founded in 1891 as an independent teachers’ college, UCSB joined the University of California system in 1944 and is the third-oldest general-education campus in the system. The university is a comprehensive doctoral university and is organized into five colleges offering 87 undergraduate degrees and 55 graduate degrees. In 2012, UCSB was ranked 41st among “National Universities” and 10th among public universities by U.S. News & World Report. UCSB houses twelve national research centers, including the renowned Kavli Institute for Theoretical Physics.

     
  • richardmitnick 11:17 am on April 25, 2017 Permalink | Reply
    Tags: A Practical Approach to Conservation, , UCSB   

    From UCSB: “A Practical Approach to Conservation” 

    UC Santa Barbara Name bloc
    UC Santa Barbara

    April 24, 2017
    Julie Cohen

    1
    No image caption. No image credit

    2
    Kevin Lafferty and Hillary Young. Photo Credit: Sonia Fernandez

    Is conservation good for your health? Seems like a no-brainer, right?

    Not so much, according to a group of scientists who have collaborated on a new research volume that explores what turns out to be a very tough question.

    UC Santa Barbara ecologists teamed up with colleagues at Duke University and the University of Washington to present various perspectives on the subject for the journal Philosophical Transactions of the Royal Society B. Their special issue, Conservation, Biodiversity, and Infectious Disease, is a combination of theoretical work and case studies, all of which embrace a systems approach to infectious disease ecology.

    “I’m a firm believer that insights from ecology can help us manage disease and protect species,” said co-editor Kevin Lafferty, a senior ecologist with the U.S. Geological Survey and a principal investigator at UCSB’s Marine Science Institute. “But ecological systems are too complicated to expect one-size-fits-all solutions.”

    The biodiversity-disease relationship often has been framed as a simple synergy between conservation action and improved human health, yet the links between habitat disturbance and other factors that affect disease risk are complex. The editors sought authors from diverse perspectives and backgrounds to investigate how economics, climate change and biodiversity change affect infectious diseases.

    “What’s really unique about this issue is that we have gone all the way from theory articles that look at how biodiversity changes might affect disease to multiple field studies of various conservation interventions at different scales to an examination of the global drivers of biodiversity change,” said lead editor Hillary Young, an assistant professor in UCSB’s Department of Ecology, Evolution and Marine Biology (EEMB). “We wanted to present cases for viable and useful public health interventions.”

    Take schistosomiasis, a parasitic disease carried by fresh water snails. Found predominantly in tropical and subtropical climates, schistosomiasis infects 240 million people in as many as 78 countries, with a vast majority occurring in Africa. Schistosomiasis ranks second only to malaria as the most common parasitic disease.

    Susanne Sokolow, a researcher at UCSB’s Marine Science Institute and at Stanford University’s Hopkins Marine Station, presents her study of the disease in Senegal in one paper in the special issue. She found that when dams block the migration of snail-eating river prawns, snail abundance — and presumably schistosomiasis — increase.

    “This is a story that repeats itself in systems where river prawns are present, and one that has a simple solution,” said co-author Lafferty, who is an adjunct EEMB faculty member at UCSB. “This is a type of species that can be restored and that’s the kind of win-win we’re looking for. A third win occurs because river prawn fisheries create economic benefits. Restoring the river is too vague a solution; honing in on the specific lever in the system to which the disease is sensitive gets us there faster.”

    Young’s research in Kenya, also featured in this special issue, is different, but it tells a similar story: Details matter. The ecologists examined how different types of disturbances affected vector-borne diseases and found that agricultural disturbance and the removal of large wildlife caused strong and systematic increases in many pathogens. However, pastoral land use change had no general effect.

    “The type of land use change matters; you can’t just say conservation is good for disease,” Young said. “In fact, conservations are much more effective when scientists understand the nuances involved.

    “While the mechanisms involved in my system are entirely different from the schistosomiasis system, both underscore the importance of understanding the entire ecology of the system, finding win-win scenarios and acting on them rather than expecting generalities about conservation and disease,” she added.

    Discovering the specifics can be problematic because measurements of the environment, of biodiversity and of infectious diseases vary greatly. In another of the volume’s papers, Lafferty, Young and colleagues found a way to analyze global disease burden at two time points, which enabled them to examine the same things.

    “We analyzed what drives the world’s most important infectious diseases among countries and across decades,” Lafferty explained. “It’s the most comprehensive attempt yet to explain how conservation, climate and economics affect human health.”

    The researchers considered forestation, biodiversity, wealth, temperature, precipitation and urbanization. They found that any of those factors on their own could have a positive, negative or neutral effect, depending on the disease. By far the most consistent finding, though, was this: The wealthier the country, the less disease; and the more wealth increased, the lower the burden of infectious disease.

    Young noted that this research produced a better understanding of causality than most studies. “This paper has some good news that is rarely part of the story in our field,” Lafferty said. “Our analysis shows across the board — with just a couple of exceptions — that the burden of infectious diseases has diminished considerably over the last two decades and that is mostly due to increased wealth and urbanization.”

    “There is no one-size-fits-all lever, where improving access to healthcare is going to affect all infectious diseases,” Young added. “This body of work highlights the need to understand the nuances that make biodiversity and conservation effective levers.”

    The discourse begun in the special journal will continue at the 15th annual Ecology and Evolution of Infectious Diseases conference to be held June 24-27 at UCSB. Many authors will present their work. More information is available at https://eeid2017.eemb.ucsb.edu/

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    UC Santa Barbara Seal
    The University of California, Santa Barbara (commonly referred to as UC Santa Barbara or UCSB) is a public research university and one of the 10 general campuses of the University of California system. Founded in 1891 as an independent teachers’ college, UCSB joined the University of California system in 1944 and is the third-oldest general-education campus in the system. The university is a comprehensive doctoral university and is organized into five colleges offering 87 undergraduate degrees and 55 graduate degrees. In 2012, UCSB was ranked 41st among “National Universities” and 10th among public universities by U.S. News & World Report. UCSB houses twelve national research centers, including the renowned Kavli Institute for Theoretical Physics.

     
  • richardmitnick 12:53 pm on February 11, 2017 Permalink | Reply
    Tags: Drawn from the Deep, Earth’s mantle — a primordial soup even older than the moon., , High helium-3 relative to helium-4, UCSB   

    From UCSB: “Drawn from the Deep” 

    UC Santa Barbara Name bloc

    February 6, 2017
    Julie Cohen

    Geochemist Matt Jackson finds the hottest, most buoyant mantle plumes draw from a primordial reservoir deep in the Earth

    1
    Lead author Matthew Jackson samples Hawaiian lava with a rock hammer. Photo Credit: WHOI Geodynamics Program

    2
    Matthew Jackson. Photo Credit: Anna Maria Skuladottir

    The Earth’s mantle — the layer between the crust and the outer core — is home to a primordial soup even older than the moon. Among the main ingredients is helium-3 (He-3), a vestige of the Big Bang and nuclear fusion reactions in stars. And the mantle is its only terrestrial source.

    Scientists studying volcanic hotspots have strong evidence of this, finding high helium-3 relative to helium-4 in some plumes, the upwellings from the Earth’s deep mantle. Primordial reservoirs in the deep Earth, sampled by a small number of volcanic hotspots globally, have this ancient He-3/4 signature.

    Inspired by a 2012 paper that proposed a correlation between such hotspots and the velocity of seismic waves moving through the Earth’s interior, UC Santa Barbara geochemist Matthew Jackson teamed with the authors of the original paper — Thorsten Becker of the University of Texas at Austin and Jasper Konter of the University of Hawaii — to show that only the hottest hotspots with the slowest wave velocity draw from the primitive reservoir formed early in the planet’s history. Their findings appear in the journal Nature.

    “We used the seismology of the shallow mantle — the rate at which seismic waves travel through the Earth below its crust — to make inferences about the deeper mantle,” said Jackson, an assistant professor in UCSB’s Department of Earth Science. “At 200 km, the shallow mantle has the largest variability of seismic velocities — more than 6 percent, which is a lot. What’s more, that variability, which we hypothesize relates to temperature, correlates with He-3.”

    For their study, the researchers used the latest seismic models of the Earth’s velocity structure and 35 years of helium data. When they compared oceanic hotspots with high levels of He-3/4 to seismic wave velocities, they found that these represent the hottest hotspots, with seismic waves that move more slowly than they do in cooler areas. They also analyzed hotspot buoyancy flux, which can be used to measure how much melt a particular hotspot produces. In Hawaii, the Galapagos Islands, Samoa and Easter Island as well as in Iceland, hotspots had high buoyancy levels, confirming a basic rule of physics: the hotter, the more buoyant.

    “We found that the higher the hotspot buoyancy flux, the more melt a hotspot was producing and the more likely it was to have high He-3/4,” Jackson said. “Hotter plumes not only have slower seismic velocity and a higher hotspot buoyancy flux, they also are the ones with the highest He-3/4. This all ties together nicely and is the first time that He-3/4 has been correlated with shallow mantle velocities and hotspot buoyancy globally.”

    Becker noted that correlation does not imply causality, “but it is pretty nifty that we found two strong correlations, which both point to the same physically plausible mechanism: the primordial stuff gets picked up preferentially by the most buoyant thermochemical upwellings.”

    The authors also wanted to know why only the hottest, most buoyant plumes sample high He-3/4.

    “The explanation that we came up with — which people who do numerical simulations have been suggesting for a long time — is that whatever this reservoir is with primitive helium, it must be really dense so that only the hottest, most buoyant plumes can entrain some of it to the surface,” Jackson said. “That makes sense and it also explains how something so ancient could survive in the chaotically convecting mantle for 4.5 billion years. The density contrast makes it more likely that the ancient helium reservoir is preserved rather than mixed away.”

    “Since this correlation of geochemistry and seismology now holds from helium isotopes in this work to the compositions we examined in 2012, it appears that overall hotspot geochemical variations will need to be re-examined from the perspective of buoyancy,” Konter concluded.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    UC Santa Barbara Seal
    The University of California, Santa Barbara (commonly referred to as UC Santa Barbara or UCSB) is a public research university and one of the 10 general campuses of the University of California system. Founded in 1891 as an independent teachers’ college, UCSB joined the University of California system in 1944 and is the third-oldest general-education campus in the system. The university is a comprehensive doctoral university and is organized into five colleges offering 87 undergraduate degrees and 55 graduate degrees. In 2012, UCSB was ranked 41st among “National Universities” and 10th among public universities by U.S. News & World Report. UCSB houses twelve national research centers, including the renowned Kavli Institute for Theoretical Physics.

     
  • richardmitnick 12:56 pm on February 2, 2017 Permalink | Reply
    Tags: , IRE1 inhibitor, , , , The unfolded protein response or UPR — has been implicated in a number of diseases, UCSB   

    From UCSB: “Origami of the Cell” 

    UC Santa Barbara Name bloc
    UC Santa Barbara

    January 30, 2017
    Julie Cohen

    1
    These images show a reduction in the number of macrophages infiltrating atherosclerotic plaques (in green) in animals treated with the IRE1 inhibitor.
    Photo Credit: Courtesy IMAGE

    2
    This shows a reduction in atherosclerotic lesions in the aorta of mice (in red) when treated with the IRE1 inhibitor.
    Photo Credit: Courtesy IMAGE

    In the ancient Japanese art of origami, paper must be folded precisely and following a specific order to create the desired result — say, a crane or lotus flower. It’s a complex pursuit that requires keen attention to detail and utmost accuracy.

    An equally precise biological process in living cells gives rise to proteins, the large biomolecules essential for life.

    Proteins begin life as long strings of amino acids that must fold into the three-dimensional shape prescribed for their particular biological function. When proteins don’t fold as expected — think badly misshapen crane — the cells activate stress responses meant to mitigate the problem. But severe or prolonged stress produces an acute response: Cell death is triggered to protect the organism.

    Sustained activation of one such reaction — the unfolded protein response, or UPR — has been implicated in a number of diseases. Seeking to illuminate a piece of this biological puzzle, an international team of scientists, including UC Santa Barbara cell biologist Diego Acosta-Alvear, examined the role of a central UPR component, a stress sensor protein called IRE1 (inositol-requiring enzyme 1), in atherosclerosis.

    The researchers found that blocking IRE1 with a small molecule prevented the progression of atherosclerosis in mice. The findings appear in the Proceedings of the National Academy of Sciences.

    “A healthy cell has one type of stress response network wiring and it’s likely that a diseased cell accommodates that wiring to survive,” said Acosta-Alvear, an assistant professor in UCSB’s Department of Molecular, Cellular and Developmental Biology. “Stress response networks control the life vs. death decision in cells, and since a diseased cell is nowhere near its comfort zone, rewiring its stress responses allows it to avoid or delay cell death even when conditions are adverse. That’s what we wanted to understand: how a diseased cell does that and why it happens.”

    The UPR is triggered when the normal functions of the endoplasmic reticulum — the cell’s largest organelle in charge of making and folding proteins — are compromised. Though the UPR usually promotes healthy endoplasmic reticulum function, sustained UPR activation sometimes results in diseases such as atherosclerosis, the deposition of fatty plaques on artery walls, among other conditions. Understanding what happens with the UPR in disease is key to illuminating the normal operation of this essential pathway — and to providing insights into the development of targeted therapies.

    Endoplasmic reticulum stress is triggered not only by protein-folding problems, but also by fatty acids, explained Acosta-Alvear. Fat-induced stress and metabolic overload of the endoplasmic reticulum can alter its function, triggering chronic inflammation, which plays an important role in the development of atherosclerosis.

    In this research, the scientists disturbed endoplasmic reticulum function by introducing saturated fatty acids into cells to induce lipotoxic stress. This in turn activated the UPR and IRE1.

    Active IRE1 relays the protein-folding stress information to the cell nucleus by controlling the production of a very potent transcription activator, XBP1 (X-box binding protein-1). Transcription activators are proteins involved in the process of converting, or transcribing, DNA into RNA.

    The investigators’ analyses demonstrated that XBP1 was responsible for turning on pro-atherogenic genes. They then treated mice with a compound that blocked IRE1.

    “The end result was that if the transcription factor was not produced, the pro-atherogenic genes were not turned on, which mitigated the progression of the disease,” Acosta-Alvear said. “This research is a proof-of-concept study showing that blocking this single critical enzyme delivers a desirable therapeutic benefit. It’s a first step in mechanistically understanding how cellular stress responses are wired in specific contexts.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    UC Santa Barbara Seal
    The University of California, Santa Barbara (commonly referred to as UC Santa Barbara or UCSB) is a public research university and one of the 10 general campuses of the University of California system. Founded in 1891 as an independent teachers’ college, UCSB joined the University of California system in 1944 and is the third-oldest general-education campus in the system. The university is a comprehensive doctoral university and is organized into five colleges offering 87 undergraduate degrees and 55 graduate degrees. In 2012, UCSB was ranked 41st among “National Universities” and 10th among public universities by U.S. News & World Report. UCSB houses twelve national research centers, including the renowned Kavli Institute for Theoretical Physics.

     
  • richardmitnick 1:08 pm on September 20, 2016 Permalink | Reply
    Tags: $10 million Benioff Ocean Initiative, , Crowdsourcing Sea Change, , UCSB   

    From UCSB: “Crowdsourcing Sea Change” 

    UC Santa Barbara Name bloc
    UC Santa Barbara

    September 15, 2016
    Shelly Leachman

    With a $10 million gift from Marc and Lynne Benioff, UC Santa Barbara establishes the Benioff Ocean Initiative to study and solve ocean issues.

    1
    The Benioff Ocean Initiative based at and led by UC Santa Barbara aims to research the root causes of pervasive ocean issues and use science to solve them.
    Photo Credit: Jim Maragos

    2
    Marc and Lynne Benioff have gifted UC Santa Barbara with more than $10 million to establish the Benioff Ocean Initiative, which will be directed by Douglas McCauley.
    Photo Credit: Ron McPeak

    Maybe it’s all the plastic you see on the beach where you take your kids. Or that news story you read about shark-finning and can’t quite get it out of your mind. Are you frustrated trying to identify sustainable options on the menu at your favorite seafood restaurant?

    These are common concerns, and they all lead back to one place: the ocean. And with climate change acidifying and heating up the seas, global fisheries being overharvested and more than 5 trillion pieces of plastic working their way into marine food webs, they’re the tip of a massive threat to our oceans.

    The Benioff Ocean Initiative, a bold new endeavor led by the University of California Santa Barbara, aims to research the root causes of these pervasive ocean problems and use science to solve them, supported by funding from Marc and Lynne Benioff.

    Marc Benioff is the co-founder, chairman and chief executive officer of Salesforce, one of the world’s leading software companies, and a leader in changing global attitudes about the social responsibility of businesses. Lynne Benioff is on the board of directors of Hampton Creek, the board of overseers of the University of California San Francisco Foundation, the board of directors of UCSF Benioff Children’s Hospital Oakland and the board of directors of Common Sense Media. In 2015, Lynne Benioff was appointed to the board of directors of the Presidio Trust by President Obama. Known for their extensive philanthropic support of children’s health and education, the couple has gifted UCSB more than $10 million to establish the Benioff Ocean Initiative.

    ‘A Game-Changing Undertaking’

    Cast as an experimental new model for university-driven change, the innovative effort will bring senior ocean scientists together with students to develop science-based solutions that will address problems plaguing the oceans. In an effort to link together the strength of university-powered research with the creativity of global ocean communities, this new initiative will use a crowdsourcing campaign to collect ideas on ocean issues submitted from anyone, anywhere in the world. These ideas will set the agenda for the initiative.

    “We cannot stand by and watch our oceans become increasingly sickened and fisheries decimated,” said Marc Benioff. “Just as we have research hospitals seeking cures for devastating illnesses, we need a hospital to heal our oceans. We can bring the brightest minds in marine science and our communities together and empower them to bring our oceans back to health.”

    “On behalf of UC Santa Barbara, I wish to express our deep appreciation for the truly inspiring and generous commitment by Marc and Lynne Benioff,” said Chancellor Henry T. Yang. “With this transformative gift, we are proud to establish the Benioff Ocean Initiative, which will enhance the ability of researchers and community stakeholders to address current problems in ocean health through applied environmental science.

    “Building the capacity of the university, including educating our students — future environmental leaders — to investigate and address these challenges in innovative and demonstrable ways is a vital step to strengthening sustainable environmental practices worldwide,” Yang added. “Through their gift, the Benioffs’ visionary leadership sets the stage for tremendous beneficial change.”

    “This is a game-changing undertaking that will contribute invaluable research and solutions to ocean issues that will affect the world’s food supply for countless generations,” said UC President Janet Napolitano, who launched the Global Food Initiative to marshal the expertise of researchers across the UC system. “It’s significant, too, that The Benioff Ocean Initiative will bring students together with scientists and collect ideas from people throughout the world.”

    ‘A Hospital for the Oceans’

    Headquartered at UCSB’s Marine Science Institute, an internationally recognized center of excellence for interdisciplinary oceans research, the Benioff Ocean Initiative is being directed by noted marine biologist Douglas McCauley, but will be run as a collaboration among ocean scientists worldwide, as well as students. Together they’ll highlight the most pressing threats to ocean health through research, and then use what they learn to address these illnesses in the ocean.

    “The Benioff Ocean Initiative will be a first of its kind ‘hospital for the oceans,’ ” McCauley said. “A university hospital that studied illness without treating illness wouldn’t have a lot of value. Likewise, it is no longer tenable to operate marine research institutes that study ocean problems without using this science to fix these same issues.” The Benioff Ocean Initiative, McCauley says, will be a collective of “sharp minds that are not afraid to get their hands dirty making ocean change happen.”

    “This initiative is a bold statement by UC Santa Barbara to the world that we must redefine possibilities for creating change in academia,” he continued. “Universities must do more than studiously write up the obituary for the oceans. The Benioff Ocean Initiative is an experiment that will make universities themselves epicenters for change. In the case of the oceans, this is better late than never. This re-visioning of the responsibility of the university emulates the Benioffs’ progressive stance around corporations and business leaders taking on social and environmental
    issues.”

    Ideation. Research. The fix. That’s the three-step process at the heart of Benioff Ocean Initiative, which begins by inviting the global public to identify ocean issues that need solving by submitting ideas online. From each round of crowdsourcing one top idea will be selected by the initiative’s team of marine scientists, who will then, McCauley said, kick start the process of “doing what science does best — study the heck out of the problem.”

    The initiative will assemble and fund a team of global experts to intensely research a solution to selected problems. During a subsequent research summit at UCSB, scientists on the team will share what they’ve learned and collaboratively design a best fix for the problem.

    Then the best part: bringing that fix to life.

    Million-Dollar Ideas

    Benioff Ocean Initiative staff and the ocean scientists behind each solution will “work together to build the device, write the code or invent the tech needed to solve the ocean problem,” McCauley said. “A million dollars will be invested in putting each fix into place. And every fix that comes out of the Benioff Ocean Initiative will be designed so that these successes can be replicated as widely as possible.”

    In a world where the oceans provide millions of jobs and yield trillions of dollars in goods and services each year, and where 1.4 billion people frequently rely on fish as a food source, that replication will be key, according to McCauley.

    “Our fate is inextricably linked to the fate of the oceans,” he said. “This is becoming as much or more about saving ourselves than it is about saving the whales. This is about putting healthy food on our table, oxygen in our air, keeping pollution out of the bodies of ocean animals and off our dinner plates. It’s about protecting the vibrancy of our economies and giving our kids enough nature to marvel at.”

    And it absolutely can be done, McCauley assured, characterizing the oceans as “wonderfully resilient” places where life is “much healthier and still much wilder than life on land.”

    “There have been far fewer extinctions in the oceans, which means the building blocks of ocean life are almost all still swimming around somewhere out there,” he said. “With some strategic investment of intellect, resources and creativity, we can fix many of the problems facing the oceans and threatening our own well-being before they become irreversible.”

    Setting Sail

    Thanks to just such an investment by Marc and Lynne Benioff, that’s precisely what the ambitious Benioff Ocean Initiative intends to do.

    “I am honored and delighted that Marc and Lynne Benioff have decided to establish the Benioff Ocean Initiative here at UC Santa Barbara,” said Pierre Wiltzius, the Susan & Bruce Worster Dean of Science and executive dean of the College of Letters and Science at UCSB. “Their passion for creating a better world through meaningful, deliberate change is inspirational, and their desire to bring students together with top researchers is directly aligned with the goals of this university.

    “I can’t think of a better person to lead this new model for ocean change than Douglas McCauley,” Wiltzius added. “He and his team are widely cited as experts in fragile marine ecosystems and are at the forefront of developing new ideas for preserving our oceans. I speak for my entire division when I say that we enthusiastically look forward to the innovations that will come from this initiative.”

    Urging anyone who is interested to visit the just-unveiled Benioff Ocean Initiative website (www.boi.ucsb.edu) to submit an idea for ocean change, McCauley said, “We can’t wait to set sail on this important journey together.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    UC Santa Barbara Seal
    The University of California, Santa Barbara (commonly referred to as UC Santa Barbara or UCSB) is a public research university and one of the 10 general campuses of the University of California system. Founded in 1891 as an independent teachers’ college, UCSB joined the University of California system in 1944 and is the third-oldest general-education campus in the system. The university is a comprehensive doctoral university and is organized into five colleges offering 87 undergraduate degrees and 55 graduate degrees. In 2012, UCSB was ranked 41st among “National Universities” and 10th among public universities by U.S. News & World Report. UCSB houses twelve national research centers, including the renowned Kavli Institute for Theoretical Physics.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: