From SPACE.com: “McDonald Observatory: Searching for Dark Energy”

space-dot-com logo

From SPACE.com

McDonald Observatory is a Texas-based astronomical site that has made significant contributions in research and education for more than 80 years.

Administered by the University of Texas at Austin, the McDonald Observatory has several telescopes perched at an altitude of 6791 feet (2070 meters) above sea level on Mount Locke and Mount Fowlkes, part of the Davis Mountains in western Texas, about 450 miles (724 kilometers) west of Austin. McDonald “enjoys the darkest night skies of any professional observatory in the continental United States,” according to a news release issued for the observatory’s 80th anniversary.

McDonald is home to the Hobby-Eberly Telescope, one of the world’s largest optical telescopes, with a 36-foot-wide (11 meter) mirror.

A visitor center offers daytime tours of the grounds and big telescopes, daytime solar viewing, a twilight program in an outdoor amphitheater, and nighttime star parties with telescope viewing.

The observatory is also known for its daily StarDate program, which runs on more than 300 radio stations across the country.

The gift of an observatory

The regents of the University of Texas were surprised when they opened the will of William Johnson McDonald, a banker from Paris, Texas, who died in 1926. He had left the bulk of his fortune to the university for the purpose of building an astronomical observatory. After court proceedings were done, about $850,000 (the equivalent of $11 million today) was available, according to the Texas State Historical Association.

“McDonald is said to have thought that an observatory would improve weather forecasting and therefore help farmers to plan their work,” the association said.

But there were two major challenges to overcome before McDonald’s wish could become reality. First, the money was enough to build an observatory but not enough to run it, so the university would need to acquire more funds. Second, at that time, the University of Texas had no astronomers on its faculty, so it needed to recruit a team of space experts.

Fortunately, the University of Chicago had astronomers who were looking for another telescope to use in addition to their university’s refracting telescope at Yerkes Observatory. So, the presidents of the two universities made a deal: The University of Texas would build the new observatory, and the University of Chicago would provide experts to operate it.

McDonald’s first major telescope — later named the Otto Struve Telescope after the observatory’s first director — was finished in 1939 and is still in use today.

McDonald Observatory Otto Struve telescope
Altitude 2,026 m (6,647 ft)

Its main mirror is 82 inches (2.08 meters) across. One of the main purposes of the Struve Telescope was to analyze the exact colors of light coming from stars and other celestial bodies, to determine their chemical composition, temperature, and other properties. To do this, the telescope was designed to send light through a series of mirrors into a spectrograph — an instrument that separates light into its component colors — in another room. This required the telescope to be mounted on a strange-looking arrangement of axes and counterweights, designed and built by the Warner & Swasey company. “With its heavy steel mounting and black, half-open framework, the Struve is not just a scientific instrument, but it is a work of art,” the Observatory’s website says.

The Struve Telescope helped astronomers gather the first evidence of an atmosphere on Saturn’s moon Titan. Gerard Kuiper, assisted by Struve himself, found the clues while examining our solar system’s largest moons in 1944. Kuiper published his spectroscopic study in The Astrophysical Journal.

In 1956, a reflecting telescope with a 36-inch (0.9 m) mirror was added to the McDonald site at the request of the University of Chicago.

McDonald Observatory .9 meter telescope, Altitude 2,026 m (6,647 ft)

Housed in a dome made from locally quarried rock and leftover metal from the Struve Telescope dome, this instrument was designed primarily to measure changes in the brightness of stars. It is now obsolete for professional research, but is regularly used for special public-viewing nights.

The Harlan J. Smith Telescope, with a main mirror 107 inches (2.7 m) across, was built by NASA to examine other planets in preparation for spacecraft missions. It was the world’s third-largest telescope when it saw first light in 1968.

U Texas at Austin McDonald Observatory Harlan J Smith 2.7-meter Telescope , Altitude 2,026 m (6,647 ft)

From 1969 to 1985, the Smith telescope was also used to aim laser light at special reflecting mirrors left on the moon by Apollo astronauts. Measuring the time required for the reflected light to return to Earth enables astronomers to measure the moon’s distance to an accuracy of 1.2 inches (3 centimeters). These measurements, in turn, contribute to our understanding of Earth’s rotation rate, the moon’s composition, long-term changes in the moon’s orbit, and the behavior of gravity itself, including small effects predicted by Albert Einstein’s General Theory of Relativity.

When the Smith telescope was being built, a circular hole was cut in the center of its main quartz mirror to allow light to pass to instruments at the back of the telescope. The cutout quartz disk was made into a new mirror 30 inches (0.8 m) across for another telescope. This instrument, built nearby in 1970 and known simply as the 0.8 meter telescope, has the advantage of an unusually wide field of view.

McDonald’s biggest telescope

Today, the giant at McDonald is the Hobby-Eberly Telescope (HET), on neighboring Mount Fowlkes, almost a mile (1.3 km) from the cluster of original domes on Mount Locke.

U Texas Austin McDonald Observatory Hobby-Eberly Telescope, Altitude 2,026 m (6,647 ft)

The HET is a joint project of the University of Texas at Austin, Pennsylvania State University, and two German universities: Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

Dedicated in 1997, the HET makes a striking technological contrast with the classic Struve instrument. HET’s main mirror is not one piece of glass or quartz, but an array of 91 individually controlled hexagonal segments making a honeycomb-like reflecting area that’s 36 feet (11 m) wide. A mushroom-shaped tower next to the main dome contains lasers that are aimed at the mirror segments to test and adjust their alignment.

Another remarkable feature of the HET is that the telescope can rotate to point toward any compass direction, but it cannot tilt up or down to point at different heights in the sky. Instead, the main mirror is supported at a fixed angle pointing 55 degrees above the horizon. A precisely controlled tracking support moves light-gathering instruments to various locations above the main mirror, which has the effect of aiming at slightly different parts of the sky. This unique, simplified design allowed the HET to be built for a fraction of the cost of a conventional telescope of its size, while still allowing access to 70% of the sky visible from its location.

The HET was designed primarily for spectroscopy, which is a key method in current research areas such as measuring motions of space objects, determining distances to galaxies and discovering the history of the universe since the Big Bang.

Habitable planets and dark energy

In 2017, the HET was rededicated after a $40 million upgrade. The tracking system was replaced with a new unit that uses more of the main mirror and has a wider field of view. And, new sensing instruments were created.

One of the new instruments is the Habitable Zone Planet Finder (HPF), built in conjunction with the National Institute of Standards and Technology.

3
Habitable Zone Planet Finder

The HPF is optimized to study infrared light from nearby, cool red dwarf stars, according to an announcement from the observatory. These stars have long lifetimes and could provide steady energy for planets orbiting close to them. The HPF allows precise measurements of a star’s radial velocity, measured by the subtle change in the color of the star’s spectra as it is tugged by an orbiting planet, which is critical information in the discovery and confirmation of new planets.

Advancing another frontier is the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX).Billed as the first major experiment searching for the mysterious force pushing the universe’s expansion, the HETDEX “will tell us what makes up almost three-quarters of all the matter and energy in the universe. It will tell us if the laws of gravity are correct, and reveal new details about the Big Bang in which the universe was born,” the HETDEX project website says.

4
VIRUS-P undergoes testing at the Harlan J. Smith Telescope at McDonald Observatory. HETDEX will consist of 145 identical VIRUS units attached to the Hobby-Eberly Telescope. [Martin Harris/McDonald Observatory]

A key piece of technology for the dark-energy search is the Visible Integral-Field Replicable Unit Spectrographs, or VIRUS, a set of 156 spectrographs mounted alongside the telescope and receiving light via 35,000 optical fibers coming from the telescope. With this package of identical instruments sharing the telescope, the HET can observe several hundred galaxies at once, measuring how their light is affected by their own motions and the expansion of the universe.

The HETDEX will spend about three years observing a minimum of 1 million galaxies to produce a large map showing the universe’s expansion rate during different time periods. Any changes in how quickly the universe grows could yield differences in dark energy.

Keeping the skies dark

In 2019, the McDonald Observatory received a grant from the Apache Corp., an oil and gas exploration and production company, to promote awareness of the value of dark skies as a natural resource and as an aid to astronomical research. The gift will fund education programs, outreach events, and a new exhibit at the observatory’s visitors center. According to the observatory’s announcement, Apache has served as a model for other businesses in west Texas by adjusting and shielding the lights at its drilling sites and related facilities.

See the full article here .

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

#astronomy, #astrophysics, #basic-research, #cosmology, #mcdonald-observatory-searching-for-dark-energy, #space-com, #u-texas-at-austin

From University of Texas at Austin – Jackson School of Geosciences: “Exceptional Fossils May Need a Breath of Air to Form”

U Texas Austin bloc

From University of Texas at Austin – Jackson School of Geosciences

November 5, 2019

1
A fossilized mantle of a vampyropod, a relative tothe vampire squid. The ink sacis the raised structure in the center, and muscles have a striated appearance. Credit: Rowan Martindale/The University of Texas at Austin Jackson School of Geosciences.

Some of the world’s most exquisite fossil beds were formed millions of years ago during time periods when the Earth’s oceans were largely without oxygen.

That association has led paleontologists to believe that the world’s best-preserved fossil collections come from choked oceans. But research led by The University of Texas at Austin has found that while low oxygen environments set the stage, it takes a breath of air to catalyze the fossilization process.

“The traditional thinking about these exceptionally preserved fossil sites is wrong,” said lead author Drew Muscente. “It is not the absence of oxygen that allows them to be preserved and fossilized. It is the presence of oxygen under the right circumstances.”

The research was published in the journal PALAIOS on November 5.

Muscente conducted the research during a postdoctoral research fellowship at the UT Jackson School of Geosciences. He is currently an assistant professor at Cornell College in Mount Vernon, Iowa. The research co-authors are Jackson School Assistant Professor Rowan Martindale, Jackson School undergraduate students Brooke Bogan and Abby Creighton and University of Missouri Associate Professor James Schiffbauer.

The best-preserved fossil deposits are called “Konservat-lagerstätten.” They are rare and scientifically valuable because they preserve soft tissues along with hard ones – which in turn, preserves a greater variety of life from ancient ecosystems.

“When you look at lagerstätten, what’s so interesting about them is everybody is there,” said Bogan. “You get a more complete picture of the animal and the environment, and those living in it.”

The research examined the fossilization history of an exceptional fossil site located at Ya Ha Tinda Ranch in Canada’s Banff National Park. The site, which Martindale described in a 2017 paper [Geology], is known for its cache of delicate marine specimens from the Early Jurassic – such as lobsters and vampire squids with their ink sacks still intact—preserved in slabs of black shale.

During the time of fossilization, about 183 million years ago, high global temperatures sapped oxygen from the oceans. To determine if the fossils did indeed form in an oxygen-deprived environment, the team analyzed minerals in the fossils. Since different minerals form under different chemical conditions, the research could determine if oxygen was present or not.

“The cool thing about this work is that we can now understand the modes of formation of these different minerals as this organism fossilizes,” Martindale said. “A particular pathway can tell you about the oxygen conditions.”

The analysis involved using a scanning electron microscope to detect the mineral makeup.

“You pick points of interest that you think might tell you something about the composition,” said Creighton, who analyzed a number of specimens. “From there you can correlate to the specific minerals.”

The workup revealed that the vast majority of the fossils are made of apatite – a phosphate-based mineral that needs oxygen to form. However, the research also found that the climatic conditions of a low-oxygen environment helped set the stage for fossilization once oxygen became available.

That’s because periods of low ocean oxygen are linked to high global temperatures that raise sea levels and erode rock, which is a rich source of phosphate to help form fossils. If the low oxygen environment persisted, this sediment would simply release its phosphate into the ocean. But with oxygen around, the phosphate stays in the sediment where it could start the fossilization process.

Muscente said that the apatite fossils of Ya Ha Tinda point to this mechanism.

3
A fossilized lobster claw that may come from a new species. Rowan Martindale, the University of Texas at Austin.

The research team does not know the source of the oxygen. But Muscente wasn’t surprised to find evidence for it because the organisms that were fossilized would have needed to breathe oxygen when they were alive.

The researchers plan to continue their work by analyzing specimens from exceptional fossil sites in Germany and the United Kingdom that were preserved around the same time as the Ya Ha Tinda specimens and compare their fossilization histories.

The research was funded by the National Science Foundation and the Jackson School of Geosciences.

See the full article here .

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

U Texas at Austin

U Texas Austin campus

In 1839, the Congress of the Republic of Texas ordered that a site be set aside to meet the state’s higher education needs. After a series of delays over the next several decades, the state legislature reinvigorated the project in 1876, calling for the establishment of a “university of the first class.” Austin was selected as the site for the new university in 1881, and construction began on the original Main Building in November 1882. Less than one year later, on Sept. 15, 1883, University of Texas at Austin opened with one building, eight professors, one proctor, and 221 students — and a mission to change the world. Today, UT Austin is a world-renowned higher education, research, and public service institution serving more than 51,000 students annually through 18 top-ranked colleges and schools.

#exceptional-fossils-may-need-a-breath-of-air-to-form, #applied-research-technology, #earth-observation, #jackson-school-of-geosciences, #paleogeology, #paleontology, #scanning-electron-microscopy, #the-best-preserved-fossil-deposits-are-called-konservat-lagerstatten, #u-texas-at-austin

From University of Texas at Austin: “Rocks at Asteroid Impact Site Record First Day of Dinosaur Extinction”

U Texas Austin bloc

From University of Texas at Austin

Sep 09, 2019
Monica Kortsha
Jackson School of Geosciences
512-471-2241
mkortsha@jsg.utexas.edu

1
An artist’s interpretation of the asteroid impact that wiped out all non-avian dinosaurs. Credit: NASA/Don Davis.

When the asteroid that wiped out the dinosaurs slammed into the planet, the impact set wildfires, triggered tsunamis and blasted so much sulfur into the atmosphere that it blocked the sun, which caused the global cooling that ultimately doomed the dinos.

That’s the scenario scientists have hypothesized. Now, a new study led by The University of Texas at Austin has confirmed it by finding hard evidence in the hundreds of feet of rocks that filled the impact crater within the first 24 hours after impact.

The evidence includes bits of charcoal, jumbles of rock brought in by the tsunami’s backflow and conspicuously absent sulfur. They are all part of a rock record that offers the most detailed look yet into the aftermath of the catastrophe that ended the Age of Dinosaurs, said Sean Gulick, a research professor at the University of Texas Institute for Geophysics (UTIG) at the Jackson School of Geosciences.

“It’s an expanded record of events that we were able to recover from within ground zero,” said Gulick, who led the study and co-led the 2016 International Ocean Discovery Program scientific drilling mission that retrieved the rocks from the impact site offshore of the Yucatan Peninsula. “It tells us about impact processes from an eyewitness location.”

The research was published in the Proceedings of the National Academy of Sciences on Sept. 9 and builds on earlier work co-led and led by the Jackson School that described how the crater formed [Science] and how life quickly recovered [Nature] at the impact site. An international team of more than two dozen scientists contributed to this study.

2
Lead author of the study Sean Gulick, a research professor at The University of Texas at Austin Jackson School of Geosciences (right), with co-author Joanna Morgan, a professor at Imperial College London, on the International Ocean Discovery Program research expedition that retrieved cores from the submerged and buried impact crater. Gulick and Morgan co-led the expedition in 2016. Credit: The University of Texas at Austin/ Jackson School of Geosciences.

Most of the material that filled the crater within hours of impact was produced at the impact site or was swept in by seawater pouring back into the crater from the surrounding Gulf of Mexico. Just one day deposited about 425 feet of material — a rate that’s among the highest ever encountered in the geologic record. This breakneck rate of accumulation means that the rocks record what was happening in the environment within and around the crater in the minutes and hours after impact and give clues about the longer-lasting effects of the impact that wiped out 75% of life on the planet.

Gulick described it as a short-lived inferno at the regional level, followed by a long period of global cooling.

“We fried them and then we froze them,” Gulick said. “Not all the dinosaurs died that day, but many dinosaurs did.”

Researchers estimate the asteroid hit with the equivalent power of 10 billion atomic bombs of the size used in World War II. The blast ignited trees and plants that were thousands of miles away and triggered a massive tsunami that reached as far inland as Illinois. Inside the crater, researchers found charcoal and a chemical biomarker associated with soil fungi within or just above layers of sand that shows signs of being deposited by resurging waters. This suggests that the charred landscape was pulled into the crater with the receding waters of the tsunami.

3
A portion of the drilled cores from the rocks that filled the crater. Scientists found melted and broken rocks such as sandstone, limestone and granite — but no sulfur-bearing minerals, despite the area’s high concentration of sulfur containing rocks. This finding suggests that the impact vaporized these rocks forming sulfate aerosols in the atmosphere, causing cooling on the global scale. Credit: International Ocean Discovery Program.

Jay Melosh, a Purdue University professor and expert on impact cratering, said that finding evidence for wildfire helps scientists know that their understanding of the asteroid impact is on the right track.

“It was a momentous day in the history of life, and this is a very clear documentation of what happened at ground zero,” said Melosh, who was not involved with this study.

However, one of the most important takeaways from the research is what was missing from the core samples. The area surrounding the impact crater is full of sulfur-rich rocks. But there was no sulfur in the core.

That finding supports a theory that the asteroid impact vaporized the sulfur-bearing minerals present at the impact site and released it into the atmosphere, where it wreaked havoc on the Earth’s climate, reflecting sunlight away from the planet and causing global cooling. Researchers estimate that at least 325 billion metric tons would have been released by the impact. To put that in perspective, that’s about four orders of magnitude greater than the sulfur that was spewed during the 1883 eruption of Krakatoa — which cooled the Earth’s climate by an average of 2.2 degrees Fahrenheit for five years.

Although the asteroid impact created mass destruction at the regional level, it was this global climate change that caused a mass extinction, killing off the dinosaurs along with most other life on the planet at the time.

“The real killer has got to be atmospheric,” Gulick said. “The only way you get a global mass extinction like this is an atmospheric effect.”

The research was funded by a number of international and national support organizations, including the National Science Foundation.

See the full article here .

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

U Texas at Austin

U Texas Austin campus

In 1839, the Congress of the Republic of Texas ordered that a site be set aside to meet the state’s higher education needs. After a series of delays over the next several decades, the state legislature reinvigorated the project in 1876, calling for the establishment of a “university of the first class.” Austin was selected as the site for the new university in 1881, and construction began on the original Main Building in November 1882. Less than one year later, on Sept. 15, 1883, University of Texas at Austin opened with one building, eight professors, one proctor, and 221 students — and a mission to change the world. Today, UT Austin is a world-renowned higher education, research, and public service institution serving more than 51,000 students annually through 18 top-ranked colleges and schools.

#rocks-at-asteroid-impact-site-record-first-day-of-dinosaur-extinction, #applied-research-technology, #earth-observation, #geology, #the-impact-blasted-so-much-sulfur-into-the-atmosphere-that-it-blocked-the-sun-which-caused-the-global-cooling-that-ultimately-doomed-the-dinos, #u-texas-at-austin, #when-the-asteroid-that-wiped-out-the-dinosaurs-slammed-into-the-planet-the-impact-set-wildfires-and-triggered-tsunamis

From University of Texas at Austin via COSMOS: “The rocks below a famous crater”

U Texas Austin bloc

From University of Texas at Austin

via

Cosmos Magazine bloc

COSMOS Magazine

10 September 2019
Richard A Lovett

Geologists examine what unfolded after that asteroid hit.

1
Artist’s impression of the Chicxulub crater, showing the peak ring. Credit D. VAN RAVENSWAAY/SPL

Scientists drilling into the heart of the Chicxulub impact crater in the Gulf of Mexico have discovered 130 metres of sediments laid down within hours after the site was struck by the asteroid widely believed to have killed off the dinosaurs.

In part, it’s exciting because of the link to the dinosaurs. But it also gives geologists a chance to watch how events unfolded on a time scale of minutes to hours, says Sean Gulick, a geophysicist at the University of Texas, Austin, as opposed to thousands or millions of years, “which is what normal geology would look like”.

The Chicxulub crater was formed 66 million years ago when a 10-kilometre-wide asteroid or comet ploughed into the ocean near what is now Mexico’s Yucatan Peninsula.

In 2016, Gulick co-led a team from the International Ocean Discovery Program (IODP) that drilled into the 200-kilometre wide crater in an effort to better understand its history.

The site they chose was a portion of the now-buried crater’s peak ring, formed when the impact caused rock from deep beneath the surface to splash upward, forming a plateau near the crater’s centre.

However, because the ocean at that time was hundreds of metres deep, the peak ring never rose above sea level.

Not that the impact zone was immediately submerged. Initially, the blast drove the water away, leaving a zone of molten rock known as impact melt – now solidified into lava.

But soon, the water came rushing back. At first, Gulick says, it hit the impact melt and exploded into steam, creating about 10 metres of shattered rock, just above the now-solidified impact melt.

That was followed by 80 to 90 metres of gravel-like sediments, with the larger gravel at the bottom and the smaller at the top. The only way that could have happened, he says, is if the waters rushed back so quickly that they were still full of rocks from the blast – rocks that then settled to the bottom: big ones first, smaller ones later.

There are also signs, he says, that the water sloshed around within the crater, like bathwater in a tub. Then came a 10-centimetre layer of gravel-sized material that appears to have been created by the disturbance of the sea floor by a fast-moving wave: i.e., a tsunami.

Gulick thinks it was created when the outrushing waters from the impact reflected off the nearest landmass – which at the time would have been mountains in central Mexico, 800 kilometres away – then came back to deposit sediments on top of the 130 metres of rocks already deposited in the aftermath of the impact.

Support from this, he says, comes from the fact that these deposits contain perylene, a chemical made only in soils. That, he says, “would require land, somewhere, to have been touched by water that then came rushing back”.

None of this means the Chicxulub impact killed the dinosaurs. Others have argued that climate-changing volcanism in India may instead have been the culprit.

But Gulick’s samples also contain charcoal in the layers directly above the tsunami deposits, suggesting that the impact may have set off massive wildfires. “We knew impacts can make wildfires,” he says. “But this is direct evidence that this happened at ground zero.”

In addition, the rocks returning to the crater after the impact were low in sulfur, even though geologists knew that about one-third of the ones in the impact area initially contained sulfur-rich minerals like gypsum or anhydrite.

The sulfur from these rocks must therefore have been vaporised by the impact, Gulick says.

And when it mixed with vaporised ocean water, it would have filled the upper atmosphere with hundreds of gigatons of sulfate aerosols, creating a bright haze that would have dropped global temperatures by more than 25 degrees Celsius, “putting most of the world below freeing for most of the year” – and possibly lasting for “a decade or two”.

3
A portion of the drilled cores from the rocks that filled the crater. Credit International Ocean Discovery Program

See the full article here .

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

U Texas at Austin

U Texas Austin campus

In 1839, the Congress of the Republic of Texas ordered that a site be set aside to meet the state’s higher education needs. After a series of delays over the next several decades, the state legislature reinvigorated the project in 1876, calling for the establishment of a “university of the first class.” Austin was selected as the site for the new university in 1881, and construction began on the original Main Building in November 1882. Less than one year later, on Sept. 15, 1883, The University of Texas at Austin opened with one building, eight professors, one proctor, and 221 students — and a mission to change the world. Today, UT Austin is a world-renowned higher education, research, and public service institution serving more than 51,000 students annually through 18 top-ranked colleges and schools.

#applied-research-technology, #chicxulub-crater-mexico-asteroid, #geology, #its-exciting-because-of-the-link-to-the-dinosaurs, #u-texas-at-austin

From University of Texas at Austin: “Two New Planets Discovered Using Artificial Intelligence”

U Texas Austin bloc

From University of Texas at Austin

McDonald Observatory U Texas at Austin

U Texas at Austin McDonald Observatory, Altitude 2,070 m (6,790 ft)

26 March 2019

Media Contact:
Rebecca Johnson, Communications Mgr.
rjohnson@astro.as.utexas.edu
McDonald Observatory
512-475-6763

Science Contacts:
Anne Dattilo
anne.dattilo@utexas.edu
Department of Astronomy
512-471-6493

Dr. Andrew Vanderburg
%u200Bavanderburg@utexas.edu
Department of Astronomy
512-471-6493

Astronomers at The University of Texas at Austin, in partnership with Google, have used artificial intelligence (AI) to uncover two more hidden planets in the Kepler space telescope archive. The technique shows promise for identifying many additional planets that traditional methods could not catch.

The planets discovered this time were from Kepler’s extended mission, called K2.

NASA/Kepler Telescope, and K2 March 7, 2009 until November 15, 2018

3
Anne Dattilo

To find them, the team, led by an undergraduate at UT Austin, Anne Dattilo, created an algorithm that sifts through the data taken by Kepler to ferret out signals that were missed by traditional planet-hunting methods. Long term, the process should help astronomers find many more missed planets hiding in Kepler data. The discoveries have been accepted for publication in an upcoming issue of The Astronomical Journal.

Other team members include NASA Sagan fellow at UT Austin Andrew Vanderburg and Google engineer Christopher Shallue. In 2017, Vanderburg and Shallue first used AI to uncover a planet around a Kepler star — one already known to harbor seven planets. The discovery made that solar system the only one known to have as many planets as our own.

Dattilo explained that this project necessitated a new algorithm, as data taken during Kepler’s extended mission K2 differs significantly from that collected during the spacecraft’s original mission.

“K2 data is more challenging to work with because the spacecraft is moving around all the time,” Vanderburg explained. This change came about after a mechanical failure. While mission planners found a workaround, the spacecraft was left with a wobble that AI had to take into account.

The Kepler and K2 missions have already discovered thousands of planets around other stars, with an equal number of candidates awaiting confirmation. So why do astronomers need to use AI to search the Kepler archive for more?

“AI will help us search the data set uniformly,” Vanderburg said. “Even if every star had an Earth-sized planet around it, when we look with Kepler, we won’t find all of them. That’s just because some of the data’s too noisy, or sometimes the planets are just not aligned right. So, we have to correct for the ones we missed. We know there are a lot of planets out there that we don’t see for those reasons.

“If we want to know how many planets there are in total, we have to know how many planets we’ve found, but we also have to know how many planets we missed. That’s where this comes in,” he explained.

The two planets Dattilo’s team found “are both very typical of planets found in K2,” she said. “They’re really close in to their host star, they have short orbital periods, and they’re hot. They are slightly larger than Earth.”

Of the two planets, one is called K2-293b and orbits a star 1,300 light-years away in the constellation Aquarius. The other, K2-294b, orbits a star 1,230 light-years away, also located in Aquarius.

Once the team used their algorithm to find these planets, they followed up by studying the host stars using ground-based telescopes to confirm that the planets are real. These observations were done with the 1.5-meter telescope at the Smithsonian Institution’s Whipple Observatory in Arizona and the Gillett Telescope at Gemini Observatory in Hawaii.

The 1.5-meter Tillinghast Telescope, Fred Lawrence Whipple Observatory,Mount Hopkins, Arizona, US in AZ, USA, Altitude 2,606 m 8,550 ft


Frederick C Gillett Gemini North Telescope Maunakea, Hawaii, USA

The future of the AI concept for finding planets hidden in data sets looks bright. The current algorithm can be used to probe the entire K2 data set, Dattilo said — approximately 300,000 stars. She also believes the method is applicable to Kepler’s successor planet-hunting mission, TESS, which launched in April 2018. Kepler’s mission ended later that year.

NASA/MIT TESS replaced Kepler in search for exoplanets

Dattilo plans to continue her work using AI for planet hunting when she enters graduate school in the fall.

See the full article here
.

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

U Texas at Austin

U Texas Austin campus

In 1839, the Congress of the Republic of Texas ordered that a site be set aside to meet the state’s higher education needs. After a series of delays over the next several decades, the state legislature reinvigorated the project in 1876, calling for the establishment of a “university of the first class.” Austin was selected as the site for the new university in 1881, and construction began on the original Main Building in November 1882. Less than one year later, on Sept. 15, 1883, The University of Texas at Austin opened with one building, eight professors, one proctor, and 221 students — and a mission to change the world. Today, UT Austin is a world-renowned higher education, research, and public service institution serving more than 51,000 students annually through 18 top-ranked colleges and schools.

#two-new-planets-discovered-using-artificial-intelligence, #ai-helps-us-search-the-data-set-uniformly, #algorithms, #k2-data-is-more-challenging-to-work-with-because-the-spacecraft-was-moving-around-all-the-time, #mcdonald-observatory, #nasa-kepler, #nasa-kepler-k2, #of-the-two-planets-one-is-called-k2-293b-and-orbits-a-star-1300-light-years-away-in-the-constellation-aquarius-the-other-k2-294b-orbits-a-star-1230-light-years-away-also-located-in-aquarius, #u-texas-at-austin

From University of Texas at Austin: “UT Austin Selected for New Nationwide High-Intensity Laser Network”

U Texas Austin bloc

From University of Texas at Austin

30 October 2018
Marc G Airhart

1
The Texas Petawatt Laser, among the most powerful in the U.S., will be part of a new national network funded by the Dept. of Energy, named LaserNetUS. Credit: University of Texas at Austin.

The University of Texas at Austin will be a key player in LaserNetUS, a new national network of institutions operating high-intensity, ultrafast lasers. The overall project, funded over two years with $6.8 million from the U.S. Department of Energy’s Office of Fusion Energy Sciences, aims to help boost the country’s global competitiveness in high-intensity laser research.

UT Austin is home to one of the most powerful lasers in the country, the Texas Petawatt Laser. The university will receive $1.2 million to fund its part of the network.

“UT Austin has become one of the international leaders in research with ultra-intense lasers, having operated one of the highest-power lasers in the world for the past 10 years,” said Todd Ditmire, director of UT Austin’s Center for High Energy Density Science, which houses the Texas Petawatt Laser. “We can play a major role in the new LaserNetUS network with our established record of leadership in this exciting field of science.”

High-intensity lasers have a broad range of applications in basic research, manufacturing and medicine. For example, they can be used to re-create some of the most extreme conditions in the universe, such as those found in supernova explosions and near black holes. They can generate particles for high-energy physics research or intense X-ray pulses to probe matter as it evolves on ultrafast time scales. They are also promising in many potential technological areas such as generating intense neutron bursts to evaluate aging aircraft components, precisely cutting materials or potentially delivering tightly focused radiation therapy to cancer tumors.

LaserNetUS includes the most powerful lasers in the United States, some of which have powers approaching or exceeding a petawatt. Petawatt lasers generate light with at least a million billion watts of power, or nearly 100 times the output of all the world’s power plants — but only in the briefest of bursts. Using the technology pioneered by two of the winners of this year’s Nobel Prize in physics, called chirped pulse amplification, these lasers fire off ultrafast bursts of light shorter than a tenth of a trillionth of a second.

“I am particularly excited to lead the Texas Petawatt science effort into the next phase of research under this new, LaserNetUS funding,” said Ditmire. “This funding will enable us to collaborate with some of the leading optical and plasma physics scientists from around the U.S.”

LaserNetUS will provide U.S. scientists increased access to the unique high-intensity laser facilities at nine institutions: UT Austin, The Ohio State University, Colorado State University, the University of Michigan, University of Nebraska-Lincoln, University of Rochester, SLAC National Accelerator Laboratory, Lawrence Berkeley National Laboratory and Lawrence Livermore National Laboratory.

The U.S. was the dominant innovator and user of high-intensity laser technology in the 1990s, but now Europe and Asia have taken the lead, according to a recent report from the National Academies of Sciences, Engineering and Medicine titled “Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light.” Currently, 80 to 90 percent of the world’s high-intensity ultrafast laser systems are overseas, and all of the highest-power research lasers currently in construction or already built are also overseas. The report’s authors recommended establishing a national network of laser facilities to emulate successful efforts in Europe. LaserNetUS was established for exactly that purpose.

The Office of Fusion Energy Sciences is a part of the Department of Energy’s Office of Science.

LaserNetUS will hold a nationwide call for proposals for access to the network’s facilities. The proposals will be peer reviewed by an independent panel. This call will allow any researcher in the U.S. to get time on one of the high-intensity lasers at the LaserNetUS host institutions.

See the full article here .

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

U Texas Austin campus

U Texas at Austin

In 1839, the Congress of the Republic of Texas ordered that a site be set aside to meet the state’s higher education needs. After a series of delays over the next several decades, the state legislature reinvigorated the project in 1876, calling for the establishment of a “university of the first class.” Austin was selected as the site for the new university in 1881, and construction began on the original Main Building in November 1882. Less than one year later, on Sept. 15, 1883, The University of Texas at Austin opened with one building, eight professors, one proctor, and 221 students — and a mission to change the world. Today, UT Austin is a world-renowned higher education, research, and public service institution serving more than 51,000 students annually through 18 top-ranked colleges and schools.

#applied-research-technology, #basic-research, #laser-technology-2, #lasernetus, #texas-petawatt-laser, #u-texas-at-austin

From Texas Advanced Computing Center: “New Texas supercomputer to push the frontiers of science”

TACC bloc

From Texas Advanced Computing Center

August 29, 2018
Aaron Dubrow

National Science Foundation awards $60 million to the Texas Advanced Computing Center to build nation’s fastest academic supercomputer.


A new supercomputer, known as Frontera (Spanish for “frontier”), will begin operations in 2019 [That’s pretty fast]. It will allow the nation’s academic researchers to make important discoveries in all fields of science, from astrophysics to zoology, and further establishes The University of Texas at Austin’s leadership in advanced computing.

The National Science Foundation (NSF) announced today that it has awarded $60 million to the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for the acquisition and deployment of a new supercomputer that will be the fastest at any U.S. university and among the most powerful in the world.

The new system, known as Frontera (Spanish for “frontier”), will begin operations in 2019 . It will allow the nation’s academic researchers to make important discoveries in all fields of science, from astrophysics to zoology, and further establishes The University of Texas at Austin’s leadership in advanced computing.

2
Image from a global simulation of Earth’s mantle convection enabled by the NSF-funded Stampede supercomputer. The Frontera system will allow researchers to incorporate more observations into simulations, leading to new insights into the main drivers of plate motion. [Courtesy of ICES, UT Austin]

“Supercomputers — like telescopes for astronomy or particle accelerators for physics — are essential research instruments that are needed to answer questions that can’t be explored in the lab or in the field,” said Dan Stanzione, TACC executive director. “Our previous systems have enabled major discoveries, from the confirmation of gravitational wave detections by the Laser Interferometer Gravitational-wave Observatory to the development of artificial-intelligence-enabled tumor detection systems. Frontera will help science and engineering advance even further.”

“For over three decades, NSF has been a leader in providing the computing resources our nation’s researchers need to accelerate innovation,” said NSF Director France Córdova. “Keeping the U.S. at the forefront of advanced computing capabilities and providing researchers across the country access to those resources are key elements in maintaining our status as a global leader in research and education. This award is an investment in the entire U.S. research ecosystem that will enable leap-ahead discoveries.”

Frontera is the latest in a string of successful awards and deployments by TACC with support from NSF. Since 2006, TACC has built and operated three supercomputers that debuted in the Top 10 most powerful systems in the world: Ranger (2008), Stampede1 (2012) and Stampede2 (2017). Three other systems debuted in the Top 25.

If completed today, Frontera would be the fifth most powerful system in the world, the third fastest in the U.S. and the largest at any university. For comparison, Frontera will be about twice as powerful as Stampede2 (currently the fastest university supercomputer) and 70 times as fast as Ranger, which operated until 2013. To match what Frontera will compute in just one second, a person would have to perform one calculation every second for about a billion years.

3
Industrial scale simulations of novel boiler designs (above) are needed to make them cleaner and more cost effective. Systems like Frontera will make it possible to use computation to evaluate new designs much more quickly before they are built. [Courtesy: the University of Utah, the University of California, Berkeley, and Brigham Young University]

“Today’s NSF award solidifies the University of Texas’ reputation as the nation’s leader in academic supercomputing,” said Gregory L. Fenves, president of UT Austin. “UT is proud to serve the research community with the world-class capabilities of TACC, and we are excited to contribute to the many discoveries Frontera will enable.”

Anticipated early projects on Frontera include analyses of particle collisions from the Large Hadron Collider, global climate modeling, improved hurricane forecasting and multi-messenger astronomy.

The primary computing system will be provided by Dell EMC and powered by Intel processors. Data Direct Networks will contribute the primary storage system, and Mellanox will provide the high-performance interconnect for the machine. NVIDIA, GRC (Green Revolution Cooling) and the cloud providers Amazon, Google, and Microsoft will also have roles in the project.

“The new Frontera systems represents the next phase in the long-term relationship between TACC and Dell EMC, focused on applying the latest technical innovation to truly enable human potential,” said Thierry Pellegrino, vice president of Dell EMC High Performance Computing. “The substantial power and scale of this new system will help researchers from Austin and across the U.S. harness the power of technology to spawn new discoveries and advancements in science and technology for years to come.”

“Accelerating scientific discovery lies at the foundation of the TACC’s mission, and enabling technologies to advance these discoveries and innovations is a key focus for Intel,” said Patricia Damkroger, Vice President in Intel’s Data Center Group and General Manager, Extreme Computing Group. “We are proud that the close partnership we have built with TACC will continue with TACC’s selection of next-generation Intel Xeon Scalable processors as the compute engine for their flagship Frontera system.”

Faculty at the Institute for Computational Engineering and Sciences (ICES) at UT Austin will lead the world-class science applications and technology team, with partners from the California Institute of Technology, Cornell University, Princeton University, Stanford University, the University of Chicago, the University of Utah and the University of California, Davis.

Experienced technologists and operations partners from the sites above as well as The Ohio State University, the Georgia Institute of Technology and Texas A&M University will ensure the system runs effectively in all areas, including security, user engagement and workforce development.

“With its massive computing power, memory, bandwidth, and storage, Frontera will usher in a new era of computational science and engineering in which data and models are integrated seamlessly to yield new understanding that could not have been achieved with either alone,” said Omar Ghattas, director of the Center for Computational Geosciences in ICES and co-principal investigator on the award.

Frontera’s name alludes to “Science the Endless Frontier,” the title of a 1945 report to President Harry Truman by Vannevar Bush that led to the creation of the National Science Foundation.

“NSF was born out of World War II and the idea that science, and scientists, had enabled our nation to win the war, and continued innovation would be required to ‘win the peace’,” said Stanzione. “Many of the frontiers of research today can be advanced only by computing, and Frontera will be an important tool to solve grand challenges that will improve our nation’s health, well-being, competitiveness and security.”

Frontera will enter production in the summer of 2019 and will operate for five years. In addition to serving as a resource for the nation’s scientists and engineers, the award will support efforts to test and demonstrate the feasibility of an even larger future leadership-class system, 10 times as fast as Frontera, to potentially be deployed as Phase 2 of the project.

See the full article here .

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

The Texas Advanced Computing Center (TACC) designs and operates some of the world’s most powerful computing resources. The center’s mission is to enable discoveries that advance science and society through the application of advanced computing technologies.

TACC Maverick HP NVIDIA supercomputer

TACC Lonestar Cray XC40 supercomputer

Dell Poweredge U Texas Austin Stampede Supercomputer. Texas Advanced Computer Center 9.6 PF

TACC HPE Apollo 8000 Hikari supercomputer

TACC Maverick HP NVIDIA supercomputer

TACC DELL EMC Stampede2 supercomputer


#frontera-supercomputing-systems, #supercomputing, #t-a-c-c, #u-texas-at-austin