Tagged: Type II supernova Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 3:55 pm on September 3, 2018 Permalink | Reply
    Tags: , , , , , Type II supernova, Victor M Blanco 4m Telescope   

    From CTIO: “Chilean scientists discover crucial event right before the death of a star in Cerro Tololo Inter-American Observatory (CTIO)” 

    NOAO Banner

    From CTIO

    Dark Energy Survey

    1
    Evidence of Type II supernova

    Today, the journal Nature Astronomy will publish the article The delay of shock breakout due to circumstellar material evident in most Type II Supernovae [science paper not made available even in a search], written by a group of researchers from the Center for Mathematical Modeling (CMM) and the Department of Astronomy of the University of Chile, Millennium Institute of Astrophysics (MAS) and international institutions, after four years of work.

    The discovery was made at the Cerro Tololo Inter-American Observatory – which is part of the AURA Observatory in Chile, funded by the National Science Foundation of the United States – by scanning the sky using DECam for 14 nights at the 4-m Victor Blanco Telescope, and they will change what is known about supernova explosions and the last stages of stellar evolution.


    Dark Energy Camera [DECam], built at FNAL


    NOAO/CTIO Victor M Blanco 4m Telescope which houses the DECam at Cerro Tololo, Chile, housing DECam at an altitude of 7200 feet

    In particular, the group discovered that supernovae generated from red supergiants, stars of great size in advanced stages of their lives, present a flash before the main explosion not predicted by current models.

    This brightness is explained by the collision between the expanding gas of the supernova and a material of unknown origin that surrounds the star, explains Francisco Förster, a researcher at the CMM and MAS leader of the research: “The presence of this material makes it possible to extract part of the enormous energy produced during the explosion and turn it into light that we can detect. ”

    The discovery was made possible because the explosions were observed in real time in their initial stages. To do this, data analysis techniques developed in Chile unprecedented for Astronomy, machine learning, astrophysical models created in Japan and high performance computing were used.

    “This research is part of the work that the CMM performs around acquiring and structuring complex databases, formulating methodologies to make sense of these databases and interpreting the results,” says Alejandro Maass, director of the Center for Mathematical Modeling. “It’s undoubtedly a step forward in the challenges that data science brings to society, academia and industry.”

    According to Förster, the discovery will open new research steps thanks to the large telescopes that are being built in northern Chile, such as the Large Synoptic Survey Telescope, also belonging to the AURA Observatory, which will sweep the entire sky every three nights: “This will enable us to collect more supernova samples, which will let us gain a better understanding of this phenomenon.”

    LSST


    LSST Camera, built at SLAC



    LSST telescope, currently under construction on the El Peñón peak at Cerro Pachón Chile, a 2,682-meter-high mountain in Coquimbo Region, in northern Chile, alongside the existing Gemini South and Southern Astrophysical Research Telescopes.

    For the Director of Cerro Tololo, Dr. Steve Heathcote “This result shows how in the era of Big Data, the use of advanced computing techniques -a field that in Chile has been established with global capabilities in CMM- to filter massive data sets delivered by modern instruments such as DECam, allow scientific discoveries that would have been impossible in the past. The techniques developed at CMM will be critical tools to handle the large amount of data that will come from LSST when it starts operations in Chile in 2023. ”

    Cerro Tololo Inter-American Observatory (CTIO)

    NOAO Cerro Tolo

    The Cerro Tololo Inter-American Observatory (CTIO) is located in northern Chile. CTIO operates the 4-meter, 1.5-meter, 0.9-meter, and Curtis Schmidt telescopes at this site.


    five-ways-keep-your-child-safe-school-shootings

    See the full article here .

    Stem Education Coalition

    NOAO News
    NOAO is the US national research & development center for ground-based night time astronomy. In particular, NOAO is enabling the development of the US optical-infrared (O/IR) System, an alliance of public and private observatories allied for excellence in scientific research, education and public outreach.

    Our core mission is to provide public access to qualified professional researchers via peer-review to forefront scientific capabilities on telescopes operated by NOAO as well as other telescopes throughout the O/IR System. Today, these telescopes range in aperture size from 2-m to 10-m. NOAO is participating in the development of telescopes with aperture sizes of 20-m and larger as well as a unique 8-m telescope that will make a 10-year movie of the Southern sky.

    In support of this mission, NOAO is engaged in programs to develop the next generation of telescopes, instruments, and software tools necessary to enable exploration and investigation through the observable Universe, from planets orbiting other stars to the most distant galaxies in the Universe.

    To communicate the excitement of such world-class scientific research and technology development, NOAO has developed a nationally recognized Education and Public Outreach program. The main goals of the NOAO EPO program are to inspire young people to become explorers in science and research-based technology, and to reach out to groups and individuals who have been historically under-represented in the physics and astronomy science enterprise.

    The National Optical Astronomy Observatory is proud to be a US National Node in the International Year of Astronomy, 2009.

    The NOAO System Science Center (NSSC)


    Gemini/North telescope at Maunakea, Hawaii, USA,4,207 m (13,802 ft) above sea level


    Gemini North


    Gemini South telescope, Cerro Tololo Inter-American Observatory (CTIO) campus near La Serena, Chile, at an altitude of 7200 feet


    Gemini South

    The NOAO System Science Center (NSSC) at NOAO is the gateway for the U.S. astronomical community to the International Gemini Project: twin 8.1 meter telescopes in Hawaii and Chile that provide unprecendented coverage (northern and southern skies) and details of our universe.

    NOAO is managed by the Association of Universities for Research in Astronomy under a Cooperative Agreement with the National Science Foundation.

     
  • richardmitnick 12:56 pm on January 12, 2017 Permalink | Reply
    Tags: , , IC 3639, Monster black holes, , , NGC 1448, , , Type II supernova   

    From Space Science Laboratory at UC Berkeley: “NuSTAR – Black Holes Hide in our Cosmic Backyard” 

    UC Berkeley

    UC Berkeley

    SSL UC Berkeley

    Space Science Laboratory

    1
    No image caption. No image credit.

    NASA/NuSTAR

    NuSTAR

    January 12, 2017
    Christopher Scholz

    Monster black holes sometimes lurk behind gas and dust, hiding from the gaze of most telescopes. But they give themselves away when material they feed on emits high-energy X-rays that NASA’s NuSTAR (Nuclear Spectroscopic Telescope Array) mission can detect. That’s how NuSTAR recently identified two gas-enshrouded supermassive black holes, located at the centers of nearby galaxies.

    “These black holes are relatively close to the Milky Way, but they have remained hidden from us until now,” said Ady Annuar, a graduate student at Durham University in the United Kingdom, who presented the results at the American Astronomical Society meeting in Grapevine, Texas. “They’re like monsters hiding under your bed.”

    Both of these black holes are the central engines of what astronomers call “active galactic nuclei,” a class of extremely bright objects that includes quasars and blazars. Depending on how these galactic nuclei are oriented and what sort of material surrounds them, they appear very different when examined with telescopes.

    Active galactic nuclei are so bright because particles in the regions around the black hole get very hot and emit radiation across the full electromagnetic spectrum — from low-energy radio waves to high-energy X-rays. However, most active nuclei are believed to be surrounded by a doughnut-shaped region of thick gas and dust that obscures the central regions from certain lines of sight. Both of the active galactic nuclei that NuSTAR recently studied appear to be oriented such that astronomers view them edge-on. That means that instead of seeing the bright central regions, our telescopes primarily see the reflected X-rays from the doughnut-shaped obscuring material.

    “Just as we can’t see the sun on a cloudy day, we can’t directly see how bright these active galactic nuclei really are because of all of the gas and dust surrounding the central engine,” said Peter Boorman, a graduate student at the University of Southampton in the United Kingdom.

    Boorman led the study of an active galaxy called IC 3639, which is 170 million light years away.

    2
    IC 3639, a galaxy with an active galactic nucleus, is seen in this image combining data from the Hubble Space Telescope and the European Southern Observatory.

    This galaxy contains an example of a supermassive black hole hidden by gas and dust. Researchers analyzed NuSTAR data from this object and compared them with previous observations from NASA’s Chandra X-Ray Observatory and the Japanese-led Suzaku satellite.

    NASA/Chandra Telescope
    NASA/Chandra Telescope

    JAXA/Suzaku satellite
    JAXA/Suzaku satellite

    The findings from NuSTAR, which is more sensitive to higher energy X-rays than these observatories, confirm the nature of IC 3639 as an active galactic nucleus that is heavily obscured, and intrinsically much brighter than observed.

    Researchers analyzed NuSTAR data from this object and compared them with previous observations from NASA’s Chandra X-Ray Observatory and the Japan-led Suzaku satellite. NuSTAR also provided the first precise measurement of how much material is obscuring the central engine of IC 3639, allowing researchers to determine how luminous this hidden monster really is.

    More surprising is the spiral galaxy that Annuar focused on: NGC 1448.

    6
    NGC 1448 (also designated NGC 1457 and ESO 249-16) is a spiral galaxy located about 60 million light-years away in the constellation Horologium. It has a prominent disk of young and very bright stars surrounding its small, shining core. The galaxy is receding from us with 1168 kilometers per second.

    NGC 1448 has recently been a prolific factory of supernovae, the dramatic explosions that mark the death of stars: after a first one observed in this galaxy in 1983 (SN 1983S), two more have been discovered during the past decade.

    Visible as a red dot inside the disc, in the upper right part of the image, is the supernova observed in 2003 (Type II supernova SN 2003hn), whereas another one, detected in 2001 (Type Ia supernova SN 2001el), can be noticed as a tiny blue dot in the central part of the image, just below the galaxy’s core. If captured at the peak of the explosion, a supernova might be as bright as the whole galaxy that hosts it.

    A Type Ia supernova is a result from the violent explosion of a white dwarf star. This category of supernovae produces consistent peak luminosity. The stability of this luminosity allows these supernovae to be used as standard candles to measure the distance to their host galaxies because the visual magnitude of the supernovae depends primarily on the distance.

    A Type II supernova results from the rapid collapse and violent explosion of a massive star. A star must have at least 8 times, and no more than 40–50 times the mass of the Sun for this type of explosion. It is distinguished from other types of supernova by the presence of hydrogen in its spectrum. Type II supernovae are mainly observed in the spiral arms of galaxies and in H II regions, but not in elliptical galaxies.

    This image was obtained using the 8.2-metre telescopes of ESO’s Very Large Telescope. It combines exposures taken between July 2002 and the end of November 2003.

    ESO/VLT at Cerro Paranal, Chile, ESO/VLT at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level
    ESO/VLT at Cerro Paranal, Chile, ESO/VLT at Cerro Paranal, with an elevation of 2,635 metres (8,645 ft) above sea level

    Credit: ESO

    The black hole in its center was only discovered in 2009, even though it is at the center of one of the nearest large galaxies to our Milky Way. By “near,” astronomers mean NGC 1448 is only 38 million light years away (one light year is about 6 trillion miles).

    Annuar’s study discovered that this galaxy also has a thick column of gas hiding the central black hole, which could be part of a doughnut-shaped region. X-ray emission from NGC 1448, as seen by NuSTAR and Chandra, suggests for the first time that, as with IC 3639, there must be a thick layer of gas and dust hiding the active black hole in this galaxy from our line of sight.

    Researchers also found that NGC 1448 has a large population of young (just 5 million year old) stars, suggesting that the galaxy produces new stars at the same time that its black hole feeds on gas and dust. Researchers used the European Southern Observatory New Technology Telescope to image NGC 1448 at optical wavelengths, and identified where exactly in the galaxy the black hole should be. A black hole’s location can be hard to pinpoint because the centers of galaxies are crowded with stars. Large optical and radio telescopes can help detect light from around black holes so that astronomers can find their location and piece together the story of their growth.

    “It is exciting to use the power of NuSTAR to get important, unique information on these beasts, even in our cosmic backyard where they can be studied in detail,” said Daniel Stern, NuSTAR project scientist at NASA’s Jet Propulsion Laboratory, Pasadena, California.

    NuSTAR is a Small Explorer mission led by Caltech and managed by JPL for NASA’s Science Mission Directorate in Washington. NuSTAR was developed in partnership with the Danish Technical University and the Italian Space Agency (ASI). The spacecraft was built by Orbital Sciences Corp., Dulles, Virginia. NuSTAR’s mission operations center is at UC Berkeley, and the official data archive is at NASA’s High Energy Astrophysics Science Archive Research Center. ASI provides the mission’s ground station and a mirror archive. JPL is managed by Caltech for NASA.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Founded in the wake of the gold rush by leaders of the newly established 31st state, the University of California’s flagship campus at Berkeley has become one of the preeminent universities in the world. Its early guiding lights, charged with providing education (both “practical” and “classical”) for the state’s people, gradually established a distinguished faculty (with 22 Nobel laureates to date), a stellar research library, and more than 350 academic programs.

    UC Berkeley Seal

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: