From “CSIROscope” (AU) At CSIRO (AU)-Commonwealth Scientific and Industrial Research Organization : “Torrents of Antarctic meltwater are slowing the currents that drive our vital ocean ‘overturning’ – and threaten its collapse” 

CSIRO bloc

From “CSIROscope” (AU)


CSIRO (AU)-Commonwealth Scientific and Industrial Research Organization

Matthew England
Adele Morrison
Andy Hogg
Qian Li
Steve Rintoul

Australian scientists are warning that the Southern Ocean’s deep “overturning” circulation is slowing and headed for collapse.

Off the coast of Antarctica, trillions of tonnes of cold salty water sink to great depths. As the water sinks, it drives the deepest flows of the “overturning” circulation – a network of strong currents spanning the world’s oceans. The overturning circulation carries heat, carbon, oxygen and nutrients around the globe, and fundamentally influences climate, sea level and the productivity of marine ecosystems.

But there are worrying signs these currents are slowing down. They may even collapse. If this happens, it would deprive the deep ocean of oxygen, limit the return of nutrients back to the sea surface, and potentially cause further melt back of ice as water near the ice shelves warms in response. There would be major global ramifications for ocean ecosystems, climate, and sea-level rise.

Schematic showing the pathways of flow in the upper, deep and bottom layers of the ocean.

Our new research, published today in the journal Nature [below], uses new ocean model projections to look at changes in the deep ocean out to the year 2050. Our projections show a slowing of the Antarctic overturning circulation and deep ocean warming over the next few decades. Physical measurements confirm these changes are already well underway.

Climate change is to blame. As Antarctica melts, more freshwater flows into the oceans. This disrupts the sinking of cold, salty, oxygen-rich water to the bottom of the ocean. From there this water normally spreads northwards to ventilate the far reaches of the deep Indian, Pacific and Atlantic Oceans. But that could all come to an end soon. In our lifetimes.

As part of this overturning, about 250 trillion tonnes [Progress in Oceanography (below)] of icy cold Antarctic surface water sinks to the ocean abyss each year. The sinking near Antarctica is balanced by upwelling at other latitudes. The resulting overturning circulation carries oxygen to the deep ocean and eventually returns nutrients to the sea surface, where they are available to support marine life.

If the Antarctic overturning slows down, nutrient-rich seawater will build up on the seafloor [Nature Climate Change (below)], five kilometres below the surface. These nutrients will be lost to marine ecosystems at or near the surface, damaging fisheries.

Changes in the overturning circulation could also mean more heat gets to the ice, particularly around West Antarctica, the area with the greatest rate of ice mass loss over the past few decades. This would accelerate global sea-level rise.

An overturning slowdown would also reduce the ocean’s ability to take up carbon dioxide [Nature Climate Change (below)], leaving more greenhouse gas emissions in the atmosphere. And more greenhouse gases means more warming, making matters worse.

Meltwater-induced weakening of the Antarctic overturning circulation could also shift tropical rainfall bands [Nature (below)] around a thousand kilometres to the north.

Put simply, a slowing or collapse of the overturning circulation would change our climate and marine environment in profound and potentially irreversible ways.

Signs of worrying change

The remote reaches of the oceans that surround Antarctica are some of the toughest regions to plan and undertake field campaigns. Voyages are long, weather can be brutal, and sea ice limits access for much of the year.

This means there are few measurements to track how the Antarctic margin is changing. But where sufficient data exist, we can see clear signs of increased transport of warm waters toward Antarctica [Nature Climate Change (below)], which in turn causes ice melt at key locations.

Indeed, the signs of melting around the edges of Antarctica [Science (below)] are very clear, with increasingly large volumes of freshwater flowing into the ocean and making nearby waters less salty and therefore less dense. And that’s all that’s needed to slow the overturning circulation. Denser water sinks, lighter water does not.

Antarctic ice mass loss over the last few decades based on satellite data, showing that between 2002 and 2020, Antarctica shed an average of ~150 billion metric tonnes of ice per year, adding meltwater to the ocean and raising sea-levels (Source: NASA).

How did we find this out?

Apart from sparse measurements, incomplete models have limited our understanding of ocean circulation around Antarctica.

For example, the latest set of global coupled model projections analysed by the Intergovernmental Panel on Climate Change exhibit biases in the region. This limits the ability of these models in projecting the future fate of the Antarctic overturning circulation.

To explore future changes, we took a high resolution global ocean model that realistically represents the formation and sinking of dense water near Antarctica.

We ran three different experiments, one where conditions remained unchanged from the 1990s; a second forced by projected changes in temperature and wind; and a third run also including projected changes in meltwater from Antarctica and Greenland.

In this way we could separate the effects of changes in winds and warming, from changes due to ice melt.

The findings were striking. The model projects the overturning circulation around Antarctica will slow by more than 40% over the next three decades, driven almost entirely by pulses of meltwater.

Over the same period, our modelling also predicts a 20% weakening of the famous North Atlantic overturning circulation which keeps Europe’s climate mild. Both changes would dramatically reduce the renewal and overturning of the ocean interior.

We’ve long known the North Atlantic overturning currents are vulnerable, with observations suggesting a slowdown is already well underway, and projections of a tipping point coming soon. Our results suggest Antarctica looks poised to match its northern hemisphere counterpart – and then some.

What next?

Much of the abyssal ocean has warmed in recent decades, with the most rapid trends detected near Antarctica, in a pattern very similar to our model simulations.

Our projections extend out only to 2050. Beyond 2050, in the absence of strong emissions reductions, the climate will continue to warm and the ice sheets will continue to melt. If so, we anticipate the Southern Ocean overturning will continue to slow to the end of the century and beyond.

The projected slowdown of Antarctic overturning is a direct response to input of freshwater from melting ice. Meltwater flows are directly linked to how much the planet warms, which in turn depends on the greenhouse gases we emit.

Our study shows continuing ice melt will not only raise sea-levels, but also change the massive overturning circulation currents which can drive further ice melt and hence more sea level rise, and damage climate and ecosystems worldwide. It’s yet another reason to address the climate crisis – and fast.

Progress in Oceanography 1999
Nature Climate Change 2022
Nature 2018
Nature Climate Change 2022
Science 2013

See the full article here .

Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


Please help promote STEM in your local schools.

Stem Education Coalition

CSIRO campus

CSIRO (AU)-Commonwealth Scientific and Industrial Research Organization , is Australia’s national science agency and one of the largest and most diverse research agencies in the world.

CSIRO works with leading organizations around the world. From its headquarters in Canberra, CSIRO maintains more than 50 sites across Australia and in France, Chile and the United States, employing about 5,500 people.

Federally funded scientific research began in Australia 104 years ago. The Advisory Council of Science and Industry was established in 1916 but was hampered by insufficient available finance. In 1926 the research effort was reinvigorated by establishment of the Council for Scientific and Industrial Research (CSIR), which strengthened national science leadership and increased research funding. CSIR grew rapidly and achieved significant early successes. In 1949 further legislated changes included renaming the organization as CSIRO.

Notable developments by CSIRO have included the invention of atomic absorption spectroscopy; essential components of Wi-Fi technology; development of the first commercially successful polymer banknote; the invention of the insect repellent in Aerogard and the introduction of a series of biological controls into Australia, such as the introduction of myxomatosis and rabbit calicivirus for the control of rabbit populations.

Research and focus areas

Research Business Units

As at 2019, CSIRO’s research areas are identified as “Impact science” and organized into the following Business Units:

Agriculture and Food
Health and Biosecurity
Data 61
Land and Water
Mineral Resources
Oceans and Atmosphere

National Facilities

CSIRO manages national research facilities and scientific infrastructure on behalf of the nation to assist with the delivery of research. The national facilities and specialized laboratories are available to both international and Australian users from industry and research. As at 2019, the following National Facilities are listed:

Australian Animal Health Laboratory (AAHL)
Australia Telescope National Facility – radio telescopes in the Facility include the Australia Telescope Compact Array, the Parkes Observatory, Mopra Radio Telescope Observatory and the Australian Square Kilometre Array Pathfinder.

STCA CSIRO Australia Compact Array (AU), six radio telescopes at the Paul Wild Observatory, is an array of six 22-m antennas located about twenty five kilometres (16 mi) west of the town of Narrabri in Australia.

CSIRO-Commonwealth Scientific and Industrial Research Organization (AU) Parkes Observatory [Murriyang, the traditional Indigenous name], located 20 kilometres north of the town of Parkes, New South Wales, Australia, 414.80m above sea level.

NASA Canberra Deep Space Communication Complex, AU, Deep Space Network. Credit: The National Aeronautics and Space Agency

CSIRO Canberra campus

ESA DSA 1, hosts a 35-metre deep-space antenna with transmission and reception in both S- and X-band and is located 140 kilometres north of Perth, Western Australia, near the town of New Norcia

CSIRO-Commonwealth Scientific and Industrial Research Organization (AU)CSIRO R/V Investigator.

UK Space NovaSAR-1 satellite (UK) synthetic aperture radar satellite.

CSIRO Pawsey Supercomputing Centre AU)

Magnus Cray XC40 supercomputer at Pawsey Supercomputer Centre Perth Australia

Galaxy Cray XC30 Series Supercomputer at at Pawsey Supercomputer Centre Perth Australia

Pausey Supercomputer CSIRO Zeus SGI Linux cluster

Others not shown


SKA- Square Kilometer Array

Australia Telescope National Facility – radio telescopes included in the Facility include the Australia Telescope Compact Array, the Parkes Observatory, Mopra Radio Telescope Observatory and the Australian Square Kilometre Array Pathfinder.

Haystack Observatory EDGES telescope in a radio quiet zone at the Inyarrimanha Ilgari Bundara Murchison Radio-astronomy Observatory (MRO), on the traditional lands of the Wajarri peoples.