Tagged: U Chicago Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:39 am on May 31, 2019 Permalink | Reply
    Tags: "Scientists discover ancient seawater preserved from the last Ice Age", Asst. Prof. Clara Blättler- U Chicago, , Geophysical sciences, U Chicago,   

    From University of Chicago: Women in STEM- “Scientists discover ancient seawater preserved from the last Ice Age” Asst. Prof. Clara Blättler, U Chicago 

    U Chicago bloc

    From University of Chicago

    May 23, 2019
    Louise Lerner

    1
    Asst. Prof. Clara Blättler with a vial of seawater dating to the last Ice Age—about 20,000 years ago. Photo by Jean Lachat.

    Drops locked inside rock offer clues to modeling Earth’s climate and ocean circulation.

    Twenty thousand years ago, in the thick of an Ice Age, Earth looked very different. Because water was locked up in glaciers hundreds of feet thick, which stretched down over Chicago and New York City, the ocean was smaller—shorelines extended hundreds of miles farther out, and the remaining water was saltier and colder.

    A University of Chicago scientist led a study [Geochimica et Cosmochimica Acta] that recently announced the discovery of the first-ever direct remnants of that ocean: pockets of seawater dating to the Ice Age, tucked inside rock formations in the middle of the Indian Ocean.

    “Previously, all we had to go on to reconstruct seawater from the last Ice Age were indirect clues, like fossil corals and chemical signatures from sediments on the seafloor,” said Clara Blättler, an assistant professor of geophysical sciences at the University of Chicago, who studies Earth history using isotope geochemistry. “But from all indications, it looks pretty clear we now have an actual piece of this 20,000-year-old ocean.”

    Blättler and the team made the discovery on a months-long scientific mission exploring the limestone deposits that form the Maldives, a set of tiny islands in the middle of the Indian Ocean. The ship, the JOIDES Resolution, is specifically built for ocean science and is equipped with a drill that can extract cores of rock over a mile long from up to three miles beneath the seafloor. Then scientists either vacuum out the water or use a hydraulic press to squeeze the water out of the sediments.

    2
    Scientists carry a core of rock extracted by drill. Photo by Carlos Alvarez-Zarikian

    The scientists were actually studying those rocks to determine how sediments are formed in the area, which is influenced by the yearly Asian monsoon cycle. But when they extracted the water, they noticed their preliminary tests were coming back salty—much saltier than normal seawater. “That was the first indication we had something unusual on our hands,” Blättler said.

    The scientists took the vials of water back to their labs and ran a rigorous battery of tests on the chemical elements and isotopes that made up the seawater. All of their data pointed to the same thing: The water was not from today’s ocean, but the last remnants of a previous era that had migrated slowly through the rock.

    Scientists are interested in reconstructing the last Ice Age because the patterns that drove its circulation, climate and weather were very different from today’s—and understanding these patterns could shed light on how the planet’s climate will react in the future. “Any model you build of the climate has to be able to accurately predict the past,” Blättler said.

    For example, she said, ocean circulation is a primary player in climate, and scientists have a lot of questions about how that looked during an Ice Age. “Since so much fresh water was pulled into glaciers, the oceans would have been significantly saltier—which is what we saw,” Blättler said. “The properties of the seawater we found in the Maldives suggests that salinity in the Southern Ocean may have been more important in driving circulation than it is today.

    3
    On Asst. Prof. Clara Blättler’s desk is a pencil holder made from a drill bit used to extract cores of rock from the seafloor, as well as vials of the 20,000-year-old ocean. Photo by Jean Lachat.

    “It’s kind of a nice connection,” she said, “since Cesare Emiliani, who is widely regarded as the father of paleoceanography—reconstructing the ancient ocean—actually wrote his seminal paper on the subject here at the University of Chicago in 1955.”

    Their readings from the water align with predictions based on other evidence—a nice confirmation, Blättler said. The findings may also suggest places to search for other such pockets of ancient water.

    Other co-authors on the paper were from Princeton University and the University of Miami.

    Funding: International Ocean Drilling Program (National Science Foundation, Japan Ministry of Education, Culture, Sports, Science and Technology, European Consortium for Ocean Research Drilling), Simons Foundation.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Chicago Campus

    An intellectual destination

    One of the world’s premier academic and research institutions, the University of Chicago has driven new ways of thinking since our 1890 founding. Today, UChicago is an intellectual destination that draws inspired scholars to our Hyde Park and international campuses, keeping UChicago at the nexus of ideas that challenge and change the world.

    The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

    We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with UChicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

    UChicago research has led to such breakthroughs as discovering the link between cancer and genetics, establishing revolutionary theories of economics, and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations with our national and affiliated laboratories: Argonne National Laboratory, Fermi National Accelerator Laboratory, and the Marine Biological Laboratory in Woods Hole, Massachusetts.

    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts.

     
  • richardmitnick 1:39 pm on May 22, 2019 Permalink | Reply
    Tags: "Scientists break record for highest-temperature superconductor", , U Chicago   

    From University of Chicago: “Scientists break record for highest-temperature superconductor” 

    U Chicago bloc

    From University of Chicago

    May 22, 2019
    Emily Ayshford

    1
    Scientists bombarded a sample of a new superconducting material (center) with X-rays to study its structure at the Advanced Photon Source.

    ANL Advanced Photon Source

    Experiment produces new material that can conduct electricity perfectly.

    University of Chicago scientists are part of an international research team that has discovered superconductivity—the ability to conduct electricity perfectly—at the highest temperatures ever recorded.

    Using advanced technology at UChicago-affiliated Argonne National Laboratory, the team studied a class of materials in which they observed superconductivity at temperatures of about minus-23 degrees Celsius (minus-9 degrees Fahrenheit)—a jump of about 50 degrees compared to the previous confirmed record.

    Though the superconductivity happened under extremely high pressure, the result still represents a big step toward creating superconductivity at room temperature—the ultimate goal for scientists to be able to use this phenomenon for advanced technologies. The results were published May 22 in the journal Nature; Vitali Prakapenka, a research professor at the University of Chicago, and Eran Greenberg, a postdoctoral scholar at the University of Chicago, are co-authors of the research.

    Just as a copper wire conducts electricity better than a rubber tube, certain kinds of materials are better at becoming superconductive, a state defined by two main properties: The material offers zero resistance to electrical current and cannot be penetrated by magnetic fields. The potential uses for this are as vast as they are exciting: electrical wires without diminishing currents, extremely fast supercomputers and efficient magnetic levitation trains.

    But scientists have previously only been able to create superconducting materials when they are cooled to extremely cold temperatures—initially, minus-240 degrees Celsius and more recently about minus-73 degrees Celsius. Since such cooling is expensive, it has limited their applications in the world at large.

    2
    The data from the X-rays allowed scientists to build a model of the crystal structure of the material. Courtesy of Drozdov et al.

    Recent theoretical predictions have shown that a new class of materials of superconducting hydrides could pave the way for higher-temperature superconductivity. Researchers at the Max Planck Institute for Chemistry in Germany teamed up with University of Chicago researchers to create one of these materials, called lanthanum superhydrides, test its superconductivity, and determine its structure and composition.

    The only catch was that the material needed to be placed under extremely high pressure—between 150 and 170 gigapascals, more than one-and-a-half-million times the pressure at sea level. Only under these high-pressure conditions did the material—a tiny sample only a few microns across—exhibit superconductivity at the new record temperature.

    In fact, the material showed three of the four characteristics needed to prove superconductivity: It dropped its electrical resistance, decreased its critical temperature under an external magnetic field and showed a temperature change when some elements were replaced with different isotopes. The fourth characteristic, called the Meissner effect, in which the material expels any magnetic field, was not detected. That’s because the material is so small that this effect could not be observed, researchers said.

    They used the Advanced Photon Source at Argonne National Laboratory, which provides ultra-bright, high-energy X-ray beams that have enabled breakthroughs in everything from better batteries to understanding the Earth’s deep interior, to analyze the material. In the experiment, researchers within University of Chicago’s Center for Advanced Radiation Sources squeezed a tiny sample of the material between two tiny diamonds to exert the pressure needed, then used the beamline’s X-rays to probe its structure and composition.

    Because the temperatures used to conduct the experiment is within the normal range of many places in the world, that makes the ultimate goal of room temperature—or at least 0 degrees Celsius—seem within reach.

    The team is already continuing to collaborate to find new materials that can create superconductivity under more reasonable conditions.

    “Our next goal is to reduce the pressure needed to synthesize samples, to bring the critical temperature closer to ambient, and perhaps even create samples that could be synthesized at high pressures, but still superconduct at normal pressures,” Prakapenka said. “We are continuing to search for new and interesting compounds that will bring us new, and often unexpected, discoveries.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Chicago Campus

    An intellectual destination

    One of the world’s premier academic and research institutions, the University of Chicago has driven new ways of thinking since our 1890 founding. Today, UChicago is an intellectual destination that draws inspired scholars to our Hyde Park and international campuses, keeping UChicago at the nexus of ideas that challenge and change the world.

    The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

    We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with UChicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

    UChicago research has led to such breakthroughs as discovering the link between cancer and genetics, establishing revolutionary theories of economics, and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations with our national and affiliated laboratories: Argonne National Laboratory, Fermi National Accelerator Laboratory, and the Marine Biological Laboratory in Woods Hole, Massachusetts.

    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts.

     
  • richardmitnick 3:02 pm on May 2, 2019 Permalink | Reply
    Tags: , , , , , , , , U Chicago   

    From University of Chicago: “Scientists invent way to trap mysterious ‘dark world’ particle at Large Hadron Collider” 

    U Chicago bloc

    From University of Chicago

    Apr 17, 2019 [Just found this via social media]
    Louise Lerner

    1
    Courtesy of Zarija Lukic/Berkeley Lab

    A new paper outlines a method to directly detect particles from the ‘dark world’ using the Large Hadron Collider. Until now we’ve only been able to make indirect measurements and simulations, such as the visualization of dark matter above.

    CERN LHC Maximilien Brice and Julien Marius Ordan

    Higgs boson could be tied with dark particle, serve as ‘portal to the dark world’.

    Now that they’ve identified the Higgs boson, scientists at the Large Hadron Collider have set their sights on an even more elusive target.

    All around us is dark matter and dark energy—the invisible stuff that binds the galaxy together, but which no one has been able to directly detect. “We know for sure there’s a dark world, and there’s more energy in it than there is in ours,” said LianTao Wang, a University of Chicago professor of physics who studies how to find signals in large particle accelerators like the LHC.

    Wang, along with scientists from the University and UChicago-affiliated Fermilab, think they may be able to lead us to its tracks; in a paper published April 3 in Physical Review Letters, they laid out an innovative method for stalking dark matter in the LHC by exploiting a potential particle’s slightly slower speed.

    While the dark world makes up more than 95% of the universe, scientists only know it exists from its effects—like a poltergeist you can only see when it pushes something off a shelf. For example, we know there’s dark matter because we can see gravity acting on it—it helps keep our galaxies from flying apart.

    Theorists think there’s one particular kind of dark particle that only occasionally interacts with normal matter. It would be heavier and longer-lived than other known particles, with a lifetime up to one tenth of a second. A few times in a decade, researchers believe, this particle can get caught up in the collisions of protons that the LHC is constantly creating and measuring.

    “One particularly interesting possibility is that these long-lived dark particles are coupled to the Higgs boson in some fashion—that the Higgs is actually a portal to the dark world,” said Wang, referring to the last holdout particle in physicists’ grand theory of how the universe works, discovered at the LHC in 2012.

    Standard Model of Particle Physics

    CERN CMS Higgs Event


    CERN ATLAS Higgs Event

    “It’s possible that the Higgs could actually decay into these long-lived particles.”

    The only problem is sorting out these events from the rest; there are more than a billion collisions per second in the 27-kilometer LHC, and each one of these sends subatomic chaff spraying in all directions.

    Wang, UChicago postdoctoral fellow Jia Liu and Fermilab scientist Zhen Liu (now at the University of Maryland) proposed a new way to search by exploiting one particular aspect of such a dark particle. “If it’s that heavy, it costs energy to produce, so its momentum would not be large—it would move more slowly than the speed of light,” said Liu, the first author on the study.

    That time delay would set it apart from all the rest of the normal particles. Scientists would only need to tweak the system to look for particles that are produced and then decay a bit more slowly than everything else.

    The difference is on the order of a nanosecond—a billionth of a second—or smaller. But the LHC already has detectors sophisticated enough to catch this difference; a recent study using data collected from the last run and found the method should work, plus the detectors will get even more sensitive as part of the upgrade that is currently underway.

    “We anticipate this method will increase our sensitivity to long-lived dark particles by more than an order of magnitude—while using capabilities we already have at the LHC,” Liu said.

    Experimentalists are already working to build the trap: When the LHC turns back on in 2021, after boosting its luminosity by tenfold, all three of the major detectors will be implementing the new system, the scientists said. “We think it has great potential for discovery,” Liu said.

    CERN ATLAS Credit CERN SCIENCE PHOTO LIBRARY


    CERN/CMS Detector


    CERN/ALICE Detector

    “If the particle is there, we just have to find a way to dig it out,” Wang said. “Usually, the key is finding the question to ask.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Chicago Campus

    An intellectual destination

    One of the world’s premier academic and research institutions, the University of Chicago has driven new ways of thinking since our 1890 founding. Today, UChicago is an intellectual destination that draws inspired scholars to our Hyde Park and international campuses, keeping UChicago at the nexus of ideas that challenge and change the world.

    The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

    We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with UChicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

    UChicago research has led to such breakthroughs as discovering the link between cancer and genetics, establishing revolutionary theories of economics, and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations with our national and affiliated laboratories: Argonne National Laboratory, Fermi National Accelerator Laboratory, and the Marine Biological Laboratory in Woods Hole, Massachusetts.

    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts.

     
  • richardmitnick 3:51 pm on April 30, 2019 Permalink | Reply
    Tags: "Scientists connect quantum bits with sound and over record distances", ‘Quantum ping-pong’—sending and then catching individual photons as they bounce back, Boosting quantum technology, Entangling two quantum bits using sound for the first time, , The key was shaping the pulses correctly—in an arc shape, U Chicago   

    From University of Chicago: “Scientists connect quantum bits with sound and over record distances” 

    U Chicago bloc

    From University of Chicago

    Apr 30, 2019
    Louise Lerner

    1
    Researchers work on superconducting quantum technology at the Institute for Molecular Engineering. Photo by Nancy Wong

    Two studies show breakthroughs that could boost quantum technology.

    Scientists with the Institute for Molecular Engineering at the University of Chicago have made two breakthroughs in the quest to develop quantum technology. In one study, they entangled two quantum bits using sound for the first time [Science]; in another, they built the highest-quality long-range link between two qubits to date [Nature Physics]. The work brings us closer to harnessing quantum technology to make more powerful computers, ultra-sensitive sensors and secure transmissions.

    “Both of these are transformative steps forward to quantum communications,” said co-author Andrew Cleland, the John A. MacLean Sr. Professor of Molecular Engineering at the IME and UChicago-affiliated Argonne National Laboratory. A leader in the development of superconducting quantum technology, he led the team that built the first “quantum machine,” demonstrating quantum performance in a mechanical resonator. “One of these experiments shows the precision and accuracy we can now achieve, and the other demonstrates a fundamental new ability for these qubits.”

    Scientists and engineers see enormous potential in quantum technology, a field that uses the strange properties of the tiniest particles in nature to manipulate and transmit information. For example, under certain conditions, two particles can be “entangled”—their fates linked even when they’re not physically connected. Entangling particles allows you to do all kinds of cool things, like transmit information instantly to space [Science] or make unhackable networks.

    But the technology has a long way to go—literally: A huge challenge is sending quantum information any substantial amount of distance, along cables or fibers.

    In a study published April 22 in Nature Physics, Cleland’s lab was able to build a system out of superconducting qubits that exchanged quantum information along a track nearly a meter long with extremely strong fidelity—with far higher performance has been previously demonstrated.

    “The coupling was so strong that we can demonstrate a quantum phenomenon called ‘quantum ping-pong’—sending and then catching individual photons as they bounce back,” said Youpeng Zhong, a graduate student in Cleland’s group and the first author of the paper.

    2
    Postdoctoral researcher Audrey Bienfait (left) and graduate student Youpeng Zhong work in the laboratory of Prof. Andrew Cleland in UChicago’s Institute for Molecular Engineering.
    Photo by Nancy Wong

    One of scientists’ breakthroughs was building the right device to send the signal. The key was shaping the pulses correctly—in an arc shape, like opening and closing a valve slowly, at just the right rate. This method of ‘throttling’ the quantum information helped them achieve such clarity that the system could pass a gold standard measurement of quantum entanglement, called a Bell test. This is a first for superconducting qubits, and it could be useful for building quantum computers as well as for quantum communications.

    The other study, published April 26 in Science, shows a way to entangle two superconducting qubits using sound.

    A challenge for scientists and engineers as they advance quantum technology is to be able to translate quantum signals from one medium to the other. For example, microwave light is perfect for carrying quantum signals around inside chips. “But you can’t send quantum information through the air in microwaves; the signal just gets swamped,” Cleland said.

    3
    Photo by Nancy Wong

    The team built a system that could translate the qubits’ microwave language into acoustic sound and have it travel across the chip—using a receiver at the other end that could do the reverse translation.

    It required some creative engineering: “Microwaves and acoustics are not friends, so we had to separate them onto two different materials and stack those on top of each other,” said Audrey Bienfait, a postdoctoral researcher and first author on the study. “But now that we’ve shown it is possible, it opens some interesting new possibilities for quantum sensors.”

    Both studies made use of the Pritzker Nanofabrication Facility, a 10,000-square-foot clean room at the University of Chicago for groundbreaking nano research.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Chicago Campus

    An intellectual destination

    One of the world’s premier academic and research institutions, the University of Chicago has driven new ways of thinking since our 1890 founding. Today, UChicago is an intellectual destination that draws inspired scholars to our Hyde Park and international campuses, keeping UChicago at the nexus of ideas that challenge and change the world.

    The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

    We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with UChicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

    UChicago research has led to such breakthroughs as discovering the link between cancer and genetics, establishing revolutionary theories of economics, and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations with our national and affiliated laboratories: Argonne National Laboratory, Fermi National Accelerator Laboratory, and the Marine Biological Laboratory in Woods Hole, Massachusetts.

    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts.

     
  • richardmitnick 5:40 pm on April 25, 2019 Permalink | Reply
    Tags: , , , , The decay of atoms of xenon-124—the rarest process ever observed in the universe-Its half-life is one trillion times longer than the age of the universe-18 billion trillion years, U Chicago,   

    From University of Chicago: “Scientists measure half-life of element that’s longer than the age of the universe” 

    U Chicago bloc

    From University of Chicago

    Apr 24, 2019
    Louise Lerner

    1
    Using the XENON1T experiment, UChicago scientists documented the decay of atoms of xenon-124, the rarest process ever observed in the universe. Photo by Enrico Sacchetti

    Beneath Italian mountains, UChicago scientists help catch rare decay of xenon-124.

    Gran Sasso LABORATORI NAZIONALI del GRAN SASSO, located in the Abruzzo region of central Italy

    Deep under an Italian mountainside, a giant detector filled with tons of liquid xenon has been looking for dark matter—particles of a mysterious substance whose effects we can see in the universe, but which no one has ever directly observed. Along the way, however, the detector caught another scientific unicorn: the decay of atoms of xenon-124—the rarest process ever observed in the universe.

    The results from the XENON1T experiment, co-authored by University of Chicago scientists and published April 25 in the journal Nature, document the longest half-life in the universe—and may be able to help scientists hunt for another mysterious process that is one of particle physics’ great mysteries.

    Not all atoms are stable. Depending on their makeup, some will stabilize themselves by releasing subatomic particles and turning into an atom of a different element—a process called radioactive decay.

    We’re much more familiar with radioactive elements like uranium and plutonium—these are the wild teenagers of radioactive elements, constantly hurling off particles. Radon-222, for example, has a half-life of just four days. Some elements, however, decay very, very slowly. Xenon-124 is one such elder statesman: Its half-life is one trillion times longer than the age of the universe, and as such, the chance of detecting its decay is very small.

    “This is the longest lifetime that we have ever directly measured,” said Luca Grandi, assistant professor of physics at the University of Chicago and co-author of the study. “Its detection was possible only thanks to the tremendous effort that the collaboration put into making XENON1T an ultra-low background detector. This made the detector ideal for rare event searches such as the detection of dark matter—for which it was designed—as well as other elusive processes.”

    Grandi is one of the scientists who worked on the XENON1T detector, an extremely sensitive machine tucked nearly a mile below the surface of the Gran Sasso mountains in Italy. The depth and the gigantic water pool in which the detector is immersed protect the detector from false alarms coming from cosmic rays and other phenomena as it searches for evidence of a particle called a “WIMP,” one proposed candidate for dark matter.

    The XENON1T detector is filled with three tons of xenon, which is kept cooled down to minus 140 degrees Fahrenheit and constantly purified (even a few atoms peeling off the metal sides of the container could throw off the measurements). The detector, which Grandi and the UChicago team helped develop, build and operate, detects flashes of light that are produced after a particle strikes a xenon atom.

    The XENON1T detector is optimized to detect very rare processes, as dark matter particles are expected to interact very rarely with ordinary matter. But it can also pick up other signals: in this case, the tracks produced as atoms of xenon-124 decay inside the detector. There are enough atoms of xenon-124 inside the detector that this was observed 126 times in the year that XENON1T was taking data.

    The data helped the collaboration make the first definitive measurement of xenon-124’s half-life: 18 billion trillion years.

    This decay process is called two-neutrino double electron capture. It happens when two protons in the xenon nucleus each simultaneously absorb an electron from the atomic shell and emit a neutrino—converting both protons into neutrons.

    This is closely related to another process that intrigues physicists, called the double beta decay process. “If scientists observed a neutrino-less version of double beta decay, we would know that a neutrino is its own antiparticle,” Grandi said. If so, it would require physicists to revisit their picture of how the universe works—and could even open the door to some fundamental questions, like why there is more matter than anti-matter in the universe.

    No one has yet been able to observe such an event, but the xenon-124 decay measurement gives scientists information about how to look for it—by nailing down the parameters of scientists’ models and reducing the chance of errors from the technique they use to search for neutrino-less double beta decays.

    “Beyond constraining the nuclear models for double beta searches, this discovery tells us it might be possible to use future massive xenon detectors to search for neutrinoless double electron captures—an even rarer variant that, if detected, would also tell us the nature of neutrinos,” Grandi said.

    The XENON1T detector is currently undergoing an upgrade to boost its sensitivity; it is planned to restart taking data late this year as XENONnT, with three times as much xenon and an order of magnitude more sensitivity.

    The other UChicago scientists on the paper were postdoctoral researcher Jacques Pienaar; graduate students Evan Shockley, Nicholas Upole and Katrina Miller; postdoctoral researcher Christopher Tunnell (now at Rice University); and data scientist Benedikt Riedel (now at the University of Wisconsin-Madison).

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Chicago Campus

    An intellectual destination

    One of the world’s premier academic and research institutions, the University of Chicago has driven new ways of thinking since our 1890 founding. Today, UChicago is an intellectual destination that draws inspired scholars to our Hyde Park and international campuses, keeping UChicago at the nexus of ideas that challenge and change the world.

    The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

    We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with UChicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

    UChicago research has led to such breakthroughs as discovering the link between cancer and genetics, establishing revolutionary theories of economics, and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations with our national and affiliated laboratories: Argonne National Laboratory, Fermi National Accelerator Laboratory, and the Marine Biological Laboratory in Woods Hole, Massachusetts.

    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts.

     
  • richardmitnick 3:16 pm on April 16, 2019 Permalink | Reply
    Tags: Campus-wide computational crossroads, Center for Data and Computing, Computer science no longer operates in isolation as virtually every discipline draws upon its methods and tools, John Crerar Library, Media Arts Data and Design Center, U Chicago, UChicago builds future of computer science   

    From University of Chicago: “From wearable tech to AI, UChicago builds future of computer science” 

    U Chicago bloc

    From University of Chicago

    Apr 12, 2019
    Rob Mitchum

    2
    Students create stretchable electronics during a computer science workshop. Photo by Pedro Lopes

    Inside the John Crerar Library, you might catch a glimpse of the future.

    Just off the lobby, University of Chicago computer scientists and artists are using digital fabrication tools in the Media Arts, Data and Design Center to create stretchable electronics that could power tomorrow’s wearable devices. While upstairs, researchers aren’t just advancing the foundations of data science and artificial intelligence, but facilitating their application in other fields, and sniffing out how malicious parties could exploit them.

    What’s happening in the newly renovated home of computer science at UChicago reflects the department’s ongoing transformation and growth, which has accelerated in the last three years. Since the arrival of Prof. Michael Franklin in 2016 as the Liew Family Chair of Computer Science, the department is on track to nearly double in size, adding new faculty with expertise in cutting-edge areas from AI to human-computer interaction, from data science to cybersecurity.


    The newly designed John Crerar Library at UChicago reflects the spirit of modern computer & data science: collaboration across boundaries. Video by UChicago Creative.

    The expansion has come as the interest in computer and data science grows markedly. Reflecting national trends, undergraduate enrollment in computer science courses at UChicago has surged in the last decade, and bachelor’s and PhD degrees granted in the discipline have grown more than 500 percent. With new faculty come new courses and laboratories, where students can engage with innovative topics such as robotics, quantum computing, computer vision, and cryptocurrencies.

    Today, computer science is more closely interwoven with society than ever, demanding collaborative, multidisciplinary research. Franklin and colleagues envision a uniquely UChicago approach to computer and data science—one that is based in computing foundations and utilizes the vast possibilities of data to pioneer powerful applications to shape and define these emerging fields. That holistic vision is supported by joint computer science programs with the Harris School of Public Policy and the Booth School of Business, and new campus-wide initiatives such as the Center for Data and Computing, which catalyzes data science collaborations across divisions and schools.

    “The way you do impactful computer science research is to work with people who are trying to solve real problems,” Franklin said. “Computation and data science have become powerful approaches for reformulating traditional questions about markets and society, human health and the humanities. The University is uniquely poised to define the future of computer and data science in light of our culture of inquiry and impact.”

    3
    The newly renovated John Crerar Library is the home of computer science at UChicago. Photo by Colin Lyons.

    New faculty bring inventive attitude

    Asst. Prof. Pedro Lopes’ laboratory has the feel of a high-tech toy workshop. Using the latest in 3-D printers, muscle-stimulating wearables and virtual reality headsets, Lopes and his students conjure up experimental new technologies—from musical instruments you play by plucking the air to sensory illusions that make VR experiences more realistic. Occasionally, Lopes’ pursuits spill over into the art world, such as Ad Infintium, an installation at the 2017 Ars Electronica meeting in which a “parasitic” machine took control of users’ muscles to power itself.

    The work sits at the vanguard of human-computer interaction, an inherently multi-disciplinary sub-field of computer science that studies how we use our devices—and how they shape us. Lopes, who joined UChicago in January, approaches his field by first inventing new technologies, then interrogating their scientific and philosophical meaning. For him, the breadth of knowledge displayed by UChicago students and faculty convinced him the University was the right place to base his research.

    “The University of Chicago has a very special approach to education, one that allows students to be ultra-creative and ultra-critical in all disciplines,” Lopes said. “Human-computer interaction is already this transdisciplinary field, and I felt like here there were already all these people that were mixed personalities and mixed backgrounds. That was a huge draw.”

    Other new faculty push forward the technology of artificial intelligence, improving the performance of computers on complex tasks and porting those abilities into new fields of science and industry. Rebecca Willett, a professor in computer science and statistics, creates data science and machine learning methods that help scientists in neurobiology, agriculture, astronomy and medicine extract new discoveries from messy, complex data or low-resolution images.

    Sanjay Krishnan, an assistant professor who joined UChicago last summer, designs “intelligent learning systems” that can improve the performance of surgical robots or self-driving cars. Michael Maire, who moved to UChicago from the affiliated Toyota Technological Institute at Chicago, studies the architecture of neural networks, the favored approach for teaching computers to recognize images or outperform humans on the board game Go.

    4
    The interior of the Media Arts, Data and Design Center in John Crerar Library. Photo by Colin Lyons.

    While these new faculty explore and expand the potential of AI and computation, Profs. Ben Zhao and Heather Zheng work to ensure that these technologies won’t be used to injure instead of innovate. Zhao engineered AI systems capable of writing convincingly fake restaurant reviews for Yelp and created alarms for “backdoors” placed into applications by malicious programmers, while Zheng examines how wireless smart home devices can be exploited to see inside buildings. By bringing these malicious possibilities into the light, researchers can create protections before they are abused.

    “Right now, these technologies are extremely powerful, and yet they’re not sufficiently well- studied or vetted. We don’t have the tools to understand and test them like we do with normal software,” Zhao said. “I think it’s the responsibility of the CS community to provide these tools so that we can be certain of these technologies’ reliability and behavior.”

    Campus-wide computational crossroads

    Even with all these new faces, the computer science hiring continues. This spring, more than 25 prospective faculty recruits from leading computer science programs around the world visited campus, as the department looks to continue its growth.

    “We’re building a top-tier computer science program at the University of Chicago, and that means adding expertise in research areas that are critical for the technologies of today and tomorrow,” Franklin said.

    5
    Student attend a lecture in the John Crerar Library. Photo by Colin Lyons

    Computer science no longer operates in isolation, as virtually every discipline draws upon its methods and tools. The most vivid example is the rapid rise of data science, a confluence of computer science and statistics that has helped realize the potential of the “Big Data” era in business and science. New techniques for extracting knowledge from the ever-growing flood of data have produced breakthroughs in finance, medicine, physics and urban studies, even though data science remains a young field.

    To promote further advances in the foundations of data science and its applications across domains, UChicago founded the Center for Data and Computing, an incubator for multidisciplinary research. This month, the center announced its first round of seed grants, funding projects that combine researchers from all corners of campus. The first cohort includes a mobile decision-making interface for doctors in areas without internet; a convening on the ethics of AI and quantum computing; and data science studies of climate-driven biological shifts, social drivers of cardiovascular disease and racial inequality in financial resilience.

    “Our students and faculty—not just in computer science, but across the entire breadth of departments and schools on campus—want to learn about, use, and extend these latest approaches to advance their scholarship and research,” Franklin said. “This expansion establishes a vital culture of computational scholarship and discovery at UChicago.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Chicago Campus

    An intellectual destination

    One of the world’s premier academic and research institutions, the University of Chicago has driven new ways of thinking since our 1890 founding. Today, UChicago is an intellectual destination that draws inspired scholars to our Hyde Park and international campuses, keeping UChicago at the nexus of ideas that challenge and change the world.

    The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

    We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with UChicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

    UChicago research has led to such breakthroughs as discovering the link between cancer and genetics, establishing revolutionary theories of economics, and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations with our national and affiliated laboratories: Argonne National Laboratory, Fermi National Accelerator Laboratory, and the Marine Biological Laboratory in Woods Hole, Massachusetts.

    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts.

     
  • richardmitnick 4:19 pm on April 9, 2019 Permalink | Reply
    Tags: "New ‘lab-on-a-chip’ can test thousands of stem cells simultaneously", A patient’s stem cells could be removed- placed into the device and be given the right combination of molecules to develop them into a certain lineage- then be placed back in the body., , “We achieved that and now we have an understanding of how stem cells make decisions. That’s pretty exciting.”, “We wanted to develop a microfluidic device that could sort image and culture single cells in an automated high-throughput way” said Assoc. Prof. Savas Tay, , It can culture cells in different modes—meaning it can examine different types of cells at the same time., Tay and his collaborators designed a microfluidic device that has 1500 automated chambers—much higher than similar devices which have less than 100., The credit-card-sized microfluidic device not only saves time and money but also offers a new glimpse into how single stem cells react to different molecules and environments., U Chicago, Ultimately a device like this could be used in fields like immunotherapy   

    From University of Chicago: “New ‘lab-on-a-chip’ can test thousands of stem cells simultaneously” 

    U Chicago bloc

    From University of Chicago

    Apr 9, 2019
    Emily Ayshford

    1
    Institute for Molecular Engineering researchers have developed a “lab-on-a-chip” that could help us understand how single stem cells react to different molecules and environments.
    Courtesy of Zhang et al.

    UChicago scientists invent time-saving technique to show how cells differentiate.

    Researchers with the Institute for Molecular Engineering at the University of Chicago have developed a new “lab-on-a-chip” that can examine thousands of individual live cells over a weeklong period, performing experiments that would take more than 1 million steps in a laboratory.

    The credit-card-sized, microfluidic device not only saves time and money, but also offers a new glimpse into how single stem cells react to different molecules and environments.

    When researchers examined neural stem cells on the device and analyzed the data, they found several new rules that determine the timing and signaling sequences needed to cause the cells to differentiate or renew themselves. The finding could have implications in understanding brain development or in treating patients with immunotherapy.

    “We wanted to develop a microfluidic device that could sort, image and culture single cells in an automated, high-throughput way,” said Assoc. Prof. Savas Tay, lead author of the research, published April 3 in the journal Science Advances. “We achieved that, and now we have an understanding of how stem cells make decisions. That’s pretty exciting.”

    Developing a new way to study cells

    Cells within our body are constantly responding to different signals and changes in the environment. In stem cells, for example, signals received at different points in time determine how the cell chooses what kind of cell it will develop into. One signal might cause a stem cell to differentiate into another cell, while another signal might cause it to maintain its form.

    Researchers currently have no way of studying these signal molecules on individual cells inside the body. Such analysis can be done in a lab with expensive, time-consuming experiments, but they ultimately cannot test all possible outcomes.

    Microfluidic devices, which have tiny chambers, tunnels and valves, have offered researchers a faster, automated process for studying these reactions in cells. But these devices have offered a limited number of chambers—meaning researchers could only test a certain amount of conditions with each cell—and could not keep the cells alive long enough to study them over a long period of time.

    Finding a way to keep finicky cells alive

    Tay and his collaborators set out to change that. They designed a microfluidic device that has 1,500 automated chambers—much higher than similar devices, which have less than 100. The device can also conduct several tasks—like cell stimulation, culturing, imaging and sorting—that were previously relegated to separate devices. It can culture cells in different modes—meaning it can examine different types of cells at the same time.

    Finally, the device also can keep cells alive for much longer, thanks to a new technique of diffusing media into a cell culture. Normally, to keep cells alive, researchers must change the media they are kept in every few hours. This change shocks the cells, and after several shocks, the cells can die. The researchers’ new technique diffuses the media into the cell chamber, a gentler process that does not shock the cells.

    In the first experiment with the device, the researchers studied how different signaling molecules affected the outcome of mouse neural stem cells. Such experiments create millions of data points, so Tay collaborated with Andrey Rzhetsky, UChicago professor in medicine and genetics, to conduct machine-learning analyses on the large dataset.

    They found that certain combinations of signals synergize and cause the cells to differentiate, while other molecules shut down those processes. The timing of these signals is also crucial. If a molecule is delivered at the right time, the researchers found, it can change the course of stem cells, from differentiation to self-renewal.

    “There are certain orders of signals that are highly optimal, and the exact timing of signals matters,” Tay said. “There hasn’t been a way to dynamically monitor these cells before, so finding and understanding these principles is exciting.”

    Next, the researchers hope to use the device to study organoids, tissue cultures derived from stem cells that organize themselves like tiny organs.

    Ultimately, a device like this could be used in fields like immunotherapy, where a patient’s own immune system is stimulated to help fight disease. A patient’s stem cells could be removed, placed into the device and be given the right combination of molecules to develop them into a certain lineage, then be placed back in the body.

    “We want to be able to use this device for all kinds of problems in cell biology,” Tay said.

    Other authors on the paper include Ce Zhang and Hsiung-Lin Tu, former postdoctoral fellows in Tay’s lab; Gengjie Jia, a postdoc in the Rzhetsky lab; and Verdon Taylor and Tanzila Mukhtar of the University of Basel.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Chicago Campus

    An intellectual destination

    One of the world’s premier academic and research institutions, the University of Chicago has driven new ways of thinking since our 1890 founding. Today, UChicago is an intellectual destination that draws inspired scholars to our Hyde Park and international campuses, keeping UChicago at the nexus of ideas that challenge and change the world.

    The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

    We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with UChicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

    UChicago research has led to such breakthroughs as discovering the link between cancer and genetics, establishing revolutionary theories of economics, and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations with our national and affiliated laboratories: Argonne National Laboratory, Fermi National Accelerator Laboratory, and the Marine Biological Laboratory in Woods Hole, Massachusetts.

    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts.

     
  • richardmitnick 1:12 pm on April 9, 2019 Permalink | Reply
    Tags: "In quantum breakthrough scientists demonstrate ‘one-way street’ for energy flow", , , , , , U Chicago   

    From University of Chicago: “In quantum breakthrough, scientists demonstrate ‘one-way street’ for energy flow” 

    U Chicago bloc

    From University of Chicago

    Apr 4, 2019
    A. A. Clerk

    1
    Copyright shutterstock.com

    In a new study, scientists found a method to create a controllable one-way channel for the flow of vibrational energy and heat.

    A basic rule in our lives is that if energy can flow in one direction, then it can also flow in the reverse direction. For example, if you open a window and yell at someone outside, you also can hear if they yell back. But what if there was a way to create a “one-way street” for mechanical energy that only allows heat and sound to flow in one direction?

    Finding new ways to break this basic symmetry has sparked the interest of scientists and engineers in recent years; such one-way streets could be extremely useful in applications ranging from quantum computing to cooling in electronics and devices.

    A breakthrough experiment involving researchers with the Institute for Molecular Engineering at the University of Chicago and Yale University demonstrated that by using light to mediate the interaction between mechanical systems, they can create a controllable, one-way channel for the flow of vibrational energy and heat.

    The study, published April 3 in Nature, was based on an idea developed earlier by the University of Chicago team [Physical Review X] and proves that the basic theory works. It also shows that the ideas can be implemented in a simple, compact system that could be incorporated in new devices.

    2
    Schematic image of the experimental device. Credit: Jack Sankey

    “This is a really exciting resource that can be used in both classical and quantum contexts,” said study co-author Aashish Clerk, a professor in molecular engineering at the University of Chicago who developed the theory. “This research could open the door for many new studies.”

    Breaking symmetry by using light

    The principle that says energy and information exchange between two systems via a two-way street is known as “reciprocity,” and it is a fundamental rule in most physical systems. Breaking this symmetry is crucial in a number of different applications. For example, by preventing a backward flow of energy, one could protect a delicate signal source from corruption, or cool a system by preventing unwanted heating.

    It’s especially important in quantum computation, in which scientists harness quantum phenomena to enable powerful new kinds of information processing. Breaking this symmetry ensures delicate quantum processors are not destroyed during the readout process.

    In their experiment, researchers used a tiny vibrating membrane as the mechanical system. Much like a drumhead, this membrane could vibrate in several distinct ways, each with a distinct resonant frequency.

    The researchers’ goal was to engineer a one-way flow of energy between two of these vibrational modes. To do this, the membrane was placed in a structure called an optical cavity, with two parallel mirrors designed to trap light. By shining light on the cavity using lasers, the researchers were able to use light as a medium for transferring mechanical energy between two vibrational modes. When the lasers were tuned carefully (in a way predicted by Clerk’s theory), this transfer mechanism was completely directional.

    From theory to lab to the quantum level

    The experiment was based on basic theoretical concepts developed by Clerk and his former postdoc Anja Metelmann (now at the Freie University in Berlin).

    “You can come up with a lot of ideas that are exciting in terms of the basic theory and concepts, but often there is a gap between these abstract ideas and what you can actually build and realize in the lab,” Clerk said. “To me, it is exciting that our proposal was realized, and that the experimentalists had enough control over their system to make it work.”

    The approach used in the experiment to achieve a one-way interaction—mechanical vibrations interacting with light—could pave the way for designing new devices targeting a variety of applications, ranging from mitigating heat flow to new kinds of communication systems. These unusual one-way interactions also have interesting fundamental implications.

    As a theoretical physicist who focuses on quantum systems, Clerk is particularly interested in studying arrays where many quantum systems interact with one another in a unidirectional manner. This could be a powerful way to generate the unusual kinds of quantum states that are needed for quantum communication and quantum computation.

    Other authors on the paper include Jack Harris, Haitan Xu and Luyao Jiang of Yale University.

    Clerk is working with the Polsky Center for Entrepreneurship and Innovation at the University of Chicago to advance his discoveries.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Chicago Campus

    An intellectual destination

    One of the world’s premier academic and research institutions, the University of Chicago has driven new ways of thinking since our 1890 founding. Today, UChicago is an intellectual destination that draws inspired scholars to our Hyde Park and international campuses, keeping UChicago at the nexus of ideas that challenge and change the world.

    The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

    We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with UChicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

    UChicago research has led to such breakthroughs as discovering the link between cancer and genetics, establishing revolutionary theories of economics, and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations with our national and affiliated laboratories: Argonne National Laboratory, Fermi National Accelerator Laboratory, and the Marine Biological Laboratory in Woods Hole, Massachusetts.

    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts.

     
  • richardmitnick 2:34 pm on April 2, 2019 Permalink | Reply
    Tags: , , , , , , , , , , U Chicago   

    From University of Chicago: “How to use gravitational waves to measure the expansion of the universe” 

    U Chicago bloc

    From University of Chicago

    Mar 28, 2019
    Louise Lerner


    Prof. Daniel Holz discusses a new way to calculate the Hubble constant, a crucial number that measures the expansion rate of the universe and holds answers to questions about the universe’s size, age and history. Video by UChicago Creative

    Ripples in spacetime lead to new way to determine size and age of universe.

    On the morning of Aug. 17, 2017, after traveling for more than a hundred million years, the aftershocks from a massive collision in a galaxy far, far away finally reached Earth.

    These ripples in the fabric of spacetime, called gravitational waves, tripped alarms at two ultra-sensitive detectors called LIGO, sending texts flying and scientists scrambling.


    VIRGO Gravitational Wave interferometer, near Pisa, Italy


    Caltech/MIT Advanced aLigo Hanford, WA, USA installation


    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project

    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger

    Gravity is talking. Lisa will listen. Dialogos of Eide

    ESA/eLISA the future of gravitational wave research

    Localizations of gravitational-wave signals detected by LIGO in 2015 (GW150914, LVT151012, GW151226, GW170104), more recently, by the LIGO-Virgo network (GW170814, GW170817). After Virgo came online in August 2018


    Skymap showing how adding Virgo to LIGO helps in reducing the size of the source-likely region in the sky. (Credit: Giuseppe Greco (Virgo Urbino group)

    One of the scientists was Prof. Daniel Holz at the University of Chicago. The discovery had provided him the information he needed to make a groundbreaking new measurement of one of the most important numbers in astrophysics: the Hubble constant, which is the rate at which the universe is expanding.

    The Hubble constant holds the answers to big questions about the universe, like its size, age and history, but the two main ways to determine its value have produced significantly different results. Now there was a third way, which could resolve one of the most pressing questions in astronomy—or it could solidify the creeping suspicion, held by many in the field, that there is something substantial missing from our model of the universe.

    “In a flash, we had a brand-new, completely independent way to make a measurement of one of the most profound quantities in physics,” said Holz. “That day I’ll remember all my life.”

    As LIGO and its European counterpart VIRGO turn back on on April 1, Holz and other scientists are preparing for more data that could shed light on some of the universe’s biggest questions.

    Universal questions

    We’ve known the universe is expanding for a long time (ever since eminent astronomer and UChicago alum Edwin Hubble made the first measurement of the expansion in 1929, in fact),

    Edwin Hubble looking through a 100-inch Hooker telescope at Mount Wilson in Southern California, 1929 discovers the Universe is Expanding

    but in 1998, scientists were stunned to discover that the rate of expansion is not slowing as the universe ages, but actually accelerating over time. In the following decades, as they tried to precisely determine the rate, it has become apparent that different methods for measuring the rate produce different answers.

    One of the two methods measures the brightness of supernovae–exploding stars– in distant galaxies;

    Standard Candles to measure age and distance of the universe from supernovae NASA

    the other looks at tiny fluctuations in the cosmic microwave background [CMB], the faint light left over from the Big Bang.

    CMB per ESA/Planck

    ESA/Planck 2009 to 2013

    Scientists have been working for two decades to boost the accuracy and precision for each measurement, and to rule out any effects which might be compromising the results; but the two values still stubbornly disagree by almost 10 percent.

    2
    A neutron star collision causes detectable ripples in the fabric of spacetime, which are called gravitational waves. Photo courtesy of Aurore Simonnet

    Because the supernova method looks at relatively nearby objects, and the cosmic microwave background is much more ancient, it’s possible that both methods are right—and that something profound about the universe has changed since the beginning of time.

    “We don’t know if one or both of the other methods have some kind of systematic error, or if they actually reflect a fundamental truth about the universe that is missing from our current models,” said Holz. “Either is possible.”

    Holz saw the possibility for a third, completely independent way to measure the Hubble constant—but it would depend on a combination of luck and extreme feats of engineering.

    The ‘standard siren’

    In 2005, Holz wrote a paper [NJP] with Scott Hughes of Massachusetts Institute of Technology suggesting that it would be possible to calculate the Hubble constant through a combination of gravitational waves and light. They called these sources “standard sirens,” a nod to “standard candles”, which refers to the supernovae used to make the Hubble constant measurement.

    But first it would take years to develop technology that could pick up something as ephemeral as ripples in the fabric of spacetime. That’s LIGO: a set of enormous, extremely sensitive detectors that are tuned to pick up the gravitational waves that are emitted when something big happens somewhere in the universe.

    The Aug. 17, 2017 waves came from two neutron stars, which had spiraled around and around each other in a faraway galaxy before finally slamming together at close to the speed of light. The collision sent gravitational waves rippling across the universe and also released a burst of light, which was picked up by telescopes on and around Earth.

    Neutron star collision-Robin Dienel-The Carnegie Institution for Science

    3
    Prof. Daniel Holz writes out the formula for the Hubble constant, which measures the rate at which the universe is expanding.

    That burst of light was what sent the scientific world into a tizzy. LIGO had picked up gravitational wave readings before, but all the previous ones were from collisions of two black holes, which can’t be seen with conventional telescopes.

    But they could see the light from the colliding neutron stars, and the combination of waves and light unlocked a treasure trove of scientific riches. Among them were the two pieces of information Holz needed to make his calculation of the Hubble constant.

    How does the method work?

    To make this measurement of the Hubble constant, you need to know how fast an object—like a newly collided pair of neutron stars—is receding away from Earth, and how far away it was to begin with. The equation is surprisingly simple. It looks like this: The Hubble constant is the velocity of the object divided by the distance to the object, or H=v/d.

    Somewhat counterintuitively, the easiest part to calculate is how fast the object is moving. Thanks to the bright afterglow given off by the collision, astronomers could point telescopes at the sky and pinpoint the galaxy where the neutron stars collided. Then they can take advantage of a phenomenon called redshift: As a faraway object moves away from us, the color of the light it’s giving off shifts slightly towards the red end of the spectrum. By measuring the color of the galaxy’s light, they can use this reddening to estimate how fast the galaxy is moving away from us. This is a century-old trick for astronomers.

    The more difficult part is getting an accurate measure of the distance to the object. This is where gravitational waves come in. The signal the LIGO detectors pick up gets interpreted as a curve, like this:

    4
    The signal picked up by the LIGO detector in Louisiana, as it caught the waves from two neutron stars colliding far away in space, forms a distinctive curve. Courtesy of LIGO

    The shape of the signal tells scientists how big the two stars were and how much energy the collision gave off. By comparing that with how strong the waves were when they reached Earth, they could infer how far away the stars must have been.

    The initial value from just this one standard siren came out to be 70 kilometers per second per megaparsec. That’s right in between the other two methods, which find about 73 (from the supernova method) and 67 (from the cosmic microwave background).

    Of course, that initial standard siren measurement is only from one data point, and large uncertainties remain. But the LIGO detectors are turning back on after an upgrade to boost their sensitivity. Nobody knows how often neutron stars collide, but Holz (along with former student Hsin-Yu Chen and current student Maya Fishbach) wrote a paper estimating that the gravitational wave method may provide a revolutionary, extremely precise measurement of the Hubble constant within five years.

    “As time goes on, we’ll observe more and more of these binary neutron star mergers, and use them as standard sirens to steadily improve our estimate of the Hubble constant. Depending on where our value falls, we might confirm one method or the other. Or we might find an entirely different value,” Holz said. “No matter what we find, it’s gonna be interesting—and will be an important step in learning more about our universe.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Chicago Campus

    An intellectual destination

    One of the world’s premier academic and research institutions, the University of Chicago has driven new ways of thinking since our 1890 founding. Today, UChicago is an intellectual destination that draws inspired scholars to our Hyde Park and international campuses, keeping UChicago at the nexus of ideas that challenge and change the world.

    The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

    We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with UChicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

    UChicago research has led to such breakthroughs as discovering the link between cancer and genetics, establishing revolutionary theories of economics, and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations with our national and affiliated laboratories: Argonne National Laboratory, Fermi National Accelerator Laboratory, and the Marine Biological Laboratory in Woods Hole, Massachusetts.

    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts.

     
  • richardmitnick 10:48 am on March 1, 2019 Permalink | Reply
    Tags: Chicago Quantum Exchange, , U Chicago, , UW-Madison adds expertise to hub for research and development of quantum technology, UW-Madison’s expertise inneutral atom qubits and superconducting qubits and silicon quantum dot qubits   

    From University of Wisconsin-Madison and University of Chicago: “University of Wisconsin-Madison joins Chicago Quantum Exchange” 

    U Wisconsin

    From University of Wisconsin Madison

    via

    U Chicago bloc

    University of Chicago

    Feb 28, 2019

    1
    Photo by John Zich

    UW-Madison adds expertise to hub for research and development of quantum technology.

    The Chicago Quantum Exchange, a growing hub for the research and development of quantum technology, is adding the University of Wisconsin–Madison as its newest member.

    UW-Madison is joining forces with the University of Chicago, the U.S. Department of Energy’s Argonne National Laboratory and Fermi National Accelerator Laboratory, and the University of Illinois at Urbana-Champaign in developing a national leading collaboration in the rapidly emerging field of quantum information.

    The new partnership comes as UW-Madison makes significant investments in quantum science, a field with potential to revolutionize computing, communication, security and more using the powerful capabilities of quantum mechanics.

    The federal government is increasingly interested in quantum technologies, launching late last year the National Quantum Initiative, which authorized an investment of more than $1.2 billion in quantum research over the next decade.

    “I think quantum science is one of the most exciting areas in physics right now,” said Robert McDermott, a professor of physics at UW–Madison. “Joining the Chicago Quantum Exchange is going to put us in a very strong position in the landscape of academic institutions that are developing quantum technologies throughout the United States.”

    The Chicago Quantum Exchange works toward advancing academic, industrial and governmental efforts in the science and engineering of quantum information, with the goal of applying research innovations to develop radically new types of devices, materials and computing techniques.

    “Bringing UW-Madison’s expertise in qubits and quantum information to the Chicago Quantum Exchange allows us to strengthen one of the largest quantum research efforts in the U.S. and will help us accelerate scientific developments that can lead toward promising new technologies,” said David Awschalom, director of the Chicago Quantum Exchange, the Liew Family Professor in Molecular Engineering at UChicago and an Argonne senior scientist.

    The Chicago Quantum Exchange’s continued growth enhances the position of the Chicago area, and the Midwest, to attract industry partnerships and government funding, while making it a leader in training the new quantum workforce.

    UW–Madison has institutional research expertise in three areas of qubits, which is the basic unit of quantum information rendered as an electronic or optical device. These areas are neutral atom qubits, superconducting qubits and silicon quantum dot qubits—along with quantum sensing research being conducted by faculty such as College of Engineering Assistant Professor Jennifer Choy and Assistant Professor of Physics Shimon Kolkowitz, and condensed matter research being conducted in the Department of Physics by Professors Maxim Vavilov and Robert Joynt, Associate Professor Alex Levchenko and Senior Scientist Lara Faoro.

    “We are looking forward to joint research projects within the CQE, which will give our students experience to enhance their education at UW–Madison,” said Mark Eriksson, a professor of physics at UW-Madison. “That collaboration is really important these days because a lot of expertise is needed to attack quantum computing problems from many different directions.”

    As the field of quantum information science continues to grow, so will the demand for quantum engineers in industry, government and at universities. The Chicago Quantum Exchange, through its member institutions, offers both undergraduate and graduate students access to world-class expertise and research facilities in quantum science and engineering.

    “Developing a next-generation quantum workforce is a huge priority nationally and worldwide,” Eriksson said. “We are training students to have this broad base of expertise that will equip them to make a high impact in this developing field of technology.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Chicago Campus

    An intellectual destination

    One of the world’s premier academic and research institutions, the University of Chicago has driven new ways of thinking since our 1890 founding. Today, UChicago is an intellectual destination that draws inspired scholars to our Hyde Park and international campuses, keeping UChicago at the nexus of ideas that challenge and change the world.

    The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

    We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with UChicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

    UChicago research has led to such breakthroughs as discovering the link between cancer and genetics, establishing revolutionary theories of economics, and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations with our national and affiliated laboratories: Argonne National Laboratory, Fermi National Accelerator Laboratory, and the Marine Biological Laboratory in Woods Hole, Massachusetts.

    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts.

    In achievement and prestige, the University of Wisconsin–Madison has long been recognized as one of America’s great universities. A public, land-grant institution, UW–Madison offers a complete spectrum of liberal arts studies, professional programs and student activities. Spanning 936 acres along the southern shore of Lake Mendota, the campus is located in the city of Madison.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: