Tagged: U Washington Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 2:28 pm on January 12, 2019 Permalink | Reply
    Tags: Astronomers find signatures of a ‘messy’ star that made its companion go supernova, , , , , , It takes many astronomers and a wide variety of types of telescopes working together to understand transient cosmic phenomena, , SN 2015cp, , U Washington,   

    From University of Washington: “Astronomers find signatures of a ‘messy’ star that made its companion go supernova” 

    U Washington

    From University of Washington

    January 10, 2019
    James Urton

    1
    An X-ray/infrared composite image of G299, a Type Ia supernova remnant in the Milky Way Galaxy approximately 16,000 light years away.NASA/Chandra X-ray Observatory/University of Texas/2MASS/University of Massachusetts/Caltech/NSF

    NASA/Chandra X-ray Telescope


    Caltech 2MASS Telescopes, a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center (IPAC) at Caltech, at the Whipple Observatory on Mt. Hopkins south of Tucson, AZ, Altitude 2,606 m (8,550 ft) and at the Cerro Tololo Inter-American Observatory at an altitude of 2200 meters near La Serena, Chile.

    Many stars explode as luminous supernovae when, swollen with age, they run out of fuel for nuclear fusion. But some stars can go supernova simply because they have a close and pesky companion star that, one day, perturbs its partner so much that it explodes.

    These latter events can happen in binary star systems, where two stars attempt to share dominion. While the exploding star gives off lots of evidence about its identity, astronomers must engage in detective work to learn about the errant companion that triggered the explosion.

    On Jan. 10 at the 2019 American Astronomical Society meeting in Seattle, an international team of astronomers announced that they have identified the type of companion star that made its partner in a binary system, a carbon-oxygen white dwarf star, explode. Through repeated observations of SN 2015cp, a supernova 545 million light years away, the team detected hydrogen-rich debris that the companion star had shed prior to the explosion.

    “The presence of debris means that the companion was either a red giant star or similar star that, prior to making its companion go supernova, had shed large amounts of material,” said University of Washington astronomer Melissa Graham, who presented the discovery and is lead author on the accompanying paper accepted for publication in The Astrophysical Journal.

    The supernova material smacked into this stellar litter at 10 percent the speed of light, causing it to glow with ultraviolet light that was detected by the Hubble Space Telescope and other observatories nearly two years after the initial explosion. By looking for evidence of debris impacts months or years after a supernova in a binary star system, the team believes that astronomers could determine whether the companion had been a messy red giant or a relatively neat and tidy star.

    The team made this discovery as part of a wider study of a particular type of supernova known as a Type Ia supernova. These occur when a carbon-oxygen white dwarf star explodes suddenly due to activity of a binary companion. Carbon-oxygen white dwarfs are small, dense and — for stars — quite stable. They form from the collapsed cores of larger stars and, if left undisturbed, can persist for billions of years.

    Type Ia supernovae have been used for cosmological studies because their consistent luminosity makes them ideal “cosmic lighthouses,” according to Graham. They’ve been used to estimate the expansion rate of the universe and served as indirect evidence for the existence of dark energy.

    2
    An image of SN 1994D (lower left), a Type Ia supernova detected in 1994 at the edge of galaxy NGC 4526 (center).NASA/ESA/The Hubble Key Project Team/The High-Z Supernova Search Team.

    NASA/ESA Hubble Telescope

    Yet scientists are not certain what kinds of companion stars could trigger a Type Ia event. Plenty of evidence indicates that, for most Type Ia supernovae, the companion was likely another carbon-oxygen white dwarf, which would leave no hydrogen-rich debris in the aftermath. Yet theoretical models have shown that stars like red giants could also trigger a Type Ia supernova, which could leave hydrogen-rich debris that would be hit by the explosion. Out of the thousands of Type Ia supernovae studied to date, only a small fraction were later observed impacting hydrogen-rich material shed by a companion star. Prior observations of at least two Type Ia supernovae detected glowing debris months after the explosion. But scientists weren’t sure if those events were isolated occurrences, or signs that Type Ia supernovae could have many different kinds of companion stars.

    “All of the science to date that has been done using Type Ia supernovae, including research on dark energy and the expansion of the universe, rests on the assumption that we know reasonably well what these ‘cosmic lighthouses’ are and how they work,” said Graham. “It is very important to understand how these events are triggered, and whether only a subset of Type Ia events should be used for certain cosmology studies.”

    The team used Hubble Space Telescope observations to look for ultraviolet emissions from 70 Type Ia supernovae approximately one to three years following the initial explosion.

    “By looking years after the initial event, we were searching for signs of shocked material that contained hydrogen, which would indicate that the companion was something other than another carbon-oxygen white dwarf,” said Graham.

    In the case of SN 2015cp, a supernova first detected in 2015, the scientists found what they were searching for. In 2017, 686 days after the supernova exploded, Hubble picked up an ultraviolet glow of debris. This debris was far from the supernova source — at least 100 billion kilometers, or 62 billion miles, away. For reference, Pluto’s orbit takes it a maximum of 7.4 billion kilometers from our sun.

    3
    In 2017, 686 days after the initial explosion, the Hubble Space Telescope recorded an ultraviolet emission (blue circle) from SN 2015cp, which was caused by supernova material impacting hydrogen-rich material previously shed by a companion star. Yellow circles indicate cosmic ray strikes, which are unrelated to the supernova. NASA/Hubble Space Telescope/Graham et al. 2019.

    By comparing SN 2015cp to the other Type Ia supernovae in their survey, the researchers estimate that no more than 6 percent of Type Ia supernovae have such a litterbug companion. Repeated, detailed observations of other Type Ia events would help cement these estimates, Graham said.

    The Hubble Space Telescope was essential for detecting the ultraviolet signature of the companion star’s debris for SN 2015cp. In the fall of 2017, the researchers arranged for additional observations of SN 2015cp by the W.M. Keck Observatory in Hawaii, the Karl G. Jansky Very Large Array in New Mexico, the European Southern Observatory’s Very Large Telescope and NASA’s Neil Gehrels Swift Observatory, among others. These data proved crucial in confirming the presence of hydrogen and are presented in a companion paper lead by Chelsea Harris, a research associate at Michigan State University.

    Keck Observatory, Maunakea, Hawaii, USA.4,207 m (13,802 ft), above sea level,

    NRAO/Karl V Jansky Expanded Very Large Array, on the Plains of San Agustin fifty miles west of Socorro, NM, USA, at an elevation of 6970 ft (2124 m)

    ESO VLT at Cerro Paranal in the Atacama Desert, •ANTU (UT1; The Sun ),
    •KUEYEN (UT2; The Moon ),
    •MELIPAL (UT3; The Southern Cross ), and
    •YEPUN (UT4; Venus – as evening star).
    elevation 2,635 m (8,645 ft) from above Credit J.L. Dauvergne & G. Hüdepohl atacama photo, with an elevation of 2,635 metres (8,645 ft) above sea level,

    NASA Neil Gehrels Swift Observatory

    “The discovery and follow-up of SN 2015cp’s emission really demonstrates how it takes many astronomers, and a wide variety of types of telescopes, working together to understand transient cosmic phenomena,” said Graham. “It is also a perfect example of the role of serendipity in astronomical studies: If Hubble had looked at SN 2015cp just a month or two later, we wouldn’t have seen anything.”

    Graham is also a senior fellow with the UW’s DIRAC Institute and a science analyst with the Large Synoptic Survey Telescope, or LSST.

    LSST telescope, currently under construction at Cerro Pachón Chile, a 2,682-meter-high mountain in Coquimbo Region, in northern Chile, alongside the existing Gemini South and Southern Astrophysical Research Telescopes, altitude 2,663 m (8,737 ft),

    “In the future, as a part of its regularly scheduled observations, the LSST will automatically detect optical emissions similar to SN 2015cp — from hydrogen impacted by material from Type Ia supernovae,” said Graham said. “It’s going to make my job so much easier!”

    Co-authors are Harris; Peter Nugent at the University of California, Berkeley and the Lawrence Berkeley National Laboratory; Kate Maguire at Queen’s University Belfast; Mark Sullivan and Mathew Smith at the University of Southampton; Stefano Valenti at the University of California, Davis; Ariel Goobar at Stockholm University; Ori Fox at the Space Telescope Science Institute; Ken Shen, Tom Brink and Alex Filippenko at the University of California, Berkeley; Patrick Kelly at the University of Minnesota; and Curtis McCully at the University of California, Santa Barbara and the Las Cumbres Observatory. The research was funded by the National Science Foundation, NASA, the European Research Council and the U.K.’s Science and Technology Facilities Council.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    u-washington-campus
    The University of Washington is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.
    So what defines us —the students, faculty and community members at the University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

    Advertisements
     
  • richardmitnick 10:03 am on December 26, 2018 Permalink | Reply
    Tags: Ocean acidification is changing the water’s chemistry and lowering its pH, Salmon may lose the ability to smell danger as carbon emissions rise, U Washington   

    From University of Washington: “Salmon may lose the ability to smell danger as carbon emissions rise” 

    U Washington

    From University of Washington

    December 18, 2018 [First appearance in social media.]
    Michelle Ma

    1
    Coho salmon spawning on the Salmon River in northwestern Oregon. Bureau of Land Management

    The ability to smell is critical for salmon. They depend on scent to avoid predators, sniff out prey and find their way home at the end of their lives when they return to the streams where they hatched to spawn and die.

    New research from the University of Washington and NOAA Fisheries’ Northwest Fisheries Science Center shows this powerful sense of smell might be in trouble as carbon emissions continue to be absorbed by our ocean.

    Ocean acidification is changing the water’s chemistry and lowering its pH. Specifically, higher levels of carbon dioxide, or CO2, in the water can affect the ways in which coho salmon process and respond to smells.

    2
    A school of juvenile coho salmon. Alaska Sea Grant

    “Salmon famously use their nose for so many important aspects of their life, from navigation and finding food to detecting predators and reproducing. So it was important for us to know if salmon would be impacted by future carbon dioxide conditions in the marine environment,” said lead author Chase Williams, a postdoctoral researcher in Evan Gallagher‘s lab at the UW Department of Environmental and Occupational Health Sciences in the School of Public Health.

    The study, published Dec. 18 in the journal Global Change Biology, is the first to show that ocean acidification affects coho salmons’ sense of smell. The study also takes a more comprehensive approach than earlier work with marine fish by looking at where in the sensory-neural system the ability to smell erodes for fish, and how that loss of smell changes their behavior.

    “Our studies and research from other groups have shown that exposure to pollutants can also interfere with sense of smell for salmon,” said Gallagher, senior co-author and a UW professor of toxicology. “Now, salmon are potentially facing a one-two punch from exposure to pollutants and the added burden of rising CO2. These have implications for the long-term survival of our salmon.”

    The research team wanted to test how juvenile coho salmon that normally depend on their sense of smell to alert them to predators and other dangers display a fear response with increasing carbon dioxide. Puget Sound’s waters are expected to absorb more CO2 as atmospheric carbon dioxide increases, contributing to ocean acidification.

    3
    Researcher Chase Williams takes water samples to measure the pH in the tanks used in the study’s experiments. University of Washington.

    In the NOAA Fisheries research lab in Mukilteo, the research team set up tanks of saltwater with three different pH levels: today’s current average Puget Sound pH, the predicted average 50 years from now, and the predicted average 100 years in the future. They exposed juvenile coho salmon to these three different pH levels for two weeks.

    After two weeks, the team ran a series of behavioral and neural tests to see whether the fishes’ sense of smell was affected. Fish were placed in a holding tank and exposed to the smell of salmon skin extract, which indicates a predator attack and usually prompts the fish to hide or swim away. Fish that were in water with current CO2 levels responded normally to the offending odor, but the fish from tanks with higher CO2 levels didn’t seem to mind or detect the smell.


    In the behavioral tests shown in this video, juvenile salmon in two separate tanks were exposed to an odor that would normally prompt a fear response. In the first clip, fish smell the odor coming from the left side of each tank, and avoid or swim away from the smell. In the second clip, fish have been exposed to higher levels of CO2, which has impaired their sense of smell. The fish don’t react to the odor once it is introduced to both tanks, suggesting their ability to smell has been altered.

    After the behavioral tests, neural activity in each fish’s nose and brain — specifically, in the olfactory bulb where information about smells is processed — was measured to see where the sense of smell was altered. Neuron signaling in the nose was normal under all CO2 conditions, meaning the fish likely could still smell the odors. But when they analyzed neuron behavior in the olfactory bulb, they saw that processing was altered — suggesting the fish couldn’t translate the smell into an appropriate behavioral response.

    Finally, the researchers analyzed tissue from the noses and olfactory bulbs of fish to see if gene expression also changed. Gene expression pathways were found to be altered for fish that were exposed to higher levels of CO2, particularly in their olfactory bulbs.

    “At the nose level, we think the neurons are still detecting odors, but when the signals are processed in the brain, that’s where the messages are potentially getting altered,” Williams said.

    In the wild, the fish likely would become more and more indifferent to scents that signify a predator, Williams said, either by taking longer to react to the smell or by not swimming away at all. While this study looked specifically at how altered sense of smell could affect fishes’ response to danger, it’s likely that other critical behaviors that depend on smell such as navigation, reproduction and hunting for food would also take a hit if fish aren’t able to adequately process smells.

    The researchers plan to look next at whether increased CO2 levels could affect other fish species in similar ways, or alter other senses in addition to smell. Given the cultural and ecological significance of salmon, the researchers hope these findings will prompt action.

    “We’re hoping this will alert people to some of the potential consequences of elevated carbon emissions,” said senior co-author Andy Dittman, a research biologist at the Northwest Fisheries Science Center. “Salmon are so iconic in this area. Ocean acidification and climate change are abstract things until you start talking about an animal that means a lot to people.”

    Other co-authors are Paul McElhany, Shallin Busch and Michael Maher of the Northwest Fisheries Science Center; and Theo Bammler and James MacDonald of the UW Department of Environmental and Occupational Health Sciences.

    This study was funded by Washington Sea Grant and the Washington Ocean Acidification Center, with additional support from the UW Superfund Research Program, the NOAA Ocean Acidification Program and the Northwest Fisheries Science Center.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    u-washington-campus
    The University of Washington is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.
    So what defines us —the students, faculty and community members at the University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

     
  • richardmitnick 10:48 am on December 21, 2018 Permalink | Reply
    Tags: AMP-Adaptable Monitoring Package, , , R/V Light, U Washington   

    From University of Washington: “Underwater sensors for monitoring sea life (and where to find them)” 

    U Washington

    From University of Washington

    December 13, 2018
    Sarah McQuate

    1
    Paul Gibbs, a mechanical engineer at the UW’s Applied Physics Laboratory, inspects the newest Adaptable Monitoring Package, or AMP, before a test in a saltwater pool. AMPs host a series of sensors that allow researchers to continuously monitor animals underwater.Kiyomi Taguchi/University of Washington

    Harvesting power from the ocean, through spinning underwater turbines or bobbing wave-energy converters, is an emerging frontier in renewable energy.

    Researchers have been monitoring how these systems will affect fish and other critters that swim by. But with most available technology, scientists can get only occasional glimpses of what’s going on below.

    So a team at the University of Washington created a mechanical eye under the ocean’s surface, called an Adaptable Monitoring Package, or AMP, that could live near renewable-energy sites and use a series of sensors to continuously watch nearby animals. On Dec. 13, the researchers put the newest version of the AMP into the waters of Seattle’s Portage Bay for two weeks of preliminary testing before a more thorough analysis is conducted in Sequim, Washington.

    “The big-picture goal of the AMP when it started was to try to collect the environmental data necessary to tell what the risks of marine energy were,” said Brian Polagye, a UW associate professor of mechanical engineering and the director of the Pacific Marine Energy Center, a research collaboration between the UW, Oregon State University and the University of Alaska Fairbanks. “But we ended up with a system that can do so much more. It’s more of an oceanographic Universal Serial Bus. This is a backbone, and you can plug whatever sensors you want into it.”

    2
    3
    Paul Gibbs and mechanical engineering doctoral student Emma Cotter watch the newest AMP during a preliminary test in a saltwater pool. Credit: Kiyomi Taguchi/University of Washington

    The newest member of the AMP family has the biggest variety of sensors yet, including an echosounder, which uses sonar to detect schools of fish. It also will contain the standard set of instruments that all previous AMPs have supported, including a stereo camera to collect photos and video, a sonar system, hydrophones to hear marine mammal activity and sensors to gauge water quality and speed. This new system also does more processing in real time than its predecessors.

    “We want the computer to not just collect data, but actually distinguish what it sees,” said Emma Cotter, a UW doctoral student in mechanical engineering. “For example, we’d like to program it to automatically save images if sea turtles swim by the AMP.”

    This new AMP will get its first taste of life outside while hanging off the UW Applied Physics Laboratory‘s research dock. That way, the team can check all the sensors for any potential problems before the AMP goes to the Marine Sciences Laboratory in Sequim for a suite of tests.

    “We’re going to be looking at quite a few different questions in Sequim,” Cotter said. “First we’ll look at how well we can track and detect fish. Then once a small tidal turbine is deployed, we’ll be monitoring that. Will we be able to discriminate targets close to it or detect animals interacting with the turbine?”

    4
    The wave-powered AMP (top left) after nearly two months of operation at the Wave Energy Test Site in Hawaii.University of Washington

    The team also has developed additional AMPs that are more specific to other types of oceanographic research. Since early October, an AMP has been surveying sea life off the coast of Hawaii while riding aboard a yellow metal ring, called the BOLT Lifesaver, through a partnership with the Navy, the U.S. Department of Energy, University of Hawaii and the company Fred. Olsen.

    “They were interested in what happens if whales and sea turtles encounter the mooring lines that connect the Lifesaver to the seabed,” Cotter said. “The best way to answer that question is with an AMP.”

    The Lifesaver is a wave-energy converter — a device that converts the bobbing of waves into electricity — that powers this AMP. And for the days when the sea is calm, the team powers the AMP from a battery.

    “This is the first example of using wave energy to power oceanographic sensors,” Polagye said. “Previously people have collected wave energy and sent it back to shore. But this AMP is completely self-reliant. Marine energy is not just coming in the far future. It’s happening right now.”

    The research group is also working on a vessel-based version of the AMP, which will ride aboard APL’s newest research vessel, the R/V Light.

    6
    R/V Light

    The team plans to test tidal turbines on the boat, so the vessel-based AMP will let the researchers see if anything happens to fish that are close by.

    Now the team hopes to commercialize the AMP platform through a UW spinout company called MarineSitu. That way people can purchase AMPs with sensor packages that are specific to their research goals.

    Other members of the AMP team include Andy Stewart, assistant director of defense and industry programs at APL; Robert Cavagnaro, Paul Gibbs and James Joslin, mechanical engineers at APL; and Paul Murphy and Corey Crisp, research engineers in the UW mechanical engineering department. This research was funded by the Naval Facilities Engineering Command Engineering and Expeditionary Warfare Center and the U.S. DOE Water Power Technologies Office. Emma Cotter is supported by a National Science Foundation Graduate Research Fellowship.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    u-washington-campus
    The University of Washington is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.
    So what defines us —the students, faculty and community members at the University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

     
  • richardmitnick 10:52 am on December 19, 2018 Permalink | Reply
    Tags: Early data suggest that Antarctica’s Dotson ice shelf has lost more than 390 feet (120 meters) in thickness since 2003, , Measuring the height of sea ice to within an inch, NASA ICEsat-2, U Washington   

    From University of Washington: “UW glaciologist gets first look at NASA’s new measurements of ice sheet elevation” 

    U Washington

    From University of Washington

    December 14, 2018
    Hannah Hickey

    1
    The horizontal blue line is the travel path for ICESat-2. The lower line shows some of its first measurements. This satellite can capture steep terrain and measure elevation much more precisely than its predecessor. NASA’s Earth Observatory/Joshua Stevens

    Less than three months into its mission, NASA’s Ice, Cloud and land Elevation Satellite-2, or ICESat-2, is already exceeding scientists’ expectations, according to the space agency.

    NASA ICEsat-2

    The satellite is measuring the height of sea ice to within an inch, tracing the terrain of previously unmapped Antarctic valleys and measuring other interesting features in our planet’s elevation.

    Benjamin Smith, a glaciologist with the University of Washington and member of the ICESat-2 science team, shared the first look at the satellite’s performance at the American Geophysical Union’s annual meeting Dec. 11 in Washington, D.C.

    Mountain valleys “have been really difficult targets for altimeters in the past, which have often used radar instead of lasers and they tend to show you just a big lump where the mountains are,” Smith told the BBC. “But we can see very steeply sloping surfaces; we can see valley glaciers; we’ll be able to make out very small details.”

    With each pass of the ICESat-2 satellite, the mission is adding to the data sets that track Earth’s rapidly changing ice. Researchers are ready to use the information to study sea level rise resulting from melting ice sheets and glaciers, and to improve sea ice and climate forecasts.

    In topographic maps of the Transantarctic Mountains, which divide east and west Antarctica, there are places where other satellites cannot see, Smith said. Some instruments don’t orbit that far south, while others only pick up large features or the highest points and so miss minor peaks and valleys. Since launching ICESat-2, in the past three months scientists have started to fill in those details.

    “It’s spectacular terrain,” Smith said. “We’re able to measure slopes that are steeper than 45 degrees, and maybe even more, all through this mountain range.”

    As ICESat-2 orbits over Antarctica, the photons reflect from the surface and show high ice plateaus, crevasses in the ice 65 feet (20 meters) deep, and the sharp edges of ice shelves dropping into the ocean. These first measurements can help fill in the gaps of Antarctic maps, Smith said, but the key science of the ICESat-2 mission is yet to come. As researchers refine knowledge of where the instrument is pointing, they can start to measure the rise or fall of ice sheets and glaciers.

    Early data suggest that Antarctica’s Dotson ice shelf has lost more than 390 feet (120 meters) in thickness since 2003, Smith told the Associated Press.

    “Very soon, we’ll have measurements that we can compare to older measurements of surface elevation,” Smith said. “And after the satellite’s been up for a year, we’ll start to be able to watch the ice sheets change over the seasons.”

    Mission managers expect to release the data to the public in early 2019.

    The first ICESat satellite operated between 2003 and 2009. The more sophisticated ICESat-2 launched Sept. 15, 2018, from Vandenberg Air Force Base in California. Its laser instrument, called ATLAS (Advanced Topographic Laser Altimeter System), sends pulses of light to Earth. The instrument then times, to within a billionth of a second, how long it takes individual photons to return to the satellite. ATLAS has fired its laser more than 50 billion times since going live Sept. 30, and all the metrics from the instrument show it is working as it should, NASA scientists say. IceBridge, an aircraft-based NASA campaign, operated between the two satellite missions.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    u-washington-campus
    The University of Washington is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.
    So what defines us —the students, faculty and community members at the University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

     
  • richardmitnick 11:37 am on December 9, 2018 Permalink | Reply
    Tags: , Nucleation, Pacific Northwest National Laboratory, Two-dimensional materials skip the energy barrier by growing one row at a time, U Washington, University of California Los Angeles   

    From University of Washington: “Two-dimensional materials skip the energy barrier by growing one row at a time” 

    U Washington

    From University of Washington

    December 6, 2018

    1
    The peptides in this highly ordered two-dimensional array avoid the expected nucleation barrier by assembling in a row-by-row fashion. PNNL

    A new collaborative study led by a research team at the Department of Energy’s Pacific Northwest National Laboratory, University of California, Los Angeles and the University of Washington could provide engineers new design rules for creating microelectronics, membranes and tissues, and open up better production methods for new materials. At the same time, the research, published online Dec. 6 in the journal Science, helps uphold a scientific theory that has remained unproven for over a century.

    Just as children follow a rule to line up single file after recess, some materials use an underlying rule to assemble on surfaces one row at a time, according to the study.

    Nucleation — that first formation step — is pervasive in ordered structures across nature and technology, from cloud droplets to rock candy. Yet despite some predictions made in the 1870s by the American scientist J. Willard Gibbs, researchers are still debating how this basic process happens.

    The new study verifies Gibbs’ theory for materials that form row by row. Led by UW graduate student Jiajun Chen, working at PNNL, the research uncovers the underlying mechanism, which fills in a fundamental knowledge gap and opens new pathways in materials science.

    Chen used small protein fragments called peptides that show specificity, or unique belonging, to a material surface. The UCLA collaborators have been identifying and using such material-specific peptides as control agents to force nanomaterials to grow into certain shapes, such as those desired in catalytic reactions or semiconductor devices. The research team made the discovery while investigating how a particular peptide — one with a strong binding affinity for molybdenum disulfide — interacts with the material.

    “It was complete serendipity,” said PNNL materials scientist James De Yoreo, co-corresponding author of the paper and Chen’s doctoral advisor. “We didn’t expect the peptides to assemble into their own highly ordered structures.”

    That may have happened because “this peptide was identified from a molecular evolution process,” adds co-corresponding author Yu Huang, a professor of materials science and engineering at UCLA. “It appears nature does find its way to minimize energy consumption and to work wonders.”

    The transformation of liquid water into solid ice requires the creation of a solid-liquid interface. According to Gibbs’ classical nucleation theory, although turning the water into ice saves energy, creating the interface costs energy. The tricky part is the initial start — that’s when the surface area of the new particle of ice is large compared to its volume, so it costs more energy to make an ice particle than is saved.

    Gibbs’ theory predicts that if the materials can grow in one dimension, meaning row by row, no such energy penalty would exist. Then the materials can avoid what scientists call the nucleation barrier and are free to self-assemble.

    There has been recent controversy over the theory of nucleation. Some researchers have found evidence that the fundamental process is actually more complex than that proposed in Gibbs’ model.

    But “this study shows there are certainly cases where Gibbs’ theory works well,” said De Yoreo, who is also a UW affiliate professor of both chemistry and materials science and engineering.

    Previous studies had already shown that some organic molecules, including peptides like the ones in the Science paper, can self-assemble on surfaces. But at PNNL, De Yoreo and his team dug deeper and found a way to understand how molecular interactions with materials impact their nucleation and growth.

    They exposed the peptide solution to fresh surfaces of a molybdenum disulfide substrate, measuring the interactions with atomic force microscopy. Then they compared the measurements with molecular dynamics simulations.

    De Yoreo and his team determined that even in the earliest stages, the peptides bound to the material one row at a time, barrier-free, just as Gibbs’ theory predicts.

    The atomic force microscopy’s high-imaging speed allowed the researchers to see the rows just as they were forming. The results showed the rows were ordered right from the start and grew at the same speed regardless of their size — a key piece of evidence. They also formed new rows as soon as enough peptide was in the solution for existing rows to grow; that would only happen if row formation is barrier-free.

    This row-by-row process provides clues for the design of 2D materials. Currently, to form certain shapes, designers sometimes need to put systems far out of equilibrium, or balance. That is difficult to control, said De Yoreo.

    “But in 1D, the difficulty of getting things to form in an ordered structure goes away,” De Yoreo added. “Then you can operate right near equilibrium and still grow these structures without losing control of the system.”

    It could change assembly pathways for those engineering microelectronics or even bodily tissues.

    Huang’s team at UCLA has demonstrated new opportunities for devices based on 2D materials assembled through interactions in solution. But she said the current manual processes used to construct such materials have limitations, including scale-up capabilities.

    “Now with the new understanding, we can start to exploit the specific interactions between molecules and 2D materials for automatous assembly processes,” said Huang.

    The next step, said De Yoreo, is to make artificial molecules that have the same properties as the peptides studied in the new paper — only more robust.

    At PNNL, De Yoreo and his team are looking at stable peptoids, which are as easy to synthesize as peptides but can better handle the temperatures and chemicals used in the processes to construct the desired materials.

    Co-authors are Enbo Zhu, Zhaoyang Lin and Xiangfeng Duan at UCLA; Juan Liu and Hendrik Heinz at the University of Colorado, Boulder; and Shuai Zhang at PNNL. Simulations were performed using the Argonne Leadership Computing Facility, a Department of Energy Office of Science user facility. The research was funded by the National Science Foundation and the Department of Energy.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    u-washington-campus
    The University of Washington is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.
    So what defines us —the students, faculty and community members at the University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

     
  • richardmitnick 10:21 am on November 28, 2018 Permalink | Reply
    Tags: , , , , The team found that all seven of the Trappist-1 worlds may have evolved like Venus, , U Washington   

    From University of Washington: “Study brings new climate models of small star TRAPPIST 1’s seven intriguing worlds” 

    U Washington

    From University of Washington

    November 20, 2018
    Peter Kelley

    Not all stars are like the sun, so not all planetary systems can be studied with the same expectations. New research from a University of Washington-led team of astronomers gives updated climate models for the seven planets around the star TRAPPIST-1.

    1
    The small, cool M dwarf star TRAPPIST-1 and its seven worlds. New research from the University of Washington speculates on possible climates of these worlds and how they may have evolved.NASA

    The work also could help astronomers more effectively study planets around stars unlike our sun, and better use the limited, expensive resources of the James Webb Space Telescope, now expected to launch in 2021.

    “We are modeling unfamiliar atmospheres, not just assuming that the things we see in the solar system will look the same way around another star,” said Andrew Lincowski, UW doctoral student and lead author of a paper published Nov. 1 in The Astrophysical Journal. “We conducted this research to show what these different types of atmospheres could look like.”

    The team found, briefly put, that due to an extremely hot, bright early stellar phase, all seven of the star’s worlds may have evolved like Venus, with any early oceans they may have had evaporating and leaving dense, uninhabitable atmospheres. However, one planet, TRAPPIST-1 e, could be an Earthlike ocean world worth further study, as previous research also has indicated.

    TRAPPIST-1, 39 light-years or about 235 trillion miles away, is about as small as a star can be and still be a star. A relatively cool “M dwarf” star — the most common type in the universe — it has about 9 percent the mass of the sun and about 12 percent its radius. TRAPPIST-1 has a radius only a little bigger than the planet Jupiter, though it is much greater in mass.

    All seven of TRAPPIST-1’s planets are about the size of Earth and three of them — planets labeled e, f and g — are believed to be in its habitable zone, that swath of space around a star where a rocky planet could have liquid water on its surface, thus giving life a chance. TRAPPIST-1 d rides the inner edge of the habitable zone, while farther out, TRAPPIST-1 h, orbits just past that zone’s outer edge.

    “This is a whole sequence of planets that can give us insight into the evolution of planets, in particular around a star that’s very different from ours, with different light coming off of it,” said Lincowski. “It’s just a gold mine.”

    Previous papers have modeled TRAPPIST-1 worlds, Lincowski said, but he and this research team “tried to do the most rigorous physical modeling that we could in terms of radiation and chemistry — trying to get the physics and chemistry as right as possible.”

    The team’s radiation and chemistry models create spectral, or wavelength, signatures for each possible atmospheric gas, enabling observers to better predict where to look for such gases in exoplanet atmospheres. Lincowski said when traces of gases are actually detected by the Webb telescope, or others, some day, “astronomers will use the observed bumps and wiggles in the spectra to infer which gases are present — and compare that to work like ours to say something about the planet’s composition, environment and perhaps its evolutionary history.”

    He said people are used to thinking about the habitability of a planet around stars similar to the sun. “But M dwarf stars are very different, so you really have to think about the chemical effects on the atmosphere(s) and how that chemistry affects the climate.”

    Combining terrestrial climate modeling with photochemistry models, the researchers simulated environmental states for each of TRAPPIST-1’s worlds.

    Their modeling indicates that:

    TRAPPIST-1 b, the closest to the star, is a blazing world too hot even for clouds of sulfuric acid, as on Venus, to form.
    Planets c and d receive slightly more energy from their star than Venus and Earth do from the sun and could be Venus-like, with a dense, uninhabitable atmosphere.
    TRAPPIST-1 e is the most likely of the seven to host liquid water on a temperate surface, and would be an excellent choice for further study with habitability in mind.
    The outer planets f, g and h could be Venus-like or could be frozen, depending on how much water formed on the planet during its evolution.

    Lincowski said that in actuality, any or all of TRAPPIST-1’s planets could be Venus-like, with any water or oceans long burned away. He explained that when water evaporates from a planet’s surface, ultraviolet light from the star breaks apart the water molecules, releasing hydrogen, which is the lightest element and can escape a planet’s gravity. This could leave behind a lot of oxygen, which could remain in the atmosphere and irreversibly remove water from the planet. Such a planet may have a thick oxygen atmosphere — but not one generated by life, and different from anything yet observed.

    “This may be possible if these planets had more water initially than Earth, Venus or Mars,” he said. “If planet TRAPPIST-1 e did not lose all of its water during this phase, today it could be a water world, completely covered by a global ocean. In this case, it could have a climate similar to Earth.”

    Lincowski said this research was done more with an eye on climate evolution than to judge the planets’ habitability. He plans future research focusing more directly on modeling water planets and their chances for life.

    “Before we knew of this planetary system, estimates for the detectability of atmospheres for Earth-sized planets were looking much more difficult,” said co-author Jacob Lustig-Yaeger, a UW astronomy doctoral student.

    The star being so small, he said, will make the signatures of gases (like carbon dioxide) in the planet’s atmospheres more pronounced in telescope data.

    “Our work informs the scientific community of what we might expect to see for the TRAPPIST-1 planets with the upcoming James Webb Space Telescope.”

    Lincowski’s other UW co-author is Victoria Meadows, professor of astronomy and director of the UW’s Astrobiology Program. Meadows is also principal investigator for the NASA Astrobiology Institute’s Virtual Planetary Laboratory, based at the UW. All of the authors were affiliates of that research laboratory.

    “The processes that shape the evolution of a terrestrial planet are critical to whether or not it can be habitable, as well as our ability to interpret possible signs of life,” Meadows said. “This paper suggests that we may soon be able to search for potentially detectable signs of these processes on alien worlds.”

    TRAPPIST-1, in the Aquarius constellation, is named after the ground-based Transiting Planets and Planetesimals Small Telescope, the facility that first found evidence of planets around it in 2015.

    ESO Belgian robotic Trappist National Telescope at Cerro La Silla, Chile


    ESO Belgian robotic Trappist-South National Telescope at Cerro La Silla, Chile, 600 km north of Santiago de Chile at an altitude of 2400 metres.

    Other co-authors are David Crisp of the Jet Propulsion Laboratory at the California Institute of Technology; Tyler Robinson of Northern Arizona University; Rodrigo Luger of the Flatiron Institute in New York City; and Giada Arney of the NASA/Goddard Space Flight Center in Greenbelt, Maryland. Robinson, Luger and Arney earned their doctoral degrees from the UW and were members of the UW Astrobiology Program.

    The team used storage and networking infrastructure provided by the Hyak supercomputer system at the UW, funded by the UW’s Student Technology Fee. The research was funded by the NASA Astrobiology Institute; Lincowski also received support from NASA under its Earth and Space Science Fellowship Program. The work benefited from researchers’ participation in the NASA Nexus for Exoplanet System Science (NExSS) research coordination network.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    u-washington-campus
    The University of Washington is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.
    So what defines us —the students, faculty and community members at the University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

     
  • richardmitnick 1:54 pm on November 9, 2018 Permalink | Reply
    Tags: Cabled Array Hackweek, Cabled Array-Ocean Observatories Initiative, Hacking the ocean, Internet of the ocean, Oceanhackweek, Scientists unravel the ocean’s mysteries with cloud computing data science skills and a sea of data, U Washington, Unlocking The World Ocean could help us better predict earthquakes volcanic eruptions and tsunamis; discover new sources for energy; protect marine biodiversity and ecosystems; and understand the impa   

    From University of Washington: “Internet of the ocean” 

    U Washington

    From University of Washington

    Scientists unravel the ocean’s mysteries with cloud computing, data science skills and a sea of data.

    11.8.18
    Elizabeth Sharpe


    This octopus lives nearly a mile deep on an active volcano in the ocean. High-definition cameras on the Ocean Observatories Initiative Cabled Array can provide high-resolution images of life deep in the ocean. Video credit: Nancy Penrose/UW; V05

    The internet of the ocean. That’s how UW oceanography professor Deborah Kelley describes the cabled suite of instruments tracking the inner workings of the ocean and streaming real-time, nonstop data to shore at the speed of light.

    1
    Deborah Kelley
    Director of the Cabled Array and UW Oceanography Professor

    Running along the seafloor down to 10,000 feet deep, the fiber-optic cables span the Juan de Fuca Plate, the farthest site 300 miles from the coast of Oregon, carrying countless rows and columns of numerical values, packets of video and sound recordings on a bandwidth of up to 10 gigabits per second.

    Called the Cabled Array, it is part of the National Science Foundation’s Ocean Observatories Initiative (OOI), a system of integrated, scientific platforms and interactive sensors providing scientists the capability — through unprecedented access to physical, chemical, geological and biological data — to address critical issues that affect the relationship between the ocean and the Earth.

    “We’ve never had the technology in the ocean before to get these precise measurements and this level of spatial and temporal resolution in the data,” said Kelley, who is also director of the OOI Cabled Array.

    All of the data are freely and publicly available. But the sheer volume and immense complexity of the data are major challenges, she adds. “We can’t use Excel. All the files are too large,” she said. “How do we visualize the data streaming in from more than 140 instruments in meaningful ways, to explore and understand the kinds of questions we’re looking at?”

    For Kelley and other oceanographers, the stakes could not be higher.

    The World Ocean is our planet’s life support system. It covers three-quarters of our world, supplies 80 percent of the oxygen, stores 50 times more carbon dioxide than the atmosphere, regulates our climate, supports a diversity of species, and produces energy, food, medicine and other resources crucial to sustaining life on Earth.

    Unlocking its mysteries could help us better predict earthquakes, volcanic eruptions and tsunamis; discover new sources for energy; protect marine biodiversity and ecosystems; and understand the impacts of climate change and how to mitigate or adapt to the changes already underway.

    That’s why oceanographers teamed up with data and research computing experts to organize a unique event at the University of Washington in late August 2018 to help ocean scientists learn the computational tools, techniques, data management and analytical skills needed to handle this massive amount of data.

    Hacking the ocean

    “Without data science methodologies and computational tools, scientists are at a disadvantage when it comes to making sense of so much data,” said Rob Fatland, director of research computing in UW Information Technology (UW-IT) and a co-organizer of the August event.

    UW-IT experts like Fatland in cloud computing, along with the UW’s eScience Institute’s nexus of experts in data science tools and methodologies, help provide scientists the support they need to advance their work.

    Together, they joined about 50 ocean scientists who convened at the UW for Oceanhackweek, five intensive days of hands-on tutorials and collaborative investigations. The event was underwritten by more than $100,000 in grant funding from the Consortium for Ocean Leadership, the nonprofit organization that oversaw the OOI until October 2018 through a coalition of research institutions. The UW is among the organizations contracted to operate this massive endeavor for another five years, with a recent award from the National Science Foundation.

    Oceanhackweek followed a February 2018 hackweek organized by a small group of volunteers that included Fatland and Kelley to explore data from the OOI Cabled Array, the underseas network of fiber-optic cable off the Pacific coast that if laid end-to-end, would stretch across Washington state, all the way to Boise, Idaho.

    3
    Ocean Observatories Initiative
    The OOI is made up of integrated, scientific platforms and interactive sensors. NSF/OOI/UW CEV

    4
    OOI’s Cabled Array
    The cabled network of sensors run along the sea floor from Oregon. NSF/OOI/UW CEV

    5
    Underwater volcano
    An HD camera records a volcanic summit in the ocean. UW/NSF-OOI/CSSF

    The OOI Cabled Array is delivering data on a scale that was previously not possible. More than 140 instruments are working simultaneously: seismometers, hydrophones, echosounders, fluorometers, HD cameras, fluid samplers, mass spectrometers, and others. Sensors are measuring earthquakes, carbon dioxide, light, temperature and a whole host of other variables. High-resolution cameras are capturing deep-sea creatures, while hydrophones are recording digital songs from whales and dolphins.

    At the summit of Axial Seamount, the largest and most active underwater volcano off our coast, 21 cabled instruments are measuring its seismic heartbeat, the inflation and deflation of its roof from oozing magma, sampling the fluids and the microbial DNA, and snapping high-resolution images of life forms that thrive on volcanic gases.

    6
    Axial Seamount (also Coaxial Seamount or Axial Volcano) is a seamount and submarine volcano located on the Juan de Fuca Ridge, approximately 480 km (298 mi) west of Cannon Beach, Oregon. Standing 1,100 m (3,609 ft) high, Axial Seamount is the youngest volcano and current eruptive center of the Cobb–Eickelberg Seamount chain. Located at the center of both a geological hotspot and a mid-ocean ridge, the seamount is geologically complex, and its origins are still poorly understood. Axial Seamount is set on a long, low-lying plateau, with two large rift zones trending 50 km (31 mi) to the northeast and southwest of its center. The volcano features an unusual rectangular caldera, and its flanks are pockmarked by fissures, vents, sheet flows, and pit craters up to 100 m (328 ft) deep; its geology is further complicated by its intersection with several smaller seamounts surrounding it.

    Axial Seamount was first detected in the 1970s by satellite altimetry, and mapped and explored by Pisces IV, DSV Alvin, and others through the 1980s. A large package of sensors was dropped on the seamount through 1992, and the New Millennium Observatory was established on its flanks in 1996. Axial Seamount received significant scientific attention following the seismic detection of a submarine eruption at the volcano in January 1998, the first time a submarine eruption had been detected and followed in situ. Subsequent cruises and analysis showed that the volcano had generated lava flows up to 13 m (43 ft) thick, and the total eruptive volume was found to be 18,000–76,000 km3 (4,300–18,200 cu mi). Axial Seamount erupted again in April 2011, producing a mile-wide lava flow. There was another eruption in 2015.

    Even if you’re investigating something as simple as temperature around an animal-covered hot spring at the summit of the volcano, explained Kelley, the instrument there is measuring 24 fluid temperatures continuously in three dimensions.

    “Even for one day, how do you pull together and investigate these huge datasets to discover their secrets, leading to a better understanding of these kinds of dynamic environments? It’s a fire hose,” Kelley said.

    Friedrich Knuth, who spent three years at Rutgers on OOI’s data team, gave researchers the tools to tap into the data provided by OOI.
    7

    “My role as a data evaluator was to open the door,” he said, and put a nozzle on the data.

    To make Oceanhackweek happen at UW, Knuth teamed with Wu-Jung Lee, a research associate at the Applied Physics Lab and Valentina Staneva, a senior data scientist at the eScience Institute, who helped conceive the hackweek idea through their work on OOI data. They quickly garnered interest and support from others in organizing first the Cabled Array Hackweek and later Oceanhackweek. Organizers also included Amanda Tan (UW-IT), Don Setiawan (UW School of Oceanography), Anthony Arendt and Aaron Marburg (Applied Physics Lab), and Rachael Murray (eScience Institute).

    Participants hailed from academic institutions around the world and ranged from early to established career scientists and engineers.

    Amanda Tan set up a shared cloud computing environment where participants could access, work in and download all the tutorials. Tan, like Fatland, shares an appointment in UW-IT and the eScience Institute, and is a research computing cloud technology lead developer.

    UW Information Technology supports world-class research by providing up-to-date tools and resources like cloud computing to help accelerate discoveries.

    During a session she taught, Tan asked researchers if any of them had used cloud computing before, and only a few hands went up.

    Tan listed off the advantages of cloud computing — immediately available, with no waiting in line for resources, and no need to buy, manage or maintain computer equipment and servers. The technology is built on familiar operating systems and software applications, and it is secure. Plus, cloud computing is elastic and scalable.

    When a researcher asked about cost, Tan said you only pay for what you use, from mere pennies up to $16 an hour.

    Tan’s tutorial, along with the others, were recorded and provided online to encourage collaboration and share knowledge with those who could not attend.

    Open access, open data, open science

    Anthony Arendt, who has joint appointments with the UW’s Applied Physics Lab and the UW’s eScience Institute, recently co-authored a paper published in the Proceedings of the National Academy of Sciences on the experience of developing and coordinating hackweeks. In it, he explored how they can be a model for data science education and fostering research collaboration. He has also developed what amounts to a “cookbook” on the logistics of running a hackweek, available to anyone.

    To Arendt, hackweeks are about facilitating and democratizing access to the data through skills training and open source tools. About 80 percent of the time is spent on getting at the data, and 20 percent is spent on doing the science.

    Participants in hackweeks become ambassadors, sharing what they’ve learned, and often continuing the collaborations they started.

    Hackweek organizers and participants are champions of open, reproducible science, even while recognizing that sharing new data and discoveries can be at odds with the competitiveness of research publications and grant funding.

    Yet, that long-established view is changing, as evidenced by the National Science Foundation’s policy on open data, open access institutional repositories used by many North American universities, and efforts toward shared data standards and persistent data and code URLs.

    “I grew up saying the data’s mine because that’s how we got promoted. That’s how we made our reputation. My paper, my data,” Kelley said. “This is not how you’re going to make the big breakthroughs anymore.”

    Instead, Kelley said major discoveries will come with “having all these new eyes on data and people with different expertise working together collaboratively and coming up with tools, technologies and insights that one individual could never do, and then sharing them with the rest of the world.”

    The partnership with the eScience Institute and UW-IT has been invaluable, Kelley explains. The data science and research computing expertise are helping ocean scientists access and learn the tools they need to wrangle the data and accelerate their research.

    “It’s a testament to the UW vision,” Kelley said, speaking of the close collaboration between the School of Oceanography, the Applied Physics Lab, and others that led to the development of the Cabled Array and to the first-ever hackweeks for oceanography.

    “UW has some amazing resources,” she said, “and that’s why I’m so glad the hackweek was here. You bring people with new eyes, from very different backgrounds, which results in different ways of thinking about the data. That’s very exciting.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    u-washington-campus
    The University of Washington is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.
    So what defines us —the students, faculty and community members at the University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

     
  • richardmitnick 10:52 am on November 7, 2018 Permalink | Reply
    Tags: Jody Deming, , U Washington,   

    From University of Washington: Women in STEM- “‘Ocean memory’ the focus of cross-disciplinary effort by UW’s Jody Deming” 

    U Washington

    From University of Washington

    November 2, 2018
    Hannah Hickey

    1
    Jody Deming

    The vast oceans of our planet still hold many unsolved questions. Uncovering some of their mysteries has been a decades-long focus for University of Washington oceanography professor Jody Deming.

    This fall, Deming embarks on a very different type of ocean exploration. A $500,000 grant from the National Academies Keck Futures Initiative, or NAKFI, will allow her and a group representing various disciplines in the sciences and the arts to look at the oceans in new ways.

    The Ocean Memory Project was one of three selected this fall as the inaugural winners of the NAKFI Challenge Grants, a program of the National Academies of Sciences, Engineering and Medicine with funding from the W.M. Keck Foundation. Deming is among a small group of leaders of the effort that will generate events, distributed interactive spaces and grants for cross-disciplinary mentoring around the idea of ocean memory.

    Deming had participated previously in smaller NAKFI-funded projects, which bring a few dozen people together to explore ideas through a cross-disciplinary lens. One of these groups, the Deep Sea Memory Project, met for the first time in September 2017 at Friday Harbor Laboratories. There, 20 participants and two facilitators spent five days sharing their various fields of expertise and coming up with new ideas. (Ben Fitzhugh, a UW professor of anthropology, and John Baross, a UW professor of oceanography, also participated in the workshop.)

    The format was different from a typical science conference, Deming said. Facilitators had smaller groups of people generate ideas quickly, then work together to create tangible objects reflecting those ideas.

    “If you are making something with your hands, then your brain works differently,” she said. “Although I may have been a skeptic in the beginning, I am a believer now, because I saw how we think and create differently.”

    The group held a second workshop at the Djerassi Resident Arts Program in central California, and will have a final workshop in 2019 on Santa Catalina Island.

    These smaller NAKFI-funded projects all emerged from a larger NAKFI conference in 2016, Discovering The Deep Blue Sea, led by oceanographer David Karl at the University of Hawaii. In one of many small break-out group discussions at that conference, an artist asked the question, “Does the ocean have memory?” and the phrase “ocean memory” immediately took hold.

    “Our group was looking for something we could all connect to,” recalls Deming, who holds the Karl M. Banse professorship in the School of Oceanography. “And that question, ‘Does the ocean have memory?’ galvanized us. It resonated with me personally, as that’s what I believe I have been studying all my life, without having those words to describe it.”

    The new grant will fund various activities around the theme of ocean memory, each led by participants from earlier NAKFI workshops using a rotating, collective leadership model. Deming is among the first group of leaders that also includes two artists, a marine biologist and cellist, and a cognitive scientist.

    Their winning proposal reads: “Our ocean and its inhabitants hold memories of events throughout the evolution of the planet, awaiting our cognition. We propose to establish a thriving community exploring and expressing Ocean Memory, a new line of scientific inquiry highly evocative beyond science, aiming for a sea change in our ability to address challenges of the Anthropocene.”

    The leadership team met for the first time in late October, and hopes to start accepting applications in early 2019 for the launching activity later that year. The group will select roughly 20–30 participants using criteria similar to those of the NAKFI workshops, which seeks people of varied expertise who are keen to work across boundaries.

    The grant will fund three annual “seed seminars,” each followed by a breakout working group and awards of small grants to pursue specific ideas, all culminating in 2022 with a larger conference at the UW. Also in the works are a science-oriented paper articulating the many meanings of ocean memory and plans for an exhibit at the San Francisco Art Institute.

    Deming described the project in October at the D.C. Art Science Evening Rendezvous, or DASER, event:

    Deming’s other, more conventionally funded, research investigates microbes in the polar regions. Members of her research group recently returned from the joint Sweden-U.S. icebreaker expedition to the North Pole, where they examined how acidifying waters of the high Arctic might affect the productivity of microbes on the underside of the sea ice and between ice floes, and how such microbes, when lofted into the air in sea spray, might affect the formation of Arctic clouds. The group is also studying microbial communities, found thriving in ancient brines deep in Alaskan permafrost, which may hold surprising “memories” of their past ocean.

    While the NAKFI grant allows her to explore different ways of knowing, there is overlap between the purely scientific efforts and those that bridge science and art, Deming said.

    “Here is one idea of what we want to explore: To what extent do microorganisms living in the ocean hold a memory of past conditions, so when they get challenged by a changing environment — whether more acidity from more carbon dioxide, or changing temperatures, or both — will some networks of organisms be better prepared, more fit, than others because they’ve retained genetic memories of the past?”

    For more information, visit http://memory.ocean.washington.edu, or contact Deming at jdeming@uw.edu.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    u-washington-campus
    The University of Washingtonis one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.
    So what defines us —the students, faculty and community members at the University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

     
  • richardmitnick 9:17 am on November 1, 2018 Permalink | Reply
    Tags: , , , , , U Washington   

    From Discover Magazine: “Meet the Biochemist Engineering Proteins From Scratch” 

    DiscoverMag

    From Discover Magazine

    October 30, 2018
    Jonathon Keats

    1
    David Baker. Brian Dalbalcon/UW Medicine

    U Washington Dr. David Baker

    In a sleek biochemistry laboratory at the University of Washington, postdoctoral fellow Yang Hsia is watching yellowish goo — the liquefied remains of E. coli — ooze through what looks like a gob of white marshmallow. “This isn’t super exciting,” he says.

    While growing proteins in bacteria and then purifying them, using blobby white resin as a filter, doesn’t make for riveting viewing, the end product is extraordinary. Accumulating in Hsia’s resin is a totally artificial protein, unlike anything seen in nature, that might just be the ideal chassis for the first universal flu vaccine.

    David Baker, Hsia’s adviser, calls this designer protein a “Death Star.” Imaged on his computer, its structure shows some resemblance to the notorious Star Wars superweapon. Though microscopic, by protein standards it’s enormous: a sphere made out of many interlocking pieces.

    2
    The Death Star artificial protein. Institute for Protein Design

    “We’ve figured out a way to put these building blocks together at the right angles to form these very complex nanostructures,” Baker explains. He plans to stud the exterior with proteins from a whole suite of flu strains so that the immune system will learn to recognize them and be prepared to fend off future invaders. A single Death Star will carry 20 different strains of the influenza virus.

    Baker hopes this collection will cover the entire range of possible influenza mutation combinations. This all-in-one preview of present and future flu strains could replace annual shots: Get the Death Star vaccination, and you’ll already have the requisite antibodies in your bloodstream.

    As Baker bets on designer proteins to defeat influenza, others are betting on David Baker.

    After revolutionizing the study of proteins — molecules that perform crucial tasks in every cell of every natural organism — Baker is now engineering them from scratch to improve on nature. In late 2017, the Open Philanthropy Project gave his University of Washington Institute for Protein Design more than $10 million to develop the Death Star and support Rosetta, the software platform he conceived in the 1990s to discover how proteins are assembled. Rosetta has allowed Baker’s lab not only to advance basic science and pioneer new kinds of vaccines, but also to create drugs for genetic disorders, biosensors to detect toxins and enzymes to convert waste into biofuels.

    His team currently numbers about 80 grad students and postdocs, and Baker is in constant contact with all of them. He challenges their assumptions and tweaks their experiments while maintaining an egalitarian environment in which ideas may come from anyone. He calls his operation a “communal brain.” Over the past quarter-century, this brain has generated nearly 450 scientific papers.

    “David is literally creating a new field of chemistry right in front of our eyes,” says Raymond Deshaies, senior vice president for discovery research at the biotech company Amgen and former professor of biology at Caltech. “He’s had one first after another.”

    Nature’s Origami

    When Baker was studying philosophy at Harvard University, he took a biology class that taught him about the so-called “protein folding problem.” The year was 1983, and scientists were still trying to make sense of an experiment, carried out in the early ’60s by biochemist Christian Anfinsen, that revealed the fundamental building blocks of all life on Earth were more complex than anyone imagined.

    The experiment was relatively straightforward. Anfinsen mixed a sample of the protein ribonuclease — which breaks down RNA — with a denaturant, a chemical that deactivated it. Then he allowed the denaturant to evaporate. The protein started to function again as if nothing ever happened.

    What made this simple experiment so striking was the fact that the amino acids in protein molecules are folded in three-dimensional forms that make origami look like child’s play. When the denaturant unfolded Anfinsen’s ribonuclease, there were myriad ways it could refold, resulting in structures as different as an origami crane and a paper airplane. Much as the folds determine whether a piece of paper can fly across a room, only one fold pattern would result in functioning ribonuclease. So the puzzle was this: How do proteins “know” how to refold properly?

    “Anfinsen showed that the information for both structure and activity resided in the sequence of amino acids,” says University of California, Los Angeles, biochemist David Eisenberg, who has been researching protein folding since the 1960s. “There was a hope that it would be possible to use sequence information to get three-dimensional structural information. Well, that proved much more difficult than anticipated.”

    2
    Protein molecules play critical roles in every aspect of life. The way each protein folds determines its function, and the ways to fold are virtually limitless, as shown in this small selection of proteins visualized through the software platform Rosetta, born in Baker’s lab. Institute for Protein Design.

    Baker was interested enough in protein folding and other unsolved mysteries of biology to switch majors and apply to grad school. “I’d never worked in a lab before,” he recalls. He had only a vague notion of what biologists did on a daily basis, but he also sensed that the big questions in science, unlike philosophy, could actually be answered.

    Grad school plunged Baker into the tediousness and frustrations of benchwork, while also nurturing some of the qualities that would later distinguish him. He pursued his Ph.D. under Randy Schekman, who was studying how molecules move within cells, at the University of California, Berkeley. To aid in this research, students were assigned the task of dismantling living cells to observe their internal molecular traffic. Nearly half a dozen of them, frustrated by the assignment’s difficulty, had given up by the time Baker got the job.

    Baker decided to follow his instincts even though it meant going against Schekman’s instructions. Instead of attempting to keep the processes within a cell still functioning as he dissected it under his microscope, Baker concentrated on preserving cell structure. If the cell were a wristwatch, his approach would be equivalent to focusing on the relationship between gears, rather than trying to keep it ticking, while taking it apart.

    “He was completely obsessed,” recalls Deshaies, who was his labmate at the time (and one of the students who’d surrendered). Nobody could stop Baker, or dissuade him. He worked for months until he proved his approach was correct: Cell structure drove function, so maintaining its anatomy preserved the internal transportation network. Deshaies believes Baker’s methodological breakthrough was “at the core of Randy’s Nobel Prize,” awarded in 2013 for working out one of the fundamentals of cellular machinery.

    But Baker didn’t dwell on his achievement, or cell biology for that matter. By 1989, Ph.D. in hand, he’d headed across the Bay to the University of California, San Francisco, where he switched his focus to structural biology and biochemistry. There he built computer models to study the physical properties of the proteins he worked with at the bench. Anfinsen’s puzzle remained unsolved, and when Baker got his first faculty appointment at the University of Washington, he took up the protein-folding problem full time.

    From Baker’s perspective, this progression was perfectly natural: “I was getting to more and more fundamental problems.” Deshaies believes Baker’s tortuous path, from cells to atoms and from test tubes to computers, has been a factor in his success. “He just has greater breadth than most people. And you couldn’t do what he’s done without being somewhat of a polymath.”

    3
    Illustration above: National Science foundation. Illustrations below: Jay Smith

    Rosetta Milestone

    Every summer for more than a decade, scores of protein-folding experts convene at a resort in Washington’s Cascade Mountains for four days of hiking and shop talk. The only subject on the agenda: how to advance the software platform known as Rosetta.

    David Baker’s Rosetta@home project, a project running on BOINC software from UC Berkeley


    Rosetta@home BOINC project



    They call it Rosettacon.

    Rosetta has been the single most important tool in the quest to understand how proteins fold, and to design new proteins based on that knowledge. It is the link between Anfinsen’s ribonuclease experiment and Baker’s Death Star vaccine.

    When Baker arrived at the University of Washington in 1993, researchers knew that a protein’s function was determined by its structure, which was determined by the sequence of its amino acids. Just 20 different amino acids were known to provide all the raw ingredients. (Their particular order — specified by DNA — makes one protein fold into, say, a muscle fiber and another fold into a hormone.) Advances in X-ray crystallography, a technique for imaging molecular structure, had provided images of many proteins in all their folded splendor. Sequencing techniques had also improved, benefitting from the Human Genome Project as well as the exponential increase in raw computing power.

    “There’s a right time for things,” Baker says in retrospect. “To some extent, it’s just luck and historical circumstance. This was definitely the right time for this field.”

    Which is not to say that modeling proteins on a computer was a simple matter of plugging in the data. Proteins fold to their lowest free energy state: All of their amino acids must align in equilibrium. The trouble is that the equilibrium state is just one of hundreds of thousands of options — or millions, if the amino acid sequence is long. That’s far too many possibilities to test one at a time. Nature must have another way of operating, given that folding is almost instantaneous.

    Baker’s initial approach was to study what nature was doing. He broke apart proteins to see how individual pieces behaved, and he found that each fragment was fluctuating among many possible structures. “And then folding would occur when they all happened to be in the right geometry at the same time,” he says. Baker designed Rosetta to simulate this dance for any amino acid sequence.

    Baker wasn’t alone in trying to predict how proteins fold. In 1994, the protein research community organized a biennial competition called CASP (Critical Assessment of Protein Structure Prediction). Competitors were given the amino acid sequences of proteins and challenged to anticipate how they would fold.

    The first two contests were a flop. Structures that competitors number-crunched looked nothing like folded proteins, let alone the specific proteins they were meant to predict. Then everything changed in 1998.

    3
    Rosetta’s impressive computational power allows researchers to predict how proteins — long, complex chains of amino acids — will fold; the platform also helps them reverse engineer synthetic proteins to perform specific tasks in medicine and other fields. Brian Dalbalcon/UW Medicine.

    Function Follows Form

    That summer, Baker’s team received 20 sequences from CASP, a considerable number of proteins to model. But Baker was optimistic: Rosetta would transform protein-folding prediction from a parlor game into legitimate science.

    In addition to incorporating fresh insights from the bench, team members — using a janky collection of computers made of spare parts — found a way to run rough simulations tens of thousands of times to determine which fold combinations were most likely.

    They successfully predicted structures for 12 out of the 20 proteins. The predictions were the best yet, but still approximations of actual proteins. In essence, the picture was correct, but blurry.

    Improvements followed rapidly, with increased computing power contributing to higher-resolution models, as well as improved ability to predict the folding of longer amino acid chains. One major leap was the 2005 launch of Rosetta@Home, a screensaver that runs Rosetta on hundreds of thousands of networked personal computers whenever they’re not being used by their owners.

    Yet the most significant source of progress has been RosettaCommons, the community that has formed around Rosetta. Originating in Baker’s laboratory and growing with the ever-increasing number of University of Washington graduates — as well as their students and colleagues — it is Baker’s communal brain writ large.

    Dozens of labs continue to refine the software, adding insights from genetics and methods from machine learning. New ideas and applications are constantly emerging.

    4
    Protein (in green) enveloping fentanyl molecule. Bick et al. eLife 2017.

    The communal brain has answered Anfinsen’s big question — a protein’s specific amino acid alignment creates its unique folding structure — and is now posing even bigger ones.

    “I think the protein-folding problem is effectively solved,” Baker says. “We can’t necessarily predict every protein structure accurately, but we understand the principles.

    “There are so many things that proteins do in nature: light harvesting, energy storage, motion, computation,” he adds. “Proteins that just evolved by pure, blind chance can do all these amazing things. What happens if you actually design proteins intelligently?”

    De Novo Design

    Matthew Bick is trying to coax a protein into giving up its sugar habit for a full-blown fentanyl addiction. His computer screen shows a colorful image of ribbons and swirls representing the protein’s molecular structure. A sort of Technicolor Tinkertoy floats near the center, representing the opioid. “You see how it has really good packing?” he asks me, tracing the ribbons with his finger. “The protein kind of envelops the whole fentanyl molecule like a hot dog bun.”

    A postdoctoral fellow in Baker’s lab, Bick engineers protein biosensors using Rosetta. The project originated with the U.S. Department of Defense. “Back in 2002, Chechen rebels took a bunch of people hostage, and there was a standoff with the Russian government,” he says. The Russians released a gas, widely believed to contain a fentanyl derivative, that killed more than a hundred people. Since then, the Defense Department has been interested in simple ways to detect fentanyl in the environment in case it’s used for chemical warfare in the future.

    Proteins are ideal molecular sensors. In the natural world, they’ve evolved to bind to specific molecules like a lock and key. The body uses this system to identify substances in its environment. Scent is one example; specific volatiles from nutrients and toxins fit into dedicated proteins lining the nose, the first step in alerting the brain to their presence. With protein design, the lock can be engineered to order.

    For the fentanyl project, Bick instructed Rosetta to modify a protein with a natural affinity for the sugar xylotetraose. The software generated hundreds of thousands of designs, each representing a modification of the amino acid sequence predicted to envelop fentanyl instead of sugar molecules. An algorithm then selected the best several hundred options, which Bick evaluated by eye, eventually choosing 62 promising candidates. The protein on Bick’s screen was one of his favorites.

    “After this, we do the arduous work of testing designs in the lab,” Bick says.

    5
    Cassie Bryan, a senior fellow at Baker’s Institute for Protein Design at the University of Washington, checks on a tube of synthetic proteins. The proteins, not seen in nature, are in the process of thawing and being prepped to test how they perform. Brian Dalbalcon/UW Medicine.

    With another image, he reveals his results. All 62 contenders have been grown in yeast cells infused with synthetic genes that spur the yeasts’ own amino acids to produce the foreign proteins. The transgenic yeast cells have been exposed to fentanyl molecules tagged with a fluorescing chemical. By measuring the fluorescence — essentially shining ultraviolet light on the yeast cells to see how many glow with fentanyl — Bick can determine which candidates bind to the opioid with the greatest strength and consistency.

    Baker’s lab has already leveraged this research to make a practical environmental sensor. Modified to glow when fentanyl binds to the receptor site, Bick’s customized protein can now be grown in a common plant called thale cress. This transgenic weed can cover terrain where chemical weapons might get deployed, and then glow if the dangerous substances are present, providing an early warning system for soldiers and health workers.

    The concept can also be applied to other biohazards. For instance, Bick is now developing a sensor for aflatoxin, a residue of fungus that grows on grain, causing liver cancer when consumed by humans. He wants the sensor to be expressed in the grain itself, letting people know when their food is unsafe.

    But he’s going about things differently this time around. Instead of modifying an existing protein, he’s starting from scratch. “That way, we can control a lot of things better than in natural proteins,” he explains. His de novo protein can be much simpler, and have more predictable behavior, because it doesn’t carry many million years of evolutionary baggage.

    For Baker, de novo design represents the summit of his quarter-century quest. The latest advances in Rosetta allow him to work backward from a desired function to an appropriate structure to a suitable amino acid sequence. And he can use any amino acids at all — thousands of options, some already synthesized and others waiting to be designed — not only the 20 that are standard in nature for building proteins.

    Without the freedom of de novo protein design, Baker’s Death Star would never have gotten off the ground. His group is now also designing artificial viruses. Like natural viruses, these protein shells can inject genetic material into cells. But instead of infecting you with a pathogen, their imported DNA would patch dangerous inherited mutations. Other projects aim to take on diseases ranging from malaria to Alzheimer’s.

    In Baker’s presence, protein design no longer seems so extraordinary. Coming out of a brainstorming session — his third or fourth of the day — he pulls me aside and makes the case that his calling is essentially the destiny of our species.

    “All the proteins in the world today are the product of natural selection,” he tells me. “But the current world is quite a bit different than the world in which we evolved. We live much longer, so we have a whole new class of diseases. We put all these nasty chemicals into the environment. We have new needs for capturing energy.

    “Novel proteins could solve a lot of the problems that we face today,” he says, already moving to his next meeting. “The goal of protein design is to bring those into existence.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 10:07 am on October 23, 2018 Permalink | Reply
    Tags: , , RELAMPAGO-An international campaign in Argentina to monitor storms that occur east of the Andes near the slopes of another mountain range the Sierra de Córdoba, U Washington, UW atmospheric scientists to study most extreme storms on Earth up close   

    From University of Washington: “UW atmospheric scientists to study most extreme storms on Earth, up close” 

    U Washington

    From University of Washington

    October 17, 2018
    Hannah Hickey

    UW atmospheric scientists to study most extreme storms on Earth, up close.

    1
    No image caption or credit.

    Two University of Washington atmospheric scientists are leaving for a weeks-long, firsthand study of some of the fiercest storms on the planet.

    They will participate in RELAMPAGO, an international campaign in Argentina to monitor storms that occur east of the Andes near the slopes of another mountain range, the Sierra de Córdoba. The international team hopes to better understand how convective storm systems — the big systems that unleash torrential rains, hail and lightning — initiate and grow as they travel from the mountainous terrain eastward over the plains.

    The campaign, led by the University of Illinois and primarily funded by the National Science Foundation, will run Nov. 1–Dec. 15. The name comes from the Spanish and Portuguese word for lightning.

    “From looking at the satellites, scientists have noticed that this area of South America had the most extreme storms in the world, in terms of how tall they get, the frequency of lightning and the frequency of hail,” said Angela Rowe, a UW research scientist in atmospheric sciences who is the UW’s principal investigator.

    2
    The Doppler-On-Wheels radar can monitor storm systems from the ground.Colorado State University

    Rowe is part of the team using three Doppler-On-Wheels, a radar dish loaded on the back of a pickup truck, to monitor precipitation and wind. The instrument bounces waves off drops of water and ice to measure the size of the particles and get a detailed look at wind speeds and direction.

    In 2015, Rowe helped operate a single one of these instruments as part of the UW-led OLYMPEX field campaign to observe storm systems over the Olympic Peninsula and test a new NASA precipitation satellite. This effort will also compare observations with that instrument, and an even newer National Oceanic and Atmospheric Administration weather satellite that includes lightning tracking, to see their sensors perform in situations — like hail and lightning that continues well into the night — that may be unique.

    “The fundamental question is still related to the role of topography in modulating these storm processes,” Rowe said. “The forecast models are increasingly doing better with trying to understand how mountain ranges influence precipitation. But you have to study it in a lot of different weather regimes and a lot of different types of mountain ranges.”

    Lynn McMurdie, a UW research associate professor of atmospheric sciences, will coordinate the daily weather briefings during the 45-day campaign. Her team will include a UW graduate student, other U.S. and Argentine graduate students, and members of Argentina’s national weather service. The team already has started making practice forecasts as a warmup for the event. During the campaign, the team will issue a morning forecast of where storms are likely to hit, their intensity and longevity over the next 24 hours, and researchers will then position their equipment accordingly. Forecasts will be updated in late afternoon to aid in planning the next day’s operations.

    The team will occupy a hotel in the tourist town of Villa Carlos Paz, using a hotel’s banquet room as a center of operations.

    Safety is a priority, the researchers emphasize. The team wants to collect firsthand data but won’t send members into harm’s way. Researchers will use hail pads and social-media reports to verify severe weather conditions throughout the region.

    “This kind of region, you know you’re going to get storms,” Rowe said. “They’re so frequent that you know you’re going to get data. But whether or not it’s ideal, that’s left up to the atmosphere and your luck.”

    One focus will be watching the storms evolve over time. In parts of the U.S. like Colorado that experience similar storms, Rowe said, systems usually develop in the afternoons and generally only last a few hours; after the storms initiate near the Rocky Mountains, they travel eastwards over the Great Plains and often grow into large convective systems over an area too large to adequately observe from the ground.

    “In Argentina, you have a situation where you can observe these systems well,” Rowe said. “You can get additional information well into the lifecycle that you couldn’t in the U.S.”

    This terrain will let the team study long-lasting storms that are very intense, fueled by moisture from the Amazon Basin, and are easier to monitor over long periods.

    “I am excited,” Rowe said. “Not that I don’t love West Coast rain, but this will be exciting — there’s never been this sort of data collected before in this region.”

    3
    A graphic of all the monitoring equipment. A UW atmospheric scientist will help with the Doppler-On-Wheels, seen in the lower left.Kristen Rasmussen/Colorado State University

    The full set of monitoring equipment includes ground-based weather radars, weather balloons, a ground-based lightning detection array, a research aircraft, ground-based weather stations and observation pods that can be quickly deployed from trucks. Different parts of the campaign are funded by NASA, NOAA, the U.S. Department of Energy and science agencies in Brazil and Argentina.

    The local community stands to benefit from the effort. Central Argentina is the wine region, and vineyard owners cover their crops with nets to protect the vines from the frequent hail. Understanding the processes that create the hail and flooding events will help the local community forecast these events and better prepare for them. But it also promises to answer basic questions about storms.

    “This is really fundamental science,” McMurdie said. “There are some really basic questions, and it’s a big opportunity to collect the data. We just hope the weather cooperates.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    u-washington-campus

    The University of Washington is one of the world’s preeminent public universities. Our impact on individuals, on our region, and on the world is profound — whether we are launching young people into a boundless future or confronting the grand challenges of our time through undaunted research and scholarship. Ranked number 10 in the world in Shanghai Jiao Tong University rankings and educating more than 54,000 students annually, our students and faculty work together to turn ideas into impact and in the process transform lives and our world. For more about our impact on the world, every day.
    So what defines us —the students, faculty and community members at the University of Washington? Above all, it’s our belief in possibility and our unshakable optimism. It’s a connection to others, both near and far. It’s a hunger that pushes us to tackle challenges and pursue progress. It’s the conviction that together we can create a world of good. Join us on the journey.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: