Tagged: UC Santa Barbara Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 3:15 pm on November 25, 2016 Permalink | Reply
    Tags: INCITE program, , , Stellar mass loss, UC Santa Barbara   

    From UC Santa Barbara’s Kavli Institute for Theoretical Physics (KITP): “Stellar Simulators” 

    UC Santa Barbara Name bloc

    UC Santa Barbara

    KavliFoundation

    The Kavli Foundation

    November 22, 2016
    Julie Cohen

    It’s an intricate process through which massive stars lose their gas as they evolve. And a more complete understanding could be just calculations away, if only those calculations didn’t take several millennia to run on normal computers.

    But astrophysicists Matteo Cantiello and Yan-Fei Jiang of UC Santa Barbara’s Kavli Institute for Theoretical Physics (KITP) may find a way around that problem.

    The pair have been awarded 120 million CPU hours over two years on the supercomputer Mira — the sixth-fastest computer in the world — through the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program, an initiative of the U.S. Department of Energy Office of Science.

    MIRA IBM Blue Gene Q supercomputer at the Argonne Leadership Computing Facility
    MIRA IBM Blue Gene Q supercomputer at the Argonne Leadership Computing Facility

    INCITE aims to accelerate scientific discoveries and technological innovations by awarding, on a competitive basis, time on supercomputers to researchers with large-scale, computationally intensive projects that address “grand challenges” in science and engineering.

    “Access to Mira means that we will be able to run calculations that otherwise would take about 150,000 years to run on our laptops,” said Cantiello, an associate specialist at KITP.

    Cantiello and Jiang will use their supercomputer time to run 3-D simulations of stellar interiors, in particular the outer envelopes of massive stars. Such calculations are an important tool to inform and improve the one-dimensional approximations used in stellar evolution modeling. The researchers aim to unravel the complex physics involved in the interplay among gas, radiation and magnetic fields in such stars — stellar bodies that later in life can explode to form black holes and neutron stars.

    The physicists use grid-based Athena++ code — which has been carefully extended and tested by Jiang — to solve equations for the gas flow in the presence of magnetic fields (magnetohydrodynamics) and for how photons move in such environments and interact with the gas flow (radiative transfer). The code divides the huge calculations into small pieces that are sent to many different CPUs and are solved in parallel. With a staggering number of CPUs — 786,432 to be precise — Mira speeds up the process tremendously.

    This research addresses an increasingly important problem: understanding the structure of massive stars and the nature of the process that makes them lose mass as they evolve. This includes both relatively steady winds and dramatic episodic mass loss eruptions.

    Called stellar mass loss, this process has a decisive effect on the final fate of these objects. The type of supernova explosion that these stars undergo, as well as the type of remnants they leave behind (neutron stars, black holes or even no remnant at all), are intimately tied to their mass loss.

    The study is particularly relevant in light of the recent detection of gravitational waves from LIGO (Laser Interferometer Gravitational-Wave Observatory). The discovery demonstrated the existence of stellar mass black holes orbiting so close to each other that eventually they can merge and produce the observed gravitational waves.

    “Understanding how these black hole binary systems formed in the first place requires a better understanding of the structure and mass loss of their stellar progenitors,” explained Jiang, a postdoctoral fellow at KITP.

    The implications of the work Cantiello and Jiang will perform on Mira also extend to broader fields of stellar evolution and galaxy formation, among others.

    See the full UCSB article here .
    See the full Kavli article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The Kavli Foundation, based in Oxnard, California, is dedicated to the goals of advancing science for the benefit of humanity and promoting increased public understanding and support for scientists and their work.

    The Foundation’s mission is implemented through an international program of research institutes, professorships, and symposia in the fields of astrophysics, nanoscience, neuroscience, and theoretical physics as well as prizes in the fields of astrophysics, nanoscience, and neuroscience.

    UC Santa Barbara Seal

    The University of California, Santa Barbara (commonly referred to as UC Santa Barbara or UCSB) is a public research university and one of the 10 general campuses of the University of California system. Founded in 1891 as an independent teachers’ college, UCSB joined the University of California system in 1944 and is the third-oldest general-education campus in the system. The university is a comprehensive doctoral university and is organized into five colleges offering 87 undergraduate degrees and 55 graduate degrees. In 2012, UCSB was ranked 41st among “National Universities” and 10th among public universities by U.S. News & World Report. UCSB houses twelve national research centers, including the renowned Kavli Institute for Theoretical Physics.

     
  • richardmitnick 11:54 am on July 27, 2016 Permalink | Reply
    Tags: , For Whom the Births (and Worms) Toll, , UC Santa Barbara   

    From UCSB: “For Whom the Births (and Worms) Toll” 

    UC Santa Barbara Name bloc

    UC Santa Barbara

    July 21, 2016
    Jim Logan

    1
    Tsimane children. No image credit

    2
    Tsimane women. Photo Credit: Lisa McAllister

    Human childbirth is not only unpleasant, it’s also assumed to take a toll on women’s health, even while women have a greater life expectancy. A new study led by UC Santa Barbara researchers, however, finds that indigenous women in the Bolivian Amazon with some of the highest birth rates in the world today experience negligible health costs from their intense reproductive effort.

    The study tracking 869 Tsimane women over 12 years is the most comprehensive under natural conditions ever conducted, said Michael Gurven, a professor of anthropology at UCSB and the lead author of Health Costs of Reproduction Are Minimal Despite High Fertility, Mortality and Subsistence Lifestyle, published in Nature Scientific Reports. The findings are remarkable because they run counter to expectations, he noted, given that the Tsimane live as horticulturalist-foragers in a harsh environment with limited food and an abundance of pathogens and parasites.

    It is often thought that costly (“cell-mediated”) immune function is suppressed during pregnancy to help tolerate the growing fetus, and so exposure to harmful pathogens should be dangerous. Tsimane growth is also stunted due to limited nutrition and long periods of parasitic exposure. In this environmental context, the average Tsimane woman has nine births in rapid order, and each child is breastfed for nearly two years.

    “One might expect such high, cumulative reproductive costs to take its toll on a woman’s health if her body doesn’t have a chance to recover,” Gurven explained. “Yet we found — using common metrics of maternal health and nutritional status such as weight and body mass index, and some biomarkers assessing anemia and immune activation — that although women with more kids spaced closer together tended to have lower weight and BMI than those with fewer kids spaced further apart — when we looked at changes within women over time, these anthropometric measures increased over successive births.” American women, by contrast, typically gain weight with each successive pregnancy, but they have only a few children and are well nourished, he added.

    Gurven, director of UCSB’s Evolutionary Anthropology and Biodemography Research Group, and co-director of the Tsimane Health and Life History Project, said the findings bring into focus one way that extensive human sociality, or “cooperative breeding,” helps differentiate us from other primates, and has allowed us to swarm the planet. Humans such as the Tsimane who live under natural fertility conditions have a higher birthrate than would be expected of a primate of our size, with infants weaned early and the next child arriving fairly quickly. “Despite rapid reproduction, female hunter-gatherers and horticulturalists typically work less, not more, to meet their greater energetic needs for lactation,” he explained. “This is only possible in a highly social species where others can help out during periods of need.”

    In other species, Gurven said, mothers expend greater energy foraging for food because they’re essentially on their own. Lactating baboons, for example, spend a lot more time looking for something to eat because they don’t have others cooperatively provisioning them. All that extra effort to find more food burns calories, and thereby delays the time at which they start ovulating again.

    “So the Tsimane case is fascinating in this light: Women having nine births spaced close together, yet not experiencing obvious maternal depletion, is a testament to the favorable social structure of humans who actively pool their efforts and resources within and among generations,” Gurven said. “Women not showing evidence of maternal depletion is only possible due to high levels of cooperation from kin and other group members that support women when pregnant and lactating.”

    So are there really no health costs to such high fertility? “Dying in or shortly after childbirth is definitely more common among Tsimane than in high-income countries,” Gurven added, “but here we were more interested in the sustained costs to survivors.” Other health conditions can worsen with successive births among Tsimane. Cystocele — or prolapsed bladder — is one of these, as is lower bone-mineral density and higher risk of osteoporosis, as Gurven, Jonathan Stieglitz (Institute for Advanced Study in Toulouse, France) and his team revealed in a paper by published last year in American Journal of Physical Anthropology.

    The metabolic costs of immune defense against pathogens

    Though living in a pathogenic world typical of the preindustrial past does not appear to make reproduction more costly for women, it does impact the immune system in important ways. A study by Gurven’s group, led by his colleague Aaron Blackwell earlier this year, revealed how the Tsimane’s immune system has risen to the challenge to tolerate or defend against the diverse onslaught of micro-critters.

    Now a new paper by Gurven, Megan Costa, a visiting demographer to UCSB’s Broom Demography Center, Benjamin Trumble, a postdoctoral fellow in UCSB’s Institute for Social, Behavioral and Economic Research, Blackwell and colleagues reports that the Tsimane have a high resting metabolic rate (RMR) and total daily energy expenditure (TDEE) — meaning they burn more calories per pound of body weight per day than sedentary industrialized populations. For Tsimane women, their RMR is 18 to 47 percent higher than expected and for men it’s 22 to 40 percent. The researchers show that higher levels of physical activity and other factors cannot account for the higher energy expenditure. Among Tsimane, those with clinical symptoms of intestinal worms and high white blood cell count indicative of active infection had 10 to 15 percent higher RMR. This amounts to roughly 150 extra calories per day, or the equivalent of a 12-ounce can of Coca-Cola.

    Total daily energy expenditure has its limits, so with extra energy spent on fighting infection, and energy spent producing children and intensive breastfeeding, what areas of health have to take a hit? This is a question Gurven’s team is currently tackling with ongoing biomedical surveillance. Some possibilities include low bone mineral mass, anemia, altered blood lipid profile, lethargy and other sickness behavior. Consistent with these diversions of energy, Tsimane bone mineral status and cholesterol levels are substantially lower than among age-matched U.S. peers, and anemia and depressed affect is prevalent in both sexes (but greater in women).

    Another possibility is that investing less in physical growth will result in smaller body size and weight. Indeed, height is stunted and obesity is rare in Tsimane, who have levels of obesity eight to 10 times lower than that of their American age-matched peers. This doesn’t mean, however, that being loaded with pathogens and parasites is a good diet strategy, said Gurven, who noted some snake-oil diet pills dating back to the 1930s have included roundworm eggs or tapeworm parts.

    “Sometimes they work, often they don’t,” Gurven said. “And the harmful effects of infection — from anemia, worms getting into your lungs, bowel obstruction, to name a few — can be fatal. Giardia and amoebas can also help you lose weight, but too rapidly, and often with dehydration and potentially fatal consequences. These parasites can also deprive the body of vital nutrients. Overall, I wouldn’t recommend people dance barefoot in latrines in the hopes of shedding some pounds.”

    The paper, High Resting Metabolic Rate Among Amazonian Forager-Horticulturalists Experiencing High Pathogen Burden, is published in the American Journal of Physical Anthropology.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    UC Santa Barbara Seal
    The University of California, Santa Barbara (commonly referred to as UC Santa Barbara or UCSB) is a public research university and one of the 10 general campuses of the University of California system. Founded in 1891 as an independent teachers’ college, UCSB joined the University of California system in 1944 and is the third-oldest general-education campus in the system. The university is a comprehensive doctoral university and is organized into five colleges offering 87 undergraduate degrees and 55 graduate degrees. In 2012, UCSB was ranked 41st among “National Universities” and 10th among public universities by U.S. News & World Report. UCSB houses twelve national research centers, including the renowned Kavli Institute for Theoretical Physics.

     
  • richardmitnick 10:52 am on July 13, 2016 Permalink | Reply
    Tags: , , UC Santa Barbara   

    From UC Santa Barbara- “Entanglement : Chaos” 

    UC Santa Barbara Name bloc

    July 11, 2016
    Sonia Fernandez

    1
    A quantum qubit array. Photo Credit: Michael Fang/Martinis Lab

    2
    Experimental link between quantum entanglement (left) and classical chaos (right) found using a small quantum computer. Photo Credit: Courtesy Image

    3
    The Google and UCSB researchers, from left to right: Jimmy Chen, John Martinis, Pedram Roushan, Yu Chen, Anthony Megrant and Charles Neill. Photo Credit: Sonia Fernandez

    Using a small quantum system consisting of three superconducting qubits, researchers at UC Santa Barbara and Google have uncovered a link between aspects of classical and quantum physics thought to be unrelated: classical chaos and quantum entanglement. Their findings suggest that it would be possible to use controllable quantum systems to investigate certain fundamental aspects of nature.

    “It’s kind of surprising because chaos is this totally classical concept — there’s no idea of chaos in a quantum system,” Charles Neill, a researcher in the UCSB Department of Physics and lead author of a paper that appears in Nature Physics. “Similarly, there’s no concept of entanglement within classical systems. And yet it turns out that chaos and entanglement are really very strongly and clearly related.”

    Initiated in the 15th century, classical physics generally examines and describes systems larger than atoms and molecules. It consists of hundreds of years’ worth of study including Newton’s laws of motion, electrodynamics, relativity, thermodynamics as well as chaos theory — the field that studies the behavior of highly sensitive and unpredictable systems. One classic example of a chaotic system is the weather, in which a relatively small change in one part of the system is enough to foil predictions — and vacation plans — anywhere on the globe.

    At smaller size and length scales in nature, however, such as those involving atoms and photons and their behaviors, classical physics falls short. In the early 20th century quantum physics emerged, with its seemingly counterintuitive and sometimes controversial science, including the notions of superposition (the theory that a particle can be located in several places at once) and entanglement (particles that are deeply linked behave as such despite physical distance from one another).

    And so began the continuing search for connections between the two fields.

    All systems are fundamentally quantum systems, according Neill, but the means of describing in a quantum sense the chaotic behavior of, say, air molecules in an evacuated room, remains limited.

    Imagine taking a balloon full of air molecules, somehow tagging them so you could see them and then releasing them into a room with no air molecules, noted co-author and UCSB/Google researcher Pedram Roushan. One possible outcome is that the air molecules remain clumped together in a little cloud following the same trajectory around the room. And yet, he continued, as we can probably intuit, the molecules will more likely take off in a variety of velocities and directions, bouncing off walls and interacting with each other, resting after the room is sufficiently saturated with them.

    “The underlying physics is chaos, essentially,” he said. The molecules coming to rest — at least on the macroscopic level — is the result of thermalization, or of reaching equilibrium after they have achieved uniform saturation within the system. But in the infinitesimal world of quantum physics, there is still little to describe that behavior. The mathematics of quantum mechanics, Roushan said, do not allow for the chaos described by Newtonian laws of motion.

    To investigate, the researchers devised an experiment using three quantum bits, the basic computational units of the quantum computer. Unlike classical computer bits, which utilize a binary system of two possible states (e.g., zero/one), a qubit can also use a superposition of both states (zero and one) as a single state. Additionally, multiple qubits can entangle, or link so closely that their measurements will automatically correlate. By manipulating these qubits with electronic pulses, Neill caused them to interact, rotate and evolve in the quantum analog of a highly sensitive classical system.

    The result is a map of entanglement entropy of a qubit that, over time, comes to strongly resemble that of classical dynamics — the regions of entanglement in the quantum map resemble the regions of chaos on the classical map. The islands of low entanglement in the quantum map are located in the places of low chaos on the classical map.

    “There’s a very clear connection between entanglement and chaos in these two pictures,” said Neill. “And, it turns out that thermalization is the thing that connects chaos and entanglement. It turns out that they are actually the driving forces behind thermalization.

    “What we realize is that in almost any quantum system, including on quantum computers, if you just let it evolve and you start to study what happens as a function of time, it’s going to thermalize,” added Neill, referring to the quantum-level equilibration. “And this really ties together the intuition between classical thermalization and chaos and how it occurs in quantum systems that entangle.”

    The study’s findings have fundamental implications for quantum computing. At the level of three qubits, the computation is relatively simple, said Roushan, but as researchers push to build increasingly sophisticated and powerful quantum computers that incorporate more qubits to study highly complex problems that are beyond the ability of classical computing — such as those in the realms of machine learning, artificial intelligence, fluid dynamics or chemistry — a quantum processor optimized for such calculations will be a very powerful tool.

    “It means we can study things that are completely impossible to study right now, once we get to bigger systems,” said Neill.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    UC Santa Barbara Seal
    The University of California, Santa Barbara (commonly referred to as UC Santa Barbara or UCSB) is a public research university and one of the 10 general campuses of the University of California system. Founded in 1891 as an independent teachers’ college, UCSB joined the University of California system in 1944 and is the third-oldest general-education campus in the system. The university is a comprehensive doctoral university and is organized into five colleges offering 87 undergraduate degrees and 55 graduate degrees. In 2012, UCSB was ranked 41st among “National Universities” and 10th among public universities by U.S. News & World Report. UCSB houses twelve national research centers, including the renowned Kavli Institute for Theoretical Physics.

     
  • richardmitnick 7:58 am on June 30, 2016 Permalink | Reply
    Tags: , , , UC Santa Barbara   

    From UCSB: “We’ll Leave the Lights On For You” 

    UC Santa Barbara Name bloc

    May 17, 2016
    Shelly Leachman

    Photonics advances allow us to be seen across the universe, with major implications for the search for extraterrestrial intelligence, says UC Santa Barbara physicist Philip Lubin.

    1
    Photo Credit: iStock Photo

    Looking up at the night sky — expansive and seemingly endless, stars and constellations blinking and glimmering like jewels just out of reach — it’s impossible not to wonder: Are we alone?

    For many of us, the notion of intelligent life on other planets is as captivating as ideas come. Maybe in some other star system, maybe a billion light years away, there’s a civilization like ours asking the exact same question.

    Imagine if we sent up a visible signal that could eventually be seen across the entire universe. Imagine if another civilization did the same.

    The technology now exists to enable exactly that scenario, according to UC Santa Barbara physics professor Philip Lubin, whose new work applies his research and advances in directed-energy systems to the search for extraterrestrial intelligence (SETI). His recent paper “The Search for Directed Intelligence” appears in the journal REACH – Reviews in Human Space Exploration.

    “If even one other civilization existed in our galaxy and had a similar or more advanced level of directed-energy technology, we could detect ‘them’ anywhere in our galaxy with a very modest detection approach,” said Lubin, who leads the UCSB Experimental Cosmology Group. “If we scale it up as we’re doing with direct energy systems, how far could we detect a civilization equivalent to ours? The answer becomes that the entire universe is now open to us.

    “Similar to the use of directed energy for relativistic interstellar probes and planetary defense that we have been developing, take that same technology and ask yourself, ‘What are consequences of that technology in terms of us being detectable by another ‘us’ in some other part of the universe?’” Lubin added. “Could we see each other? Can we behave as a lighthouse, or a beacon, and project our presence to some other civilization somewhere else in the universe? The profound consequences are, of course, ‘Where are they?’ Perhaps they are shy like us and do not want to be seen, or they don’t transmit in a way we can detect, or perhaps ‘they’ do not exist.”

    The same directed energy technology is at the core of Lubin’s recent efforts to develop miniscule, laser-powered interstellar spacecraft. That work, funded since 2015 by NASA (and just selected by the space agency for “Phase II” support) is the technology behind billionaire Yuri Milner’s newsmaking, $100-million Breakthrough Starshot initiative announced April 12.

    Lubin is a scientific advisor on Starshot, which is using his NASA research as a roadmap as it seeks to send tiny spacecraft to nearby star systems.

    In describing directed energy, Lubin likened the process to using the force of water from a garden hose to push a ball forward. Using a laser light, spacecraft can be pushed and steered in much the same way. Applied to SETI, he said, the directed energy system could be deployed to send a targeted signal to other planetary systems.

    “In our paper, we propose a search strategy that will observe nearly 100 billion planets, allowing us to test our hypothesis that other similarly or more advanced civilizations with this same broadcast capability exist,” Lubin said.

    “As a species we are evolving rapidly in photonics, the production and manipulation of light,” he explained. “Our recent paper explores the hypothesis: We now have the ability to produce light extremely efficiently, and perhaps other species might also have that ability. And if so, then what would be the implications of that? This paper explores the ‘if so, then what?’”

    Traditionally and still, Lubin said, the “mainstay of the SETI community” has been to conduct searches via radio waves. Think Jodie Foster in “Contact,” receiving an extraterrestrial signal by way of a massive and powerful radio telescope. With Lubin’s UCSB-developed photonics approach, however, making “contact” could be much simpler: Take the right pictures and see if any distant systems are beaconing us.

    “All discussions of SETI have to have a significant level of, maybe not humor, but at least hubris as to what makes reason and what doesn’t,” Lubin said. “Maybe we are alone in terms of our technological capability. Maybe all that’s out there is bacteria or viruses. We have no idea because we’ve never found life outside of our Earth.

    “But suppose there is a civilization like ours and suppose — unlike us, who are skittish about broadcasting our presence — they think it’s important to be a beacon, an interstellar or extragalactic lighthouse of sorts,” he added. “There is a photonics revolution going on on Earth that enables this specific kind of transmission of information via visible or near-infrared light of high intensity. And you don’t need a large telescope to begin these searches. You could detect a presence like our current civilization anywhere in our galaxy, where there are 100 billion possible planets, with something in your backyard. Put in context, and we would love to have people really think about this: You can literally go out with your camera from Costco, take pictures of the sky, and if you knew what you were doing you could mount a SETI search in your backyard. The lighthouse is that bright.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    UC Santa Barbara Seal
    The University of California, Santa Barbara (commonly referred to as UC Santa Barbara or UCSB) is a public research university and one of the 10 general campuses of the University of California system. Founded in 1891 as an independent teachers’ college, UCSB joined the University of California system in 1944 and is the third-oldest general-education campus in the system. The university is a comprehensive doctoral university and is organized into five colleges offering 87 undergraduate degrees and 55 graduate degrees. In 2012, UCSB was ranked 41st among “National Universities” and 10th among public universities by U.S. News & World Report. UCSB houses twelve national research centers, including the renowned Kavli Institute for Theoretical Physics.

     
  • richardmitnick 10:32 am on June 7, 2016 Permalink | Reply
    Tags: , , UC Santa Barbara   

    From UCSB: “Brain Power” 

    UC Santa Barbara Name bloc

    June 2, 2016
    Julie Cohen
    julie.cohen@ucsb.edu

    Neuroscience researchers identify a gene critical for human brain development and unravel how it works

    1
    Immunostaining after two weeks of differentiation of neural progenitor cells into neurons. Photo Credit: Neha Rani

    2
    Kenneth Kosik and Neha Rani Photo Credit: Sonia Fernandez

    Compared to other mammals, humans have the largest cerebral cortex. A sheet of brain cells that folds in on itself multiple times in order to fit inside the skull, the cortex is the seat of higher functions. It is what enables us to process everything we see and hear and think.

    The expansion of the cerebral cortex sets humans apart from the rest of their fellow primates. Yet scientists have long wondered what mechanisms are responsible for this evolutionary development.

    New research from the Kosik Molecular and Cellular Neurobiology Lab at UC Santa Barbara has pinpointed a specific long nocoding ribonucleic acid (lncRNA) that regulates neural development (ND). The findings appear in the journal Neuron.

    “This lncND, as we’ve called it, can be found only in the branch of primates that leads to humans. It is a stretch of nucleotides that does not code a protein,” said senior author Kenneth S. Kosik, the Harriman Professor of Neuroscience Research in UCSB’s Department of Molecular, Cellular, and Developmental Biology. “We demonstrate that lncND is turned on during development and turned off when the cell matures.”

    Lead author Neha Rani, a postdoctoral scholar in the Kosik Lab, idenfitied several binding sites on lncND for another type of RNA called a microRNA. One of them, called microRNA-143, binds to lncND.

    “We found that lncND could sequester this microRNA and in doing so regulate the expression of Notch proteins,” Rani said. “Notch proteins are very important regulators during neuronal development. They are involved in cell differentiation and cell fate and are critical in the neural development pathway.”

    Kosik describes lncND as a platform that binds these microRNAs like a sponge. “This allows Notch to do what it’s supposed to do during development,” he explained. “Then as the brain matures, levels of lncND go down and when they do, those microRNAs come flying off the platform and glom onto Notch to bring its levels down. You want Notch levels to be high while the brain is developing but not once maturation occurs. This lncND is an elegant way to change Notch levels quickly.”

    To replicate these cell culture results, Rani used human stem cells to grow neurons into what is called a mini brain. In this pea-sized gob of brain tissue, she identified a subpopulation — radial glial cells (neuronal stem cells) and other neural progenitors — responsible for making lncND.

    But the researchers wanted to see the radial glial cells in actual human brain tissue, so they turned to colleagues in the Developmental & Stem Cell Biology Graduate Program at the UC San Francisco School of Medicine. Using in situ hybridization in developing human brain tissue, Rani, in collaboration with UCSF researcher Tom Nowakowski, found lncND in neural precursor cells but not in mature neurons.

    “It was right where we thought it would be in brain tissue,” said Kosik, who is also the co-director of UCSB’s Neuroscience Research Institute. “But we still had one more thing we had to do because people would still not be satisfied that we had done everything possible to show that lncND was really doing something functionally.”

    So the UCSF team introduced lncND into the fetal brain of a gestating mouse. Green fluorescent protein labeling allowed them to see the early development pattern and show that lncND, which ordinarily is not present in mice — lncND is present only in some primates including humans — had a functional effect on development.

    “When we overexpressed lncND in the mouse fetus, we actually affected development in the predicted manner,” Kosik said. “The early developmental pattern was shifted toward more precursor cells, even though the mouse does not make lncND at all.”

    According to Kosik, this work not only identifies a very critical gene for human brain development but also offers a clue about a component that likely contributed to brain expansion in humans. “We have shown that lncND might be an important player in human brain expansion, which is exciting in itself,” Rani said. “Another interesting aspect of this work is that lncND appears to help regulate the key developmental pathway of Notch signaling.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    UC Santa Barbara Seal
    The University of California, Santa Barbara (commonly referred to as UC Santa Barbara or UCSB) is a public research university and one of the 10 general campuses of the University of California system. Founded in 1891 as an independent teachers’ college, UCSB joined the University of California system in 1944 and is the third-oldest general-education campus in the system. The university is a comprehensive doctoral university and is organized into five colleges offering 87 undergraduate degrees and 55 graduate degrees. In 2012, UCSB was ranked 41st among “National Universities” and 10th among public universities by U.S. News & World Report. UCSB houses twelve national research centers, including the renowned Kavli Institute for Theoretical Physics.

     
  • richardmitnick 12:41 pm on May 26, 2016 Permalink | Reply
    Tags: , , Tiny Vampires, UC Santa Barbara,   

    From UCSB: “Tiny Vampires” Women in Science (No, the women are not the vampires in question) 

    UC Santa Barbara Name bloc

    May 25, 2016
    Julie Cohen

    1
    Susannah Porter. Photo Credit: Sonia Fernandez

    Paleobiologist Susannah Porter finds evidence of predation in ancient microbial ecosystems dating back more than 740 million years.

    2
    The Chuar Group in the Grand Canyon was once an ancient seabed. Photo Credit: Carol Dehler

    Vampires are real, and they’ve been around for millions of years. At least, the amoebae variety has. So suggests new research from UC Santa Barbara paleobiologist Susannah Porter.

    Using a scanning electron microscope to examine minute fossils, Porter found perfectly circular drill holes that may have been formed by an ancient relation of Vampyrellidae amoebae. These single-celled creatures perforate the walls of their prey and reach inside to consume its cell contents. Porter’s findings* appear in the Proceedings of the Royal Society B.

    “To my knowledge these holes are the earliest direct evidence of predation on eukaryotes,” said Porter, an associate professor in UCSB’s Department of Earth Science. Eukaryotes are organisms whose cells contain a nucleus and other organelles such as mitochondria.

    “We have a great record of predation on animals going back 550 million years,” she continued, “starting with the very first mineralized shells, which show evidence of drillholes. We had nothing like that for early life — for the time before animals appear. These holes potentially provide a way of looking at predator-prey interactions in very deep time in ancient microbial ecosystems.”

    Porter examined fossils from the Chuar Group in the Grand Canyon — once an ancient seabed — that are between 782 and 742 million years old. The holes are about one micrometer (one thousandth of a millimeter) in diameter and occur in seven of the species she identified. The holes are not common in any single one species; in fact, they appear in not more than 10 percent of the specimens.

    “I also found evidence of specificity in hole sizes, so different species show different characteristic hole sizes, which is consistent with what we know about modern vampire amoebae and their food preferences,” Porter said. “Different species of amoebae make differently sized holes. The Vampyrellid amoebae make a great modern analog, but because vampirelike feeding behavior is known in a number of different unrelated amoebae, it makes it difficult to pin down exactly who the predator was.”

    According to Porter, this evidence may help to address the question of whether predation was one of the driving factors in the diversification of eukaryotes that took place about 800 million years ago.

    “If that is true, then if we look at older fossil assemblages — say 1 to 1.6 billion years old — the fossilized eukaryote will show no evidence of predation,” Porter said. “I’m interested in finding out when drilling first appears in the fossil record and whether its intensity changes through time.”

    Porter also is interested in seeing whether oxygen played a role in predation levels through time. She noted that the microfossils those organisms attacked were probably phytoplankton living in oxygenated surface waters, but like vampyrellid amoebae today, the predators may have lived in the sediments. She suggests that those phytoplankton made tough-walled cysts — resting structures now preserved as fossils — that sank to the bottom where they were attacked by the amoebae.

    “We have evidence that the bottom waters in the Chuar Group in that Grand Canyon basin were relatively deep — 200 meters deep at most — and sometimes became anoxic, meaning they lacked oxygen,” Porter explained.

    “I’m interested to know whether the predators only were present and making these drill holes when the bottom waters contained oxygen,” Porter added. “That might tie the diversification of eukaryotes and the appearance of predators to evidence for increasing oxygen levels around 800 million years ago.

    “We know from the modern vampire amoebae that at least some of them make resting cysts themselves,” Porter said. “A former student of mine joked we should call these coffins. So one of our motivations is to see if we can find these coffins in the fossil assemblage as well. That’s the next project.”

    *Science paper:
    Tiny vampires in ancient seas: evidence for predation via perforation in fossils from the 780–740 million-year-old Chuar Group, Grand Canyon, USA

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition
    UC Santa Barbara Seal
    The University of California, Santa Barbara (commonly referred to as UC Santa Barbara or UCSB) is a public research university and one of the 10 general campuses of the University of California system. Founded in 1891 as an independent teachers’ college, UCSB joined the University of California system in 1944 and is the third-oldest general-education campus in the system. The university is a comprehensive doctoral university and is organized into five colleges offering 87 undergraduate degrees and 55 graduate degrees. In 2012, UCSB was ranked 41st among “National Universities” and 10th among public universities by U.S. News & World Report. UCSB houses twelve national research centers, including the renowned Kavli Institute for Theoretical Physics.

     
  • richardmitnick 9:10 am on January 16, 2016 Permalink | Reply
    Tags: , , , Stellar Revelations, UC Santa Barbara   

    From UCSB: “Stellar Revelations” 

    UC Santa Barbara Name bloc

    January 4, 2016
    Julie Cohen

    Temp 1
    Internal magnetic fields of red giants are up to 10 million times stronger than the Earth’s. No image credit found.

    Temp 2
    Jim Fuller, Matteo Cantiello and Lars Bildsten.Photo Credit: Bill Wolf

    Using a recently developed technique to detect magnetic fields inside stars, a group of astronomers — including Matteo Cantiello and Lars Bildsten from UC Santa Barbara’s Kavli Institute for Theoretical Physics (KITP) — has discovered that strong magnetic fields are very common in stars. The group’s findings appear in the journal Nature.

    “We have applied a novel theoretical idea that we developed just a few months ago to thousands of stars and the results are just extraordinary,” said Cantiello, a specialist in stellar astrophysics at KITP.

    Previously, only a very small percentage of stars were known to have strong magnetic fields. Therefore, current scientific models of how stars evolve do not include magnetic fields as a fundamental component.

    “Such fields have simply been regarded as insignificant for our general understanding of stellar evolution,” said lead author Dennis Stello, an astrophysicist at the University of Sydney in Australia. “Our result clearly shows this assumption needs to be revisited because we found that up to 60 percent of stars host strong fields.”

    3
    The life cycle of a Sun-like star.

    4
    Born from clouds of gas and dust, stars like our Sun spend most of their lifetime slowly burning their primary nuclear fuel, hydrogen, into the heavier element helium. After leading this bright and shiny life for several billion years, their fuel is almost exhausted and they start swelling, pushing the outer layers away from what has turned into a small and very hot core. These “middle-aged” stars become enormous, hence cool and red — red giants. All red giants exhibit a slow oscillation in brightness due their rhythmic “breathing” in and out, and one third of them are also affected by additional, slower and mysterious changes in their luminosity. After this rapid and tumultuous phase of their later life, these stars do not end in dramatic explosions, but die peacefully as planetary nebulae, blowing out everything but a tiny remnant, known as white dwarf.

    Until now, astronomers have been unable to detect these magnetic fields because such fields hide deep in the stellar interior, out of sight from conventional observation methods that measure only the surface properties of stars. The research team turned to asteroseismology, a technique that probes beyond the stellar surface, to determine the presence of very strong magnetic fields near the stellar core.

    “The stellar core is the region where the star produces most of its energy through thermonuclear reactions,” Cantiello explained. “So the field is likely to have important effects on how stars evolve since it can alter the physical processes that take place in the core.”

    Most stars — like the sun — are subject to continuous oscillations. “Their interior is essentially ringing like a bell,” noted co-author Jim Fuller, a postdoctoral scholar from the California Institute of Technology in Pasadena. “And like a bell or a musical instrument, the sound produced reveals physical properties, such as size, temperature and what they are made of.”

    The researchers used very precise data from NASA’s Kepler space telescope to measure tiny brightness variations caused by the ringing sound inside thousands of stars.

    NASA Kepler Telescope
    NASA/Kepler

    They found that certain oscillation frequencies were missing in 60 percent of the stars due to suppression by strong magnetic fields in the stellar cores.

    “It’s like having a trumpet that doesn’t sound normal because something is hiding inside it, altering the sound it produces,” Stello said.

    This magnetic suppression effect had previously been seen in only a few dozen stars. However, the new analysis of the full data set from Kepler revealed that this effect is prevalent in stars that are only slightly more massive than the sun.

    According to Cantiello, such intermediate mass stars are hotter and more luminous, and their cores are stirred by convection. “We believe that the magnetic field is created by this ‘boiling’ sequence and stored inside the star for the remaining evolutionary phase. Astrophysicists previously have suggested this but it was very speculative; now it seems clear that this is the case,” he said.

    “This is a very important result that will enable scientists to test more directly current theories for how magnetic fields form and evolve in stellar interiors,” said co-author Bildsten, the director of KITP. “When a star dies, the presence of strong magnetic fields can have a profound impact, possibly resulting in some of the brightest explosions in the universe.”

    This research could potentially lead to a better general understanding of stellar magnetic dynamos, including the one controlling the sun’s 11-year sunspot cycle, which is known to affect communication systems and cloud cover on Earth.

    “So far, the study of stellar magnetic dynamos principally relied on computer simulations, which now can be tested using these new exciting observations,” said Fuller.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UC Santa Barbara Seal

    The University of California, Santa Barbara (commonly referred to as UC Santa Barbara or UCSB) is a public research university and one of the 10 general campuses of the University of California system. Founded in 1891 as an independent teachers’ college, UCSB joined the University of California system in 1944 and is the third-oldest general-education campus in the system. The university is a comprehensive doctoral university and is organized into five colleges offering 87 undergraduate degrees and 55 graduate degrees. In 2012, UCSB was ranked 41st among “National Universities” and 10th among public universities by U.S. News & World Report. UCSB houses twelve national research centers, including the renowned Kavli Institute for Theoretical Physics.

     
  • richardmitnick 12:06 pm on November 14, 2015 Permalink | Reply
    Tags: , , , , , , UC Santa Barbara   

    From UCSB: “A Bigger Bang at CERN” 

    UC Santa Barbara Name bloc

    November 12, 2015
    Sonia Fernandez

    1
    The Compact Muon Solenoid detector’s calorimeter — the black-and-silver machinery on the right side — is bound for major upgrades to make the most of the more intense proton beams that will run through the HL-LHC in about a decade.

    2
    In this simulated event display for the High Granularity Calorimeter, particles enter from the left and their energies are measured as they pass through channels (in the middle).

    3
    Among the upgrades to the Compact Muon Solenoid detector is an additional muon detecting layer and improved electronics for the muon systems.

    UC Santa Barbara scientists are working to make major upgrades to the Compact Muon Solenoid detector at the Large Hadron Collider

    By 2025, the scientists and engineers at the European Organization for Nuclear Research (CERN) hope to be able to conduct the most powerful, highest energy experiments fathomable today. Proton beams fired at each other will collide at just under the speed of light, throwing countless particles into extremely sensitive detectors. All in an effort to discover the underlying structure of the universe.

    To that end, and with the cooperation of 14 institutions worldwide, CERN began the planning for it five years ago. The aim: upgrade the Large Hadron Collider (LHC), the world’s largest and most powerful particle accelerator, which is located underground at the border between Switzerland and France.

    CERN LHC Map
    CERN LHC Grand Tunnel
    CERN LHC particles
    LHC at CERN

    Higher-intensity beams are expected to produce even more data and increase the likelihood of highly sought fundamental particles and rare processes.

    CERN scientists and engineers, including several from UC Santa Barbara, have marked a milestone in that effort in a meeting at CERN, kicking off the plans for upgrades to parts of the collider and its detectors. The High Luminosity LHC project has resulted in plans for new technologies and innovations to elements such as the accelerator’s magnets, optics and superconducting links.

    CERN HL-LHC bloc

    “The LHC already delivers proton collisions at the highest energy (13 TeV) and the highest luminosity ever achieved by an accelerator,” said CERN Director General Rolf Heuer. “Yet the LHC has only delivered 1 percent of the total planned number of collisions.” The upgrade to what will become the HL-LHC he said, is expected to produce 10 times more collisions than the current LHC will have created in its first decade, and will extend the potential to make discoveries.

    “Basically, we’re quite happy,” said Joe Incandela, a UCSB physics professor and scientist in the Compact Muon Solenoid (CMS) experiment, one of four detectors located along the 16-mile collider tunnel.

    CERN CMS Detector
    CMS

    “At this meeting we basically agreed that the plans are solid, the costs are reasonable, and so we can move forward now to get them done and ready to install in roughly eight years from now.”

    To make the most of of the more intense beams and the higher probability of collisions Incandela and colleagues, UCSB Department of Physics faculty Claudio Campagnari, Jeffrey Richman and David Stuart, have been working on additions and improvements to the detector that are aimed at increasing its sensitivity.

    Among the improvements already in play at CMS is the installation of an additional muon detecting layer, and improved electronics for the muon system. The new electronics involve a substantial contribution from UCSB. The work was conducted by Campagnari, Richman and their research teams. Muons are often found in events of keen interest to the scientists and it is important to detect them efficiently and to reconstruct them accurately, said the reserachers. The recently completed upgrades represent significant improvements in these areas

    Meanwhile, Incandela and his team are working on the High Granularity Calorimeter, an upgrade to the existing calorimeter on the CMS detector that would enable continued operation in regions where the density of particles produced in each beam crossing is enormous.

    3
    High Granularity Calorimeter

    Thanks to new superconducting quadrupole magnets that focus the proton beams as they whip around the accelerator tunnel, radiofrequency “crab cavities” that will tilt these more intense beams to increase the area where they overlap and other improvements to the LHC accelerator complex, the LHC will vastly increase the number of collisions that will occur and with it, the likelihood of generating particles of interest and rare processes.

    “Each time the beams cross — which happens about 33 million times each second — there will be as many as 200 pairs of protons colliding,” Incandela said.

    But with more collisions comes more debris to sift through. In any beam crossing event, at most one pair of proton-proton collisions will be interesting, said Incandela, and the rest will produce more than a thousand high-energy particles that create noise all over the apparatus, especially in the regions near the beam line itself.

    “For some of the most important physics that we do, we have to be able to pull out important information from these regions,” he said. “Not only does the HGC have to withstand a huge amount of radiation over 10 years of operation, it must also provide the scientists the information needed to recognize important processes that are key to the search for new physics.”

    To help separate the particles of interest from the background of debris created by hundreds of other simultaneous proton-proton collisions, the new calorimeter will exchange a system with roughly 10,000 sensing elements for one with roughly 10 million sensing elements. It would be the first time a calorimeter of this basic type has ever been operated in the intense environment of a proton collider, said Incandela, and it will be by far the most complex and largest of its type ever built. Assuming it works as expected, he added, it is likely to be the design of choice for calorimeters in many future high-energy physics experiments.

    And there will be a huge amount of information to sift through: It is estimated that the High Granularity Calorimeter alone will produce around 1,000 trillion bits of data per second, about 10 percent of which are used in real time to help select beam crossing events of interest. Only one in 3,000 events will be recorded for offline analysis.

    New physics beyond the Standard Model and the Brout-Englert-Higgs mechanism may be discovered as a result of the upgrades to the accelerator and its detectors, as well as clues to understanding dark matter and supersymmetry.

    Among the mysteries the scientists at CERN are trying to solve is how the Brout-Englert-Higgs boson, discovered in 2012, could exist at the low mass it was found to have.

    “The Higgs mass that we measure is consistent with the Standard Model if the parameters of the model are carefully tuned to something like 30 decimal places,” said Incandela. “This seems very unnatural to us. When you introduce new physics, like supersymmetry, things come into balance and you do not have to tune anymore. We’re trying to find the evidence for supersymmetry for this reason, and because we know there’s dark matter, which is also predicted in supersymmetry models. So all in all, we’re looking for the bridge to the next chapter of the story.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The University of California, Santa Barbara (commonly referred to as UC Santa Barbara or UCSB) is a public research university and one of the 10 general campuses of the University of California system. Founded in 1891 as an independent teachers’ college, UCSB joined the University of California system in 1944 and is the third-oldest general-education campus in the system. The university is a comprehensive doctoral university and is organized into five colleges offering 87 undergraduate degrees and 55 graduate degrees. In 2012, UCSB was ranked 41st among “National Universities” and 10th among public universities by U.S. News & World Report. UCSB houses twelve national research centers, including the renowned Kavli Institute for Theoretical Physics.

    University of California Seal

     
  • richardmitnick 5:33 am on October 27, 2015 Permalink | Reply
    Tags: , , , UC Santa Barbara   

    From UCSB: “Magnetic Hide and Seek” 

    UC Santa Barbara Name bloc

    KITP Kavli Institute for Theoretical Physics UCSB

    October 22, 2015
    Julie Cohen

    Researchers at the Kavli Institute for Theoretical Physics develop a new technique to detect magnetic fields inside stars

    1
    This artist’s representation of a red giant star with a strong internal magnetic field shows sound waves propagating in the stellar outer layers, while gravity waves propagate in the inner layers where a magnetic field is present.

    Magnetic fields have important consequences in all stages of stellar evolution, from a star’s formation to its demise. Now, for the first time, astrophysicists are able to determine the presence of strong magnetic fields deep inside pulsating giant stars.

    A consortium of international researchers, including several from UC Santa Barbara’s Kavli Institute for Theoretical Physics (KITP), used asteroseismology — a discipline similar to seismology — to track waves traveling through stars in order to determine their inner properties. Their findings appear in the journal Science.

    2
    Jim Fuller, Matteo Cantiello and Lars Bildsten Photo Credit: Bill Wolf

    “We can now probe regions of the star that were previously hidden,” said co-lead author Matteo Cantiello, a specialist in stellar astrophysics at KITP. “The technique is analogous to a medical ultrasound, which uses sound waves to image otherwise invisible parts of the human body.”

    Cantiello’s curiosity and that of his co-authors was sparked when astrophysicist Dennis Stello of the University of Sydney presented puzzling data from the Kepler satellite, a space telescope that measures stellar brightness variations with very high precision.

    NASA Kepler Telescope
    NASA/Kepler

    Cantiello, KITP director Lars Bildsten and Jim Fuller, a postdoctoral fellow at the California Institute of Technology, agreed that this was a mystery worth solving. After much debate, many calculations and the additional involvement of Rafael García, a staff scientist at France’s Commissariat à l’Énergie Atomique, a solution emerged. The data were explained by the presence of strong magnetic fields in the inner regions of these stars.

    The puzzling phenomenon was observed in a group of red giants imaged by Kepler. Red giants are stars much older and larger than the sun. Their outer regions are characterized by turbulent motion that excites sound waves, which interact with gravity waves that travel deep into the stellar core. Magnetic fields in the core can hinder the motions produced by the gravity waves.

    “Imagine the magnetic field as stiff rubber bands embedded in the stellar gas, which affect the propagation of gravity waves,” Fuller explained. “If the magnetic field is strong enough, the gravity waves become trapped in the star’s core. We call this the magnetic greenhouse effect.”

    The trapping occurs because the incoming wave is reflected by the magnetic field into waves with a lower degree of symmetry, which are prevented from escaping the core. As a result, stellar surface oscillations have smaller amplitude compared to a similar star without a strong magnetic field.

    “We used these observations to put a limit on — or even measure — the internal magnetic fields for these stars,” Cantiello said. “We found that red giants can possess internal magnetic fields nearly a million times stronger than a typical refrigerator magnet.

    “This is exciting as internal magnetic fields play an important role both for the evolution of stars and for the properties of their remnants,” Cantiello added. “For example, some of the most powerful explosions in the universe — long gamma-ray bursts — are associated with the death of some huge stars. These behemoths — 10 or more times more massive than our sun — most likely ended their lives with strong magnetic fields in their cores.”

    This work was written collaboratively on the web. A public, open Science version of the published paper can be found on Authorea, including a layman’s summary.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    The University of California, Santa Barbara (commonly referred to as UC Santa Barbara or UCSB) is a public research university and one of the 10 general campuses of the University of California system. Founded in 1891 as an independent teachers’ college, UCSB joined the University of California system in 1944 and is the third-oldest general-education campus in the system. The university is a comprehensive doctoral university and is organized into five colleges offering 87 undergraduate degrees and 55 graduate degrees. In 2012, UCSB was ranked 41st among “National Universities” and 10th among public universities by U.S. News & World Report. UCSB houses twelve national research centers, including the renowned Kavli Institute for Theoretical Physics.

    University of California Seal

     
  • richardmitnick 7:16 pm on August 4, 2015 Permalink | Reply
    Tags: , , , UC Santa Barbara   

    From NSF: “NSF selects first Long-Term Ecological Research network communications office” 

    nsf
    National Science Foundation

    August 4, 2015
    Media Contacts
    Cheryl Dybas, NSF, (703) 292-7734, cdybas@nsf.gov
    Julie Cohen, UCSB, (805) 893-3071, julie.cohen@ucsb.edu

    Center for Ecological Analysis and Synthesis receives $3.5 million award for support of multi-site efforts

    1
    Scuba diver measures giant kelp biomass at the NSF Santa Barbara Coastal LTER site. Credit: NSF SBC LTER Site

    The National Science Foundation (NSF) has selected the University of California Santa Barbara (UCSB) as the site for the first national Long-Term Ecological Research (LTER) network communications office.

    The largest and longest-lived network in the U.S. that focuses on ecological research, LTER scientists conduct studies that can continue for decades and span extensive geographic areas.

    The communications office will be operated by UCSB’s National Center for Ecological Analysis and Synthesis (NCEAS).

    New challenges, new opportunities

    “The LTER program faces new challenges as it enters its fourth decade: the increasing multi-disciplinarity of ecological research, increased value of synthesizing heterogeneous data, and rapid changes in the needs for, and modes of, science communication, among others,” said James Olds, NSF assistant director for Biological Sciences.

    “The Biological Sciences Directorate welcomes a new office that brings an international reputation in ecological synthesis, strong partnerships with programs for science communication and outreach, and a dedication to consolidating education programs across the network.”

    Added Roger Wakimoto, NSF assistant director for Geosciences, “The NSF Directorate for Geosciences, which supports the LTER program through its Ocean Sciences and Polar Programs Divisions, is excited about the synergies that will arise from linking the LTER team with an experienced NCEAS team.

    “This aligns well with our commitment to long-term environmental and ecological observations, and we expect the new communications office to advance internal and external synthesis as well as education efforts.”

    Building on experience

    The new office will take advantage of NCEAS’ experience in supporting multi-site collaboration and synthetic research, graduate training and environmental science communication.

    “We want the communications office to be the linchpin that nourishes and strengthens the LTER network both nationally and internationally,” said NCEAS Director Frank Davis, principal investigator for the $3.5 million NSF grant.

    Established in 1980, the NSF LTER program currently supports 25 sites representing ecosystems from deserts to forests to coral reefs, urban areas to the open sea to the polar regions, in the continental U.S., Alaska, islands in the Caribbean and the Pacific, and Antarctica.

    UCSB’s Marine Science Institute has led the Santa Barbara Coastal LTER site since 2000, and the Moorea Coral Reef LTER site since 2004.

    “Over the past 20 years, NCEAS has had a transformative effect on the way ecological information is organized, synthesized and applied,” said Peter Groffman, chair of the LTER Science Council and Executive Board. “It is exciting to apply that experience and expertise to the LTER network.”

    Office supports network across sites

    The LTER network includes research on population and community ecology, ecosystem science, evolutionary biology, phylogenetic systematics, social and economic sciences, urban ecology, oceanography, mathematics, computer science and science education.

    A network across sites allows for continental-scale questions to be addressed, while enabling sharing of ideas and information to facilitate integrative scientific insights. Thousands of scientists and graduate students work through LTER sites to pursue research in diverse topics and disciplines.

    “These sites are doing important work that’s relevant for natural resource management, environmental restoration, climate change adaptation, public health and many other important areas,” said Davis.

    The value of long-term data extends beyond use at any individual site, so the LTER Network makes data collected by all LTER sites accessible to other investigators.

    “The new communications office will build awareness and participation in the network by developing an effective and engaging web presence,” Davis said. “We will offer such tools and services as virtual collaboration, training in data synthesis and open science, online research forums and multimedia research highlights.”

    The communications office will also support new programs and activities that encourage and promote diversity in education and training to enhance communication and outreach to the public and to local, regional and federal agencies as well as non-governmental and non-profit organizations.

    See the full article here.

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    The National Science Foundation (NSF) is an independent federal agency created by Congress in 1950 “to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense…we are the funding source for approximately 24 percent of all federally supported basic research conducted by America’s colleges and universities. In many fields such as mathematics, computer science and the social sciences, NSF is the major source of federal backing.

    seal

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: