Tagged: UC Davis Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 3:48 pm on June 10, 2019 Permalink | Reply
    Tags: An alternative to the WIMP model of dark matter calls for a form of “dark electromagnetism” including “dark photons” and other particles, , , , , UC Davis   

    From UC Davis: “A New Candidate for Dark Matter and a Way to Detect It” 

    UC Davis bloc

    From UC Davis

    June 10, 2019
    Andy Fell

    A simulation of the large-scale structure of the universe with filaments of dark matter in blue and places of galaxy formation in yellow. Dark matter cannot yet be detected directly. UC Davis physicists have proposed a new model to explain it. (Image: Zarija Lukic/Lawrence Berkeley National Laboratory)

    Two theoretical physicists at the University of California, Davis, have a new candidate for dark matter, and a possible way to detect it. They presented their work June 6 at the Planck 2019 conference in Granada, Spain, and it has been submitted for publication.

    Dark matter is thought to make up just over a quarter of our universe, with most of the rest being even-more mysterious dark energy. It cannot be seen directly, but dark matter’s presence can be detected because its gravity determines the shape of distant galaxies and other objects.

    Many physicists believe that dark matter is made up of some particle yet to be discovered. For some time, the favorite candidate has been the weakly interacting massive particle or WIMP. But despite years of effort, WIMPs have so far not shown up in experiments designed to detect them.

    “We still don’t know what dark matter is,” said John Terning, professor of physics at UC Davis and co-author on the paper. “The primary candidate for a long time was the WIMP, but it looks like that’s almost completely ruled out.”

    An alternative to the WIMP model of dark matter calls for a form of “dark electromagnetism” including “dark photons” and other particles. Dark photons would have some weak coupling with “regular” photons.

    In their new paper, Terning and postdoctoral researcher Christopher Verhaaren add a twist to this idea: a dark magnetic “monopole” that would interact with the dark photon.

    In the macroscopic world, magnets always have two poles, north and south. A monopole is a particle that acts like one end of a magnet. Monopoles are predicted by quantum theory but have never been observed in an experiment. The scientists suggest that dark monopoles would interact with dark photons and dark electrons in the same way that theory predicts electrons and photons interact with monopoles.

    And that implies a way to detect these dark particles. The physicist Paul Dirac predicted that an electron moving in a circle near a monopole would pick up a change of phase in its wave function. Because electrons exist as both particles and waves in quantum theory, the same electron could pass on either side of the monopole and as a result be slightly out of phase on the other side.

    This interference pattern, called the Aharonov-Bohm effect, means that an electron passing around a magnetic field is influenced by it, even if it does not pass through the field itself.

    Terning and Verhaaren argue that you could detect a dark monopole because of the way it shifts the phase of electrons as they pass by.

    “This is a new type of dark matter but it comes with a new way to look for it as well,” Terning said.

    Electron beams are relatively easy to come by: Electron microscopes were used to demonstrate the Aharonov-Bohm effect in the 1960s, and electron beam technology has improved with time, Terning noted.

    Theoretically, dark matter particles are streaming through us all the time. To be detectable in Terning and Verhaaren’s model, the monopoles would have to be excited by the sun. Then they would take about a month to reach Earth, traveling at about a thousandth of the speed of light.

    On the other hand, the predicted phase shift is extremely small — smaller than that needed to detect gravity waves, for example. However, Terning noted that when the LIGO gravity wave experiment was first proposed, the technology to make it work did not exist — instead, technology caught up over time.

    The work was supported by a grant from the U.S. Department of Energy.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    UC Davis Campus

    The University of California, Davis, is a major public research university located in Davis, California, just west of Sacramento. It encompasses 5,300 acres of land, making it the second largest UC campus in terms of land ownership, after UC Merced.

  • richardmitnick 1:46 pm on January 20, 2019 Permalink | Reply
    Tags: , , Developing New Technologies to Extend Care to All Families Affected by Autism Spectrum Disorder, , THE BIG IDEA, UC Davis   

    From UC Davis: “Developing New Technologies to Extend Care to All Families Affected by Autism Spectrum Disorder” 

    UC Davis bloc

    From UC Davis

    January 14, 2019
    Katherine Lee

    UC Davis Has the Big Idea to Make It Happen

    The prevalence of Autism Spectrum Disorder (ASD) has almost tripled since 2000, affecting one in 59 children identified in the U.S., according to the Centers for Disease Control and Prevention (CDC).


    “Everyone knows someone affected by autism. It’s time for us to take responsibility for the growing number of families in need of quality care,” said Leonard Abbeduto, director of the UC Davis Medical Investigation of Neurodevelopmental Disorders (MIND) Institute.

    The MIND Institute, which recently celebrated its 20th anniversary, was founded by families for families to advance scientific discovery and improve access to interdisciplinary, cutting-edge care. The Institute’s mission is “to use the best science we can to help as many families as we can.”

    Although ASD is a lifelong condition, effective treatments can reduce the disabilities associated with ASD and lead to happier, more fulfilling lives for families and individuals, but these treatments must be made more widely available. Currently, gaps in access to providers and affordable care make it especially hard for families who come from under-resourced populations or rural areas. Moreover, gaps in care delay early identification and intervention, affecting developmental outcomes.

    “Families in rural areas and other underserved communities may not be able to see experts without traveling long distances, which creates a financial burden and can delay treatment,” explained Abbeduto, who is also the champion of the Autism, Community and Technology Big Idea. “Technology can be used to overcome such barriers and get help to families in need everywhere.”

    This Big Idea will harness the university’s unique strengths in health, neuroscience, engineering, education, community engagement, and social sciences, involving a variety of disciplines and perspectives to find innovative solutions for ASD.

    UC Davis’ Big Ideas are forward-thinking, interdisciplinary programs and projects that will build upon the strengths of the university to positively impact the world for generations to come. Researchers, scientists, clinicians and others are working on innovative and ambitious initiatives in the field of health, sustainability and more to solve both California’s and the world’s most pressing problems.

    The Autism, Community and Technology Big Idea will pioneer a first-of-its-kind lifespan approach for everyone living with autism. By building partnerships with communities, driving innovation in affordable and accessible technologies, and training doctors, nurses, teachers, employers, and family members, UC Davis will create new ways of advancing science and helping people with autism.

    “Every field of study will be relevant to adding its expertise and creativity to the solutions being proposed by this idea,” added Abbeduto. “However, without donor support, we won’t be able to help families in the way they deserve.”

    UC Davis poised to address urgent needs

    Home to more than 50 faculty and staff across five UC Davis schools and colleges, the MIND Institute will be a hub for the Big Idea, bringing together experts from various disciplines, as well as community groups, businesses, and families, to address autism on a grand scale. This expert knowledge will then be used to train doctors, nurses, teachers, employers and community leaders throughout the country. Such partnerships will address the needs of underserved populations and the unique challenges they face, using innovative technologies and solutions to help individuals living with autism and their families across communities.

    One such partner is Sergio Aguilar-Gaxiola, director of the UC Davis Center for Reducing Health Disparities. For more than 10 years, he has worked on projects with the MIND Institute to improve access to and utilization of services for families affected by autism, fragile X syndrome and other developmental disabilities.

    “When there is an urgent need such as this, we need big ideas to make real progress in advancing solutions,” Aguilar-Gaxiola said.

    Aguilar-Gaxiola and his team serve Solano County and other areas in California and focus on Latino, Filipino, LGBTQ and other diverse families as well as those who are low income or for whom English is not their first language. Children in these populations tend to be diagnosed with autism later than urban or white families – leading to delayed treatment and worse outcomes over time.

    “Some families live two to three hours away from providers, with more than one child with autism at home, so it is critically important for UC Davis to reach them where they are,” Aguilar-Gaxiola said.

    Telemedicine expands access to care

    Telehealth, which is remote access to health services and provider care, makes it possible for UC Davis to care for families affected by autism and other ASD conditions no matter where they live. The face-to-face interaction in their own home through video conferencing, and the use of other technology, allow parents to affordably receive direct feedback and input on how to improve interactions and build important skills in their child.

    The use of telemedicine more broadly and effectively can improve ASD screening and offer treatments in a variety of spoken languages and to families in all areas across California and the country.

    Many children with ASD have challenging behaviors or problems with the change of routine associated with travel. Technology allows these families to overcome this access barrier, bringing care into their own home.

    Abbeduto recalls several patient families who were empowered through telemedicine. During a three- to four-month video conference training series with team members at the MIND Institute, these families learned how to become their child’s language therapist and were empowered to contribute to their child’s care. They were given strategies to support their child’s language development and to reduce the kinds of behaviors that impede social interaction.

    “Originally, family members were skeptical that they would be able to engage their child in play for longer periods of time by themselves,” Abbeduto said. “But at their exit interviews, without exception they each talked about how close they felt to their child and the unexpected positive changes in their life.”

    He concluded, “This kind of knowledge helps parents and caregivers overcome the need to depend on someone else to help their family. It allows them to feel more connected and competent and have more impact on their children.”

    Fostering independence and opportunity

    As part of the Big Idea, the MIND Institute is also developing interventions for adolescents and adults, a subgroup of individuals living with ASD who often experience a sudden lack of services after high school.

    Technology will allow interventions from the MIND Institute to better address the needs of these individuals. Virtual reality, apps, artificial intelligence and facial recognition software will be further developed and tested to support positive behaviors in communication and social skills needed for daily life.

    “We can use advances in technology to continue to monitor and support individuals living with autism so they can have fulfilling jobs and take part in a wider range of social activities throughout their lifespan,” explains Abbeduto.

    Furthermore, virtual support groups could connect individuals with autism or their families to additional social skills workshops, helping them move to independence and easing some of the burden on caregivers. Smart homes, for example, could be used to provide prompts for when it’s time to take medication or a bath, and give cues for getting ready for work or making a meal. Autism experts partnering with engineers could also utilize robotics to realize new ways of providing therapies and medications.

    The vision of this Big Idea will extend the reach of this technology, employing it in communities where experts in autism or specialized services are limited or non-existent. Through virtual conferences or workshops, UC Davis will be able to train the next generation of providers, teachers and administrators. This will empower and promote positive change at the individual level and create opportunities at a systems level.

    “Through this Big Idea, and with the help of donors, we will be able to create technologies that will take the expertise of the MIND Institute and extend its reach all over the world,” said Abbeduto. “It has the ability to make a positive impact on families everywhere.”

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    UC Davis Campus

    The University of California, Davis, is a major public research university located in Davis, California, just west of Sacramento. It encompasses 5,300 acres of land, making it the second largest UC campus in terms of land ownership, after UC Merced.

  • richardmitnick 1:17 pm on January 20, 2019 Permalink | Reply
    Tags: , , , , Mantle Neon Illuminates Earth’s Formation, Neon is actually a stand-in for where gases such as water carbon dioxide and nitrogen came from, Neon keeps a memory of where it came from even after four and a half billion years, UC Davis   

    From UC Davis: “Mantle Neon Illuminates Earth’s Formation” 

    UC Davis bloc

    From UC Davis

    December 5, 2018
    Andy Fell

    Artist’s impression of a young star surrounded by a protoplanetary disk in which planets are forming. Based on measures of neon isotopes, UC Davis researchers conclude that the Earth formed relatively quickly from this cloud of dust and gas, collecting water, carbon and nitrogen in the deep Earth. (European Southern Observatory)

    The Earth formed relatively quickly from the cloud of dust and gas around the sun, trapping water and gases in the planet’s mantle, according to research published Dec. 5 in the journal Nature. Apart from settling Earth’s origins, the work could help in identifying extrasolar systems that could support habitable planets.

    Drawing on data from the depths of the Earth to deep space, University of California, Davis, Professor Sujoy Mukhopadhyay and postdoctoral researcher Curtis Williams used neon isotopes to show how the planet formed.

    “We’re trying to understand where and how the neon in Earth’s mantle was acquired, which tells us how fast the planet formed and in what conditions,” Williams said.

    Neon is actually a stand-in for where gases such as water, carbon dioxide and nitrogen came from, Williams said. Unlike these compounds that are essential for life, neon is an inert noble gas, and it isn’t influenced by chemical and biological processes.

    “So neon keeps a memory of where it came from even after four and a half billion years,” Mukhopadhyay said.

    There are three competing ideas about how the Earth formed from a protoplanetary disk of dust and gas over 4 billion years ago and how water and other gases were delivered to the growing Earth. In the first, the planet grew relatively quickly over 2 to 5 million years and captured gas from the nebula, the swirling cloud of dust and gas surrounding the young sun. The second theory suggests dust particles formed and were irradiated by the sun for some time before condensing into miniature objects called planetesimals that were subsequently delivered to the growing planet. In the third option, the Earth formed relatively slowly, and gases were delivered by carbonaceous chondrite meteorites that are rich in water, carbon and nitrogen.

    These different models have consequences for what the early Earth was like, Mukhopadhyay said. If the Earth formed quickly out of the solar nebula, it would have had a lot of hydrogen gas at or near the surface. But if the Earth formed from carbonaceous chondrites, its hydrogen would have come in the more oxidized form, water.

    Neon from ocean floor to deep space

    To figure out which of the three competing ideas on planet formation and delivery of gases was correct, Williams and Mukhopadhyay accurately measured the ratios of neon isotopes that were trapped in the Earth’s mantle when the planet formed. Neon has three isotopes, neon-20, 21 and 22. All three are stable and nonradioactive, but neon-21 is formed by radioactive decay of uranium. So the amounts of neon-20 and 22 in the Earth have been stable since the planet formed and will remain so forever, but neon-21 slowly accumulates over time. The three scenarios for Earth’s formation are predicted to have different ratios of neon-20 to neon-22.

    The closest they could get to the mantle was to look at rocks called pillow basalts on the ocean floor. These glassy rocks are the remains of flows from deep in the Earth that spilled out and cooled in the ocean, later to be collected by a drilling expedition led by the University of Rhode Island, which makes its collection available to other scientists.

    The gases are found in tiny bubbles within the basalt. Using a press, Williams cracked basalt chips in a sealed chamber, allowing the gases to flow into a sensitive mass spectrometer.

    Now for the space part. Previous researchers established the neon isotope ratio for the “solar nebula” (early rapid formation) model with data from the Genesis mission, which captured particles of the solar wind. Data for the “irradiated particles” model came from analyses of lunar soils and of meteorites. Finally, carbonaceous chondrite meteorites provided data for the “late accretion” model.

    Minimum size for a habitable planet

    The isotope ratios they found were well above those for the “irradiated particles” or “late accretion” models, Williams said, and support rapid early formation.

    “This is a clear indication that there is nebular neon in the deep mantle,” Williams said.

    Neon, remember, is a marker for those other volatile compounds. Hydrogen, water, carbon dioxide and nitrogen would have been condensing into the Earth at the same time — all ingredients that, as far as we know, go into making up a habitable planet.

    The results imply that to absorb these vital compounds, a planet must reach a certain size — the size of Mars or a little larger — before the solar nebula dissipates. Observations of other solar systems show that this takes about 2 to 3 million years, Williams said.

    Does the same process happen around other stars? Observations from the Atacama Large Millimeter Array, or ALMA, observatory in Chile suggest that it does, the researchers said.

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    ALMA uses an array of 66 radiotelescopes working as a single instrument to image dust and gas in the universe. It can see the planet-forming disks of dust and gas around some nearby stars. In some cases, there are dark bands in those disks where dust has been depleted.

    “There are a couple of ways dust could be depleted from the disk, and one of them is that they are forming planets,” Williams said.

    “We can observe planet formation in a gas disk in other solar systems, and there is a similar record of our own solar system preserved in Earth’s interior,” Mukhopadhyay said. “This might be a common way for planets to form elsewhere.”

    The work was funded by the National Science Foundation.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    UC Davis Campus

    The University of California, Davis, is a major public research university located in Davis, California, just west of Sacramento. It encompasses 5,300 acres of land, making it the second largest UC campus in terms of land ownership, after UC Merced.

  • richardmitnick 12:03 pm on December 26, 2018 Permalink | Reply
    Tags: , Fruit bats in Sierra Leone, Marburg virus in Sierra Leone, , UC Davis   

    From UC Davis: “Deadly Marburg Virus Found in Sierra Leone Bats” 

    UC Davis bloc

    From UC Davis

    December 20, 2018
    Kat Kerlin

    Scientists detected Marburg virus in five Egyptian fruit bats, like this one, in Sierra Leone. (Getty)

    Scientists have discovered Marburg virus in fruit bats in Sierra Leone. This is the first time the deadly virus has been found in West Africa. Five Egyptian rousette fruit bats tested positive for active Marburg virus infection. Scientists caught the bats separately in three health districts: Moyamba, Koinadugu and Kono.

    The virus was found in advance of any reported cases of illness in people in Sierra Leone, and there remain no reported cases of Marburg in humans there. However, the virus’s presence in bats means people who live nearby could be at risk for becoming infected with Marburg virus, a cousin to Ebola virus that causes similar disease in people.

    The Marburg virus co-discovery occurred through two projects — one by the USAID-funded PREDICT project led by University of California, Davis, and the University of Makeni; and another by Centers for Disease Control and Prevention and Njala University.

    “That the discovery was made in bats before the recognition of any known human illnesses or deaths is exactly what PREDICT’s One Health approach to disease surveillance and capacity building are designed to do,” said Brian Bird from the UC Davis One Health Institute and global lead for Sierra Leone and Multi-Country Ebola operations for PREDICT-USAID.

    Natural reservoir

    Scientists had previously shown that the Egyptian rousette bat (Rousettus aegyptiacus) is the natural reservoir for Marburg virus, which means the bats can carry the virus long-term and pass it on to animals or humans without getting sick themselves. Sequencing of virus genetic material from the five Marburg-positive bats found multiple genetically diverse strains, suggesting Marburg virus has been present in these bat colonies in Sierra Leone for many years.

    “We have known for a long time that the bats that carry Marburg virus live in West Africa, so it makes sense that we’d find the virus in bats there,” said CDC ecologist Jonathan Towner, who led the CDC team. “This discovery is an excellent example of how this type of ecology work can help us identify a threat and warn people before they get sick.”

    Thousands of Egyptian fruit bats roost in a cave in Uganda’s Queen Elizabeth National Park. (Getty)

    Egyptian fruit bats live in caves or underground mines throughout much of Africa. Marburg virus has been detected in Egyptian rousette bats caught in sub-Saharan Africa, primarily in Uganda and the Democratic Republic of Congo, but also Gabon, Kenya and South Africa. In eastern and central Africa, these bats can roost in colonies of more than 100,000 animals.

    However, the colonies of Egyptian fruit bats identified in Sierra Leone so far have been much smaller, which may explain why there haven’t been any known Marburg virus disease outbreaks in people in Sierra Leone like those found in eastern and central Africa.

    Angolan strains detected in bats for first time

    To date, there have been 12 known Marburg virus outbreaks with direct links to Africa, with the most recent in Uganda in 2017. The largest and deadliest Marburg virus outbreak occurred in Angola in 2005. It killed 227 of 252 cases, or about 90 percent of those infected. Two of the four strains identified among the five Marburg-positive bats in Sierra Leone are genetically similar to the strain that caused the outbreak in Angola. It is the first time scientists have detected these Angolan strains in bats.

    Egyptian rousette bats primarily feed on fruit. When infected, the bats shed the virus in their saliva, urine and feces. These Egyptian rousette bats are known to test-bite fruits, urinate and defecate where they eat, potentially contaminating fruit or other food sources consumed by other animals like monkeys or people, particularly children. Due to their significant size, these types of bats sometimes serve as a food source for local populations, as well. People may be exposed to Marburg virus through bat bites as they catch the bats.

    Community engagement

    In Sierra Leone, researchers and government officials are in the process of meeting with local communities to present their findings, answer questions about Marburg virus, and address how to reduce people’s risk of exposure and live safely with bats.

    Bats play important ecological and agricultural roles. Fruit bats pollinate important crops, and insect-eating bats eat thousands of insects each night, including mosquitoes, which helps control pests that transmit disease and damage crops.

    Scientists emphasize that people should not attempt to kill or eradicate bats in response to the discovery. Killing and coming into direct contact with bats can actually increase the risk of virus transmission, not halt it.

    Finding viruses before they find us

    The PREDICT team at UC Davis/University of Makeni and the team led by CDC/Njala both began work in Sierra Leone in 2016 following the massive Ebola outbreak in West Africa. They each sought to discover the Ebola reservoir, the animal that helps maintain the virus in nature by spreading it without getting sick.

    The Marburg discovery and the PREDICT-team’s report earlier this year of the discovery of a new ebolavirus species, Bombali virus, illustrate the strengths and mission of USAID’s PREDICT project, which is to find viruses before they spill over into humans and become epidemics.

    Media contact(s)

    Brian Bird, UC Davis PREDICT and One Health Institute, 530-752-7544, bhbird@ucdavis.edu

    Tracey Goldstein, UC Davis PREDICT and One Health Institute, 415-902-1486, tgoldstein@ucdavis.edu

    Kat Kerlin, UC Davis News and Media Relations, 530-752-7704, kekerlin@ucdavis.edu

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    UC Davis Campus

    The University of California, Davis, is a major public research university located in Davis, California, just west of Sacramento. It encompasses 5,300 acres of land, making it the second largest UC campus in terms of land ownership, after UC Merced.

  • richardmitnick 1:23 pm on December 11, 2017 Permalink | Reply
    Tags: , , Environmental Science From the Sky, Remote sensing, Susan Ustin, UC Davis,   

    From UC Davis: Women in STEM: “How Susan Ustin Helped Launch a New Field of Study and Why She Continues to Study the Earth from Above” 

    UC Davis bloc

    UC Davis

    Susan L. Ustin, right, and Shruti Khanna, a postdoctoral student, demonstrate how to calibrate a field spectrometer, which helps interpret remote sensing data retrieved from satellites. (Jason Spyres/UC Davis)

    December 4, 2017
    Lisa Howard

    When Susan L. Ustin began her career in remote sensing at UC Davis in the 1980s, her colleagues — mostly male — weren’t convinced that what she was doing was actually science.

    “They didn’t see the images as a visualization of data. To them, the images were just pretty pictures,” Ustin says.

    Ustin received a Ph.D. in botany from UC Davis in 1983. After that, she worked on campus for a number of years on nonpermanent funding until she was offered a faculty position in 1990. Although there weren’t many women in her field — it was mostly engineers and geologists in those days — she doesn’t think gender specifically played a factor in the time it took for her to get hired.

    “It was more a case that at the time, people didn’t think remote sensing was really science,” she says. “Trying to convince them that it was worthwhile seemed to be the biggest problem.” But she remembers being only the third woman hired as faculty in the Department of Land, Air and Water Resources.

    The idea of doing scientific research using data and images from airplanes, drones, and satellites may seem obvious to anyone who grew up with Google Earth, but more than 30 years ago the idea was still very new.

    A Los Angeles Times article published in 1987 about Ustin’s work introduces the then novel idea of tracking plant ecology via satellite. Imaging spectrometry, the article notes, “will enable researchers to better oversee global health by understanding the impact of human activities like destroying rain forests and causing pollution.” Another piece in the Los Angeles Times three years later describes how the cutting-edge science of remote sensing “may enable scientists to predict life-threatening global changes before they can be detected from the ground.”

    Remote sensing has fulfilled those predictions and more. It is now a key technology integrated into almost all aspects of modern life. Remote sensing is used for monitoring natural disasters, studying climate change, mapping soil types and forests, monitoring air pollution, forecasting weather, unearthing archaeological sites, detecting oil spills, determining moisture content of soil, documenting melting glaciers, predicting retails earnings by counting cars in parking lots, and much, much more.

    Ustin is now a world leader in the field of remote sensing. That she ended up pretty much building her own specialty was largely unintentional. “I noticed early in my career that women ended up peripheral. We ended up in the interdisciplinary areas instead of more central ones. You weren’t one of boys so you didn’t end up being a copy of the advisor,” she explains.

    “But then, it turned out that suddenly that peripheral area became an important area to be in. When it became apparent that remote sensing was going to be able to address some of the emerging environmental questions, I was well established. I was at the right time and the right place,” says Ustin.

    Ustin and her team use AVIRIS hyperspectral data to assess forest structure and composition. This image from the Gifford Pinchot National Forest in Washington shows an old-growth mixed conifer forest with recent logging and clear-cut patches. Red shows soil, green shows vegetation, and blue is shade. (S. Ustin, And A. Trabucco, UC Davis)

    Environmental Science From the Sky

    Ustin wears several hats at UC Davis. She is a distinguished professor of environmental and resource sciences and the vice chair for the hydrology section in the Department of Land, Air and Water Resources. She is the director of the Center for Spatial Technology and Remote Sensing (CSTARS), a remote sensing lab. (If you’ve ever wondered about the satellite receiving dish on the roof of Academic Surge or the geostationary dish on Kemper Hall, those belong to CSTARS.) She’s the associate director of research for the John Muir Institute of the Environment.

    This year she was named a fellow of the prestigious American Geophysical Union, “For pioneering work in hyperspectral remote sensing that has improved our ability to understand and manage changes in terrestrial ecosystems.”

    She has an office downstairs in the John Muir Institute of the Environment, but her lab is upstairs in the renovated former beef barn, a cozy space with sloped ceilings that was once a hay loft. Most of the desks have multiple computer monitors.

    At any given time Ustin’s lab has a mixture of postdocs, undergraduates, international visitors and staff. Today several postdocs students are looking at images. What’s on the screen looks like what you’d see on Google satellite, California from the air, with different-colored gray squares and light-colored rectangles of the human-built environment — crops, housing developments, towns — and the occasional dark, curving shape of a river or a reservoir.

    Within those images, though, lie layers and layers of data that they use for studying a wide variety of projects. Over the years, Ustin and her lab have assessed remote sensing data from five continents for a wide variety of environmental issues.

    One of her lab’s current projects is monitoring invasive plant species in the California Delta. Another is tracking how forests that have been managed — by thinning or controlled burns — compare to untouched areas. “We ask questions like, is there evidence that the forest is healthier?” Ustin says. “Is there a difference if the control burn was 20 years ago versus five years ago? We are trying to figure out if any management techniques have resulted in a healthier forest than the uncontrolled surrounding forest.”

    Being able to manage the data from remote sensing has changed considerably since Ustin first started. In the 1980s, she describes how they used “homemade” computers and “homemade” software because nothing existed to process the data.

    Susan Ustin looks at remote-sensing data in her lab at The Barn. A Google Scholar search for her work reveals almost 300 titles. She has published 130 scientific proceedings and written 34 book chapters. This year she was named a fellow of the prestigious American Geophysical Union.

    But now, she notes, ordinary computers can process the data, and there is a wide variety of graphic information systems software. Although she uses a lot of raw data, she notes many researchers who work in focused areas use data that has already been processed.

    “NASA processes a lot of sensor data nowadays instead of giving you the raw data,” Ustin says. “For example, you can get the leaf area index for the entire world.”

    What humans can see with their eyes is only a small portion of what sophisticated sensors can “see.” The visible spectrum — the portion of the electromagnetic spectrum visible to the human eye — is made up of wavelengths from about 390 nanometers (what we see as violet) up to about 700 nanometers (what we see as red). But sophisticated sensors can see a much wider range of the electromagnetic spectrum, and that data can reveal a tremendous amount of information.

    The data from the NASA satellites Ustin worked with in the 1980s, like the Landsat 3, used sensors that looked at just four areas of the spectrum — green, red and two different bands of infrared. Data from each band was collected for each pixel of the image. As technology improved, sensors continued to improve and are now able to pick up more and more spectral bands and create more data for smaller and smaller areas of the image, resulting in more fine-grained information. “Now the data we are working with has close to 500 bands per pixel,” Ustin says. The data can reveal everything from how well a crop is growing or where an invasive species is taking over an ecosystem to how fast a glacier is melting.

    Ustin’s work with this data, with remote sensing, has resulted in a tremendous amount of research. She has published 130 scientific proceedings and written 34 book chapters. She estimates she’s published over 200 articles in peer-reviewed journals. A Google Scholar search for her work reveals almost 300, with subjects in remote sensing, environmental sciences, geography, geology, vegetation, canopies and more. Her journal articles have titles like, “Marsh Loss Due to Cumulative Impacts of Hurricane Isaac and the Deepwater Horizon Oil Spill in Louisiana,” and “Remote sensing of canopy chemistry.”

    Her most cited article, with 824 citations, is from the January 1990 edition of Remote Sensing of Environment: “Vegetation in the deserts: 1. A regional measure of abundance from multispectral images.” The paper grew out of fieldwork she did in Owens Valley in the mid-1980s. It remains one of her favorite research projects.

    “It was pretty fun.” Ustin laughs. She and her fellow researchers stayed at the University of California’s White Mountain Research Center, in Bishop. They were there to map the amount of vegetation compared to the data from NASA’s Landsat-5 satellite.

    In the paper, they describe taking a method of analysis used by geologists and chemists, and applied it to remote sensing data. “We were trying to map the amount of vegetation,” Ustin says. “Mixture analysis was being used in totally different contexts, but it was the same general idea. You have a solution that’s a mixture of things, so how do you tell what’s in it?”

    Applying the new method worked. “It was pretty cool,” Ustin says. “We were able to estimate the vegetation cover fraction across the valley, from the valley floor up into the east side of the Sierras.” Their method ended up becoming a standard analysis in the field.

    Susan Ustin in Northslope near Barrow Alaska, 2007. She was there for a graduate student research project looking at the carbon fluxes that happen when the lakes drain.

    Career Shaped by 1960s Culture and Counterculture

    Ustin is originally from Eugene, Oregon. In 1961, after graduating from high school, she moved to San Francisco with friends.

    This was few years after the peak of the Beat Generation in San Francisco, but North Beach was still a hangout for writers, artists and musicians. “You could go to coffee shops and they still had the sort of Beat stuff, and of course there was City Lights Bookstore,” Ustin says.

    She was drawn to the city’s vibrancy and activism. Integration was happening all over the country, and in San Francisco there were civil rights marches and demonstrations, as well as picketing of businesses — hotels, restaurants, car dealerships — that refused the hire African Americans.

    In the 1960s, there was also a growing awareness of the environmental damage happening to the planet. “People were worried about environmental degradation. Rachel Carson’s Silent Spring had come out,” Ustin says, referring to the landmark environmental book that called attention to the detrimental effects of pesticides like DDT, “and in the Bay Area there were a couple of oil spills that did a lot of damage to wildlife and birds.”

    She worked downtown, at the Emporium department store on Market Street. She married and had two sons. “I had a lot of friends. It was fun and exciting. Then came the Summer of Love,” Ustin says, talking about the hippy countercultural phenomenon that attracted an estimated 100,000 mostly young people to San Francisco’s Haight Ashbury district. “My husband thought it would be really fun to go off and be a hippy. We had two kids. So that’s when I decided to go back to school.”

    Ustin followed her interest in environmental issues and received a B.S. in biological sciences in 1974 and an M.S. in biological sciences in 1977, both from California State University Hayward. As a single mother, she notes she was able to attend because of Great Society programs that helped her financially and with childcare. Later on, she also received financial help that allowed her to pursue her Ph.D. at UC Davis. “At that time, California had state scholarships for graduate students. I got one of those and so I could attend,” Ustin says. In 1982, she married James Doyle, now a professor emeritus in the Department of Evolution and Ecology, and had her third son the following year.

    Ustin was studying plant physiological ecology — how plants respond to physical stresses — and in 1982, the year before she received her Ph.D. in botany, she began working with the Jet Propulsion Lab.

    “They were looking for someone who knew about plants and photosynthesis and how plants responded to environmental conditions for their new remote sensing program,” Ustin says. “At that point, remote sensing was very new and the people involved were usually from engineering or geology. They were looking for environmental ecologists, since most of the land is covered with plants and that’s what you see most of the time,” she says.

    And with that, she was hooked on remote sensing.

    A Different Perspective

    Ustin has no plans to retire, as of yet, although she admits she does less fieldwork than she used to. She laughs. “Now I send other people to do it.”

    One of the things she likes about what she does is that she doesn’t do the same thing every day. With every new project, there are new problems to solve.

    A major project Ustin is working on now is securing funding for collaboration with the Jet Propulsion Lab to launch a big data platform — an airplane that can collect data — with the most modern imaging technology available. The concept for this new airborne sensor system is that it will be dedicated to monitoring California agriculture and ecosystems, and therefore available when it is needed.

    She’s also looking for simpler new ways to collect remote sensing data at much lower altitudes, which explains the new drone sitting in a box in the corner of her office.

    “I have students that would like to fly them and I thought we would do a project at Russell Ranch,” the university’s 300-acre agricultural research facility just a few miles from the main campus.

    She sees new technology, like drones, being big game changers. “Instead of having to rely on a company or a government program, it suddenly puts the technology in everybody’s hands. You can collect the data yourself and have a lot more flexibility,” Ustin says. For example, not just relying on when the satellite comes over.

    She notes the camera in the drone she bought for her students isn’t particularly good, but that they could probably work with someone in Department of Engineering to build a sensor. Or they may use one of the new hyperspectral cameras that have many infrared bands. Or maybe a LIDAR device, a remote sensing method that uses light in the form of a pulsed laser. “There are lots of possibilities,” she says.

    “A lot of the farmers in the valley are starting to fly drones and they’re not doing complicated image analysis. They’re just looking at the spatial patterns. They’ll notice, yes, that part in that field — that’s where it’s really sandy and drains too fast. Or that part has too much clay and it doesn’t drain. Half the time, when they see it, they recognize what the problem is.”

    And this, to some extent, sums up why Ustin’s work is so significant.

    Remote sensing is not simply about collecting data from the air. It’s how seeing the data — seeing the world from above — helps people recognize what is happening. Problems can be identified and potentially mitigated or managed, everything from deforestation, excess nitrogen runoff, ecosystem degradation, dying forests, poor irrigation, invasive species and more.

    Environmental degradation still concerns her. “Temperatures are increasing. Glaciers all over the world are declining. Snow packs are declining. Precipitation in the Western United States has been declining for 30 years or more. All of these changes are going to have an impact on us,” she says.

    But to see the problems, it helps to look from above, whether from a few hundred feet up in the air with a drone or 23 miles above the Earth with a satellite.

    “We are too close, from our scale,” Ustin says. “Remote sensing gives you a different perspective. It’s easier to see the problems.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UC Davis Campus

    The University of California, Davis, is a major public research university located in Davis, California, just west of Sacramento. It encompasses 5,300 acres of land, making it the second largest UC campus in terms of land ownership, after UC Merced.

  • richardmitnick 7:45 pm on July 11, 2017 Permalink | Reply
    Tags: , , Neural Stem Cells Steered by Electric Fields in Rat Brain, , UC Davis   

    From UC Davis: “Neural Stem Cells Steered by Electric Fields in Rat Brain” 

    UC Davis bloc

    UC Davis

    July 11, 2017
    Andy Fell

    Min Zhao

    Transplants of neural stem cells might be used to treat brain injuries, but how to get them to the right location? UC Davis researcher Min Zhao and Junfeng Feng, a neurosurgeon at Ren Ji Hospital, Shanghai, showed that they can steer transplanted stem cells (green, in inset on right) to one part of a rat’s brain using electrical fields. (Image: Junfeng Feng)

    Electric fields can be used to guide neural stem cells transplanted into the brain toward a specific location. The research, published July 11 in the journal Stem Cell Reports, opens possibilities for effectively guiding stem cells to repair brain damage.

    Professor Min Zhao at the University of California, Davis, School of Medicine’s Institute for Regenerative Cures studies how electric fields can guide wound healing. Damaged tissues generate weak electric fields, and Zhao’s research has shown how these electric fields can attract cells into wounds to heal them.

    “One unmet need in regenerative medicine is how to effectively and safely mobilize and guide stem cells to migrate to lesion sites for repair,” Zhao said. “Inefficient migration of those cells to lesions is a significant roadblock to developing effective clinical applications.”

    Junfeng Feng, a neurosurgeon at Ren Ji Hospital, Shanghai Jiao Tong University and Shanghai Institute of Head Trauma, visited Zhao’s lab to study how electric fields might guide stem cells implanted in the brain.

    Natural neural stem cells — cells that can develop into other brain tissues — are found deep in the brain, in the subventricular zone and hippocampus. To repair damage to the outer layers of the brain (the cortex), they have to migrate some distance, especially in the large human brain. Transplanted stem cells might also have to migrate some way to find an area of damage.

    Stem cells move ‘upstream’

    Feng and Zhao developed a model of stem cell transplants in rats. They placed human neural stem cells in the rostral migration stream — a pathway in the rat brain that carries cells toward the olfactory bulb, which governs the animal’s sense of smell. Cells move along this pathway partly carried by the flow of cerebrospinal fluid and partly guided by chemical signals.

    By applying an electric field within the rat’s brain, they found that they could get the transplanted stem cells to swim “upstream” against the fluid flow and natural cues and head for other locations within the brain.

    The transplanted stem cells were still in their new locations weeks or months after treatment.

    “Electrical mobilization and guidance of stem cells in the brain therefore provides a potential approach to facilitate stem cell therapies for brain diseases, stroke and injuries,” Zhao said.

    Additional authors on the paper are: at UC Davis, Lei Zhang, Jing Liu, Bruce Lyeth and Jan Nolta; Ji-Yao Jiang, Ren Ji Hospital, Shanghai Jiao Tong University and Shanghai Institute of Head Trauma; and Michael Russell, Aaken Laboratories, Davis. The work was supported by the California Institute for Regenerative Medicine with additional support from NIH, NSF and Research to Prevent Blindness Inc.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UC Davis Campus

    The University of California, Davis, is a major public research university located in Davis, California, just west of Sacramento. It encompasses 5,300 acres of land, making it the second largest UC campus in terms of land ownership, after UC Merced.

  • richardmitnick 8:07 pm on June 12, 2017 Permalink | Reply
    Tags: , Artificial Cartilage Under Tension as Strong as Natural, “Scaffold-free” systems, Chondrocytes, , UC Davis   

    From UC Davis: “Artificial Cartilage Under Tension as Strong as Natural” 

    UC Davis bloc

    UC Davis

    June 12, 2017
    Andy Fell
    News and Media Relations

    Kyriacos Athanasiou
    Biomedical Engineering
    (530) 752-1033

    Lab-grown cartilage grown with tension (top) shows similar mechanical and chemical properties to natural cartilage, which allows our joints to move smoothly. The lower image shows computer modeling of strain distribution across the artificial tissue. (Athanasiou lab, UC Davis)

    Biomedical engineers at the University of California, Davis, have created a lab-grown tissue similar to natural cartilage by giving it a bit of a stretch. The tissue, grown under tension but without a supporting scaffold, shows similar mechanical and biochemical properties to natural cartilage. The results are published June 12 in the journal Nature Materials.

    Articular cartilage provides a smooth surface for our joints to move, but it can be damaged by trauma, disease or overuse. Once damaged, it does not regrow and is difficult to replace. Artificial cartilage that could be implanted into damaged joints would have great potential to help people regain mobility.

    Natural cartilage is formed by cells called chondrocytes that stick together and produce a matrix of proteins and other molecules that solidifies into cartilage. Bioengineers have tried to create cartilage, and other materials, in the lab by growing cells on artificial scaffolds. More recently, they have turned to “scaffold-free” systems that better represent natural conditions.

    The UC Davis team, led by Professor Kyriacos Athanasiou, Department of Biomedical Engineering, grew human chondrocytes in a scaffold-free system, allowing the cells to self-assemble and stick together inside a specially designed device. Once the cells had assembled, they were put under tension — mildly stretched — over several days. They showed similar results using bovine cells as well.

    “As they were stretched, they became stiffer,” said Jerry Hu, a research engineer and co-author on the study. “We think of cartilage as being strong in compression, but putting it under tension has dramatic effects.”

    The new material had a similar composition and mechanical properties to natural cartilage, they found. It contains a mix of glycoproteins and collagen, with crosslinks between collagen strands giving strength to the material.

    Experiments with mice show that the lab-grown material can survive in a physiological environment. The next step, Hu said, is to put the lab-grown cartilage into a load-bearing joint, to see if it remains durable under stress.

    “In this comprehensive study, we showed that we can finally engineer tissue that has the tensile and compressive characteristics of native tissue,” Athanasiou said. “The artificial cartilage that we engineer is fully biological with a structure akin to real cartilage. Most importantly, we believe that we have solved the complex problem of making tissues in the laboratory that are strong and stiff enough to take the extremely high loads encountered in joints such as the knee and hip.”

    Additional authors on the paper are: co-first authors Jennifer Lee and Le Huwe, Nikolaos Paschos and Ashkan Aryaei, all at UC Davis; and Courtney Gegg, now a graduate student at Stanford University. Athanasiou also holds an appointment as professor in the UC Davis Department of Orthopedic Surgery. The work was supported by grants from the National Institutes of Health.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UC Davis Campus

    The University of California, Davis, is a major public research university located in Davis, California, just west of Sacramento. It encompasses 5,300 acres of land, making it the second largest UC campus in terms of land ownership, after UC Merced.

  • richardmitnick 7:39 pm on June 8, 2017 Permalink | Reply
    Tags: , , Food for fish and people, Rice fields as floodplains, Study: Floodplain Farm Fields Benefit Juvenile Salmon, UC Davis   

    From UC Davis: “Study: Floodplain Farm Fields Benefit Juvenile Salmon” 

    UC Davis bloc

    UC Davis

    June 7, 2017
    Nina Erlich-Williams

    Kat Kerlin
    UC Davis News and Media Relations

    Rice fields managed as floodplains during winter can create surrogate wetland habitat for native fish. Photo: Carson Jeffres/UC Davis

    A new study offers a beacon of hope for a cease-fire in the Golden State’s persistent water wars.

    Floodplain Farm Fields Provide Novel Rearing Habitat for Chinook Salmon, published in the journal PLOS-ONE [ Jacob V. E. Katz , Carson Jeffres, J. Louise Conrad,Ted R. Sommer,Joshua
    Martinez, Steve Brumbaugh, Nicholas Corline, Peter B. Moyle] is based on the work by scientists from nonprofit group California Trout, UC Davis, and the California Department of Water Resources. The study provides further evidence that Central Valley farm fields that remain in active agricultural production can have environmental benefits for the state’s salmon populations.

    This surprising synergy runs counter to the usual California narrative where conflict over management of water and endangered species is the norm. This is particularly true in the State’s Central Valley, where more than 95 percent of former wetlands — critical habitat for native fish populations — have been leveed, drained and developed, primarily for farmland.

    Juvenile salmon. Photo: Carson Jeffres/UC Davis

    Food for fish and people

    “This study demonstrates that the farm fields that now occupy the floodplain can not only grow food for people during summer, but can also produce food resources and habitat for native fish like salmon in winter,” said lead author Jacob Katz of California Trout. “Our work suggests that California does not always need to choose between its farms or its fish. Both can prosper if these new practices are put into effect, mimicking natural patterns on managed lands.”

    Approximately 10,000 small, hatchery-reared salmon, averaging less than 2 inches and weighing about a gram, were transplanted to a 5-acre field for several weeks between the fall rice harvest and spring planting. A subsample of the fish were tagged uniquely with electronic tags (similar to chips used to ID pets) to allow tracking of individual growth rates, which were among the highest ever recorded in freshwater in California.

    “By reconnecting rivers to floodplainlike habitat in strategic places around the Central Valley, we have the potential to help recover endangered salmon and other imperiled fish populations to self-sustaining levels,” said Ted Sommer, lead scientist for the California Department of Water Resources and a co-author on the study.

    Rice fields as floodplains

    Since 2012, a team of scientists has been examining how juvenile salmon use off-channel habitats, including off-season rice fields. The experiments provide evidence that rice fields managed as floodplains during winter can create “surrogate” wetland habitat for native fish.

    The team suggests that shallowly flooded fields function in similar ways to natural floods that once spread across the floodplain, supplying extremely dense concentrations of zooplankton — an important food for juvenile salmon. Foraging on these abundant and nutritious invertebrates, the young salmon grow extremely quickly, improving their chances of surviving their migration to sea and returning in three to five years as the large, adult fish.

    Since this original study, the team has continued to investigate how rice fields and other managed habitats could be improved to support salmon rearing.

    “This study shows that we can start focusing on solutions that support fish and people, instead of one or the other,” added Carson Jeffres of the UC Davis Center for Watershed Sciences, the second author on the report. “It’s a huge win-win.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UC Davis Campus

    The University of California, Davis, is a major public research university located in Davis, California, just west of Sacramento. It encompasses 5,300 acres of land, making it the second largest UC campus in terms of land ownership, after UC Merced.

  • richardmitnick 3:39 pm on June 3, 2017 Permalink | Reply
    Tags: , , Howard University, , Nkechinyere Chidi-Ogbolu, UC Davis,   

    From UC Davis via USA Today College: Women in STEM: “She just graduated college and is starting her Ph.D. — and she’s only 18” Nkechinyere Chidi-Ogbolu 

    UC Davis bloc

    UC Davis



    June 1, 2017
    Toni Airaksinen, Barnard College

    Nkechinyere Chidi-Ogbolu is about to start working on her doctorate in biomedical engineering. And she’s just 18 years old. (Photo: Mercy Daniel-Aguebor)

    While many students have just graduated from high school, 18-year-old Nigeria native Nkechinyere Chidi-Ogbolu is not your typical teen.

    Chidi-Ogbolu just graduated summa cum laude from Howard University with a degree in chemical engineering — making her the youngest person to graduate from Howard this year, and one of the youngest in Howard’s history.


    But that’s not all for Chidi-Ogbolu.

    She’s now preparing to start a Ph.D. program at the University of California-Davis after the summer ends. She’ll be studying biomedical engineering with a focus on creating and discovering new medicines.

    “I’ve always been interested in the medical field,” she told USA TODAY College. “But I want to have a broader scale of impact than in treating patients one-on-one.”

    Chidi-Ogbolu said she’s always been the youngest person in her classes. While most students from Nigeria graduate high school at the age of 16, Chidi-Ogbolu finished high school particularly early, at 14, since she skipped 5th grade and attended an accelerated high school.

    After high school, she left Nigeria for America and enrolled full-time at Howard University, a historically black university and her first-choice school.

    “I thought I would be more comfortable at the age going to a school with more people that looked like me and therefore I could more easily relate to,” said Chidi-Ogbolu. “Plus, they gave me a full scholarship, so that definitely helped.”

    Leaving her parents in Nigeria was difficult, but Chidi-Ogbolu wasn’t alone. Many of her extended family members live in America, including an aunt who lived not far from her dorm, and other family members in Texas and Alabama.

    She credited her family’s support for her ability to cope with her new surroundings.

    “I spoke to my mom almost every day on the phone — for over an hour almost every time. My dad and I talked really often too,” Chidi-Ogbolu says, adding that she spent most holidays with her aunts in America. “Talking to them definitely helped sometimes when things were overwhelming.”

    “My support system was a very big part of why I was able to stay very grounded during the whole journey,” she says.

    Her friends at Howard were very supportive of her too. Many of her them didn’t initially know how young she was, which gave rise to many moments of surprise.

    “People usually reacted with shock,” she says. “Then they became really protective.”

    With the blessings of her parents, Chidi-Ogbolu spent the summer after her junior year researching African weather patterns with Professor Paul Ullrich at UC-Davis. “While I was there, I decided that grad school was what I wanted to do.”

    She started working on her graduate school applications during her senior year. “I can’t say it was stress-free,” she jokes. Her hard work paid off on February 7, when she received her acceptance letter from UC-Davis.

    “It was definitely a wonderful moment,” she says.

    Prasant Mohapatra, UC Davis vice provost of graduate education, and dean of graduate studies, had this to say about Chidi-Ogbolu: “We are delighted to welcome Nkechinyere into the graduate education community at UC Davis. We hope to provide a dynamic educational experience that will deepen and expand her passion for advancing the field of biomedical engineering, and we are truly impressed by her future plans to help people worldwide through scientific research and innovation.”

    What’s next for her? This summer, she’s taking an advanced biology class at a local community college to prepare for her doctoral program. She’s also working on a book, provisionally titled Tales of an Uber Minor in College.

    While she says she’s super busy, she does set aside free time to relax. “I love watching movies and series, especially Korean ones, and I like to sing and do karaoke,” she says.

    Chidi-Ogbolu also has some advice for teens her age.

    “Don’t limit yourself because you think you can’t do it or because no one you know had done it,” she advises. “You can always be the exception to the rule and end up being exceptional.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UC Davis Campus

    The University of California, Davis, is a major public research university located in Davis, California, just west of Sacramento. It encompasses 5,300 acres of land, making it the second largest UC campus in terms of land ownership, after UC Merced.

  • richardmitnick 4:26 pm on April 17, 2017 Permalink | Reply
    Tags: , , Pattern Discovery over Pattern Recognition: A New Way for Computers to See, UC Davis   

    From UC Davis: “Pattern Discovery over Pattern Recognition: A New Way for Computers to See” 

    UC Davis bloc

    UC Davis

    April 17th, 2017
    Andy Fell

    Jim Crutchfield wants to teach a machine to “see” in a new way, discovering patterns that evolve over time instead of recognizing patterns based on a stored template.

    It sounds like an easy task – after all, any animal with basic vision can see a moving object, decide whether it is food or a threat and react accordingly, but what comes easily to a scallop is a challenge for the world’s biggest supercomputers.

    Crutchfield, along with physics graduate student Adam Rupe and postdoc Ryan James, is designing these new machine learning systems to allow supercomputers to spot large-scale atmospheric structures, such as hurricanes and atmospheric rivers, in climate data. The UC Davis Complexity Sciences Center, which Crutchfield leads, was recently named as an Intel Parallel Computing Center and is collaborating with Intel Research, the Department of Energy’s National Energy Research Scientific Computing Center (NERSC) at the Lawrence Berkeley Lab, Stanford University, and University of Montreal. The entire Big Data Center project is led by Prabhat, leader of the Data And Analytics Services Group at the Berkeley lab.

    The team works on NERSC’s CORI II supercomputer, in the top five of the world’s fastest machines with over 600,000 CPU cores.

    NERSC CRAY Cori II supercomputer

    Modern science is full of “big data.” For climate science, that includes both satellite- and ground-based measurements that span the planet, as well as “big” simulations.

    “We need new kind of machine learning to interpret very large data and planet-wide simulations,” Crutchfield said. Climate and weather systems evolve over time, so the machines need to be able to find patterns not only in space but over time.

    UC Davis researchers plan to develop new tools so supercomputers can detect patterns in global climate simulations (NERSC/LBNL)

    “Dynamics are key to this,” Crutchfield said. Humans (and other visual animals) recognize dynamic changes very quickly, but it’s much harder for machines.

    Pattern Discovery is more than Pattern Recognition

    With existing technology, computers recognize patterns based on an existing template. That’s how voice recognition systems work, by comparing your voice to an existing catalog of sounds. These pattern recognition systems can be very useful but they can’t identify anything truly new – that isn’t represented in their template.

    Crutchfield and his team are taking a different approach, based on pattern discovery. They are working on algorithms that allow computers to identify structures in data without knowing what they are in advance.

    “Learning novel patterns is what humans are uniquely good at, but machines can’t do it,” he said.

    Using pattern discovery, a supercomputer would learn how to identify hurricanes or other features in climate and weather data. It might also identify new kinds of structures that are too complex for humans to perceive at all.

    While this application is in global climate modeling, Crutchfield hopes to make it a new paradigm for analyzing very large datasets.

    “Usually, you apply known models to interpret the data. To say that you will extract your model directly from the data is a radical claim,” he said.

    The collaboration is part of the Intel Parallel Computing Centers program, which provides funding to universities, institutions, and research labs to modernize key community codes used across a wide range of disciplines to run on industry-standard parallel architectures.

    More information

    Video: Global simulation of atmospheric water vapor produced by CORI supercomputer at NERSC

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    UC Davis Campus

    The University of California, Davis, is a major public research university located in Davis, California, just west of Sacramento. It encompasses 5,300 acres of land, making it the second largest UC campus in terms of land ownership, after UC Merced.

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: