Tagged: U Michigan Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 5:11 pm on January 22, 2017 Permalink | Reply
    Tags: Sizable cavities, Toward safer long-life nuclear reactors, U Michigan   

    From U Michigan: “Toward safer, long-life nuclear reactors” 

    U Michigan bloc

    University of Michigan

    12/15/2016 [Why so long to get this into social media?]
    Kate McAlpine

    In findings that could change the way industries like nuclear energy and aerospace look for materials that can stand up to radiation exposure, University of Michigan researchers have discovered that metal alloys with three or more elements in equal concentrations can be remarkably resistant to radiation-induced swelling.

    The big problem faced by metals bombarded with radiation at high temperatures—such as the metals that make up nuclear fuel cladding—is that they have a tendency to swell up significantly. They can even double in size.

    “First, it may interfere with other parts in the structure, but also when it swells, the strength of the material changes. The material density drops,” said Lumin Wang, U-M professor of nuclear engineering and radiological sciences. “It may become soft at high temperatures or harden at low temperatures.”

    This happens because when a particle flies into the metal and knocks an atom out of the crystal structure, that displaced atom can travel quickly through the metallic crystal. Meanwhile, the empty space left behind doesn’t move very fast. If many atoms are ousted from the same area, those empty spaces can coalesce into sizable cavities.

    2

    To control the formation of these cavities, and the attendant swelling, most recent research has focused on creating micro- and nano-structures inside the metal as specially designed “sinks” to absorb small defects in a way that preserves the integrity of the material. But Wang and his colleagues are kicking it old school, looking at alloys that don’t have breaks in the crystal structure of the atoms.

    Colleagues at Oak Ridge National Laboratory in Tennessee created samples of a variety of nickel-based alloys. These were then exposed to radiation in a facility at the University of Tennessee. The most successful alloys were concentrated solid solutions—crystals made of equal parts nickel, cobalt and iron; or nickel, cobalt, iron, chromium and manganese.

    “These materials have many good properties such as strength and ductility, and now we can add radiation tolerance,” said Chenyang Lu, a U-M postdoctoral research fellow in nuclear engineering and radiological sciences and the leading author of the report in Nature Communications.

    In an experiment proposed by Wang, UT researchers exposed the samples to beams of radiation that created two levels of damage, similar to what may accumulate in a reactor core over several years and over several decades. These experiments were done at a temperature of 500 Celsius or 932 Fahrenheit—a temperature at which nickel-based alloys are usually prone to swelling.

    These samples were analyzed at U-M’s Center for Material Characterization with a transmission electron microscope. The team found that compared to pure nickel, the best alloys had more than 100 times less radiation damage.

    To explain what was special about these alloys, the team worked closely with the group of Fei Gao, a theoretician and U-M professor of nuclear engineering and radiological sciences. Gao’s group performed computer simulations at the level of individual atoms and showed that the radiation tolerance in this group of alloys can be attributed to the way that the displaced atoms travel within the material. The explanation was further confirmed by another set of experiments conducted by the team at the University of Wisconsin.

    “In simplified terms, if there are a lot of atoms of different sizes, you can consider them bumps or potholes,” Wang said. “So this defect won’t travel so smoothly. It will bounce around and slow down.”

    Because the displaced atoms and the holes in the crystal structure stayed near one another, they were much more likely to find one another. In effect, this repaired many of the vacancies in the complicated alloys before they could join together into larger cavities.

    “Based on this study, we now understand how to develop a radiation-tolerant matrix of an alloy,” Wang said.

    The study, titled Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single phase alloys, appears in Nature Communications.

    The work was supported as part of the Energy Dissipation to Defect Evolution Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    U MIchigan Campus

    The University of Michigan (U-M, UM, UMich, or U of M), frequently referred to simply as Michigan, is a public research university located in Ann Arbor, Michigan, United States. Originally, founded in 1817 in Detroit as the Catholepistemiad, or University of Michigania, 20 years before the Michigan Territory officially became a state, the University of Michigan is the state’s oldest university. The university moved to Ann Arbor in 1837 onto 40 acres (16 ha) of what is now known as Central Campus. Since its establishment in Ann Arbor, the university campus has expanded to include more than 584 major buildings with a combined area of more than 34 million gross square feet (781 acres or 3.16 km²), and has two satellite campuses located in Flint and Dearborn. The University was one of the founding members of the Association of American Universities.

    Considered one of the foremost research universities in the United States,[7] the university has very high research activity and its comprehensive graduate program offers doctoral degrees in the humanities, social sciences, and STEM fields (Science, Technology, Engineering and Mathematics) as well as professional degrees in business, medicine, law, pharmacy, nursing, social work and dentistry. Michigan’s body of living alumni (as of 2012) comprises more than 500,000. Besides academic life, Michigan’s athletic teams compete in Division I of the NCAA and are collectively known as the Wolverines. They are members of the Big Ten Conference.

     
  • richardmitnick 2:06 pm on January 5, 2017 Permalink | Reply
    Tags: Leonard Kapiloff, Power and Energy Society (PES) Scholarship, U Michigan   

    From U Michigan: “EE Student Leonard Kapiloff Earns PES Scholarship to Support Studies in Secure, Sustainable Grid” 

    U Michigan bloc

    University of Michigan

    January 4, 2017
    No writer credit

    1
    Leonard Kapiloff, undergraduate electrical engineering student, has been named a future power and energy leader by the IEEE Power & Energy Society, which recently awarded him a Power and Energy Society (PES) Scholarship for the 2016-17 academic year. This $2000 scholarship recognizes outstanding students committed to exploring the power and energy field. Leonard is also earning a minor in Energy Science and Policy.

    Leonard wants to work in the energy industry towards a more sustainable and secure electric grid.

    “I became interested in the field of power systems largely as a result of the environmental impacts associated with the generation of electricity,” says Leonard. “As I learned more about the industry, I was further intrigued by the importance of a reliable electricity supply for the economy and national security.”

    In the summer of 2016, Leonard worked for Dominion Resources, a power and energy company in Virginia, as a systems operations center intern. While there, he worked on control room contingency analysis to prevent blackouts on the grid. This included developing a program for automated notification of power fluctuations to key customers, including the Pentagon and other federal agencies. He also researched methods for integrating solar forecasting into electric grid reliability studies.

    Leonard has spent a great deal of time doing research, with his first experience at the Israel Institute of Technology doing battery performance analysis. In 2014 he worked as a Corrosion Research Intern at the Naval Surface Warfare Center in Maryland, studying crack repair and corrosion on naval ships and weaponry. During the 2015-16 school year he worked as a research assistant in U-M’s Bio-Plasmonics Lab, where he simulated and constructed solar energy harvesting nano-structures to determine their optimal light absorption.

    Outside of his studies, he participates in Michigan Club Wrestling and has worked as a summer counselor at a camp for teens.

    Leonard plans to graduate in May of 2018.

    2
    Leonard Kapiloff (left holding certificate) and Noah Mitchell-Ward, both recipients of a PES Scholarship for 2016-17, were recognized at a seminar sponsored by the Michigan Power & Energy Lab (MPEL). Pictured with them are Prof. Johanna Mathieu and Ian Hiskens, Vennema Professor of Engineering.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    U MIchigan Campus

    The University of Michigan (U-M, UM, UMich, or U of M), frequently referred to simply as Michigan, is a public research university located in Ann Arbor, Michigan, United States. Originally, founded in 1817 in Detroit as the Catholepistemiad, or University of Michigania, 20 years before the Michigan Territory officially became a state, the University of Michigan is the state’s oldest university. The university moved to Ann Arbor in 1837 onto 40 acres (16 ha) of what is now known as Central Campus. Since its establishment in Ann Arbor, the university campus has expanded to include more than 584 major buildings with a combined area of more than 34 million gross square feet (781 acres or 3.16 km²), and has two satellite campuses located in Flint and Dearborn. The University was one of the founding members of the Association of American Universities.

    Considered one of the foremost research universities in the United States,[7] the university has very high research activity and its comprehensive graduate program offers doctoral degrees in the humanities, social sciences, and STEM fields (Science, Technology, Engineering and Mathematics) as well as professional degrees in business, medicine, law, pharmacy, nursing, social work and dentistry. Michigan’s body of living alumni (as of 2012) comprises more than 500,000. Besides academic life, Michigan’s athletic teams compete in Division I of the NCAA and are collectively known as the Wolverines. They are members of the Big Ten Conference.

     
  • richardmitnick 1:39 pm on January 3, 2017 Permalink | Reply
    Tags: Arun Nagpal, Space Science, Students for the Exploration and Development of Space (SEDS), U Michigan   

    From U Michigan: “Student Arun Nagpal develops new ENG 100 section to spotlight space science” 

    U Michigan bloc

    University of Michigan

    11/22/2016
    Ariel Sandberg

    1
    No image caption. No image credit.

    For incoming freshman, Engineering (ENGR) 100 provides an initial glimpse into the world of collegiate engineering design. Though all offerings of this course contain common core elements, such as a central design challenge and technical communication requirements, each section focuses on a distinct engineering discipline that ranges from music signal processing to underwater robotics.

    Starting this upcoming winter semester, a new ENGR 100 section will be implemented that spotlights previously under-represented topics: atmospheric and space science. The idea first stemmed from a discussion between the council of Students for the Exploration and Development of Space (SEDS) and AE Professor Peter Washabaugh, who saw an opportunity to increase freshman engagement in space research through hands-on course-work. As space science and aerospace engineering are heavily intertwined, Dr. Washabaugh considered this increased engagement a boon for the entire Michigan aero community.

    Arun Nagpal, electrical engineering junior and co-President of SEDS, ran with the idea:

    “The impetus for creating this class was to encourage students to get involved in space science and atmospheric sensing. ENGR 100 is supposed to give students exposure to the full spectrum of Michigan engineering options and I realized [after talking with Professor Washabaugh] that there was no section that captured the work of the Climate and Space Sciences (CLaSP) department. I wanted to introduce freshman to the idea that the atmosphere is a living, breathing thing of scientific interest.”

    Together with CLaSP Professor Aaron Ridley and EE Masters student Abbhinav Muralidharan, Arun developed a series of labs aimed at incrementally exposing students to the electrical and software skills they would need to design and program an atmospheric instrument. He notes:

    “We took inspiration from the master’s level space instrumentation course CLaSP 584, which develops a circuit board with atmospheric sensing capabilities. We took that circuit board and broke it down into discrete parts that could be replicated by students in weekly labs. [The students] will learn the principles of sensing, [Arduino] coding and microprocessor theory and end up with payloads that can measure temperature, humidity, acceleration, and pressure.”

    2

    Though grounded in a fundamental board design, students will have the opportunity to modify their payloads to add additional sensors and functionality. They will gain hands-on experience soldering components to breakout boards and will experiment with the best approaches to processing their data.

    After completing their boards, students will have the opportunity to see their instruments in action aboard high-altitude balloons. Arun explains:

    “We are going to partner with the Michigan Balloon Recovery and Satellite Test Bed (MBuRST) design team to launch student payloads near the end of the semester. The payloads will be packaged on balloons four at a time [so that teams can reference each other’s data sets and subtract out noise]. The last couple of weeks of the course will emphasize flight review and [effective data presentation]. At the same time, students will gain practice explaining their work professionally through writing technical memos with their labs.”

    Overall, Arun feels that this course intimately ties into the mission of SEDS:

    “SEDS is all about advocating for space and spaceflight. An important part of that is making sure people have the education and opportunity to find a passion in the industry. We wanted to give freshman greater exposure to space science, with the knowledge that it may come to influence their eventual choice of major and career.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    U MIchigan Campus

    The University of Michigan (U-M, UM, UMich, or U of M), frequently referred to simply as Michigan, is a public research university located in Ann Arbor, Michigan, United States. Originally, founded in 1817 in Detroit as the Catholepistemiad, or University of Michigania, 20 years before the Michigan Territory officially became a state, the University of Michigan is the state’s oldest university. The university moved to Ann Arbor in 1837 onto 40 acres (16 ha) of what is now known as Central Campus. Since its establishment in Ann Arbor, the university campus has expanded to include more than 584 major buildings with a combined area of more than 34 million gross square feet (781 acres or 3.16 km²), and has two satellite campuses located in Flint and Dearborn. The University was one of the founding members of the Association of American Universities.

    Considered one of the foremost research universities in the United States,[7] the university has very high research activity and its comprehensive graduate program offers doctoral degrees in the humanities, social sciences, and STEM fields (Science, Technology, Engineering and Mathematics) as well as professional degrees in business, medicine, law, pharmacy, nursing, social work and dentistry. Michigan’s body of living alumni (as of 2012) comprises more than 500,000. Besides academic life, Michigan’s athletic teams compete in Division I of the NCAA and are collectively known as the Wolverines. They are members of the Big Ten Conference.

     
  • richardmitnick 4:35 am on December 27, 2016 Permalink | Reply
    Tags: , , U Michigan   

    From U Michigan: “Robotics building design approved, including space for Ford” 

    U Michigan bloc

    University of Michigan

    9/15/2016 [When, oh when, will U Michigan figure out the benefits of social media?]
    Nicole Casal Moore

    1
    No image caption. No image credit

    Robotic technologies for air, sea and roads, for factories, hospitals and homes will have tailored lab space in the University of Michigan’s planned Robotics Laboratory.

    Today, the U-M Board of Regents approved the schematic design for the $75 million facility, which is slated for the northeast corner of North Campus in the College of Engineering.

    The 140,000 square-foot building will house a three-story fly zone for autonomous aerial vehicles, an outdoor obstacle course for walking ‘bots, and high-bay garage space for self-driving cars, among other features. And in a unique collaboration, Ford Motor Co. will provide funding to add a fourth floor that it will lease for dedicated space where Ford researchers will eventually be based. The shared space grows a long-standing and broad partnership between U-M and Ford that includes projects to advance a variety of technologies such as driverless and connected vehicles.

    Construction is scheduled to begin after a comprehensive fundraising effort for College of Engineering funds and be completed in the winter of 2020.

    2
    “Many places with strong robotics reputations are computer science-dominated and they don’t test their theories on machines to the extent that we do. At U-M, most of our faculty members have an in-house robot. We put our algorithms in motion.”
    -Jessy Grizzle, U-M director of robotics

    When the building opens, U-M will become one of an elite few universities with a dedicated robotics facility. It will be the only university whose lab is down the road from a proving ground for driverless and connected vehicles. Mcity, U-M’s simulated urban and suburban environment for safe, controlled testing of advanced mobility vehicles and technologies, is located a half mile from the Robotics Laboratory site.

    “The University of Michigan has long been a global leader in robotics and our new facility will give our faculty members room to reach for world-changing advances and set them in motion,” said Professor Alec Gallimore, the Robert J. Vlasic Dean of Engineering. “Robots have come a long way from programmed machines bolted to the factory floor. Today they move through the world around us. They communicate and interact with each other and with us. They’re making our work, our travel, and our lives easier, more efficient and safer.”

    3

    Fifteen professors will be core robotics faculty members when the facility opens, and more than 35 across the university are working in the field. They are developing prosthetic limbs that could one day be controlled by the brain, an autonomous wheelchair that can sense obstacles and avoid them, efficient walking robots that have the potential to assist in search or rescue operations, and self-driving and connected cars designed to transform transportation, among other innovations.

    Most of the core faculty members conduct their research on an actual robot, which is unique to U-M.

    “What makes us special is that most of us here do both robotics theory and hardware,” said Jessy Grizzle, the Elmer G. Gilbert Distinguished University Professor and the Jerry W. and Carol L. Levin Professor of Engineering.

    “Many places with strong robotics reputations are computer science-dominated and they don’t test their theories on machines to the extent that we do. At U-M, most of our faculty members have an in-house robot. We put our algorithms in motion.”

    3
    No image caption. No image credit

    Grizzle has been named director of robotics at U-M. He came to the university in 1987 as a feedback control theorist, but quickly expanded his research into other areas. Among his achievements is the development of a theoretically sound and efficient method for control of bipedal robot locomotion, which resulted in the world’s fastest two-legged running robot with knees. He was also a key player in pioneering a model-based programming approach to the control of hybrid electric vehicles that is rapidly becoming an industry standard. The approach takes into account the random fluctuations in traffic patterns to make these vehicles as efficient as possible.

    “This new facility will give us cutting-edge lab space to test our theories on a broader scale, and in a collaborative environment that invites the exchange of ideas,” Grizzle said.

    4

    The building’s schematic design shows a sleek, slate gray and silver façade integrated into the environment in a style described as “machine in the garden.” In addition to the specialized labs, it will include two large shared lab spaces, a start-up style open collaboration area, offices for 30 faculty members and more than 100 graduate students and postdoctoral researchers, and two classrooms. U-M offers interdisciplinary masters and PhD degrees in robotics.

    A grand atrium will be flanked by glass walls that serve as windows into high-tech labs and a museum for retired robots. Public and school tours will be available.

    The partnership that puts Ford engineers on the fourth floor is designed to enrich opportunities for collaborative research, as well as educational opportunities for students to gain hands-on experiences.

    “With the new building’s proximity to Mcity, Ford and U-M are poised to accelerate the development of autonomous vehicles,” said Ken Washington, Ford vice president of research and advanced engineering. “This co-located lab on the U-M campus will magnify and deepen a collaborative research effort that is already unprecedented in scale.”

    With a decade-long history, the Ford/U-M Innovation Alliance has led to nearly 200 collaborative research projects. Its joint autonomous vehicle project is the largest university research effort Ford has sponsored on any campus, and the largest industry-funded individual research project at U-M. The technical innovations Ford and U-M produce through it are intended to deliver order of magnitude reductions in traffic deaths and collisions.

    Ford today announced that U-M assistant professors Matthew Johnson-Roberson and Ram Vasudevan will lead the joint Ford/U-M autonomous vehicle research project going forward. Johnson-Roberson is in the Department of Naval Architecture and Marine Engineering and Vasudevan is in the Department of Mechanical Engineering.

    The robotics building project is expected to provide an average of 66 on-site construction jobs.

    Grizzle will take part in a Reddit Science AMA (ask me anything) about his work with bipedal robots on Wednesday, Sept. 28 from 1-2 PM ET. Watch for more details on the day of the AMA.

    About Michigan Engineering: The University of Michigan College of Engineering is one of the top engineering schools in the country. Eight academic departments are ranked in the nation’s top 10 — some twice for different programs. Its research budget is one of the largest of any public university. Its faculty and students are making a difference at the frontiers of fields as diverse as nanotechnology, sustainability, healthcare, national security and robotics. They are involved in spacecraft missions across the solar system, and have developed partnerships with automotive industry leaders to transform transportation. Its entrepreneurial culture encourages faculty and students alike to move their innovations beyond the laboratory and into the real world to benefit society. Its alumni base of more than 75,000 spans the globe.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    U MIchigan Campus

    The University of Michigan (U-M, UM, UMich, or U of M), frequently referred to simply as Michigan, is a public research university located in Ann Arbor, Michigan, United States. Originally, founded in 1817 in Detroit as the Catholepistemiad, or University of Michigania, 20 years before the Michigan Territory officially became a state, the University of Michigan is the state’s oldest university. The university moved to Ann Arbor in 1837 onto 40 acres (16 ha) of what is now known as Central Campus. Since its establishment in Ann Arbor, the university campus has expanded to include more than 584 major buildings with a combined area of more than 34 million gross square feet (781 acres or 3.16 km²), and has two satellite campuses located in Flint and Dearborn. The University was one of the founding members of the Association of American Universities.

    Considered one of the foremost research universities in the United States,[7] the university has very high research activity and its comprehensive graduate program offers doctoral degrees in the humanities, social sciences, and STEM fields (Science, Technology, Engineering and Mathematics) as well as professional degrees in business, medicine, law, pharmacy, nursing, social work and dentistry. Michigan’s body of living alumni (as of 2012) comprises more than 500,000. Besides academic life, Michigan’s athletic teams compete in Division I of the NCAA and are collectively known as the Wolverines. They are members of the Big Ten Conference.

     
  • richardmitnick 2:42 pm on December 26, 2016 Permalink | Reply
    Tags: , , , Nanodisc technology, , U Michigan   

    From U Michigan via phys.org: “Nanodiscs deliver personalized cancer therapy to immune system” 

    U Michigan bloc

    University of Michigan

    phys.org

    phys.org

    December 26, 2016
    Researchers at the University of Michigan have had initial success in mice using nanodiscs to deliver a customized therapeutic vaccine for the treatment of colon and melanoma cancer tumors.

    “We are basically educating the immune system with these nanodiscs so that immune cells can attack cancer cells in a personalized manner,” said James Moon, the John Gideon Searle assistant professor of pharmaceutical sciences and biomedical engineering.

    Personalized immunotherapy is a fast-growing field of research in the fight against cancer.

    The therapeutic cancer vaccine employs nanodiscs loaded with tumor neoantigens, which are unique mutations found in tumor cells. By generating T-cells that recognize these specific neoantigens, the technology targets cancer mutations and fights to eliminate cancer cells and prevent tumor growth.

    Unlike preventive vaccinations, therapeutic cancer vaccines of this type are meant to kill established cancer cells.

    “The idea is that these vaccine nanodiscs will trigger the immune system to fight the existing cancer cells in a personalized manner,” Moon said.

    The nanodisc technology was tested in mice with established melanoma and colon cancer tumors. After the vaccination, twenty-seven percent of T-cells in the blood of the mice in the study targeted the tumors.

    When combined with immune checkpoint inhibitors, an existing technology that amplifies T-cell tumor-fighting responses, the nanodisc technology killed tumors within 10 days of treatment in the majority of the mice. After waiting 70 days, researchers then injected the same mice with the same tumor cells, and the tumors were rejected by the immune system and did not grow.

    “This suggests the immune system ‘remembered’ the cancer cells for long-term immunity,” said Rui Kuai, U-M doctoral student in pharmaceutical sciences and lead author of the study.

    “The holy grail in cancer immunotherapy is to eradicate tumors and prevent future recurrence without systemic toxicity, and our studies have produced very promising results in mice,” Moon said.

    The technology is made of extremely small, synthetic high density lipoproteins measuring roughly 10 nanometers. By comparison, a human hair is 80,000 to 100,000 nanometers wide.

    “It’s a powerful vaccine technology that efficiently delivers vaccine components to the right cells in the right tissues. Better delivery translates to better T-cell responses and better efficacy,” said study co-senior author Anna Schwendeman, U-M assistant professor of pharmacy.

    The next step is to test the nanodisc technology in a larger group of larger animals, Moon said.

    EVOQ Therapeutics, a new U-M spinoff biotech company, has been founded to translate these results to the clinic. Lukasz Ochyl, a doctoral student in pharmaceutical sciences, is also a co-author.

    The study, Designer vaccine nanodiscs for personalized cancer immunotherapy, is scheduled for advance online publication Dec. 26 on the Nature Materials website.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    U MIchigan Campus

    The University of Michigan (U-M, UM, UMich, or U of M), frequently referred to simply as Michigan, is a public research university located in Ann Arbor, Michigan, United States. Originally, founded in 1817 in Detroit as the Catholepistemiad, or University of Michigania, 20 years before the Michigan Territory officially became a state, the University of Michigan is the state’s oldest university. The university moved to Ann Arbor in 1837 onto 40 acres (16 ha) of what is now known as Central Campus. Since its establishment in Ann Arbor, the university campus has expanded to include more than 584 major buildings with a combined area of more than 34 million gross square feet (781 acres or 3.16 km²), and has two satellite campuses located in Flint and Dearborn. The University was one of the founding members of the Association of American Universities.

    Considered one of the foremost research universities in the United States,[7] the university has very high research activity and its comprehensive graduate program offers doctoral degrees in the humanities, social sciences, and STEM fields (Science, Technology, Engineering and Mathematics) as well as professional degrees in business, medicine, law, pharmacy, nursing, social work and dentistry. Michigan’s body of living alumni (as of 2012) comprises more than 500,000. Besides academic life, Michigan’s athletic teams compete in Division I of the NCAA and are collectively known as the Wolverines. They are members of the Big Ten Conference.

     
  • richardmitnick 11:49 am on September 17, 2016 Permalink | Reply
    Tags: , Necmiye Ozay, U Michigan,   

    From U Michigan: Women in STEM – “Necmiye Ozay Receives NASA Early Career Faculty Award for Research in Cyber-Physical Systems” 

    U Michigan bloc

    University of Michigan

    1
    Necmiye Ozay

    Prof. Necmiye Ozay, assistant professor of Electrical and Computer Engineering, was awarded a NASA Early Career Faculty award for her project, “Run-time anomaly detection and mitigation in information-rich cyber-physical systems.” Her research will be designed to assist in future missions in space, while being applicable to a wide range of cyber-physical systems.

    Next generation space missions require autonomous systems to operate without human intervention for long periods of times in highly dynamic environments. Such systems are vulnerable to software and/or hardware failures due to unexpected internal or external factors. Moreover, small anomalies, if not detected and isolated in a timely manner, can cascade through the system resulting in catastrophic outcomes, especially in highly dynamic missions where fail safe is not an option. This signifies the need for effective methods for integrated system health management, automated data analysis for decision making and verification and validation.

    The objective of this project is to develop the scientific foundation and associated algorithmic tools for synthesis of decentralized passive and active monitors for sensor-rich networked cyber-physical systems from heterogeneous sensory data.

    The potential benefits of the proposed research include (i) reductions in the design time of next generation space systems by automating synthesis of monitoring algorithms instead of hand-coded built-in tests, (ii) reductions in system cost by the potential to replace hardware redundancy with software-based solutions, (iii) increase in the time systems operate reliably by enabling timely detection of anomalies and reducing their cascading effects.

    Prof. Ozay plans to demonstrate the techniques she and her team develops on two university-scale testbeds: (i) vehicular energy networks, and (ii) human-robot teams for exploration missions with limited communication.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    U MIchigan Campus

    The University of Michigan (U-M, UM, UMich, or U of M), frequently referred to simply as Michigan, is a public research university located in Ann Arbor, Michigan, United States. Originally, founded in 1817 in Detroit as the Catholepistemiad, or University of Michigania, 20 years before the Michigan Territory officially became a state, the University of Michigan is the state’s oldest university. The university moved to Ann Arbor in 1837 onto 40 acres (16 ha) of what is now known as Central Campus. Since its establishment in Ann Arbor, the university campus has expanded to include more than 584 major buildings with a combined area of more than 34 million gross square feet (781 acres or 3.16 km²), and has two satellite campuses located in Flint and Dearborn. The University was one of the founding members of the Association of American Universities.

    Considered one of the foremost research universities in the United States,[7] the university has very high research activity and its comprehensive graduate program offers doctoral degrees in the humanities, social sciences, and STEM fields (Science, Technology, Engineering and Mathematics) as well as professional degrees in business, medicine, law, pharmacy, nursing, social work and dentistry. Michigan’s body of living alumni (as of 2012) comprises more than 500,000. Besides academic life, Michigan’s athletic teams compete in Division I of the NCAA and are collectively known as the Wolverines. They are members of the Big Ten Conference.

     
  • richardmitnick 9:00 pm on May 24, 2016 Permalink | Reply
    Tags: 'Kidney on a chip', , , U Michigan   

    From U Michigan: ” ‘Kidney on a chip’ could lead to safer drug dosing” 

    U Michigan bloc

    University of Michigan

    5/4/2016
    Gabe Cherry, Michigan Engineering

    1
    No image caption, no image credit

    University of Michigan researchers have used a “kidney on a chip” device to mimic the flow of medication through human kidneys and measure its effect on kidney cells. The new technique could lead to more precise dosing of drugs, including some potentially toxic medicines often delivered in intensive care units.

    Precise dosing in intensive care units is critical, as up to two-thirds of patients in the ICU experience serious kidney injury. Medications contribute to this injury in more than 20 percent of cases, largely because many intensive care drugs are potentially dangerous to the kidneys.

    Determining a safe dosage, however, can be surprisingly difficult. Today, doctors and drug developers rely mainly on animal testing to measure the toxicity of drugs and determine safe doses. But animals process medications more quickly than humans, making it difficult to interpret test results and sometimes leading researchers to underestimate toxicity.

    2
    No image caption, no image credit

    The new technique offers a more accurate way to test medications, closely replicating the environment inside a human kidney. It uses a microfluidic chip device to deliver a precise flow of medication across cultured kidney cells. This is believed to be the first time such a device has been used to study how a medication behaves in the body over time, called its “pharmacokinetic profile.”

    “When you administer a drug, its concentration goes up quickly and it’s gradually filtered out as it flows through the kidneys,” said University of Michigan Biomedical Engineering professor Shuichi Takayama, an author on the paper. “A kidney on a chip enables us to simulate that filtering process, providing a much more accurate way to study how medications behave in the body.”

    Takayama said the use of an artificial device provides the opportunity to run test after test in a controlled environment. It also enables researchers to alter the flow through the device to simulate varying levels of kidney function.

    “Even the same dose of the same drug can have very different effects on the kidneys and other organs, depending on how it’s administered,” said Sejoong Kim, an associate professor at Korea’s Seoul national University Budang Hospital, former U-M researcher and author on the paper. “This device provides a uniform, inexpensive way to capture data that more accurately reflects actual human patients.”

    In the study, the team tested their approach by comparing two different dosing regimens for gentamicin, an antibiotic that’s commonly used in intensive care units. They used a microfluidic device that sandwiches a thin, permeable polyester membrane and a layer of cultured kidney cells between top and bottom compartments.

    3
    No image caption, no image credit

    They then pumped a gentamicin solution into the top compartment, where it gradually filtered through the cells and the membrane, simulating the flow of medication through a human kidney. One test started with a high concentration that quickly tapered off, mimicking a once-daily drug dose. The other test simulated a slow infusion of the drug, using a lower concentration that stayed constant. Takayama’s team then measured damage to the kidney cells inside the device.

    They found that a once-daily dose of the medication is significantly less harmful than a continuous infusion—even though both cases ultimately delivered the same dose of medication. The results of the test could help doctors better optimize dosing regimens for gentamicin in the future. Perhaps most importantly, they showed that a kidney on a chip device can be used to study the flow of medication through human organs.

    “We were able to get results that better relate to human physiology, at least in terms of dosing effects, than what’s currently possible to obtain from common animal tests,” Takayama said. “The goal for the future is to improve these devices to the point where we’re able to see exactly how a medication affects the body from moment to moment, in real time.”

    Takayama said the techniques used in the study should be generalizable to a wide variety of other organs and medications, enabling researchers to gather detailed information on how medications affect the heart, liver and other organs. In addition to helping researchers fine-tune drug dosing regimens, he believes the technique could also help drug makers test drugs more efficiently, bringing new medications to market faster.

    Within a few years, Takayama envisions the creation of integrated devices that can quickly test multiple medication regimens and deliver a wide variety of information on how they affect human organs. PHASIQ, an Ann Arbor-based spinoff company founded by Takayama is commercializing the biomarker readout aspect of this type of technology in conjunction with the University of Michigan Office of Technology Transfer, where Takayama serves as a Faculty Innovation Ambassador.


    Access mp4 video here .
    University of Michigan researchers used a “kidney on a chip” to mimic the flow of medication through human kidneys. This enabled them to study the dosing regimen for a common intensive care drug. No video credit

    The paper, published in the journal Biofabrication, is titled Pharmacokinetic profile that reduces nephrotoxicity of gentamicin in a perfused kidney-on-a-chip. Funding and assistance for the project was provided by the National Institutes of Health (grant number GM096040), the University of Michigan Center for Integrative Research in Critical Care (MCIRCC), the University of Michigan Biointerfaces Institute, the National Research Foundation of Korea and the Korean Association of Internal Medicine Research Grant 2015.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    U MIchigan Campus

    The University of Michigan (U-M, UM, UMich, or U of M), frequently referred to simply as Michigan, is a public research university located in Ann Arbor, Michigan, United States. Originally, founded in 1817 in Detroit as the Catholepistemiad, or University of Michigania, 20 years before the Michigan Territory officially became a state, the University of Michigan is the state’s oldest university. The university moved to Ann Arbor in 1837 onto 40 acres (16 ha) of what is now known as Central Campus. Since its establishment in Ann Arbor, the university campus has expanded to include more than 584 major buildings with a combined area of more than 34 million gross square feet (781 acres or 3.16 km²), and has two satellite campuses located in Flint and Dearborn. The University was one of the founding members of the Association of American Universities.

    Considered one of the foremost research universities in the United States,[7] the university has very high research activity and its comprehensive graduate program offers doctoral degrees in the humanities, social sciences, and STEM fields (Science, Technology, Engineering and Mathematics) as well as professional degrees in business, medicine, law, pharmacy, nursing, social work and dentistry. Michigan’s body of living alumni (as of 2012) comprises more than 500,000. Besides academic life, Michigan’s athletic teams compete in Division I of the NCAA and are collectively known as the Wolverines. They are members of the Big Ten Conference.

     
  • richardmitnick 3:00 pm on January 8, 2016 Permalink | Reply
    Tags: , , U Michigan   

    From U Michigan: “Mapping the brain: Probes with tiny LEDs shed light on neural pathways Michigan Engineering” 

    U Michigan bloc

    University of Michigan

    January 8, 2016
    Michigan Engineering
    No writer credit found

    Temp 1
    No image credit found

    With the help of light-emitting diodes as small as neurons, University of Michigan researchers are unlocking the secrets of neural pathways in the brain.

    The researchers have built and tested in mice neural probes that hold what are believed to be the smallest implantable LEDs ever made. The new probes can control and record the activity of many individual neurons, measuring how changes in the activity of a single neuron can affect its neighbors. The team anticipates that experiments using probes based on their design could lead to breakthroughs in understanding and treating neurological diseases such as Alzheimer’s.

    2

    “This is a very big step forward,” said Kensall Wise, the William Gould Dow Distinguished University Professor Emeritus, who was involved with the research. “The fact that you can generate these optical signals on the probe, in a living brain, opens up new doors.”

    A network of around 100 billion neurons power the human brain, and figuring out how they work together is a monumental and important task, the researchers say.

    “Hundreds of millions of people suffer from neurological diseases, but treatment methods and drugs are currently very limited because scientific understanding of the brain is lacking,” said Fan Wu, a postdoctoral researcher in electrical engineering and computer sciences and co-first author on a new paper on the findings published in Neuron. “We have developed a tool that is needed to better understand how the brain works—and why it doesn’t work—to try to solve to these problems.”

    In genetically modified rodents, neurons can be turned on and off with light. Typically, neuroscientists using this optogenetics technique shine light on a region of the brain through implanted optical fibers and record the response with a second device. This helps to reveal which regions of the brain are responsible for which behaviors. But it can’t reveal how the neurons communicate with one another.

    3

    The new probes can. Each probe array contains 12 LEDs and 32 electrodes. The micro LEDs are as small as a neuron’s cell body, so they can turn single neurons on and off. Meanwhile, the microelectrodes measure activity at the single-neuron level, reporting how a change in one neuron’s behavior affects the surrounding network.

    “Now we can know how a group of cells, both adjacent and farther away, are responding to the activation of a single cell. This will help us better understand how these cells are communicating with each other,” Wu said.

    While the probes were made at U-M, the experiments to demonstrate them took place at New York University in the lab György Buzsáki, a leader in experimental neuroscience. Eran Stark, who is currently an assistant professor of neuroscience at Tel Aviv University, used them to measure how signals pass through the brains of mice. He focused on the area of the brain responsible for short- and long-term memory.
    “Using micro-LED probes, we may tease out how the signals propagate inside the neural circuitry so that we can understand how memories are formed, retrieved and replaced,” said Euisik Yoon, a professor of electrical engineering and computer science at U-M and project leader.

    4

    The proof-of-concept experiment found that superficial and deep neurons in the hippocampus produce different kinds of brain waves when stimulated. Future experiments will explore how these waves are related to memory.

    The research is described in the paper, Monolithically Integrated μLEDs on Silicon Neural Probes for High-Resolution Optogenetic Studies in Behaving Animals, is featured on the cover of Neuron 88, on Dec. 16, 2015.

    The research was funded by the National Institutes of Health and the National Science Foundation.

    Pei-Cheng Ku, an associate professor of electrical engineering and computer science at U-M, helped develop the micro-LEDs. Yoon is also a professor of biomedical engineering. Wise is a professor emeritus of electrical engineering and computer science and of biomedical engineering.

    Electrodes are a way to eavesdrop on neural activity and when combined with optogenetics, neural probes can stimulate the mind’s circuitry and gather further insight into the causes of blindness, deafness, Parkinson’s Disease and Alzheimer’s.
    The research was funded by the National Institute of Biomedical Imaging and Bioengineering (EB019221), the National Institute of Neurological Disorders and Stroke (NS075015), and the National Institute of Mental Health (MH54671), all at NIH, and by the National Science Foundation (ECCS 1407977). Funding also was provided by the Rothschild Foundation, the Human Frontiers in Science Program and the Machiah Foundation.

    Watch the video: https://www.youtube.com/watch?v=6kz…

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    U MIchigan Campus

    The University of Michigan (U-M, UM, UMich, or U of M), frequently referred to simply as Michigan, is a public research university located in Ann Arbor, Michigan, United States. Originally, founded in 1817 in Detroit as the Catholepistemiad, or University of Michigania, 20 years before the Michigan Territory officially became a state, the University of Michigan is the state’s oldest university. The university moved to Ann Arbor in 1837 onto 40 acres (16 ha) of what is now known as Central Campus. Since its establishment in Ann Arbor, the university campus has expanded to include more than 584 major buildings with a combined area of more than 34 million gross square feet (781 acres or 3.16 km²), and has two satellite campuses located in Flint and Dearborn. The University was one of the founding members of the Association of American Universities.

    Considered one of the foremost research universities in the United States,[7] the university has very high research activity and its comprehensive graduate program offers doctoral degrees in the humanities, social sciences, and STEM fields (Science, Technology, Engineering and Mathematics) as well as professional degrees in business, medicine, law, pharmacy, nursing, social work and dentistry. Michigan’s body of living alumni (as of 2012) comprises more than 500,000. Besides academic life, Michigan’s athletic teams compete in Division I of the NCAA and are collectively known as the Wolverines. They are members of the Big Ten Conference.

     
  • richardmitnick 11:31 am on December 22, 2015 Permalink | Reply
    Tags: , Microbiology, U Michigan   

    From U Michigan: “Duhaime Lab undergrad awarded prestigious ASM fellowship” 

    U Michigan bloc

    University of Michigan

    Dec 21, 2015
    Gail Kuhnlein

    1
    Alexi Schnur is attempting to isolate Lake Erie viruses that infect the bloom-forming bacterium Microcystis, the algae responsible for toxic algal blooms in Western Lake Erie.

    Alexi Schnur, an undergraduate who has worked in the lab of Dr. Melissa Duhaime since her first week freshman year, was awarded a prestigious American Society for Microbiology Undergraduate Research Fellowship. Schnur is attempting to isolate and describe viruses infecting the harmful algal bloom-forming bacterium, Microcystis, that ravages Lake Erie each summer.

    Schnur is a currently a junior in the Michigan Biology Academy Scholars Program (M-BIO) and the Undergraduate Research Opportunities Program (UROP) at the University of Michigan. Duhaime, a research scientist in the Department of Ecology and Evolutionary Biology, is Schnur’s mentor on her research project: “Microcystis Viruses – Hunting the Killers of Lake Erie’s Algal Blooms.” Schnur is an interdisciplinary astronomy major who plans to declare microbiology as another major once she finishes the introductory classes. She’s been interested in microbiology since becoming an undergraduate, which led her to virology studies in the Duhaime lab, where she is an undergraduate researcher.

    2

    “Along with fellow U-M undergrad, Paulina Devlin, I am currently trying to isolate Microcystis viruses on seven different cultures of non-colonial strains of the bacterium Microcystis,” Schnur said. Non-colonial strains are bacterial strains that are not forming colonies, but are single-cellular strains. “Viruses were collected weekly from Lake Erie during the 2014 and 2015 bloom seasons, May through November. We then apply these to the Microcystis cultures and monitor for clearing of the culture, which would indicate infection and the presence of Microcystis-infecting viruses.

    “Our work is not motivated by trying to eliminate the bloom. We suspect that there is a complicated relationship between Microcystis and its viruses in Lake Erie, and it is improbable that one virus exists that would kill the bloom-forming Microcystis in all places and across the entire bloom season. Isolating a virus from Lake Erie that is found to infect Microcystis would be an important step to learning more about these relatively unknown viruses and the role they play in the evolution of the bloom during a summer season. We also have metagenomic data of the Microcystis viruses during the 2014 bloom that would allow us to possibly identify and track a Microcystis virus through the genomic data to learn about their evolution and ecology if we are unable to isolate a virus in the lab.”

    They have evidence of Lake Erie viruses that have killed several strains of Microcystis. Their next challenge is to isolate these infecting viruses and reproduce the results, which she said is proving to be a real challenge.

    Currently, Schnur plans to attend graduate school for microbiology to obtain her doctorate degree. A future career track she is considering is to research extremophiles (microbes that live in/on inhospitable environments).

    The ASM fellowship is aimed at highly competitive students who wish to pursue graduate careers (Ph.D. or M.D./Ph.D.) in microbiology. Fellows have the opportunity to conduct full-time summer research at their home institution with an ASM mentor and present their research results at the 2016 ASM Microbe Meeting in Boston, Mass. if their abstract is accepted.

    Each fellow receives up to a $4,000 stipend, a two-year ASM student membership, and funding for travel expenses to the ASM Research Capstone Institute and ASM Microbe Meeting.

    The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM’s mission is to promote and advance the microbial sciences.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    U MIchigan Campus

    The University of Michigan (U-M, UM, UMich, or U of M), frequently referred to simply as Michigan, is a public research university located in Ann Arbor, Michigan, United States. Originally, founded in 1817 in Detroit as the Catholepistemiad, or University of Michigania, 20 years before the Michigan Territory officially became a state, the University of Michigan is the state’s oldest university. The university moved to Ann Arbor in 1837 onto 40 acres (16 ha) of what is now known as Central Campus. Since its establishment in Ann Arbor, the university campus has expanded to include more than 584 major buildings with a combined area of more than 34 million gross square feet (781 acres or 3.16 km²), and has two satellite campuses located in Flint and Dearborn. The University was one of the founding members of the Association of American Universities.

    Considered one of the foremost research universities in the United States,[7] the university has very high research activity and its comprehensive graduate program offers doctoral degrees in the humanities, social sciences, and STEM fields (Science, Technology, Engineering and Mathematics) as well as professional degrees in business, medicine, law, pharmacy, nursing, social work and dentistry. Michigan’s body of living alumni (as of 2012) comprises more than 500,000. Besides academic life, Michigan’s athletic teams compete in Division I of the NCAA and are collectively known as the Wolverines. They are members of the Big Ten Conference.

     
  • richardmitnick 8:59 pm on December 16, 2015 Permalink | Reply
    Tags: , , U Michigan   

    From U Michigan: “Heat radiates 10,000 times faster at the nanoscale” 

    U Michigan bloc

    University of Michigan

    12/10/2015
    Nicole Casal Moore, Michigan Engineering

    1
    No image credits

    When heat travels between two objects that aren’t touching, it flows differently at the smallest scales – distances on the order of the diameter of DNA, or 1/50,000 of a human hair.

    While researchers have been aware of this for decades, they haven’t understood the process. Heat flow often needs to be prevented or harnessed and the lack of an accurate way to predict it represents a bottleneck in nanotechnology development.

    Now, in a unique ultra-low vibration lab at the University of Michigan, engineers have measured how heat radiates from one surface to another in a vacuum at distances down to 2 nanometers.

    While the thermal energy still flows from the warmer place to the colder one, the researchers found it does so 10,000 times faster than it would at the scale of, say, a bonfire and a pair of chilly hands. “Faster” here refers to the speed at which the temperature of one sample changes the temperature of the other – and not the speed at which the heat itself travels. Heat is a form of electromagnetic radiation, so it moves at the speed of light. What’s different at the nanoscale is the efficiency of the process.

    “We’ve shown, for the first time, the dramatic enhancements of radiative heat fluxes in the extreme near-field,” said Pramod Reddy, an associate professor of mechanical engineering and materials science and engineering. “Our experiments and calculations imply that heat flows several orders of magnitude faster in these ultra small gaps.”

    Reddy and Edgar Meyhofer, a professor of mechanical engineering and biomedical engineering, led the work. A paper on the findings is newly published online in Nature.

    The findings have applications across nanotechnology. They could advance next-generation information storage such as heat-assisted magnetic recording. They could push forward devices that more directly convert heat into electricity, including heat generated in cars and spacecrafts that is now being wasted. Those are just a few potential uses.

    2

    The phenomenon the researchers studied is “radiative heat” – the electromagnetic radiation, or light, that all matter above absolute zero emits. It is the emission of the internal energy of matter from movement of particles in matter – movement that only happens above absolute zero.

    Scientists can explain how this happens at macroscopic distances, dimensions we can readily perceive in the world around us, down to some we can’t see. More than 100 years ago, the German physicist Max Planck wrote the equations that make this possible. His model accurately describes heat transfer across large to relatively small voids, reaching to 10 micrometers at room temperature. But when the gap gets so tight it’s almost not there, the equations break down.

    In the middle of the last century, the Russian radio physicist Sergei Rytov proposed a new theory called “fluctuational electrodynamics” to describe heat transfer at smaller-than-10-micrometer distances. Since then, research hasn’t always resulted in supporting evidence.

    “There were experiments in the 1990s or early 2000s that tried to test these ideas further and they found large discrepancies between what theory would predict and what experiments revealed ,” Meyhofer said.

    Because of the sophistication of the U-M lab, the researchers say their findings close the case, and Rytov was right.

    “Our work, performed in collaboration with colleagues Professor Juan Carlos Cuevas and Professor Francisco García-Vidal at the Universidad Autónoma de Madrid, resolves an important controversy and represents a key contribution to the field of heat transfer,” Reddy said. “These results disprove current dogma in nanoscale heat transfer, which holds that radiative heat transfer in single digit nanometer-sized gaps cannot be explained by existing theory.”

    The facility the researchers used is an ultra-low vibration chamber in the G. G. Brown Laboratories, the university’s newly renovated mechanical engineering complex. The chamber – one of several – was custom designed for performing nanoscale experiments so precise that mere footsteps could disturb them if they were done somewhere else. The rooms can withstand vibration from outside, such as traffic, and inside, such as heating and cooling systems. They also limit acoustic noise, temperature and humidity variations, as well as radio frequency and magnetic interference.

    “Our facility represents the true state of the art,” Meyhofer said. “When creating nanoscale gaps such as those required for our nanoscale heat radiation experiments, the slightest perturbation can ruin an experiment.”

    In the chamber, the researchers used custom-built “scanning thermal microscopy probes” that allowed them to directly study how fast heat flows between two surfaces of silica, silicon nitride and gold. The researchers chose these materials because they’re commonly used in nanotechnology.

    For each material, they designated one sample that would be heated to 305 Fahrenheit, and they coated the tip of the probe with the same material, but kept it at a cooler 98 degrees. They slowly moved the sample and the probe together, beginning at 50 nanometers until they were touching, and they measured the temperature of the tip at regular intervals.

    The cause of the rapid heat transfer, the researchers discovered, is that in nanoscale gaps there can be an overlap of the two sides’ surface and evanescent waves, both of which carry heat.

    “These waves reach only a small distance into the gap between materials,” said Bai Song, a graduate student in mechanical engineering and one of the lead authors. “And their intensity at the extreme near-field is enormous compared to the electromagnetic waves at larger distances. When these waves from two different devices overlap, that’s when they allow tremendous heat flux.”

    The paper is titled Radiative heat transfer in the extreme near field. It also involved collaborators from Universidad Autónoma de Madrid, Massachusetts Institute of Technology and Donostia International Physics Center. The work was funded by the U.S. Department of Energy Basic Energy Sciences, the Army Research Office, the National Science Foundation, the Spanish Ministry of Economy and Competitiveness and other organizations.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    U MIchigan Campus

    The University of Michigan (U-M, UM, UMich, or U of M), frequently referred to simply as Michigan, is a public research university located in Ann Arbor, Michigan, United States. Originally, founded in 1817 in Detroit as the Catholepistemiad, or University of Michigania, 20 years before the Michigan Territory officially became a state, the University of Michigan is the state’s oldest university. The university moved to Ann Arbor in 1837 onto 40 acres (16 ha) of what is now known as Central Campus. Since its establishment in Ann Arbor, the university campus has expanded to include more than 584 major buildings with a combined area of more than 34 million gross square feet (781 acres or 3.16 km²), and has two satellite campuses located in Flint and Dearborn. The University was one of the founding members of the Association of American Universities.

    Considered one of the foremost research universities in the United States,[7] the university has very high research activity and its comprehensive graduate program offers doctoral degrees in the humanities, social sciences, and STEM fields (Science, Technology, Engineering and Mathematics) as well as professional degrees in business, medicine, law, pharmacy, nursing, social work and dentistry. Michigan’s body of living alumni (as of 2012) comprises more than 500,000. Besides academic life, Michigan’s athletic teams compete in Division I of the NCAA and are collectively known as the Wolverines. They are members of the Big Ten Conference.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: