Tagged: Theoretical Physics Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:01 pm on July 27, 2022 Permalink | Reply
    Tags: "Physics Major Works on a New Theory of Quantum Subsystems", A new way to identify subsystems and correlations compatible with General Relativity, , Building a framework for identifying subsystems which is consistent with General Relativity and finding that the notion of the subsystem is no longer rigid., , , , Shadi Ali Ahmad ’22, Subsystems should be thought of as directly arising from the observable properties one can measure., The scientists are working to generalize the framework to quantum field theory., Theoretical physicists have long been striving to combine quantum mechanics and general relativity into a unified theory of quantum gravity., Theoretical Physics, This description of subsystems falls short when describing scenarios that involve Albert Einstein’s Theory of General Relativity where time is relative to an observer’s motion., Using quantum information theory to study theoretical problems., When studying a complex system scientists identify smaller pieces called subsystems of which they can make sense.   

    From Dartmouth College: “Physics Major Works on a New Theory of Quantum Subsystems” 

    From Dartmouth College

    Harini Barath

    Shadi Ali Ahmad ’22 on campus this summer, shortly after graduating. (Photo by Eli Burakian ’00)

    Credit: Physical Review Letters (2022).

    When studying a complex system scientists identify smaller pieces called subsystems of which they can make sense. By studying subsystems and the correlations between them, they reconstruct an understanding of the whole.

    This approach has been used with great success to explain phenomena and develop applications in computing, cryptography and sensing based on quantum mechanics—the physics of matter and energy at the scale of the atom or smaller. But this approach is limited to systems that operate in a world where time is absolute.

    This description of subsystems falls short when describing scenarios that involve Albert Einstein’s Theory of General Relativity where time is relative to an observer’s motion and tightly interwoven with space into a four-dimensional “spacetime.”

    Now, a theoretical study co-authored by Alexander Smith, assistant professor of physics at Saint Anselm College and adjunct assistant professor at Dartmouth, and Shadi Ali Ahmad ’22, proposes a new way to identify subsystems and correlations compatible with general relativity.

    Theoretical physicists have long been striving to combine quantum mechanics and general relativity into a unified theory of quantum gravity. It is hoped that this work may be applied in developing a quantum description of spacetime, says Smith.

    The results, published in April in Physical Review Letters [below], build on previous work on a generalized notion of subsystems by the James Frank Family Professor of Physics Lorenza Viola and her collaborators. “Instead of having composite building parts that are glued together into a larger system, subsystems should be thought of as directly arising from the observable properties one can measure,” says Viola.

    “Quantum mechanics allows for correlations that are not consistent with our classical understanding of the world,” says Smith, “Viola and her collaborators gave us a new way to think about these unintuitive quantum correlations.”

    Smith, Ali Ahmad and their collaborators apply this idea to build a framework for identifying subsystems which is consistent with relativity and find that the notion of the subsystem is no longer rigid.

    “The way we partition a system is also relative. It depends on who is looking at it,” says Smith. While their method currently applies to simple systems of several particles, the authors are working to generalize the framework to quantum field theory, which constitutes our most fundamental description of nature.

    Several theoretical concepts that are driving the emerging understanding of quantum gravity have their origin in quantum information theory—a relatively new field that studies how information in a quantum system can be analyzed and manipulated. “Quantum information science has given us this whole new way to think about quantum mechanics itself,” says Smith.

    Working with Smith and other researchers, Ali Ahmad, a physics and mathematics major from Beirut, has used quantum information theory to study a number of different theoretical problems. In previous work [Physical Review D (below)], they were the first to examine how gravitational waves—ripples in spacetime produced when massive astronomical objects (e.g. black holes) speed up to extreme levels—affect entanglement between systems. Another project[Physical Review A (below)] tackled the question of how work—the measure of how much energy is transferred when a force acts on an object—can be defined operationally at the quantum scale.

    Smith says Ali Ahmad is one of the most driven to learn, hardworking and productive students he has encountered. “Seeing Shadi develop his ability in theoretical physics over the past four years has been very rewarding,” he says.

    Ali Ahmad won the 2022 Gazzaniga Family Science Award, which recognizes scientific accomplishment of a graduating senior in the sciences. He is also the recipient of the Physics and Astronomy Chair’s Prize.

    “Quantum information theory is a toolbox that I like to borrow from and use broadly,” says Ali Ahmad. The promise of access to undergraduate research opportunities and funding was what drew him to Dartmouth, he says. Now a research fellow at Dartmouth, Ali Ahmad is wrapping up ongoing projects as he prepares to apply to graduate programs.

    With classes as a springboard, he sought out research mentors in the physics and mathematics departments, collaborating with them on a wide range of research topics. “Talking about science with people shapes the way you think,” says Ali Ahmad, who already has three publications under his belt. “I think it really sharpens your interests.”

    Science papers:
    Physical Review D 2020

    Physical Review Letters 2022

    Physical Review A 2022

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Dartmouth College campus

    Dartmouth College is a private Ivy League research university in Hanover, New Hampshire. Established in 1769 by Eleazar Wheelock, Dartmouth is one of the nine colonial colleges chartered before the American Revolution and among the most prestigious in the United States. Although founded to educate Native Americans in Christian theology and the English way of life, the university primarily trained Congregationalist ministers during its early history before it gradually secularized, emerging at the turn of the 20th century from relative obscurity into national prominence.

    Following a liberal arts curriculum, Dartmouth provides undergraduate instruction in 40 academic departments and interdisciplinary programs, including 60 majors in the humanities, social sciences, natural sciences, and engineering, and enables students to design specialized concentrations or engage in dual degree programs. In addition to the undergraduate faculty of arts and sciences, Dartmouth has four professional and graduate schools: the Geisel School of Medicine, the Thayer School of Engineering, the Tuck School of Business, and the Guarini School of Graduate and Advanced Studies. The university also has affiliations with the Dartmouth–Hitchcock Medical Center. Dartmouth is home to the Rockefeller Center for Public Policy and the Social Sciences, the Hood Museum of Art, the John Sloan Dickey Center for International Understanding, and the Hopkins Center for the Arts. With a student enrollment of about 6,700, Dartmouth is the smallest university in the Ivy League. Undergraduate admissions are highly selective with an acceptance rate of 6.24% for the class of 2026, including a 4.7% rate for regular decision applicants.

    Situated on a terrace above the Connecticut River, Dartmouth’s 269-acre (109 ha) main campus is in the rural Upper Valley region of New England. The university functions on a quarter system, operating year-round on four ten-week academic terms. Dartmouth is known for its strong undergraduate focus, Greek culture, and wide array of enduring campus traditions. Its 34 varsity sports teams compete intercollegiately in the Ivy League conference of the NCAA Division I.

    Dartmouth is consistently cited as a leading university for undergraduate teaching by U.S. News & World Report. In 2021, the Carnegie Classification of Institutions of Higher Education listed Dartmouth as the only majority-undergraduate, arts-and-sciences focused, doctoral university in the country that has “some graduate coexistence” and “very high research activity”.

    The university has many prominent alumni, including 170 members of the U.S. Senate and the U.S. House of Representatives, 24 U.S. governors, 23 billionaires, 8 U.S. Cabinet secretaries, 3 Nobel Prize laureates, 2 U.S. Supreme Court justices, and a U.S. vice president. Other notable alumni include 79 Rhodes Scholars, 26 Marshall Scholarship recipients, and 14 Pulitzer Prize winners. Dartmouth alumni also include many CEOs and founders of Fortune 500 corporations, high-ranking U.S. diplomats, academic scholars, literary and media figures, professional athletes, and Olympic medalists.

    Comprising an undergraduate population of 4,307 and a total student enrollment of 6,350 (as of 2016), Dartmouth is the smallest university in the Ivy League. Its undergraduate program, which reported an acceptance rate around 10 percent for the class of 2020, is characterized by the Carnegie Foundation and U.S. News & World Report as “most selective”. Dartmouth offers a broad range of academic departments, an extensive research enterprise, numerous community outreach and public service programs, and the highest rate of study abroad participation in the Ivy League.

    Dartmouth, a liberal arts institution, offers a four-year Bachelor of Arts and ABET-accredited Bachelor of Engineering degree to undergraduate students. The college has 39 academic departments offering 56 major programs, while students are free to design special majors or engage in dual majors. For the graduating class of 2017, the most popular majors were economics, government, computer science, engineering sciences, and history. The Government Department, whose prominent professors include Stephen Brooks, Richard Ned Lebow, and William Wohlforth, was ranked the top solely undergraduate political science program in the world by researchers at The London School of Economics (UK) in 2003. The Economics Department, whose prominent professors include David Blanchflower and Andrew Samwick, also holds the distinction as the top-ranked bachelor’s-only economics program in the world.

    In order to graduate, a student must complete 35 total courses, eight to ten of which are typically part of a chosen major program. Other requirements for graduation include the completion of ten “distributive requirements” in a variety of academic fields, proficiency in a foreign language, and completion of a writing class and first-year seminar in writing. Many departments offer honors programs requiring students seeking that distinction to engage in “independent, sustained work”, culminating in the production of a thesis. In addition to the courses offered in Hanover, Dartmouth offers 57 different off-campus programs, including Foreign Study Programs, Language Study Abroad programs, and Exchange Programs.

    Through the Graduate Studies program, Dartmouth grants doctorate and master’s degrees in 19 Arts & Sciences graduate programs. Although the first graduate degree, a PhD in classics, was awarded in 1885, many of the current PhD programs have only existed since the 1960s. Furthermore, Dartmouth is home to three professional schools: the Geisel School of Medicine (established 1797), Thayer School of Engineering (1867)—which also serves as the undergraduate department of engineering sciences—and Tuck School of Business (1900). With these professional schools and graduate programs, conventional American usage would accord Dartmouth the label of “Dartmouth University”; however, because of historical and nostalgic reasons (such as Dartmouth College v. Woodward), the school uses the name “Dartmouth College” to refer to the entire institution.

    Dartmouth employs a total of 607 tenured or tenure-track faculty members, including the highest proportion of female tenured professors among the Ivy League universities, and the first black woman tenure-track faculty member in computer science at an Ivy League university. Faculty members have been at the forefront of such major academic developments as the Dartmouth Workshop, the Dartmouth Time Sharing System, Dartmouth BASIC, and Dartmouth ALGOL 30. In 2005, sponsored project awards to Dartmouth faculty research amounted to $169 million.

    Dartmouth serves as the host institution of the University Press of New England, a university press founded in 1970 that is supported by a consortium of schools that also includes Brandeis University, The University of New Hampshire, Northeastern University, Tufts University and The University of Vermont.


    Dartmouth was ranked tied for 13th among undergraduate programs at national universities by U.S. News & World Report in its 2021 rankings. U.S. News also ranked the school 2nd best for veterans, tied for 5th best in undergraduate teaching, and 9th for “best value” at national universities in 2020. Dartmouth’s undergraduate teaching was previously ranked 1st by U.S. News for five years in a row (2009–2013). Dartmouth College is accredited by The New England Commission of Higher Education.

    In Forbes’ 2019 rankings of 650 universities, liberal arts colleges and service academies, Dartmouth ranked 10th overall and 10th in research universities. In the Forbes 2018 “grateful graduate” rankings, Dartmouth came in first for the second year in a row.

    The 2021 Academic Ranking of World Universities ranked Dartmouth among the 90–110th best universities in the nation. However, this specific ranking has drawn criticism from scholars for not adequately adjusting for the size of an institution, which leads to larger institutions ranking above smaller ones like Dartmouth. Dartmouth’s small size and its undergraduate focus also disadvantage its ranking in other international rankings because ranking formulas favor institutions with a large number of graduate students.

    The 2006 Carnegie Foundation classification listed Dartmouth as the only “majority-undergraduate”, “arts-and-sciences focus[ed]”, “research university” in the country that also had “some graduate coexistence” and “very high research activity”.

    The Dartmouth Plan

    Dartmouth functions on a quarter system, operating year-round on four ten-week academic terms. The Dartmouth Plan (or simply “D-Plan”) is an academic scheduling system that permits the customization of each student’s academic year. All undergraduates are required to be in residence for the fall, winter, and spring terms of their freshman and senior years, as well as the summer term of their sophomore year. However, students may petition to alter this plan so that they may be off during their freshman, senior, or sophomore summer terms. During all terms, students are permitted to choose between studying on-campus, studying at an off-campus program, or taking a term off for vacation, outside internships, or research projects. The typical course load is three classes per term, and students will generally enroll in classes for 12 total terms over the course of their academic career.

    The D-Plan was instituted in the early 1970s at the same time that Dartmouth began accepting female undergraduates. It was initially devised as a plan to increase the enrollment without enlarging campus accommodations, and has been described as “a way to put 4,000 students into 3,000 beds”. Although new dormitories have been built since, the number of students has also increased and the D-Plan remains in effect. It was modified in the 1980s in an attempt to reduce the problems of lack of social and academic continuity.


  • richardmitnick 3:41 pm on July 21, 2022 Permalink | Reply
    Tags: "Researchers Explore a Hydrodynamic Semiconductor Where Electrons Flow Like Water", , Electrical Conductivity, , In metal wires carrying an electrical current there are many moving electrons that largely ignore each other like riders on a crowded subway., In the work the team studied the behavior of a novel semiconductor in which negatively charged electrons and positively charged “holes” simultaneously carry current., , , , The material was tuned in a way that allows conductivity to be turned on and off and the hydrodynamic behavior was prominent even at room temperature., , Theoretical Physics, To experimentally test their simple new model of hydrodynamic conductivity the team studied bilayer graphene—a material made from two atom-thin sheets of carbon.   

    From The Columbia University Fu Foundation School of Engineering and Applied Science and The National University of Singapore [新加坡国立大学](SG): “Researchers Explore a Hydrodynamic Semiconductor Where Electrons Flow Like Water” 

    From The Columbia University Fu Foundation School of Engineering and Applied Science


    Columbia U bloc

    Columbia University


    The National University of Singapore [新加坡国立大学](SG)

    Jul 19 2022
    Ellen Neff
    Photo Credit: Rina Goh/National University of Singapore

    In a novel semiconductor, electrons can flow like water around obstacles. This hydrodynamic behavior could yield more efficient devices. Credit: Rina Goh/National University of Singapore.

    A team at Columbia University and the National University of Singapore finds a simple new way to describe the water-like movement of electrons in a novel type of semiconductor, which could pave the way for more efficient electronics.

    You don’t normally want to mix electricity and water, but electricity behaving like water has the potential to improve electronic devices. Recent work from the groups of engineer James Hone at Columbia and theoretical physicist Shaffique Adam at the National University of Singapore and Yale-NUS builds new understanding of this unusual hydrodynamic behavior that changes some old assumptions about the physics of metals. The study was published on April 15 in the journal Science Advances [below].

    In the work the team studied the behavior of a novel semiconductor in which negatively charged electrons and positively charged “holes” simultaneously carry current. They found that this current can be described with just two “hydrodynamic” equations: one describing how the electrons and holes slide against each other, and a second for how all of the charges move together through the atomic lattice of the material.

    “Simple formulas usually mean simple physics,” Hone said, who was astonished when Adam’s postdoc, Derek Ho, built the new model, which challenges assumptions many physicists learn about metals early in their education. “We were all taught that in a normal metal, all you really need to know is how an electron bounces off various types of imperfections,” Hone said. “In this system, the basic models we learned about in our first courses just don’t apply.”

    In metal wires carrying an electrical current there are many moving electrons that largely ignore each other like riders on a crowded subway. As the electrons move, they inevitably run into either physical defects in the material carrying them or vibrations that cause them to scatter. Current slows down, and energy is lost. But, in materials that have smaller numbers of electrons, those electrons actually interact strongly with each other and will flow together, like water through a pipe. They still encounter those same imperfections, but their behavior is completely different: instead of thinking about individual electrons randomly scattering, you now have to treat the entire set of electrons (and holes) together, Hone said.

    To experimentally test their simple new model of hydrodynamic conductivity the team studied bilayer graphene—a material made from two atom-thin sheets of carbon. Hone’s PhD student Cheng Tan measured electrical conductivity from room temperature down to near absolute zero as he varied the density of electrons and holes. Tan and Ho found an excellent match between the model and their results. “It’s striking that experimental data agrees so much better with hydrodynamic theory than old “standard theory” about conductivity,” Ho said.

    The model worked when the material was tuned in a way that allows conductivity to be turned on and off and the hydrodynamic behavior was prominent even at room temperature. “It is really remarkable that bilayer graphene has been studied for over 15 years, but until now we did not correctly understand its room-temperature conductivity,” said Hone, who is also Wang Fong-Jen Professor and chair of the Department of Mechanical Engineering at Columbia Engineering.

    Low-resistance, room-temperature conductivity could have very practical applications. Existing superconducting materials, which conduct electricity without resistance, need to be kept incredibly cold. Materials capable of hydrodynamic flow could help researchers build more efficient electronic devices—known as viscous electronics—that don’t require such intense and expensive cooling.

    On a more fundamental level, the team verified that the sliding motion between electrons and holes isn’t specific to graphene, said Adam, associate professor from the Department of Materials Science and Engineering at the National University of Singapore and the Division of Science at Yale-NUS College. Because this relative motion is universal, researchers should be able to find it in other materials—especially as improving fabrication techniques continues to yield cleaner and cleaner samples, which the Hone Lab has focused on developing over the past decade. In the future, researchers might also design specific geometries to further improve performance of devices built to take advantage of this unique water-like collective behavior.

    Science paper:
    Science Advances

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Columbia University Fu Foundation School of Engineering and Applied Science is the engineering and applied science school of Columbia University. It was founded as the School of Mines in 1863 and then the School of Mines, Engineering and Chemistry before becoming the School of Engineering and Applied Science. On October 1, 1997, the school was renamed in honor of Chinese businessman Z.Y. Fu, who had donated $26 million to the school.

    The Fu Foundation School of Engineering and Applied Science maintains a close research tie with other institutions including National Aeronautics and Space Administration, IBM, Massachusetts Institute of Technology, and The Earth Institute. Patents owned by the school generate over $100 million annually for the university. Faculty and alumni are responsible for technological achievements including the developments of FM radio and the maser.

    The School’s applied mathematics, biomedical engineering, computer science and the financial engineering program in operations research are very famous and ranked high. The current faculty include 27 members of the National Academy of Engineering and one Nobel laureate. In all, the faculty and alumni of Columbia Engineering have won 10 Nobel Prizes in physics, chemistry, medicine, and economics.

    The school consists of approximately 300 undergraduates in each graduating class and maintains close links with its undergraduate liberal arts sister school Columbia College which shares housing with SEAS students.

    Original charter of 1754

    Included in the original charter for Columbia College was the direction to teach “the arts of Number and Measuring, of Surveying and Navigation […] the knowledge of […] various kinds of Meteors, Stones, Mines and Minerals, Plants and Animals, and everything useful for the Comfort, the Convenience and Elegance of Life.” Engineering has always been a part of Columbia, even before the establishment of any separate school of engineering.

    An early and influential graduate from the school was John Stevens, Class of 1768. Instrumental in the establishment of U.S. patent law. Stevens procured many patents in early steamboat technology; operated the first steam ferry between New York and New Jersey; received the first railroad charter in the U.S.; built a pioneer locomotive; and amassed a fortune, which allowed his sons to found the Stevens Institute of Technology.

    When Columbia University first resided on Wall Street, engineering did not have a school under the Columbia umbrella. After Columbia outgrew its space on Wall Street, it relocated to what is now Midtown Manhattan in 1857. Then President Barnard and the Trustees of the University, with the urging of Professor Thomas Egleston and General Vinton, approved the School of Mines in 1863. The intention was to establish a School of Mines and Metallurgy with a three-year program open to professionally motivated students with or without prior undergraduate training. It was officially founded in 1864 under the leadership of its first dean, Columbia professor Charles F. Chandler, and specialized in mining and mineralogical engineering. An example of work from a student at the School of Mines was William Barclay Parsons, Class of 1882. He was an engineer on the Chinese railway and the Cape Cod and Panama Canals. Most importantly he worked for New York, as a chief engineer of the city’s first subway system, the Interborough Rapid Transit Company. Opened in 1904, the subway’s electric cars took passengers from City Hall to Brooklyn, the Bronx, and the newly renamed and relocated Columbia University in Morningside Heights, its present location on the Upper West Side of Manhattan.

    Columbia U Campus
    Columbia University was founded in 1754 as King’s College by royal charter of King George II of England. It is the oldest institution of higher learning in the state of New York and the fifth oldest in the United States.

    University Mission Statement

    Columbia University is one of the world’s most important centers of research and at the same time a distinctive and distinguished learning environment for undergraduates and graduate students in many scholarly and professional fields. The University recognizes the importance of its location in New York City and seeks to link its research and teaching to the vast resources of a great metropolis. It seeks to attract a diverse and international faculty and student body, to support research and teaching on global issues, and to create academic relationships with many countries and regions. It expects all areas of the University to advance knowledge and learning at the highest level and to convey the products of its efforts to the world.

    Columbia University is a private Ivy League research university in New York City. Established in 1754 on the grounds of Trinity Church in Manhattan Columbia is the oldest institution of higher education in New York and the fifth-oldest institution of higher learning in the United States. It is one of nine colonial colleges founded prior to the Declaration of Independence, seven of which belong to the Ivy League. Columbia is ranked among the top universities in the world by major education publications.

    Columbia was established as King’s College by royal charter from King George II of Great Britain in reaction to the founding of Princeton College. It was renamed Columbia College in 1784 following the American Revolution, and in 1787 was placed under a private board of trustees headed by former students Alexander Hamilton and John Jay. In 1896, the campus was moved to its current location in Morningside Heights and renamed Columbia University.

    Columbia scientists and scholars have played an important role in scientific breakthroughs including brain-computer interface; the laser and maser; nuclear magnetic resonance; the first nuclear pile; the first nuclear fission reaction in the Americas; the first evidence for plate tectonics and continental drift; and much of the initial research and planning for the Manhattan Project during World War II. Columbia is organized into twenty schools, including four undergraduate schools and 15 graduate schools. The university’s research efforts include the Lamont–Doherty Earth Observatory, the Goddard Institute for Space Studies, and accelerator laboratories with major technology firms such as IBM. Columbia is a founding member of the Association of American Universities and was the first school in the United States to grant the M.D. degree. With over 14 million volumes, Columbia University Library is the third largest private research library in the United States.

    The university’s endowment stands at $11.26 billion in 2020, among the largest of any academic institution. As of October 2020, Columbia’s alumni, faculty, and staff have included: five Founding Fathers of the United States—among them a co-author of the United States Constitution and a co-author of the Declaration of Independence; three U.S. presidents; 29 foreign heads of state; ten justices of the United States Supreme Court, one of whom currently serves; 96 Nobel laureates; five Fields Medalists; 122 National Academy of Sciences members; 53 living billionaires; eleven Olympic medalists; 33 Academy Award winners; and 125 Pulitzer Prize recipients.

  • richardmitnick 10:28 am on July 7, 2022 Permalink | Reply
    Tags: "LAMPOST": Light A' Multilayer Periodic Optical SNSPD Target, , "SNSPD": Superconducting nanowire single-photon detector, "Study sets new constraints on dark photons using a new dielectric optical haloscope", , , , , The Perimeter Institute for Theoretical Physics, Theoretical Physics   

    From “phys.org” : “Study sets new constraints on dark photons using a new dielectric optical haloscope” 

    From “phys.org”

    July 6, 2022
    Ingrid Fadelli

    The dark photon dark matter field converts to photons in a layered dielectric target. These photons are focused by a lens onto a small, low noise SNSPD detector. The beam emitted from the stack is approximately uniform except for a small region in the middle where a mirror is absent. Credit: Chiles et al.

    Researchers at The National Institute of Standards and Technology (NIST), The Massachusetts Institute of Technology (MIT) and The Perimeter Institute recently set new constraints on dark photons, which are hypothetical particles and renowned dark matter candidates. Their findings, presented in a paper published in Physical Review Letters, were attained using a new superconducting nanowire single-photon detector (SNSPD) they developed.

    “There’s a close collaboration between our research groups at NIST and MIT, run by Dr. Sae Woo Nam and Prof. Karl Berggren, respectively” Jeff Chiles, one of the researchers who carried out the study, told Phys.org. “We work together to advance the technology and applications for ultra-sensitive devices called superconducting nanowire single-photon detectors or SNSPDs. ”

    Over the past few years, Chiles and his colleagues have been considering potential applications that would benefit from the SNSPD detectors they have been working on, which have virtually no background noise among other advantageous characteristics. They were eventually introduced to a group of theoretical physicists from The Perimeter Institute for Theoretical Physics in Canada.

    This team of theorists had an interesting idea for a dark matter detector that could operate in an entirely different domain from those currently employed in dark matter searches. This detector, namely a multilayer dielectric optical haloscope, was a highly promising concept, yet it would require an optical detector that could perform far better than those on the market today.

    “This turned out to be the perfect match, as the MIT and NIST groups could build the detector and the apparatus and test it out,” Chiles explained. “So, we teamed up and called our project LAMPOST (Light A’ Multilayer Periodic Optical SNSPD Target). Our goal was to achieve the first experimental proof-of-concept for this idea and prove that it could be used to search for dark matter with better sensitivity than the already established bounds.”

    The optical detector devised by Chiles and his colleagues is based on a structure known as a dielectric stack or target. This structure can generate signal photons of interest, by converting a nonrelativistic dark photon into a relativistic photon in the same frequency.

    New constraints on dark photon DM with mass and kinetic mixing. The magenta shaded region shows them 90% limit set by our experiment. The thin purple curve corresponds to the reach of an equivalent experiment with an improved SDE of 90%. Existing limits on dark photon DM from the FUNK, SENSEI, and Xenon10 experiments and from the nondetection of Solar dark photons by Xenon1T are shown in gray. Credit: Chiles et al.

    “First, we performed analysis of the construction of the apparatus, optical simulations to determine the optical collection efficiency, simulation of the detection efficiency, calculation of the influence of polarization on the dark matter signal and the minimum signal power that is compatible with the possible range of target properties,” Ilya Charaev, another researcher involved in the study, told Phys.org. “Using the SNSPD technique, all incoming signals were registered over a 180-hour exposure.”

    To set a limit on the dark matter coupling, the researchers estimated the dark count rate, also referred to as “noise” for the SNSPD detector they developed. Interestingly, their estimated noise value is the lowest among all values reported in physics literature.

    “Notably, we succeeded in our goal, as we were able to scan for a type of dark matter, specifically ‘dark photons,’ twice as sensitively as anything else in the energy range that we searched,” Chiles said. “In the grand scheme of things, this is still a small notch out of a huge range of possibilities for dark matter. But for our first run to exceed existing bounds is an important first step, and to me, this speaks to the power and simplicity of the multilayer dielectric optical haloscope approach.”

    In their experiments, this team of researchers gathered valuable insight that could inform future searches for dark photons, while also potentially encouraging the use of SNSPDs. In addition to setting new constraints on dark photons, in fact, Chiles and his colleagues learned more about their detector’s capabilities.

    Most notably, they found that the noise in their detector was incredibly low. More specifically, the team only observed 5 “false events” for one of their single-photon detectors over 180 hours of data collection, suggesting that their technology is highly sensitive to weak signals.

    “It’s exciting to think what other rare-event physics experiments this technology could be applied to in the near future,” Chiles added. “Meanwhile, we plan to scale up the experiment from here. The first run was a proof-of-concept, but the next one will be sensitive enough to cover a large parameter space for dark matter, which will include both axions and dark photons.”

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    About Science X in 100 words
    Science X is a leading web-based science, research and technology news service which covers a full range of topics. These include physics, earth science, medicine, nanotechnology, electronics, space, biology, chemistry, computer sciences, engineering, mathematics and other sciences and technologies. Launched in 2004 (Physorg.com), Science X’s readership has grown steadily to include 5 million scientists, researchers, and engineers every month. Science X publishes approximately 200 quality articles every day, offering some of the most comprehensive coverage of sci-tech developments world-wide. Science X community members enjoy access to many personalized features such as social networking, a personal home page set-up, article comments and ranking, the ability to save favorite articles, a daily newsletter, and other options.

    Mission: 12 reasons for reading daily news on Science X Organization Key editors and writers include 1.75 million scientists, researchers, and engineers every month. Phys.org publishes approximately 100 quality articles every day, offering some of the most comprehensive coverage of sci-tech developments world-wide. Quancast 2009 includes Phys.org in its list of the Global Top 2,000 Websites. Phys.org community members enjoy access to many personalized features such as social networking, a personal home page set-up, RSS/XML feeds, article comments and ranking, the ability to save favorite articles, a daily newsletter, and other options.

  • richardmitnick 10:25 am on May 27, 2022 Permalink | Reply
    Tags: "'Quark Matter 2022' New Results from RHIC and LHC—Plus Plans for the Future", , , , , High-energy heavy ion physics, , , , , RHIC and the LHC collide heavy ions which are the nuclei of heavy atoms such as gold and lead that have been stripped of their electrons., RHIC’s "STAR" experiment, The ATLAS detector project at CERN’s LHC, , The Electron-Ion Collider (EIC) at RHIC, The interplay of theory and experiment is essential to advancing our understanding of how quarks and gluons interact., , Theoretical Physics,   

    From The DOE’s Brookhaven National Laboratory: “‘Quark Matter 2022’ New Results from RHIC and LHC—Plus Plans for the Future” 

    From The DOE’s Brookhaven National Laboratory

    May 24, 2022
    Karen McNulty Walsh

    Meeting highlights include detailed descriptions of fundamental matter and explorations of intriguing physics.


    Theoretical and experimental physicists from around the world gathered last month at Quark Matter 2022 to discuss new developments in high energy heavy ion physics. The “29th International Conference on Ultrarelativistic Heavy-Ion Collisions” took place April 4-10, 2022, with both in-person talks in Kraków, Poland, and many participants logging in remotely from around the globe.

    Highlights included a series of presentations and discussions about the latest findings from heavy ion research facilities—notably the Relativistic Heavy Ion Collider (RHIC) [below] at the U.S. Department of Energy’s Brookhaven National Laboratory and the Large Hadron Collider [below]at the European Center for Nuclear Research (CERN)—as well as future research directions for the field.

    During parts of their research runs, RHIC and the LHC collide heavy ions, which are the nuclei of heavy atoms such as gold and lead that have been stripped of their electrons. These highly energetic, nearly light speed head-on collisions generate temperatures more than 250,000 times hotter than the center of the sun and set free the innermost building blocks of the nuclei—the quarks and gluons that make up protons and neutrons.

    The resulting nearly-perfect liquid, the “quark-gluon plasma” (QGP), reflects the conditions of the very early universe nearly 14 billion years ago—an era just a microsecond after the Big Bang before protons and neutrons first formed. By tracking particles that stream out of these collisions, scientists can expand their understanding how matter evolved from the hot quark soup into everything made of atoms in the universe today.

    “Quark Matter is the major event for physicists in our field,” said Peter Steinberg, a nuclear physicist at Brookhaven Lab who participates in experiments at both RHIC and the LHC and attended the meeting virtually from his home in Brooklyn, New York. “Held approximately every 18 months, it’s where we usually first share and hear about preliminary results, discuss them with our colleagues, and always learn from one another so that we can strengthen our analyses and experimental approaches.”

    Theorists also presented their latest studies including analyses and interpretations of data.

    “The field of high-energy heavy ion physics has witnessed major advances through close collaborations between theory and experiment,” said Haiyan Gao, Associate Laboratory Director (ALD) for Nuclear and Particle Physics (NPP) at Brookhaven Lab. “This interplay of theory and experiment is essential to advancing our understanding of how quarks and gluons interact to build of the properties and structure of the matter that makes up our world.”

    In addition, several presentations highlighted how results from (and improvements to) heavy-ion experiments at RHIC and the LHC, as well as new theoretical approaches, are paving the way for exciting results to come. That future includes the start of Run 3 at the LHC, installation of the sPHENIX detector at RHIC for the experimental run starting in 2023, and eventually the Electron-Ion Collider (EIC) [below], a brand-new nuclear physics research facility in the preliminary design stage at Brookhaven that is expected to come online early in the next decade.

    As is customary for Quark Matter meetings, the day prior to the start of the detailed scientific presentations was dedicated to welcoming students to the field of heavy-ion physics.

    “Talks covering the history and goals of heavy ion physics during the student day are designed to encourage undergraduates and graduate students to join us,” Steinberg said.

    213 students from undergraduate to PhD levels and 115 early-career postdoctoral fellows registered for the student day, representing institutions in Europe, Asia, North America, South America, and more. Approximately 20 percent of the total were female, with slightly higher female representation (23 percent) in the student group.

    “Projects like RHIC and the LHC and the future EIC have been designed from the start as truly international endeavors, seeking to serve the worldwide nuclear and high-energy physics communities,” said Gao. “It is particularly exciting to see so many young people from different backgrounds eager to learn about our research and potentially become the next generation of leaders for these fields. We also recognize that we still have a long way to go to have a more diverse pipeline in our field.”

    Highlights from The STAR detector [below]

    Brookhaven Lab physicist Prithwish Tribedy presented the highlights from RHIC’s STAR experiment. These included results from RHIC’s isobar collisions. The isobar collisions were designed to explore the effects of the magnetic field generated by colliding ions.

    The first isobar analysis looking for evidence of something called the chiral magnetic effect, released last summer, didn’t turn out as expected. Those results indicated that there might be “background” processes that had not yet been considered. Still, the results presented at QM22 demonstrate a definitive difference in the initial magnetic field strength produced in the two types of collisions analyzed, and provide new background estimates for future analyses. The isobar collisions are also offering insight into how the shape of colliding nuclei might influence how particles emerge from these collisions.

    Several STAR results helped elucidate characteristics of the phase transition from hadrons (composite particles made of quarks, such as protons and neutrons) to quark-gluon plasma. Tribedy pointed to results showing how that transition happens at different energies. He also discussed how STAR physicists are using results from RHIC’s Beam Energy Scan (BES) to map out features of the nuclear phase diagram and search for a critical point on that plot of nuclear phases.

    New data presented on results from 3.85 GeV giga-electron-volt (GeV) collisions of gold ions with a fixed target are consistent with a model calculation which does not have a critical point. With high-statistics data from BES-II, STAR will really explore the critical behavior in the 3-19.6 GeV energy region.

    There were also results tracking rare “hypernuclei,” including the first observation of anti-hyper-hydrogen-4. These nuclei contain particles called hyperons, which have at least one “strange” quark, and thus they offer insight into the properties of neutron stars where strange particles are widely thought to be more abundant than they are in normal matter. New STAR results also confirm that the temperature of the QGP is hotter than the sun, and provide a deeper understanding of its detailed properties.

    Tribedy ended by describing how new forward detectors have expanded STAR’s capabilities, noting that these forward upgrades will open paths to study the microstructure of the QGP and enable measurements that will bridge the RHIC and EIC science programs. And he pointed attendees to the many later QM22 talks and posters that would elaborate on the details of the topics he’d introduced.

    “The rich and diverse physics programs at STAR come from the versatile machine and detector capabilities at RHIC, and the hard work and intellectual contributions of collaborators and scientists from all over the world,” said Lijuan Ruan, a physicist at Brookhaven and co-spokesperson for STAR.

    New PHENIX [below] analyses

    RHIC’s PHENIX experiment completed operations in 2016, but members of the collaboration are still actively analyzing its data. At QM22, Sanghoon Lim of Pusan National University presented an overview of the collaboration’s latest results.

    Lim summarized a wide range of analyses exploring collisions of different types of ions—from “small” protons, deuterons, and helium ions to larger nuclei such as copper, gold, and uranium. These experiments provide a detailed understanding of how features of the nuclear matter created in collisions (and particle interactions with that medium) change with the size of the system.

    The newest results further confirm a wide range of data from both Brookhaven and CERN including a string of successive results from PHENIX showing that QGP can be created even in collisions of small particles with larger nuclei. Low-energy photons (particles of light emitted from the QGP) provide a way to probe the temperature of the medium produced and have shown a smooth transition to hot QGP temperatures in both small and large systems.

    QM22 also featured long-awaited measurements of high-energy direct photons emitted from head-on and more peripheral deuteron-gold collisions. These measurements are helping scientists understand how much hadrons created in these small systems are being modified by their interactions with the QGP.

    Meanwhile the collisions of large nuclei are providing detailed information about the QGP, such as how jets of particles produced in the collisions lose energy as they traverse it. PHENIX physicists extracted new observations by looking at how the angles between particles that make up a jet are correlated with one another. These analyses allow the scientists to probe how the distribution of particles associated with jets might be modified—for example, “quenched” as they lose energy through their interactions with the QGP.

    “We are using a technique to study jets that we have been using since the early days of RHIC, but we are now extracting additional quantities from the data that are also being extracted from jet measurements at the LHC,” said Megan Connors, a PHENIX collaborator from Georgia State University (GSU) who presented these results at QM22. “These additional analyses can further constrain theoretical models and improve our understanding of the jet quenching process.”

    In addition, PHENIX presented measurements of heavy quarks to study how quarks of different masses lose energy to the QGP as they get caught up in its flow. Final low-energy photon results were also shown. These results zero in on the temperature of the QGP and its evolution as the QGP expands and cools with higher precision than any previous measurements. Lim noted that PHENIX will continue to analyze data, including from 35 billion gold-gold collision events recorded in 2014 and 2016, to further elucidate these properties. And he pointed to a list of newly published and submitted papers—and detailed QM22 talks—for anyone interested in learning more about these results.

    “There is no question that PHENIX measurements will continue to play an important role in our field and impact our understanding from small to large collision systems,” GSU’s Connors said.

    Brookhaven ATLAS [below] results of note

    ATLAS, one of the detectors at the LHC, presented a wide range of results from lead-lead collisions, covering both well-established diagnostics of the QGP as well as an extensive array of new measurements using photons (particles of light) that are present in the intense electromagnetic fields surrounding the lead ions.

    ATLAS released a new set of measurements showing how the QGP responds to different types of particle jets produced in lead-lead collisions. By analyzing these data, scientists are trying to distinguish between quarks that come in different “flavors,” as well as between quark and gluon jets. There were also exciting new results exploring how pairs of back-to-back jets (typically referred to as “dijets”) are affected by traversing the plasma. These new findings were a major update of the very first ATLAS result submitted only weeks after the first lead beams collided in the LHC in 2010.

    Timothy Rinn, a Brookhaven Lab postdoctoral associate who presented these results, said, “This result provides new insight into the nature of how jets lose energy, or become ‘quenched,’ in dijet events. Many scientists had developed an explanation for earlier jet quenching data based on the belief that the higher energy jet was formed near the surface, and thus must have suffered much less energy loss, while the lower energy jet traveled through a longer distance in the QGP, losing energy along the way. The recent result suggests that both jets in the event typically experience significant energy loss, and pairs of jets where both have a similar energy are observed much less often than expected. These exciting new results are already of great interest to the theoretical community developing sophisticated models of this phenomenon.”

    ATLAS also presented a major new result on the “anomalous magnetic moment” of the tau lepton. This is a measure of how tau particles, the heaviest cousin of the electron, “wobble” in a magnetic field, and is commonly referred to as “g-2.” As with measurements of the g-2 for particles called muons (another electron cousin, studied at both Brookhaven and more recently at Fermi National Accelerator Laboratory), seeing deviations from tau leptons’ predicted g-2 value could be an indication that some yet-to-be-discovered particles—physics “beyond the standard model”—are affecting the results. While the ATLAS measurements so far show no significant difference, the results were based on only a small number of events with large uncertainties. Much more data will be collected in LHC Runs 3 and 4, which could be much more exciting.

    Plans for sPHENIX and EIC physics

    On the final day of the conference, Brookhaven Lab physicist and co-spokesperson of the sPHENIX collaboration David Morrison gave an overview of “The near- and mid-term future of RHIC, EIC and sPHENIX.” Morrison noted how RHIC is well on its way to achieving goals spelled out in the 2015 Long Range Plan for Nuclear Science. These included completing the Beam Energy Scan to map out the phases of quark matter and probing the properties of QGP at shorter and shorter length scales at both RHIC and the LHC.

    Dave Morrison, Brookhaven Lab physicist and co-spokesperson for the sPHENIX collaboration, in front of the sPHENIX detector during an early stage of assembly.

    The latter goal will be a central focus of sPHENIX, a detector currently under construction at RHIC with the anticipation of taking its first data early next year. During RHIC’s final three years of operation, before conversion of some of its key components into the EIC begins, sPHENIX will collect and analyze data to make precision measurements of jets of particles and bound quark states with different masses, while recent STAR upgrades continue to provide insight into the detailed properties of the QGP.

    As described in other talks at QM22, some of those STAR components have also been contributing to a scientific goal that will be a key feature of the EIC—mapping out the internal distribution of quarks and gluons that make up protons and neutrons. The technique for making those measurements at RHIC uses one proton beam’s upward spin alignment as a frame of reference for tracking particle interactions at a wide range of angles from that reference point.

    Other recent advances using particles of light that surround the speeding gold ions at RHIC will help pave the way for the EIC science program. In ultraperipheral collisions, where the gold ions graze by one another without direct ion-to-ion impact, the photons surrounding the ions can interact to produce interesting physics—and also serve as probes of the structure within the nuclear particles. At the EIC, speeding electrons will emit virtual photons for probing the inner components of protons and heavier nuclei.

    “At RHIC, we also use these ‘photonuclear’ events to study how quarks and gluons contribute to ‘baryon number’—a quantum number that adds up to one in particles made of three quarks—and how that number is affected when these three-quark particles (including protons and neutrons) interact with matter,” said STAR co-spokesperson Ruan. This analysis was done by Nicole Lewis, a postdoctoral fellow in the STAR group at Brookhaven Lab, whose poster contribution was one of 10 (out of 500) selected to be featured in a flash talk at the conference.

    “It is wonderful to see so many new results presented at Quark Matter 2022,” concluded Brookhaven Lab NPP ALD Gao. “It takes an enormous effort to prepare for this meeting—and to run the facilities that produce the data presented there. The thousands of physicists, engineers, and technicians at RHIC, the LHC, and their detectors all deserve our sincere gratitude for making this great science possible.”

    RHIC operations are funded by the DOE Office of Science, which runs the machine as a User Facility open to an international community of physicists. Each collaboration receives additional funding from a range of international partners and agencies. Brookhaven’s involvement in research at the LHC and the EIC Project are also funded by the DOE Office of Science.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Brookhaven Campus

    One of ten national laboratories overseen and primarily funded by the The DOE Office of Science, The DOE’s Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5,300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Energy research
    Structural biology
    Accelerator physics


    Brookhaven National Lab was originally owned by the Atomic Energy Commission(US) and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University and Battelle Memorial Institute. From 1947 to 1998, it was operated by Associated Universities, Inc.(AUI), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.


    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology to have a facility near Boston, Massachusetts. Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University, Cornell University, Harvard University, Johns Hopkins University, Massachusetts Institute of Technology, Princeton University, University of Pennsylvania, University of Rochester, and Yale University.

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.

    BNL Cosmotron 1952-1966.

    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    BNL Alternating Gradient Synchrotron (AGS).

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II. [below].

    BNL National Synchrotron Light Source.

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider(CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, It was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] (US) as the future Electron–ion collider (EIC) in the United States.

    Brookhaven Lab Electron-Ion Collider (EIC) to be built inside the tunnel that currently houses the RHIC.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.

    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.

    BNL National Synchrotron Light Source II, Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years. NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.

    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.

    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University-SUNY.

    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to the ATLAS experiment, one of the four detectors located at the The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] Large Hadron Collider(LHC).

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] map.

    Iconic view of the European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear] [Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN] ATLAS detector.

    It is currently operating at The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN] near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the Spallation Neutron Source at DOE’s Oak Ridge National Laboratory, Tennessee.

    DOE’s Oak Ridge National Laboratory Spallation Neutron Source annotated.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.

    Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China .

    BNL Center for Functional Nanomaterials.

    BNL National Synchrotron Light Source II.


    BNL Relative Heavy Ion Collider Campus.

    BNL/RHIC Star Detector.

    BNL/RHIC Phenix detector.

  • richardmitnick 1:55 pm on May 17, 2022 Permalink | Reply
    Tags: , "Quantum magnets in motion", , Kardar-Parisi-Zhang superdiffusion, , , , Spin: a specific magnetic quantum property of atoms and other particles, Spins also constitute the basis of certain forms of quantum computers., The scientists locked ultracold atoms in a specially formed "box-shaped" potential formed by an arrangement of tiny mirrors., The scientists studied the relaxation of a single magnetic domain wall in a chain of 50 linearly arranged spins., The work reveals an interesting connection between quantum mechanical spin systems in cold atoms and classical systems such as growing bacterial colonies or spreading wildfires., Theoretical Physics   

    From MPG Institute for Quantum Optics [MPG Institut für Quantenoptik] (DE) via phys.org : “Quantum magnets in motion” 

    Max Planck Institut für Quantenoptik (DE)

    From MPG Institute for Quantum Optics [MPG Institut für Quantenoptik] (DE)



    May 16, 2022

    The Kardar-Parisi-Zhang universality combines classical everyday phenomena such as coffee stains with quantum mechanical spin chains in a surprising way. Credit: MPG Institute of Quantum Optics.

    The behavior of microscopic quantum magnets has long been a subject taught in lectures in theoretical physics. However, investigating the dynamics of systems that are far out of equilibrium and watching them “live” has been difficult so far. Now, researchers at the Max Planck Institute of Quantum Optics in Garching have accomplished precisely this, using a quantum gas microscope. With this tool, quantum systems can be manipulated and then imaged with such high resolution that even individual atoms are visible. The results of the experiments on linear chains of spins show that the way their orientation propagates corresponds to the so-called Kardar-Parisi-Zhang superdiffusion. This confirms a conjecture that recently emerged from theoretical considerations.

    A team of physicists around Dr. Johannes Zeiher and Prof Immanuel Bloch has eyes on objects that others hardly ever get to see. The researchers at the Max Planck Institute of Quantum Optics (MPQ) in Garching use a so-called quantum gas microscope to track down processes on the tiny scale of quantum physics. Such an instrument allows—with the help of atoms and lasers—to specifically create quantum systems with desired properties and to investigate them with high resolution. In these experiments, the researchers also focus on transport phenomena—how quantum objects move under certain external conditions.

    The team has now made a surprising experimental discovery. The researchers were able to show that the one-dimensional transport of spins—the term “spin” stands for a specific, magnetic quantum property of atoms and other particles—resembles macroscopic phenomena in certain areas. For the most part, processes in the quantum realm and in the everyday world differ significantly. “But our work reveals an interesting connection between quantum mechanical spin systems in cold atoms and classical systems such as growing bacterial colonies or spreading wildfires,” says Johannes Zeiher, group leader in the Quantum Many-Body Systems division at MPQ. “This discovery is completely unexpected and points to a deep connection in the field of non-equilibrium physics that is still poorly understood.”

    Physicists refer to such a theoretical analogy between random motion in quantum and classical systems as “universality.” In this specific case, it is the Kardar-Parisi-Zhang universality (KPZ)—a phenomenon previously known only from classical physics.

    The telling exponent

    In order to observe the phenomenon microscopically, the Garching team first cooled down a cloud of atoms to temperatures close to absolute zero. That way, movements due to heat could be ruled out. Then they locked the ultracold atoms in a specially formed “box-shaped” potential, formed by an arrangement of tiny mirrors. “We used this to study the relaxation of a single magnetic domain wall in a chain of 50 linearly arranged spins,” explains David Wei, a researcher in Johannes Zeiher’s group. The domain wall separates areas with identical orientation of neighboring spins from each other. The researchers first created the domain wall for the experiment using a new trick, whereby an “effective magnetic field” was generated by projecting light. In doing so, the researchers can strongly suppress the couplings between spins, effectively “locking” them into place.

    The relaxation within the spin chain occurred after the couplings between spins were switched on in a controlled manner and, as it turned out, followed a characteristic pattern. “This can be described mathematically by a power law with the exponent 3/2,” says Wei—a hint at the connection with KPZ universality. Further evidence for this relationship was provided when the researchers detected the motion of individual spins, which was revealed through the quantum gas microscope.

    “This high precision was the basis for a detailed statistical evaluation,” says Zeiher. “The striking course of spin diffusion that our experiment showed corresponds in its mathematical form approximately to the spread of a coffee stain on a tablecloth, for example,” explains the Max Planck physicist. That such an astonishing connection could exist had been suspected by a team of theorists about two years ago on the basis of theoretical considerations. However, experimental confirmation of this hypothesis was still lacking.

    An old model amazes physicists

    For the description of quantum mechanical spin phenomena, physicists have been using the so-called Heisenberg model very successfully for a long time (but it was only recently that spin transport phenomena could be described theoretically within this model). “Our results show that surprising new insights are still possible even within an established theoretical framework,” Johannes Zeiher emphasizes. “And they are proof of how theory and experiment cross-fertilize in physics.”

    The results that have now been achieved by the team in Garching are not only of academic value. They could also be useful for tangible technical applications. For example, spins also constitute the basis of certain forms of quantum computers. Knowledge of the transport properties of the information carriers could be of critical importance for the practical realization of such novel computer architectures.

    The study appears in Science.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Research at the MPG Institute for Quantum Optics [Max Planck Institut für Quantenoptik ] (DE)
    Light can behave as an electromagnetic wave or a shower of particles that have no mass, called photons, depending on the conditions under which it is studied or used. Matter, on the other hand, is composed of particles, but it can actually exhibit wave-like properties, giving rise to many astonishing phenomena in the microcosm.

    At our institute we explore the interaction of light and quantum systems, exploiting the two extreme regimes of the wave-particle duality of light and matter. On the one hand we handle light at the single photon level where wave-interference phenomena differ from those of intense light beams. On the other hand, when cooling ensembles of massive particles down to extremely low temperatures we suddenly observe phenomena that go back to their wave-like nature. Furthermore, when dealing with ultrashort and highly intense light pulses comprising trillions of photons we can completely neglect the particle properties of light. We take advantage of the large force that the rapidly oscillating electromagnetic field exerts on electrons to steer their motion within molecules or accelerate them to relativistic energies.

    MPG Society for the Advancement of Science [MPG Gesellschaft zur Förderung der Wissenschaften e. V.] is a formally independent non-governmental and non-profit association of German research institutes founded in 1911 as the Kaiser Wilhelm Society and renamed the Max Planck Society in 1948 in honor of its former president, theoretical physicist Max Planck. The society is funded by the federal and state governments of Germany as well as other sources.

    According to its primary goal, the MPG Society supports fundamental research in the natural, life and social sciences, the arts and humanities in its 83 (as of January 2014) MPG Institutes. The society has a total staff of approximately 17,000 permanent employees, including 5,470 scientists, plus around 4,600 non-tenured scientists and guests. Society budget for 2015 was about €1.7 billion.

    The MPG Institutes focus on excellence in research. The MPG Society has a world-leading reputation as a science and technology research organization, with 33 Nobel Prizes awarded to their scientists, and is generally regarded as the foremost basic research organization in Europe and the world. In 2013, the Nature Publishing Index placed the MPG institutes fifth worldwide in terms of research published in Nature journals (after Harvard University, The Massachusetts Institute of Technology, Stanford University and The National Institutes of Health). In terms of total research volume (unweighted by citations or impact), the Max Planck Society is only outranked by The Chinese Academy of Sciences [中国科学院](CN), The Russian Academy of Sciences [Росси́йская акаде́мия нау́к](RU) and Harvard University. The Thomson Reuters-Science Watch website placed the MPG Society as the second leading research organization worldwide following Harvard University, in terms of the impact of the produced research over science fields.

    The MPG Society and its predecessor Kaiser Wilhelm Society hosted several renowned scientists in their fields, including Otto Hahn, Werner Heisenberg, and Albert Einstein.


    The organization was established in 1911 as the Kaiser Wilhelm Society, or Kaiser-Wilhelm-Gesellschaft (KWG), a non-governmental research organization named for the then German emperor. The KWG was one of the world’s leading research organizations; its board of directors included scientists like Walther Bothe, Peter Debye, Albert Einstein, and Fritz Haber. In 1946, Otto Hahn assumed the position of President of KWG, and in 1948, the society was renamed the Max Planck Society (MPG) after its former President (1930–37) Max Planck, who died in 1947.

    The MPG Society has a world-leading reputation as a science and technology research organization. In 2006, the Times Higher Education Supplement rankings of non-university research institutions (based on international peer review by academics) placed the MPG Society as No.1 in the world for science research, and No.3 in technology research (behind AT&T Corporation and The DOE’s Argonne National Laboratory.

    The domain mpg.de attracted at least 1.7 million visitors annually by 2008 according to a Compete.com study.

    MPG Institutes and research groups

    The MPG Society consists of over 80 research institutes. In addition, the society funds a number of Max Planck Research Groups (MPRG) and International Max Planck Research Schools (IMPRS). The purpose of establishing independent research groups at various universities is to strengthen the required networking between universities and institutes of the Max Planck Society.
    The research units are primarily located across Europe with a few in South Korea and the U.S. In 2007, the Society established its first non-European centre, with an institute on the Jupiter campus of Florida Atlantic University (US) focusing on neuroscience.
    The MPG Institutes operate independently from, though in close cooperation with, the universities, and focus on innovative research which does not fit into the university structure due to their interdisciplinary or transdisciplinary nature or which require resources that cannot be met by the state universities.

    Internally, MPG Institutes are organized into research departments headed by directors such that each MPI has several directors, a position roughly comparable to anything from full professor to department head at a university. Other core members include Junior and Senior Research Fellows.

    In addition, there are several associated institutes:

    International Max Planck Research Schools

    International Max Planck Research Schools

    Together with the Association of Universities and other Education Institutions in Germany, the Max Planck Society established numerous International Max Planck Research Schools (IMPRS) to promote junior scientists:

    • Cologne Graduate School of Ageing Research, Cologne
    • International Max Planck Research School for Intelligent Systems, at the Max Planck Institute for Intelligent Systems located in Tübingen and Stuttgart
    • International Max Planck Research School on Adapting Behavior in a Fundamentally Uncertain World (Uncertainty School), at the Max Planck Institutes for Economics, for Human Development, and/or Research on Collective Goods
    • International Max Planck Research School for Analysis, Design and Optimization in Chemical and Biochemical Process Engineering, Magdeburg
    • International Max Planck Research School for Astronomy and Cosmic Physics, Heidelberg at the MPI for Astronomy
    • International Max Planck Research School for Astrophysics, Garching at the MPI for Astrophysics
    • International Max Planck Research School for Complex Surfaces in Material Sciences, Berlin
    • International Max Planck Research School for Computer Science, Saarbrücken
    • International Max Planck Research School for Earth System Modeling, Hamburg
    • International Max Planck Research School for Elementary Particle Physics, Munich, at the MPI for Physics
    • International Max Planck Research School for Environmental, Cellular and Molecular Microbiology, Marburg at the Max Planck Institute for Terrestrial Microbiology
    • International Max Planck Research School for Evolutionary Biology, Plön at the Max Planck Institute for Evolutionary Biology
    • International Max Planck Research School “From Molecules to Organisms”, Tübingen at the Max Planck Institute for Developmental Biology
    • International Max Planck Research School for Global Biogeochemical Cycles, Jena at the Max Planck Institute for Biogeochemistry
    • International Max Planck Research School on Gravitational Wave Astronomy, Hannover and Potsdam MPI for Gravitational Physics
    • International Max Planck Research School for Heart and Lung Research, Bad Nauheim at the Max Planck Institute for Heart and Lung Research
    • International Max Planck Research School for Infectious Diseases and Immunity, Berlin at the Max Planck Institute for Infection Biology
    • International Max Planck Research School for Language Sciences, Nijmegen
    • International Max Planck Research School for Neurosciences, Göttingen
    • International Max Planck Research School for Cognitive and Systems Neuroscience, Tübingen
    • International Max Planck Research School for Marine Microbiology (MarMic), joint program of the Max Planck Institute for Marine Microbiology in Bremen, the University of Bremen, the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven, and the Jacobs University Bremen
    • International Max Planck Research School for Maritime Affairs, Hamburg
    • International Max Planck Research School for Molecular and Cellular Biology, Freiburg
    • International Max Planck Research School for Molecular and Cellular Life Sciences, Munich
    • International Max Planck Research School for Molecular Biology, Göttingen
    • International Max Planck Research School for Molecular Cell Biology and Bioengineering, Dresden
    • International Max Planck Research School Molecular Biomedicine, program combined with the ‘Graduate Programm Cell Dynamics And Disease’ at the University of Münster and the Max Planck Institute for Molecular Biomedicine
    • International Max Planck Research School on Multiscale Bio-Systems, Potsdam
    • International Max Planck Research School for Organismal Biology, at the University of Konstanz and the Max Planck Institute for Ornithology
    • International Max Planck Research School on Reactive Structure Analysis for Chemical Reactions (IMPRS RECHARGE), Mülheim an der Ruhr, at the Max Planck Institute for Chemical Energy Conversion
    • International Max Planck Research School for Science and Technology of Nano-Systems, Halle at Max Planck Institute of Microstructure Physics
    • International Max Planck Research School for Solar System Science at the University of Göttingen hosted by MPI for Solar System Research
    • International Max Planck Research School for Astronomy and Astrophysics, Bonn, at the MPI for Radio Astronomy (formerly the International Max Planck Research School for Radio and Infrared Astronomy)
    • International Max Planck Research School for the Social and Political Constitution of the Economy, Cologne
    • International Max Planck Research School for Surface and Interface Engineering in Advanced Materials, Düsseldorf at Max Planck Institute for Iron Research GmbH
    • International Max Planck Research School for Ultrafast Imaging and Structural Dynamics, Hamburg

    Max Planck Schools

    • Max Planck School of Cognition
    • Max Planck School Matter to Life
    • Max Planck School of Photonics

    Max Planck Center

    • The Max Planck Centre for Attosecond Science (MPC-AS), POSTECH Pohang
    • The Max Planck POSTECH Center for Complex Phase Materials, POSTECH Pohang

    Max Planck Institutes

    Among others:
    • Max Planck Institute for Neurobiology of Behavior – caesar, Bonn
    • Max Planck Institute for Aeronomics in Katlenburg-Lindau was renamed to Max Planck Institute for Solar System Research in 2004;
    • Max Planck Institute for Biology in Tübingen was closed in 2005;
    • Max Planck Institute for Cell Biology in Ladenburg b. Heidelberg was closed in 2003;
    • Max Planck Institute for Economics in Jena was renamed to the Max Planck Institute for the Science of Human History in 2014;
    • Max Planck Institute for Ionospheric Research in Katlenburg-Lindau was renamed to Max Planck Institute for Aeronomics in 1958;
    • Max Planck Institute for Metals Research, Stuttgart
    • Max Planck Institute of Oceanic Biology in Wilhelmshaven was renamed to Max Planck Institute of Cell Biology in 1968 and moved to Ladenburg 1977;
    • Max Planck Institute for Psychological Research in Munich merged into the Max Planck Institute for Human Cognitive and Brain Sciences in 2004;
    • Max Planck Institute for Protein and Leather Research in Regensburg moved to Munich 1957 and was united with the Max Planck Institute for Biochemistry in 1977;
    • Max Planck Institute for Virus Research in Tübingen was renamed as Max Planck Institute for Developmental Biology in 1985;
    • Max Planck Institute for the Study of the Scientific-Technical World in Starnberg (from 1970 until 1981 (closed)) directed by Carl Friedrich von Weizsäcker and Jürgen Habermas.
    • Max Planck Institute for Behavioral Physiology
    • Max Planck Institute of Experimental Endocrinology
    • Max Planck Institute for Foreign and International Social Law
    • Max Planck Institute for Physics and Astrophysics
    • Max Planck Research Unit for Enzymology of Protein Folding

  • richardmitnick 9:01 am on April 29, 2022 Permalink | Reply
    Tags: "A long-sought ammonia-dimer solution", Ammonia dimers: pairs of ammonia molecules, , , , , , Theoretical Physics, Understanding the properties of ammonia molecules and how they interact with other molecules has critical value., University of Delaware physicist Krzysztof Szalewicz   

    From The University of Delaware: “A long-sought ammonia-dimer solution” 

    U Delaware bloc

    From The University of Delaware

    April 28, 2022
    Article by Beth Miller
    Photo illustration by Jeffrey C. Chase

    University of Delaware physicist Krzysztof Szalewicz and collaborators have resolved a long-standing debate about ammonia dimers — two joined ammonia molecules — that will be helpful for chemists, biologists and other scientists.

    UD’s Krzysztof Szalewicz and collaborators determine ammonia molecules form hydrogen bonds with each other.

    It takes a lot of brain power to be a theoretical physicist. It also takes far more than brain power to be a theoretical physicist.

    The calculating minds of University of Delaware physicist Krzysztof Szalewicz and his collaborators, for example, use more than 26 million hours annually on Department of Defense computers. They routinely use UD’s High Performance Computing clusters as well.

    And that’s what it takes now to produce increasingly precise information to support new science and advanced applications.

    Such muscular machines weren’t available 30 years ago, when an active debate was going on about the likelihood of ammonia dimers — two joined ammonia molecules — forming hydrogen bonds.

    The debate was an important one. Ammonia is a molecule of significance on many fronts, including those on our planet and far beyond it. Understanding the properties of ammonia molecules and how they interact with other molecules has critical value for industry, pharmaceuticals, biology and production of environmentally sustainable fuels, for example.

    Szalewicz, an expert in the study and calculation of intermolecular forces, and his collaborators found a reliable, highly accurate answer to the question. Their findings were published recently in Nature Communications. Aling Jing, a graduate student on Szalewicz’s team, was the lead author. Ad van der Avoird, a theoretical chemist from the Netherlands, was a third collaborator.

    Their work resolves the debate and gives chemists and biologists and other scientists new confidence as they develop new experiments, materials and processes.

    A bit of background on hydrogen bonds may be helpful to understand how Szalewicz’s new calculations shed light on this issue.

    When two hydrogen atoms connect with one oxygen atom the bonds are strong and are called “covalent” bonds. These strong bonds form water molecules — H2O.

    When two water molecules are near each other, a hydrogen atom from one molecule will form a bond with the oxygen atom of the other molecule. This is a hydrogen bond, which is not as strong as the covalent bond intrinsic to the water molecule, but is still a powerful part of intermolecular dynamics.

    The covalent bond is what holds the water molecule together. The hydrogen bond is what holds multiple water molecules together, making it possible to pour yourself a big glass of water.

    The hydrogen bonds between water molecules are settled science.

    Until 1985, the ammonia-hydrogen bond question was considered settled, too. An ammonia molecule (NH3) is made of one nitrogen atom connected to three hydrogen atoms by covalent bonds.

    The debate about whether ammonia molecules could form hydrogen bonds with other ammonia molecules was reopened in 1985, when new experiments suggested that the ammonia dimers — pairs of ammonia molecules — are not hydrogen bound, in contrast to the predictions of previous theories.

    More calculations, experiments and debate followed.

    “Finally, people said ‘It is too hard. We cannot do anything more,’” Szalewicz said.

    But as computing muscle became increasingly available, more accurate calculations were possible, providing increasingly precise pictures of the mechanisms in play.

    Szalewicz and his collaborators now have produced a calculation of the potential energy surface of the ammonia dimer, which shows how the interaction energy of the molecules is related to their geometric shapes.

    “What we have found now is that, yes, it was a hard problem,” Szalewicz said. “The answer is not completely ‘yes, period.’ We cannot say that.”

    What they have shown, with highest confidence, is that ammonia dimers are quite flexible, not rigid, as the 1985 experiment concluded. This means that a broad range of intermolecular separations and orientations is covered during the intermolecular motions.

    The published experimental configuration turned out to be an average between two hydrogen-bonded configurations. This is like a snapshot of intermolecular motion, which was assumed by the experimental group to be the most likely configuration, but actually is fairly rare.

    By factoring in many more data points, Szalewicz and collaborators went far beyond single configurations to show that the hydrogen bonds were far more likely than not. That kind of precision makes a huge difference in how you incorporate ammonia molecules in various applications and has many other implications for chemistry.

    Szalewicz compares it to taking an extended hike through a mountain range.

    “You go up, up, up from a valley to a pass,” he said. “Then you go down to another valley. If the pass is high above the valley, it is a hard hike. The valley corresponds to the hydrogen-bonded configurations and with a high pass, getting from one valley to another is difficult. Thus, molecules stay mostly in the valleys and finding the dimer at the top of the pass is a very rare event.

    “The ammonia-dimer valley surface is different from those of typical hydrogen-bonded molecules. Instead of two well-separated valleys, there is one very narrow one containing both hydrogen-bonded configurations, with almost no pass between them. Finding the dimer at the top of the pass is a fairly likely event. Therefore, it could be observed in experiments.”

    This is why experimental physicists need theoretical physicists and also why theoretical physicists need experimental physicists.

    “There is an old joke that is actually very true,” Szalewicz said. “When an experimentalist publishes a result, everyone believes it — except the experimentalist, who always knows they might have overlooked something. When a theorist publishes a result, nobody believes it — except the theorists.”

    When they work together, as they must, great insights are likely.

    Experiments also measure excitations of intermolecular motions. Szalewica and collaborators performed quantum-mechanical calculations of such excitations, obtaining excellent agreement with the experiment. This is a strong validation of the correctness of the surface developed in the calculations.

    Using similar calculations with water, Szalewicz has previously published potential energy surfaces that help to explain properties of water that have not been previously explained. They now are used by industrial chemists who work on steam engines and need to know those properties at various temperatures.

    The National Institute of Standards and Technology now recommends using these theoretical calculations, which have shown greater accuracy than experimental measurements.

    The research was supported by a grant from the National Science Foundation.

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Delaware campus

    The University of Delaware is a public land-grant research university located in Newark, Delaware. University of Delaware (US) is the largest university in Delaware. It offers three associate’s programs, 148 bachelor’s programs, 121 master’s programs (with 13 joint degrees), and 55 doctoral programs across its eight colleges. The main campus is in Newark, with satellite campuses in Dover, the Wilmington area, Lewes, and Georgetown. It is considered a large institution with approximately 18,200 undergraduate and 4,200 graduate students. It is a privately governed university which receives public funding for being a land-grant, sea-grant, and space-grant state-supported research institution.

    University of Delaware is classified among “R1: Doctoral Universities – Very high research activity”. According to The National Science Foundation , UD spent $186 million on research and development in 2018, ranking it 119th in the nation. It is recognized with the Community Engagement Classification by the Carnegie Foundation for the Advancement of Teaching.

    University of Delaware is one of only four schools in North America with a major in art conservation. In 1923, it was the first American university to offer a study-abroad program.

    University of Delaware traces its origins to a “Free School,” founded in New London, Pennsylvania in 1743. The school moved to Newark, Delaware by 1765, becoming the Newark Academy. The academy trustees secured a charter for Newark College in 1833 and the academy became part of the college, which changed its name to Delaware College in 1843. While it is not considered one of the colonial colleges because it was not a chartered institution of higher education during the colonial era, its original class of ten students included George Read, Thomas McKean, and James Smith, all three of whom went on to sign the Declaration of Independence. Read also later signed the United States Constitution.

    Science, Technology and Advanced Research (STAR) Campus

    On October 23, 2009, the University of Delaware signed an agreement with Chrysler to purchase a shuttered vehicle assembly plant adjacent to the university for $24.25 million as part of Chrysler’s bankruptcy restructuring plan. The university has developed the 272-acre (1.10 km^2) site into the Science, Technology and Advanced Research (STAR) Campus. The site is the new home of University of Delaware’s College of Health Sciences, which includes teaching and research laboratories and several public health clinics. The STAR Campus also includes research facilities for University of Delaware (US)’s vehicle-to-grid technology, as well as Delaware Technology Park, SevOne, CareNow, Independent Prosthetics and Orthotics, and the East Coast headquarters of Bloom Energy. In 2020 , University of Delaware expects to open the Ammon Pinozzotto Biopharmaceutical Innovation Center, which will become the new home of the UD-led National Institute for Innovation in Manufacturing Biopharmaceuticals. Also, Chemours recently opened its global research and development facility, known as the Discovery Hub, on the STAR Campus in 2020. The new Newark Regional Transportation Center on the STAR Campus will serve passengers of Amtrak and regional rail.


    The university is organized into nine colleges:

    Alfred Lerner College of Business and Economics
    College of Agriculture and Natural Resources
    College of Arts and Sciences
    College of Earth, Ocean and Environment
    College of Education and Human Development
    College of Engineering
    College of Health Sciences
    Graduate College
    Honors College

    There are also five schools:

    Joseph R. Biden, Jr. School of Public Policy and Administration (part of the College of Arts & Sciences)
    School of Education (part of the College of Education & Human Development)
    School of Marine Science and Policy (part of the College of Earth, Ocean and Environment)
    School of Nursing (part of the College of Health Sciences)
    School of Music (part of the College of Arts & Sciences)

  • richardmitnick 7:39 pm on March 14, 2022 Permalink | Reply
    Tags: "Klarman fellow blends physics and math to explore string theory", , , Connecting the physics of string theory with arithmetic geometry., Cornell University College of Arts and Sciences, , String theory solves quantum gravity-but with a catch: it proposes a universe with 10 dimensions., Theoretical Physics   

    From Cornell University College of Arts and Sciences: “Klarman fellow blends physics and math to explore string theory” 

    From Cornell University College of Arts and Sciences


    Cornell University

    Kate Blackwood , Cornell Chronicle

    Richard Nally. Credit: Chris Kitchen.

    What does a six-dimensional figure look like?

    Theoretical physicist Richard Nally can’t show you exactly, but he does have a sculpture – a pink shape the size of a grapefruit – that can help you imagine a piece of one.

    “It’s called a K3 surface,” said Nally, a Klarman Fellow in physics in the College of Arts and Sciences (A&S). “Of course, we can’t make sculptures of things that live in six dimensions, but you can take little slices of them to see what they look like.


    This is a slice of a four-dimensional shape that is really important to the history and practice of string theory.

    Nally will spend his three-year Klarman Postdoctoral Fellowship seeking to understand the mathematical structures at the root of gravity and quantum mechanics.

    “Often we see advances in mathematics and physics go hand in hand,” said Liam McAllister, professor of physics (A&S), Nally’s faculty host. “For example, calculus in Newton’s time, and the geometry associated with fundamental forces in the mid-20th century. Richard focuses on number theory, a discipline that has been profoundly influential in pure mathematics, but has had hardly any connection to physics – so far. But there is amazing potential.”

    Some of the hardest problems in theoretical physics have pieces of number theory at their core, McAllister said, and by exposing these connections at the frontiers of physics and mathematics, progress can be made in both fields.

    String theory solves quantum gravity, Nally said-but with a catch: it proposes a universe with 10 dimensions. So far, no one has shown that string theory is consistent with our four-dimensional universe. The higher-dimensional shapes such as his K3 surface are helpful in finding something like our world in the math of string theory.

    Researchers have known about the shapes in string theory for decades, Nally said. But in the past few years, he and others have started to take the shapes seriously as number theoretic objects and to study them in that framework. Nally devoted much of his doctoral dissertation at Stanford University to the topic.

    “We want to find a nice shape that lets us keep the solution to quantum gravity, while getting the features – such as an expanding universe and only having four dimensions – that we see in the world around us,” he said.

    Nally is working with McAllister’s research group to take these shapes even further. In a current project, they are looking for a mathematical shape that will connect string theory with the positive cosmological constant, the fact that the rate of the universe’s expansion is accelerating.

    “Nobody has produced a single compelling example of a solution to the equations that define string theory that have this accelerating feature,” Nally said. “The thing we’re working on is producing this example, this one beautiful shape in six dimensions that if you put it on the computer and solve the equation, it says that the [expansion of the] universe is accelerating.”

    The team is making great strides, even in the past month, toward this endeavor, Nally said, but the results are far from guaranteed.

    “We have a series of computer servers we’re using to assist us, and we are going to light them on fire looking for an example,” he said. “Frankly, I don’t know how long that will take. There are too many of these shapes to look at all of them, so you have to make guesses.”

    “Our work involves exploring mathematical realms of theoretical physics,” McAllister said, “especially the geometry of the extra dimensions of string theory, in search of echoes of themes known in pure mathematics. Richard finds concrete, intuitive elements hidden in these very abstract problems.”

    Another project Nally is working on during his Klarman Fellowship connects the physics of string theory with arithmetic geometry. “There is a deep connection between string theory –the sorts of objects physicists in string theory have been studying for the last 20 years –and the field of math,” he said.

    With the Klarman Fellowship, Nally said he has “complete freedom” to pursue these and other projects. The interactive culture of the College of Arts and Sciences, where researchers in physics and math are seeking closer ties, gives him many opportunities for collaboration.

    Nally also teaches a weekly informal seminar on ‘modularity,” an abstract concept related to the mathematics behind his graduate studies. Among those who attend are some of Cornell’s most accomplished physics and math researchers, including McAllister; Tom Hartman, associate professor of physics; Michael Stillman, professor of mathematics; and Ravi Ramakrishna, professor of mathematics.

    “Everyone is invested and wants to learn and wants to genuinely understand what’s happening,” Nally said. “It’s great that I came into this setting; the two departments are already trying to connect.”

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    The College of Arts and Sciences is a division of Cornell University. It has been part of the university since its founding, although its name has changed over time. It grants bachelor’s degrees, and masters and doctorates through affiliation with the Cornell University Graduate School. Its major academic buildings are located on the Arts Quad and include some of the university’s oldest buildings. The college offers courses in many fields of study and is the largest college at Cornell by undergraduate enrollment.

    Originally, the university’s faculty was undifferentiated, but with the founding of the Cornell Law School in 1886 and the concomitant self-segregation of the school’s lawyers, different departments and colleges formed.

    Initially, the division that would become the College of Arts and Sciences was known as the Academic Department, but it was formally renamed in 1903. The College endowed the first professorships in American history, musicology, and American literature. Currently, the college teaches 4,100 undergraduates, with 600 full-time faculty members (and an unspecified number of lecturers) teaching 2,200 courses.

    The Arts Quad is the site of Cornell’s original academic buildings and is home to many of the college’s programs. On the western side of the quad, at the top of Libe Slope, are Morrill Hall (completed in 1866), McGraw Hall (1872) and White Hall (1868). These simple but elegant buildings, built with native Cayuga bluestone, reflect Ezra Cornell’s utilitarianism and are known as Stone Row. The statue of Ezra Cornell, dating back to 1919, stands between Morrill and McGraw Halls. Across from this statue, in front of Goldwin Smith Hall, sits the statue of Andrew Dickson White, Cornell’s other co-founder and its first president.

    Lincoln Hall (1888) also stands on the eastern face of the quad next to Goldwin Smith Hall. On the northern face are the domed Sibley Hall and Tjaden Hall (1883). Just off of the quad on the Slope, next to Tjaden, stands the Herbert F. Johnson Museum of Art, designed by I. M. Pei. Stimson Hall (1902), Olin Library (1959) and Uris Library (1892), with Cornell’s landmark clocktower, McGraw Tower, stand on the southern end of the quad.

    Olin Library replaced Boardman Hall (1892), the original location of the Cornell Law School. In 1992, an underground addition was made to the quad with Kroch Library, an extension of Olin Library that houses several special collections of the Cornell University Library, including the Division of Rare and Manuscript Collections.

    Klarman Hall, the first new humanities building at Cornell in over 100 years, opened in 2016.[6] Klarman houses the offices of Comparative Literature and Romance Studies. The building is connected to, and surrounded on three sides by, Goldwin Smith Hall and fronts East Avenue.

    Legends and lore about the Arts Quad and its statues can be found at Cornelliana.

    The College of Arts and Sciences offers both undergraduate and graduate (through the Graduate School) degrees. The only undergraduate degree is the Bachelor of Arts. However, students may enroll in the dual-degree program, which allows them to pursue programs of study in two colleges and receive two different degrees. The faculties within the college are:

    Africana Studies and Research Center*
    American Studies
    Asian-American Studies
    Asian Studies
    Biology (with the College of Agriculture and Life Sciences)
    Biology & Society Major (with the Colleges of Agriculture and Life Sciences and Human Ecology)
    Chemistry and Chemical Biology
    China and Asia-pacific Studies
    Cognitive Studies
    College Scholar Program (frees up to 40 selected students in each class from all degree requirements and allows them to fashion a plan of study conducive to achieving their ultimate intellectual goals; a senior thesis is required)
    Comparative Literature
    Computer Science (with the College of Engineering)
    Earth and Atmospheric Sciences (with the Colleges of Agriculture and Life Sciences and Engineering)
    Feminist, Gender, and Sexuality Studies
    German Studies
    History of Art
    Human Biology
    Independent Major
    Information Science (with the College of Agriculture and Life Sciences and College of Engineering)
    Jewish Studies
    John S. Knight Institute for Writing in the Disciplines
    Latin American Studies
    Latino Studies
    Lesbian, Gay, Bisexual, and Transgender Studies
    Medieval Studies
    Modern European Studies Concentration
    Near Eastern Studies
    Religious Studies
    Romance Studies
    Science and Technology Studies
    Society for the Humanities
    Theatre, Film, and Dance
    Visual Studies Undergraduate Concentration

    *Africana Studies was an independent center reporting directly to the Provost until July 1, 2011.

    Once called “the first American university” by educational historian Frederick Rudolph, Cornell University represents a distinctive mix of eminent scholarship and democratic ideals. Adding practical subjects to the classics and admitting qualified students regardless of nationality, race, social circumstance, gender, or religion was quite a departure when Cornell was founded in 1865.

    Today’s Cornell reflects this heritage of egalitarian excellence. It is home to the nation’s first colleges devoted to hotel administration, industrial and labor relations, and veterinary medicine. Both a private university and the land-grant institution of New York State, Cornell University is the most educationally diverse member of the Ivy League.

    On the Ithaca campus alone nearly 20,000 students representing every state and 120 countries choose from among 4,000 courses in 11 undergraduate, graduate, and professional schools. Many undergraduates participate in a wide range of interdisciplinary programs, play meaningful roles in original research, and study in Cornell programs in Washington, New York City, and the world over.

    Cornell University is a private, statutory, Ivy League and land-grant research university in Ithaca, New York. Founded in 1865 by Ezra Cornell and Andrew Dickson White, the university was intended to teach and make contributions in all fields of knowledge—from the classics to the sciences, and from the theoretical to the applied. These ideals, unconventional for the time, are captured in Cornell’s founding principle, a popular 1868 quotation from founder Ezra Cornell: “I would found an institution where any person can find instruction in any study.”

    The university is broadly organized into seven undergraduate colleges and seven graduate divisions at its main Ithaca campus, with each college and division defining its specific admission standards and academic programs in near autonomy. The university also administers two satellite medical campuses, one in New York City and one in Education City, Qatar, and The Jacobs Technion-Cornell Institute(US) in New York City, a graduate program that incorporates technology, business, and creative thinking. The program moved from Google’s Chelsea Building in New York City to its permanent campus on Roosevelt Island in September 2017.

    Cornell is one of the few private land grant universities in the United States. Of its seven undergraduate colleges, three are state-supported statutory or contract colleges through The State University of New York (SUNY) system, including its Agricultural and Human Ecology colleges as well as its Industrial Labor Relations school. Of Cornell’s graduate schools, only the veterinary college is state-supported. As a land grant college, Cornell operates a cooperative extension outreach program in every county of New York and receives annual funding from the State of New York for certain educational missions. The Cornell University Ithaca Campus comprises 745 acres, but is much larger when the Cornell Botanic Gardens (more than 4,300 acres) and the numerous university-owned lands in New York City are considered.

    Alumni and affiliates of Cornell have reached many notable and influential positions in politics, media, and science. As of January 2021, 61 Nobel laureates, four Turing Award winners and one Fields Medalist have been affiliated with Cornell. Cornell counts more than 250,000 living alumni, and its former and present faculty and alumni include 34 Marshall Scholars, 33 Rhodes Scholars, 29 Truman Scholars, 7 Gates Scholars, 55 Olympic Medalists, 10 current Fortune 500 CEOs, and 35 billionaire alumni. Since its founding, Cornell has been a co-educational, non-sectarian institution where admission has not been restricted by religion or race. The student body consists of more than 15,000 undergraduate and 9,000 graduate students from all 50 American states and 119 countries.


    Cornell University was founded on April 27, 1865; the New York State (NYS) Senate authorized the university as the state’s land grant institution. Senator Ezra Cornell offered his farm in Ithaca, New York, as a site and $500,000 of his personal fortune as an initial endowment. Fellow senator and educator Andrew Dickson White agreed to be the first president. During the next three years, White oversaw the construction of the first two buildings and traveled to attract students and faculty. The university was inaugurated on October 7, 1868, and 412 men were enrolled the next day.

    Cornell developed as a technologically innovative institution, applying its research to its own campus and to outreach efforts. For example, in 1883 it was one of the first university campuses to use electricity from a water-powered dynamo to light the grounds. Since 1894, Cornell has included colleges that are state funded and fulfill statutory requirements; it has also administered research and extension activities that have been jointly funded by state and federal matching programs.

    Cornell has had active alumni since its earliest classes. It was one of the first universities to include alumni-elected representatives on its Board of Trustees. Cornell was also among the Ivies that had heightened student activism during the 1960s related to cultural issues; civil rights; and opposition to the Vietnam War, with protests and occupations resulting in the resignation of Cornell’s president and the restructuring of university governance. Today the university has more than 4,000 courses. Cornell is also known for the Residential Club Fire of 1967, a fire in the Residential Club building that killed eight students and one professor.

    Since 2000, Cornell has been expanding its international programs. In 2004, the university opened the Weill Cornell Medical College in Qatar. It has partnerships with institutions in India, Singapore, and the People’s Republic of China. Former president Jeffrey S. Lehman described the university, with its high international profile, a “transnational university”. On March 9, 2004, Cornell and Stanford University laid the cornerstone for a new ‘Bridging the Rift Center’ to be built and jointly operated for education on the Israel–Jordan border.


    Cornell, a research university, is ranked fourth in the world in producing the largest number of graduates who go on to pursue PhDs in engineering or the natural sciences at American institutions, and fifth in the world in producing graduates who pursue PhDs at American institutions in any field. Research is a central element of the university’s mission; in 2009 Cornell spent $671 million on science and engineering research and development, the 16th highest in the United States. Cornell is classified among “R1: Doctoral Universities – Very high research activity”.

    For the 2016–17 fiscal year, the university spent $984.5 million on research. Federal sources constitute the largest source of research funding, with total federal investment of $438.2 million. The agencies contributing the largest share of that investment are The Department of Health and Human Services and the National Science Foundation, accounting for 49.6% and 24.4% of all federal investment, respectively. Cornell was on the top-ten list of U.S. universities receiving the most patents in 2003, and was one of the nation’s top five institutions in forming start-up companies. In 2004–05, Cornell received 200 invention disclosures; filed 203 U.S. patent applications; completed 77 commercial license agreements; and distributed royalties of more than $4.1 million to Cornell units and inventors.

    Since 1962, Cornell has been involved in unmanned missions to Mars. In the 21st century, Cornell had a hand in the Mars Exploration Rover Mission. Cornell’s Steve Squyres, Principal Investigator for the Athena Science Payload, led the selection of the landing zones and requested data collection features for the Spirit and Opportunity rovers. NASA-JPL/Caltech engineers took those requests and designed the rovers to meet them. The rovers, both of which have operated long past their original life expectancies, are responsible for the discoveries that were awarded 2004 Breakthrough of the Year honors by Science. Control of the Mars rovers has shifted between National Aeronautics and Space Administration ’s Jet Propulsion Laboratory at The California Institute of Technology and Cornell’s Space Sciences Building.

    Further, Cornell researchers discovered the rings around the planet Uranus, and Cornell built and operated the telescope at Arecibo Observatory located in Arecibo, Puerto Rico(US) until 2011, when they transferred the operations to SRI International, the Universities Space Research Association (US) and the Metropolitan University of Puerto Rico [Universidad Metropolitana de Puerto Rico](US).

    The Automotive Crash Injury Research Project was begun in 1952. It pioneered the use of crash testing, originally using corpses rather than dummies. The project discovered that improved door locks; energy-absorbing steering wheels; padded dashboards; and seat belts could prevent an extraordinary percentage of injuries.

    In the early 1980s, Cornell deployed the first IBM 3090-400VF and coupled two IBM 3090-600E systems to investigate coarse-grained parallel computing. In 1984, the National Science Foundation began work on establishing five new supercomputer centers, including the Cornell Center for Advanced Computing, to provide high-speed computing resources for research within the United States. As a National Science Foundation center, Cornell deployed the first IBM Scalable Parallel supercomputer.

    In the 1990s, Cornell developed scheduling software and deployed the first supercomputer built by Dell. Most recently, Cornell deployed Red Cloud, one of the first cloud computing services designed specifically for research. Today, the center is a partner on the National Science Foundation XSEDE-Extreme Science Engineering Discovery Environment supercomputing program, providing coordination for XSEDE architecture and design, systems reliability testing, and online training using the Cornell Virtual Workshop learning platform.

    Cornell scientists have researched the fundamental particles of nature for more than 70 years. Cornell physicists, such as Hans Bethe, contributed not only to the foundations of nuclear physics but also participated in the Manhattan Project. In the 1930s, Cornell built the second cyclotron in the United States. In the 1950s, Cornell physicists became the first to study synchrotron radiation.

    During the 1990s, the Cornell Electron Storage Ring, located beneath Alumni Field, was the world’s highest-luminosity electron-positron collider. After building the synchrotron at Cornell, Robert R. Wilson took a leave of absence to become the founding director of DOE’s Fermi National Accelerator Laboratory (US), which involved designing and building the largest accelerator in the United States.

    Cornell’s accelerator and high-energy physics groups are involved in the design of the proposed ILC-International Linear Collider (JP) and plan to participate in its construction and operation. The International Linear Collider (JP), to be completed in the late 2010s, will complement the The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH)[CERN] <a href="http://“>Large Hadron Collider(CH) and shed light on questions such as the identity of dark matter and the existence of extra dimensions.

    As part of its research work, Cornell has established several research collaborations with universities around the globe. For example, a partnership with the University of Sussex(UK) (including the Institute of Development Studies at Sussex) allows research and teaching collaboration between the two institutions.

  • richardmitnick 11:05 am on February 9, 2022 Permalink | Reply
    Tags: "Mutating Quantum Particles Set in Motion", “Anyons”, , , , The Cavendish Laboratory - Department of Physics (UK), , Theoretical Physics   

    From The Cavendish Laboratory – Department of Physics (UK): “Mutating Quantum Particles Set in Motion” 


    From The Cavendish Laboratory – Department of Physics (UK)


    U Cambridge bloc

    The University of Cambridge (UK)

    Vanessa Bismuth

    Artist impression of particle waves. Image by Gerd Altmann from Pixabay.

    In the world of fundamental particles, you are either a fermion or a boson but a new study from the University of Cambridge shows, for the first time, that one can behave as the other as they move from one place to another.

    Researchers from the Cavendish Laboratory have modelled a quantum walk of identical particles that can change their fundamental character by simply hopping across a domain wall in a one-dimensional lattice.

    Their findings, published as a Letter in Physical Review Research, open up a window to engineer and control new kinds of collective motion in the quantum world.

    All known fundamental particles fall in two groups: either a fermion (“matter particle”) or a boson (“force carrier”), depending on how their state is affected when two particles are exchanged. This “exchange statistics” strongly affects their behaviour, with fermions (electrons) giving rise to the periodic table of elements and bosons (photons) leading to electromagnetic radiation, energy and light.

    Standard Model of Particle Physics, Quantum Diaries.

    Periodic Table 2014 The National Institute of Standards and Technology (US).

    In this new study, the theoretical physicists show that, by applying an effective magnetic field that varies in space and with the particle density, it is possible to coax the same particles to behave as bosons in one region and (pseudo)fermions in another. The boundaries separating these regions are invisible to every single particle and, yet, dramatically alters their collective motion, leading to striking phenomena such as particles getting trapped or fragmenting into many wave packets.

    “Everything that we see around us is made up of either bosons or fermions. These two groups behave and move completely differently: bosons try to bunch together whereas fermions try to stay separate,” explained first author Liam L.H. Lau, who carried out this research during his undergraduate studies at the Cavendish Laboratory and is now a graduate student at Rutgers University.

    “The question we asked was what if the particles could change their character as they moved around on a one-dimensional lattice, our notion of space.”

    This research is partly motivated by the remarkable prospects of being able to control the nature of particles in the laboratory. In particular, certain two-dimensional materials have been found to host particle-like excitations that are in between bosons and fermions – called “anyons” – which could be used to build robust quantum computers. However, in all setups so far, the nature of the particles is fixed and cannot be changed in space or time.

    By analysing mathematical models, the present study shows how one can juxtapose bosonic, fermionic, and even “anyonic” spatial domains in the same physical system, and explores how two particles can move in surprising ways through these different regions.

    “The boundaries separating these regions are very special, because they are transparent to single particles and, yet, control the final distribution by how they reflect or transmit two particles arriving together!” said Lau. The researchers illustrate this “many-body” effect by studying different arrangements of the spatial domains, which give rise to strikingly different collective motion of the two particles, as shown in this image.

    Density plots showing how two particles move through bosonic (“0”) and pseudo-fermionic (π) regions after being released next to each other in two different scenarios. Left: The particles start out as bosons and move together (solid lines) left and right before impinging on a 0-π; border, where they are partially reflected (solid lines) and partially split (dotted lines). For each splitting, one particle escapes the bosonic region. Right: Starting as pseudo-fermions, the particles move in a “superposition” of two ways: in one, they rapidly move apart as ordinary fermions and pass straight through the π-0 borders (dotted lines); in the other, they are bound together, move very slowly, and are forever trapped in the fermionic region (solid lines). Credit – Lau and Dutta.

    “These variable two-particle interferences are fascinating in their own rights, but the new questions they open up for many particles are even more exciting,” said Dr Shovan Dutta, the study’s co-author who conceived and supervised the research in the Cavendish and has recently moved to The MPG Institute for the Physics of Complex Systems [MPG Institut für Physik komplexer Systeme](DE).

    “Our work builds on recent progress in engineering artificial magnetic fields for neutral atoms, and the predictions can be tested experimentally in existing optical-lattice setups,” added Dutta. “This will open access to a rich class of controllable many-particle dynamics and, potentially, technological applications, including in quantum sensing.”

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition


    The Cavendish Laboratory is the Department of Physics at the University of Cambridge, and is part of the School of Physical Sciences. The laboratory was opened in 1874 on the New Museums Site as a laboratory for experimental physics and is named after the British chemist and physicist Henry Cavendish. The laboratory has had a huge influence on research in the disciplines of physics and biology.

    As of 2019, 30 Cavendish researchers have won Nobel Prizes. Notable discoveries to have occurred at the Cavendish Laboratory include the discovery of the electron, neutron, and structure of DNA.

    The Cavendish Laboratory was initially located on the New Museums Site, Free School Lane, in the centre of Cambridge. It is named after British chemist and physicist Henry Cavendish for contributions to science and his relative William Cavendish, 7th Duke of Devonshire, who served as chancellor of the university and donated funds for the construction of the laboratory.

    Professor James Clerk Maxwell, the developer of electromagnetic theory, was a founder of the laboratory and the first Cavendish Professor of Physics. The Duke of Devonshire had given to Maxwell, as head of the laboratory, the manuscripts of Henry Cavendish’s unpublished Electrical Works. The editing and publishing of these was Maxwell’s main scientific work while he was at the laboratory. Cavendish’s work aroused Maxwell’s intense admiration and he decided to call the Laboratory (formerly known as the Devonshire Laboratory) the Cavendish Laboratory and thus to commemorate both the Duke and Henry Cavendish.


    Several important early physics discoveries were made here, including the discovery of the electron by J.J. Thomson (1897); the Townsend discharge by John Sealy Townsend and the development of the cloud chamber by C.T.R. Wilson.

    Ernest Rutherford became Director of the Cavendish Laboratory in 1919. Under his leadership the neutron was discovered by James Chadwick in 1932, and in the same year the first experiment to split the nucleus in a fully controlled manner was performed by students working under his direction; John Cockcroft and Ernest Walton.

    Physical chemistry

    Physical Chemistry (originally the department of Colloid Science led by Eric Rideal) had left the old Cavendish site, subsequently locating as the Department of Physical Chemistry (under RG Norrish) in the then new chemistry building with the Department of Chemistry (led by Lord Todd) in Lensfield Road: both chemistry departments merged in the 1980s.

    Nuclear physics

    In World War II the laboratory carried out research for the MAUD Committee, part of the British Tube Alloys project of research into the atomic bomb. Researchers included Nicholas Kemmer, Alan Nunn May, Anthony French, Samuel Curran and the French scientists including Lew Kowarski and Hans von Halban. Several transferred to Canada in 1943; the Montreal Laboratory and some later to the Chalk River Laboratories. The production of plutonium and neptunium by bombarding uranium-238 with neutrons was predicted in 1940 by two teams working independently: Egon Bretscher and Norman Feather at the Cavendish and Edwin M. McMillan and Philip Abelson at Berkeley Radiation Laboratory at The University of California-Berkeley (US).


    The Cavendish Laboratory has had an important influence on biology, mainly through the application of X-ray crystallography to the study of structures of biological molecules. Francis Crick already worked in the Medical Research Council Unit, headed by Max Perutz and housed in the Cavendish Laboratory, when James Watson came from the United States and they made a breakthrough in discovering the structure of DNA. For their work while in the Cavendish Laboratory, they were jointly awarded the Nobel Prize in Physiology or Medicine in 1962, together with Maurice Wilkins of King’s College London (UK), himself a graduate of St. John’s College, Cambridge.

    The discovery was made on 28 February 1953; the first Watson/Crick paper appeared in Nature on 25 April 1953. Sir Lawrence Bragg, the director of the Cavendish Laboratory, where Watson and Crick worked, gave a talk at Guy’s Hospital Medical School in London on Thursday 14 May 1953 which resulted in an article by Ritchie Calder in The News Chronicle of London, on Friday 15 May 1953, entitled Why You Are You. Nearer Secret of Life. The news reached readers of The New York Times the next day; Victor K. McElheny, in researching his biography, Watson and DNA: Making a Scientific Revolution, found a clipping of a six-paragraph New York Times article written from London and dated 16 May 1953 with the headline Form of `Life Unit’ in Cell Is Scanned. The article ran in an early edition and was then pulled to make space for news deemed more important. (The New York Times subsequently ran a longer article on 12 June 1953). The Cambridge University undergraduate newspaper Varsity also ran its own short article on the discovery on Saturday 30 May 1953. Bragg’s original announcement of the discovery at a Solvay Conference on proteins in Belgium on 8 April 1953 went unreported by the British press.

    Sydney Brenner, Jack Dunitz, Dorothy Hodgkin, Leslie Orgel, and Beryl M. Oughton, were some of the first people in April 1953 to see the model of the structure of DNA, constructed by Crick and Watson; at the time they were working at The University of Oxford (UK)’s Chemistry Department. All were impressed by the new DNA model, especially Brenner who subsequently worked with Crick at Cambridge in the Cavendish Laboratory and the new Laboratory of Molecular Biology. According to the late Dr. Beryl Oughton, later Rimmer, they all travelled together in two cars once Dorothy Hodgkin announced to them that they were off to Cambridge to see the model of the structure of DNA. Orgel also later worked with Crick at The Salk Institute for Biological Studies (US).

    U Cambridge Campus

    The University of Cambridge (UK) [legally The Chancellor, Masters, and Scholars of the University of Cambridge] is a collegiate public research university in Cambridge, England. Founded in 1209 Cambridge is the second-oldest university in the English-speaking world and the world’s fourth-oldest surviving university. It grew out of an association of scholars who left the University of Oxford(UK) after a dispute with townsfolk. The two ancient universities share many common features and are often jointly referred to as “Oxbridge”.

    Cambridge is formed from a variety of institutions which include 31 semi-autonomous constituent colleges and over 150 academic departments, faculties and other institutions organised into six schools. All the colleges are self-governing institutions within the university, each controlling its own membership and with its own internal structure and activities. All students are members of a college. Cambridge does not have a main campus and its colleges and central facilities are scattered throughout the city. Undergraduate teaching at Cambridge is organised around weekly small-group supervisions in the colleges – a feature unique to the Oxbridge system. These are complemented by classes, lectures, seminars, laboratory work and occasionally further supervisions provided by the central university faculties and departments. Postgraduate teaching is provided predominantly centrally.

    Cambridge University Press a department of the university is the oldest university press in the world and currently the second largest university press in the world. Cambridge Assessment also a department of the university is one of the world’s leading examining bodies and provides assessment to over eight million learners globally every year. The university also operates eight cultural and scientific museums, including the Fitzwilliam Museum, as well as a botanic garden. Cambridge’s libraries – of which there are 116 – hold a total of around 16 million books, around nine million of which are in Cambridge University Library, a legal deposit library. The university is home to – but independent of – the Cambridge Union – the world’s oldest debating society. The university is closely linked to the development of the high-tech business cluster known as “Silicon Fe”. It is the central member of Cambridge University Health Partners, an academic health science centre based around the Cambridge Biomedical Campus.

    By both endowment size and consolidated assets Cambridge is the wealthiest university in the United Kingdom. In the fiscal year ending 31 July 2019, the central university – excluding colleges – had a total income of £2.192 billion of which £592.4 million was from research grants and contracts. At the end of the same financial year the central university and colleges together possessed a combined endowment of over £7.1 billion and overall consolidated net assets (excluding “immaterial” historical assets) of over £12.5 billion. It is a member of numerous associations and forms part of the ‘golden triangle’ of English universities.

    Cambridge has educated many notable alumni including eminent mathematicians; scientists; politicians; lawyers; philosophers; writers; actors; monarchs and other heads of state. As of October 2020 121 Nobel laureates; 11 Fields Medalists; 7 Turing Award winners; and 14 British prime ministers have been affiliated with Cambridge as students; alumni; faculty or research staff. University alumni have won 194 Olympic medals.


    By the late 12th century the Cambridge area already had a scholarly and ecclesiastical reputation due to monks from the nearby bishopric church of Ely. However it was an incident at Oxford which is most likely to have led to the establishment of the university: three Oxford scholars were hanged by the town authorities for the death of a woman without consulting the ecclesiastical authorities who would normally take precedence (and pardon the scholars) in such a case; but were at that time in conflict with King John. Fearing more violence from the townsfolk scholars from the University of Oxford started to move away to cities such as Paris; Reading; and Cambridge. Subsequently enough scholars remained in Cambridge to form the nucleus of a new university when it had become safe enough for academia to resume at Oxford. In order to claim precedence it is common for Cambridge to trace its founding to the 1231 charter from Henry III granting it the right to discipline its own members (ius non-trahi extra) and an exemption from some taxes; Oxford was not granted similar rights until 1248.

    A bull in 1233 from Pope Gregory IX gave graduates from Cambridge the right to teach “everywhere in Christendom”. After Cambridge was described as a studium generale in a letter from Pope Nicholas IV in 1290 and confirmed as such in a bull by Pope John XXII in 1318 it became common for researchers from other European medieval universities to visit Cambridge to study or to give lecture courses.

    Foundation of the colleges

    The colleges at the University of Cambridge were originally an incidental feature of the system. No college is as old as the university itself. The colleges were endowed fellowships of scholars. There were also institutions without endowments called hostels. The hostels were gradually absorbed by the colleges over the centuries; but they have left some traces, such as the name of Garret Hostel Lane.

    Hugh Balsham, Bishop of Ely, founded Peterhouse – Cambridge’s first college in 1284. Many colleges were founded during the 14th and 15th centuries but colleges continued to be established until modern times. There was a gap of 204 years between the founding of Sidney Sussex in 1596 and that of Downing in 1800. The most recently established college is Robinson built in the late 1970s. However Homerton College only achieved full university college status in March 2010 making it the newest full college (it was previously an “Approved Society” affiliated with the university).

    In medieval times many colleges were founded so that their members would pray for the souls of the founders and were often associated with chapels or abbeys. The colleges’ focus changed in 1536 with the Dissolution of the Monasteries. Henry VIII ordered the university to disband its Faculty of Canon Law and to stop teaching “scholastic philosophy”. In response, colleges changed their curricula away from canon law and towards the classics; the Bible; and mathematics.

    Nearly a century later the university was at the centre of a Protestant schism. Many nobles, intellectuals and even commoners saw the ways of the Church of England as too similar to the Catholic Church and felt that it was used by the Crown to usurp the rightful powers of the counties. East Anglia was the centre of what became the Puritan movement. In Cambridge the movement was particularly strong at Emmanuel; St Catharine’s Hall; Sidney Sussex; and Christ’s College. They produced many “non-conformist” graduates who, greatly influenced by social position or preaching left for New England and especially the Massachusetts Bay Colony during the Great Migration decade of the 1630s. Oliver Cromwell, Parliamentary commander during the English Civil War and head of the English Commonwealth (1649–1660), attended Sidney Sussex.

    Modern period

    After the Cambridge University Act formalised the organisational structure of the university the study of many new subjects was introduced e.g. theology, history and modern languages. Resources necessary for new courses in the arts architecture and archaeology were donated by Viscount Fitzwilliam of Trinity College who also founded the Fitzwilliam Museum. In 1847 Prince Albert was elected Chancellor of the University of Cambridge after a close contest with the Earl of Powis. Albert used his position as Chancellor to campaign successfully for reformed and more modern university curricula, expanding the subjects taught beyond the traditional mathematics and classics to include modern history and the natural sciences. Between 1896 and 1902 Downing College sold part of its land to build the Downing Site with new scientific laboratories for anatomy, genetics, and Earth sciences. During the same period the New Museums Site was erected including the Cavendish Laboratory which has since moved to the West Cambridge Site and other departments for chemistry and medicine.

    The University of Cambridge began to award PhD degrees in the first third of the 20th century. The first Cambridge PhD in mathematics was awarded in 1924.

    In the First World War 13,878 members of the university served and 2,470 were killed. Teaching and the fees it earned came almost to a stop and severe financial difficulties followed. As a consequence the university first received systematic state support in 1919 and a Royal Commission appointed in 1920 recommended that the university (but not the colleges) should receive an annual grant. Following the Second World War the university saw a rapid expansion of student numbers and available places; this was partly due to the success and popularity gained by many Cambridge scientists.

  • richardmitnick 9:45 am on January 24, 2022 Permalink | Reply
    Tags: "At the interface of physics and mathematics", , , Integrable model: equation that can be solved exactly., , , , , String Theory-which scientists hope will eventually provide a unified description of particle physics and gravity., , Theoretical Physics   

    From The Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH): “At the interface of physics and mathematics” 

    From The Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)

    Barbara Vonarburg

    Sylvain Lacroix is a theoretical physicist who conducts research into fundamental concepts of physics – an exciting but intellectually challenging field of science. As an Advanced Fellow at ETH Zürich’s Institute for Theoretical Studies (ITS), he works on complex equations that can be solved exactly only thanks to their large number of symmetries.

    “It was fascinating to learn abstract mathematical concepts and see them neatly applied in the realm of physics,” says Sylvain Lacroix, Advanced Fellow at the Institute for Theoretical Studies. Photo: Nicola Pitaro/ETH Zürich.

    “I got hooked on the interplay of physics and mathematics while I was still at secondary school,” says 30-​year-old Sylvain Lacroix, who was born and grew up near Paris. “It was fascinating to learn abstract mathematical concepts and see them neatly applied in the realm of physics.” During his studies at The University of Lyon [Université Claude Bernard Lyon 1] (FR), he devoted much of his energy and enthusiasm to physics problems that had highly complex underlying mathematical structures. So when it came to selecting a topic for his doctoral thesis, this area of research seemed like the obvious choice. He decided to explore the theory of what are known as integrable models – a subject he has continued to pursue up to the present day.

    Lacroix readily acknowledges that most people outside his line of work find the term “integrable models” completely incomprehensible: “I have to admit that it’s probably not the simplest or most accessible field of physics,” he says, almost apologetically. That’s why he takes pains to explain it in layman’s terms: “We define a model as a body of laws, a set of equations that describe the behaviour of certain quantities, for example how the position of an object changes over time.” An integrable model is characterised by equations that can be solved exactly, which is by no means a given.

    Symmetry is the key

    Many of the equations used in modern physics – such as that practised at The European Organization for Nuclear Research [Organización Europea para la Investigación Nuclear][Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN] – are so complex that they can be solved only approximately. These approximation methods often serve their purpose well, for instance if there is only a weak interaction between two particles. However, other cases require exact calculations – and that’s where integrable models come in. But what makes them so exact? “That’s another aspect that is tricky to explain,” Lacroix says, “but it ultimately comes down to symmetry.” Take, for example, the symmetry of time or space: a physics experiment will produce the same results whether you perform it today or – under identical conditions – ten days from now, and whether it takes place in Zürich or New York. Consequently, the equation that describes the experiment must remain invariant even if the time or location changes. This is reflected in the mathematical structure of the equation, which contains the corresponding constraints. “If we have enough symmetries, this results in so many constraints that we can simplify the equation to the point where we get exact results,” says the physicist.

    Integrable models and their exact solutions are actually very rare in mathematics. “If I chose a random equation, it would be extremely unlikely to have this property of exact solvability,” Lacroix says. “But equations of this kind really do exist in nature.” Some describe the movement of waves propagating in a channel, for example, while others describe the behaviour of a hydrogen atom. “But it’s important to note that my work doesn’t have any practical applications of that kind,” Lacroix says. “I don’t examine concrete physical models; instead, I study mathematical structures and attempt to find general approaches that will allow us to construct new exactly solvable equations.” Although some of these formulas may eventually find a real-​world application, others probably won’t.

    After completing his doctoral thesis, Lacroix spent three years working as a postdoc at The University of Hamburg [Universität Hamburg](DE), before finally moving to Zürich in September 2021. “I don’t have a family, so I had no problem making the switch,” he says. He is relieved that he can now spend five years at the ITS as an Advanced Fellow and focus entirely on his research without having to worry about the future. He admits it was a pleasure getting to know different countries as a postdoc and that he enjoyed moving from place to place. “But it makes it very hard to have any kind of stability in your life.”

    A beautiful setting

    Lacroix spends most of his time working in his office at the ITS, which is located in a stately building dating from 1882 not far from the ETH Main Building. “It’s a lovely place,” he says, glancing out the window at the green surroundings and the city beyond. “I feel very much at home here. Living in Zürich is wonderful, it’s such a great feeling being here.” In his spare time, he likes watching movies, reading books and socialising. “I love meeting up with friends in restaurants or cafés,” he says. He also feels fortunate that he didn’t start working in Zürich until after the Covid measures had been relaxed.

    “I’m vaccinated and everyone’s very careful at ETH. We still have restrictions in place, but life is slowly getting back to normal – and that made it much easier to get to know my colleagues from day one,” he says. One of the greatest privileges of working at the ITS, Lacroix says, is that it offers an international environment that brings together researchers from all over the world. As well as offering a space for experts to exchange ideas and holding seminars where Fellows can present their work, the Institute also has a tradition of organising joint excursions. In the autumn of 2021, Lacroix joined his colleagues on a hike in the Flumserberg mountain resort for the first time: “I love hiking and it’s incredible to have the mountains so close.”

    Normally, however, he can be found sitting at his desk jotting down a series of mostly abstract equations on a sheet of paper. Occasionally his computer comes in handy, he says, because it has become so much more than just a calculating device; today’s computers can also handle abstract mathematical concepts, which can be very useful. Most people don’t really understand much of what Lacroix puts down on paper, but that doesn’t bother him: “I’ve learned to live with that,” he says; “I don’t feel isolated in my research at all – at least not in the academic sphere.”

    A better understanding of quantum field theory

    Integrable models are extremely symmetrical models, Lacroix explains. The basic principle of symmetry plays an important role in modern physics, for example in quantum field theory – the theoretical basis of particle physics – as well as in string theory, which scientists hope will eventually provide a unified description of particle physics and gravity. So could such an all-​encompassing unified field theory turn out to be an integrable model? “That would obviously be great, especially for me!” Lacroix says with a wry smile. “But it’s a bit optimistic to believe that whatever unified theory of physics finally emerges will have enough symmetries to make it completely exact.”

    Even if the equations he studies don’t explain the world directly, he still believes they can help us achieve a better understanding of theoretical physics. For example, we can take advantage of so-​called “toy models”, which have a particularly large number of symmetries, to simplify extremely complex equations in quantum field theory. “This gives us a better understanding of how the theory works, even if these models are too simplistic for the real world,” Lacroix says. Yet his primary interest lies in the purely mathematical questions that integrable models pose, and he admits that the equations they involve sometimes even appear in his dreams: “It’s hard to shake off what I’ve been thinking about the entire day. But I’ve never managed to solve a mathematical problem in my dreams – at least not so far!”

    See the full article here .


    Please help promote STEM in your local schools.

    Stem Education Coalition

    ETH Zurich campus

    The Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) is a public research university in the city of Zürich, Switzerland. Founded by the Swiss Federal Government in 1854 with the stated mission to educate engineers and scientists, the school focuses exclusively on science, technology, engineering and mathematics. Like its sister institution The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH) , it is part of The Swiss Federal Institutes of Technology Domain (ETH Domain)) , part of the The Swiss Federal Department of Economic Affairs, Education and Research [EAER][Eidgenössisches Departement für Wirtschaft, Bildung und Forschung] [Département fédéral de l’économie, de la formation et de la recherche] (CH).

    The university is an attractive destination for international students thanks to low tuition fees of 809 CHF per semester, PhD and graduate salaries that are amongst the world’s highest, and a world-class reputation in academia and industry. There are currently 22,200 students from over 120 countries, of which 4,180 are pursuing doctoral degrees. In the 2021 edition of the QS World University Rankings ETH Zürich is ranked 6th in the world and 8th by the Times Higher Education World Rankings 2020. In the 2020 QS World University Rankings by subject it is ranked 4th in the world for engineering and technology (2nd in Europe) and 1st for earth & marine science.

    As of November 2019, 21 Nobel laureates, 2 Fields Medalists, 2 Pritzker Prize winners, and 1 Turing Award winner have been affiliated with the Institute, including Albert Einstein. Other notable alumni include John von Neumann and Santiago Calatrava. It is a founding member of the IDEA League and the International Alliance of Research Universities (IARU) and a member of the CESAER network.

    ETH Zürich was founded on 7 February 1854 by the Swiss Confederation and began giving its first lectures on 16 October 1855 as a polytechnic institute (eidgenössische polytechnische Schule) at various sites throughout the city of Zurich. It was initially composed of six faculties: architecture, civil engineering, mechanical engineering, chemistry, forestry, and an integrated department for the fields of mathematics, natural sciences, literature, and social and political sciences.

    It is locally still known as Polytechnikum, or simply as Poly, derived from the original name eidgenössische polytechnische Schule, which translates to “federal polytechnic school”.

    ETH Zürich is a federal institute (i.e., under direct administration by the Swiss government), whereas The University of Zürich [Universität Zürich ] (CH) is a cantonal institution. The decision for a new federal university was heavily disputed at the time; the liberals pressed for a “federal university”, while the conservative forces wanted all universities to remain under cantonal control, worried that the liberals would gain more political power than they already had. In the beginning, both universities were co-located in the buildings of the University of Zürich.

    From 1905 to 1908, under the presidency of Jérôme Franel, the course program of ETH Zürich was restructured to that of a real university and ETH Zürich was granted the right to award doctorates. In 1909 the first doctorates were awarded. In 1911, it was given its current name, Eidgenössische Technische Hochschule. In 1924, another reorganization structured the university in 12 departments. However, it now has 16 departments.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), and four associated research institutes form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    Reputation and ranking

    ETH Zürich is ranked among the top universities in the world. Typically, popular rankings place the institution as the best university in continental Europe and ETH Zürich is consistently ranked among the top 1-5 universities in Europe, and among the top 3-10 best universities of the world.

    Historically, ETH Zürich has achieved its reputation particularly in the fields of chemistry, mathematics and physics. There are 32 Nobel laureates who are associated with ETH Zürich, the most recent of whom is Richard F. Heck, awarded the Nobel Prize in chemistry in 2010. Albert Einstein is perhaps its most famous alumnus.

    In 2018, the QS World University Rankings placed ETH Zürich at 7th overall in the world. In 2015, ETH Zürich was ranked 5th in the world in Engineering, Science and Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US) and University of Cambridge(UK). In 2015, ETH Zürich also ranked 6th in the world in Natural Sciences, and in 2016 ranked 1st in the world for Earth & Marine Sciences for the second consecutive year.

    In 2016, Times Higher Education World University Rankings ranked ETH Zürich 9th overall in the world and 8th in the world in the field of Engineering & Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US), California Institute of Technology(US), Princeton University(US), University of Cambridge(UK), Imperial College London(UK) and University of Oxford(UK) .

    In a comparison of Swiss universities by swissUP Ranking and in rankings published by CHE comparing the universities of German-speaking countries, ETH Zürich traditionally is ranked first in natural sciences, computer science and engineering sciences.

    In the survey CHE ExcellenceRanking on the quality of Western European graduate school programs in the fields of biology, chemistry, physics and mathematics, ETH Zürich was assessed as one of the three institutions to have excellent programs in all the considered fields, the other two being Imperial College London(UK) and The University of Cambridge(UK), respectively.

  • richardmitnick 10:17 pm on December 22, 2021 Permalink | Reply
    Tags: "A-list candidate for fault-free quantum computing delivers surprise", , Contradictory experimental findings in several kinds of unconventional superconductors including heavy fermions-the class that includes uranium ditelluride., Experiments revealed telltale signs of antiferromagnetic spin fluctuations that were coupled to superconductivity in uranium ditelluride., In multiorbital pairing electrons in some atomic shells are more likely to form pairs than others., Neutron-scattering experiments, , , , , Spin-triplet superconductivity arises from antiferromagnetic spin fluctuations in a way that physicists haven’t previously imagined., , Superconductivity happens when electrons form pairs and move as one like couples spinning across a dance floor., The name spin triplet refers to the spontaneous breakdown of three symmetries in these ordered arrangements., Theoretical Physics, Uranium ditelluride crystals are believed to host a rare “ spin-triplet” form of superconductivity. Puzzling experimental results upended the leading explanation.   

    From Rice University (US) : “A-list candidate for fault-free quantum computing delivers surprise” 

    From Rice University (US)

    Dec. 22, 2021
    Jade Boyd

    Puzzling result forces physicists to rethink ‘spin-triplet’ superconductivity.

    An artist’s impression of a neutron striking a sample of superconducting uranium ditelluride in experiments at DOE’s Oak Ridge National Laboratory(US). Crystals of uranium (dark gray) and tellurium (brown) are suspected of hosting spin-triplet superconductivity, a state marked by electron pairs with spins pointed in the same direction (blue). In neutron scattering experiments, incoming neutrons disrupt pairs by flipping one spin in the opposite direction (red), revealing telltale evidence of the pair’s quantum mechanical state. (Credit: Jill Hemman/DOE’s Oak Ridge National Laboratory(US))

    A Rice University-led study is forcing physicists to rethink superconductivity in uranium ditelluride, an A-list material in the worldwide race to create fault-tolerant quantum computers.

    Uranium ditelluride crystals are believed to host a rare “ spin-triplet” form of superconductivity, but puzzling experimental results published this week in Nature have upended the leading explanation of how the state of matter could arise in the material. Neutron-scattering experiments by physicists from Rice, DOE’s Oak Ridge National Laboratory(US), The University of California-San Diego (US) and The National High Magnetic Field Laboratory (US) at The Florida State University (US) revealed telltale signs of antiferromagnetic spin fluctuations that were coupled to superconductivity in uranium ditelluride.

    Spin-triplet superconductivity has not been observed in a solid-state material, but physicists have long suspected it arises from an ordered state that is ferromagnetic. The race to find spin-triplet materials has heated up in recent years due to their potential for hosting elusive quasiparticles called Majorana fermions that could be used to make error-free quantum computers .

    “People have spent billions of dollars trying to search for them,” Rice study co-author Pengcheng Dai said of Majorana fermions, hypothetical quasiparticles that could be used to make topological quantum bits free from the problematic decoherence that plagues qubits in today’s quantum computers .

    “The promise is that if you have a spin-triplet superconductor, it can potentially be used to make topological qubits,” said Dai, a professor of physics and astronomy and member of the Rice Quantum Initiative. “You can’t do that with spin-singlet superconductors. So, that’s why people are extremely interested in this.”

    Superconductivity happens when electrons form pairs and move as one like couples spinning across a dance floor. Electrons naturally loathe one another, but their tendency to avoid other electrons can be overcome by their inherent desire for a low-energy existence. If pairing allows electrons to achieve a more sloth-like state than they could achieve on their own — something that’s only possible at extremely cold temperatures — they can be coaxed into pairs.

    The coaxing comes in the form of fluctuations in their physical environment. In normal superconductors, like lead, the fluctuations are vibrations in the atomic lattice of lead atoms inside the superconducting wire. Physicists have yet to identify the fluctuations that bring about unconventional superconductivity in materials like uranium ditelluride. But decades of study have found phase changes — watershed moments where electrons spontaneously rearrange themselves — at the critical points where pairing begins.

    In the equations of quantum mechanics, these spontaneous ordered arrangements are represented by terms known as order parameters. The name spin triplet refers to the spontaneous breakdown of three symmetries in these ordered arrangements. For example, electrons spin constantly, like tiny bar magnets. One order parameter relates to their spin axis (think north pole), which points up or down. Ferromagnetic order is when all spins point the same direction, and antiferromagnetic order is when they alternate in an up-down, up-down arrangement. In the only confirmed spin-triplet, superfluid helium-3 , the order parameter has no fewer than 18 components.

    “All other superconductivity is spin singlet,” said Dai, who’s also a member of Rice’s Center for Quantum Materials (RCQM). “In a spin singlet, you have one spin up and one spin down, and if you put a magnetic field on, it can easily destroy superconductivity.”

    That’s because the magnetic field pushes spins to align in the same direction. The stronger the field, the stronger the push.

    “The problem with uranium ditelluride is the field required to destroy superconductivity is 40 Tesla,” Dai said. “That’s huge. For 40 years, people thought the only possibility for that to occur is that when you put a field on, the spins are already aligned in one direction, meaning it’s a ferromagnet.”

    In the study, Dai and Rice postdoctoral research associate Chunruo Duan, the study’s lead author, worked with Florida State co-author Ryan Baumbach, whose lab grew the single crystal samples of uranium ditelluride used in the experiment, and UC San Diego co-author Brian Maple, whose lab tested and prepared the samples for neutron-scattering experiments at Oak Ridge’s Spallation Neutron Source [below].

    “What the neutron does is come in with a particular energy and momentum, and it can flip the Cooper pair spins from an up-up state to an up-down state,” Dai said. “It tells you how the pairs are formed. From this neutron spin resonance , one can basically determine the electron pairing energy” and other telltale properties of the quantum mechanical wave function that describes the pair, he said.

    Dai said there are two possible explanations for the result: either uranium ditelluride is not a spin-triplet superconductor, or spin-triplet superconductivity arises from antiferromagnetic spin fluctuations in a way that physicists haven’t previously imagined. Dai said decades of experimental evidence points to the latter , but this appears to violate conventional wisdom about superconductivity. So Dai teamed up with Rice colleague Qimiao Si, a theoretical physicist who specializes in emergent quantum phenomena like unconventional superconductivity.

    Si, a study co-author, has spent much of the past five years showing a theory of multiorbital pairing he co-developed with former Ph.D. student Emilian Nica explains contradictory experimental findings in several kinds of unconventional superconductors including heavy fermions-the class that includes uranium ditelluride.

    In multiorbital pairing electrons in some atomic shells are more likely to form pairs than others. Si recalled thinking that uranium had the potential to contribute paired electrons from any of seven orbitals with 14 possible states.

    “Multiorbitals was the first thing that came to mind,” he said. “It wouldn’t be possible if you only had one band or one orbital, but orbitals bring a new dimension to possible unconventional superconductor pairings. They’re like a palette of colors. The colors are the internal quantum numbers, and the f electrons in the uranium-based, heavy-fermion materials are naturally set up to have these colors. They lead to new possibilities that go beyond the ‘periodic table of pairing states.’ One of these new possibilities turns out to be spin-triplet pairing.”

    Si and Nica, who’s now at The Arizona State University (US), showed antiferromagnetic correlations could give rise to plausible, low-energy, spin-triplet pairing states.

    “Spin-triplet pairing states are highly improbable in the vast majority of cases because pairs will form as spin-singlets in order to lower their energy,” Si said. “In uranium ditelluride, spin-orbit coupling can change the energy landscape in a way that makes spin-triplet pairing states more competitive with their spin-singlet counterparts.”

    Si is the Harry C. and Olga K. Wiess Professor in Rice’s Department of Physics and Astronomy and director of RCQM. Additional co-authors include Andrey Podlesnyak of Oak Ridge and Yuhang Deng, Camilla Moir and Alexander Breindel of UC San Diego.

    The research was supported by the Department of Energy Office of Science’s Office of Basic Energy Science (DE-SC0012311, DE-SC0016568, DE-SC0018197, DEFG02-04-ER46105), the Robert A. Welch Foundation (C-1839, C-1411), The National Science Foundation (US) (1644779, 1810310, 1607611) and the State of Florida, The Arizona State University (US) and the DOE Office of Science User Facility at Oak Ridge National Laboratory’s Spallation Neutron Source.

    ORNL Spallation Neutron Source annotated.

    See the full article here .


    Stem Education Coalition

    Rice University [formally William Marsh Rice University] is a private research university in Houston, Texas. It is situated on a 300-acre campus near the Houston Museum District and is adjacent to the Texas Medical Center.

    Opened in 1912 after the murder of its namesake William Marsh Rice, Rice is a research university with an undergraduate focus. Its emphasis on education is demonstrated by a small student body and 6:1 student-faculty ratio. The university has a very high level of research activity. Rice is noted for its applied science programs in the fields of artificial heart research, structural chemical analysis, signal processing, space science, and nanotechnology. Rice has been a member of the Association of American Universities since 1985 and is classified among “R1: Doctoral Universities – Very high research activity”.

    The university is organized into eleven residential colleges and eight schools of academic study, including the Wiess School of Natural Sciences, the George R. Brown School of Engineering, the School of Social Sciences, School of Architecture, Shepherd School of Music and the School of Humanities. Rice’s undergraduate program offers more than fifty majors and two dozen minors, and allows a high level of flexibility in pursuing multiple degree programs. Additional graduate programs are offered through the Jesse H. Jones Graduate School of Business and the Susanne M. Glasscock School of Continuing Studies. Rice students are bound by the strict Honor Code, which is enforced by a student-run Honor Council.

    Rice competes in 14 NCAA Division I varsity sports and is a part of Conference USA, often competing with its cross-town rival the University of Houston. Intramural and club sports are offered in a wide variety of activities such as jiu jitsu, water polo, and crew.

    The university’s alumni include more than two dozen Marshall Scholars and a dozen Rhodes Scholars. Given the university’s close links to NASA, it has produced a significant number of astronauts and space scientists. In business, Rice graduates include CEOs and founders of Fortune 500 companies; in politics, alumni include congressmen, cabinet secretaries, judges, and mayors. Two alumni have won the Nobel Prize.


    Rice University’s history began with the demise of Massachusetts businessman William Marsh Rice, who had made his fortune in real estate, railroad development and cotton trading in the state of Texas. In 1891, Rice decided to charter a free-tuition educational institute in Houston, bearing his name, to be created upon his death, earmarking most of his estate towards funding the project. Rice’s will specified the institution was to be “a competitive institution of the highest grade” and that only white students would be permitted to attend. On the morning of September 23, 1900, Rice, age 84, was found dead by his valet, Charles F. Jones, and was presumed to have died in his sleep. Shortly thereafter, a large check made out to Rice’s New York City lawyer, signed by the late Rice, aroused the suspicion of a bank teller, due to the misspelling of the recipient’s name. The lawyer, Albert T. Patrick, then announced that Rice had changed his will to leave the bulk of his fortune to Patrick, rather than to the creation of Rice’s educational institute. A subsequent investigation led by the District Attorney of New York resulted in the arrests of Patrick and of Rice’s butler and valet Charles F. Jones, who had been persuaded to administer chloroform to Rice while he slept. Rice’s friend and personal lawyer in Houston, Captain James A. Baker, aided in the discovery of what turned out to be a fake will with a forged signature. Jones was not prosecuted since he cooperated with the district attorney, and testified against Patrick. Patrick was found guilty of conspiring to steal Rice’s fortune and he was convicted of murder in 1901 (he was pardoned in 1912 due to conflicting medical testimony). Baker helped Rice’s estate direct the fortune, worth $4.6 million in 1904 ($131 million today), towards the founding of what was to be called the Rice Institute, later to become Rice University. The board took control of the assets on April 29 of that year.

    In 1907, the Board of Trustees selected the head of the Department of Mathematics and Astronomy at Princeton University, Edgar Odell Lovett, to head the Institute, which was still in the planning stages. He came recommended by Princeton’s president, Woodrow Wilson. In 1908, Lovett accepted the challenge, and was formally inaugurated as the Institute’s first president on October 12, 1912. Lovett undertook extensive research before formalizing plans for the new Institute, including visits to 78 institutions of higher learning across the world on a long tour between 1908 and 1909. Lovett was impressed by such things as the aesthetic beauty of the uniformity of the architecture at the University of Pennsylvania, a theme which was adopted by the Institute, as well as the residential college system at Cambridge University in England, which was added to the Institute several decades later. Lovett called for the establishment of a university “of the highest grade,” “an institution of liberal and technical learning” devoted “quite as much to investigation as to instruction.” [We must] “keep the standards up and the numbers down,” declared Lovett. “The most distinguished teachers must take their part in undergraduate teaching, and their spirit should dominate it all.”

    Establishment and growth

    In 1911, the cornerstone was laid for the Institute’s first building, the Administration Building, now known as Lovett Hall in honor of the founding president. On September 23, 1912, the 12th anniversary of William Marsh Rice’s murder, the William Marsh Rice Institute for the Advancement of Letters, Science, and Art began course work with 59 enrolled students, who were known as the “59 immortals,” and about a dozen faculty. After 18 additional students joined later, Rice’s initial class numbered 77, 48 male and 29 female. Unusual for the time, Rice accepted coeducational admissions from its beginning, but on-campus housing would not become co-ed until 1957.

    Three weeks after opening, a spectacular international academic festival was held, bringing Rice to the attention of the entire academic world.

    Per William Marsh Rice’s will and Rice Institute’s initial charter, the students paid no tuition. Classes were difficult, however, and about half of Rice’s students had failed after the first 1912 term. At its first commencement ceremony, held on June 12, 1916, Rice awarded 35 bachelor’s degrees and one master’s degree. That year, the student body also voted to adopt the Honor System, which still exists today. Rice’s first doctorate was conferred in 1918 on mathematician Hubert Evelyn Bray.

    The Founder’s Memorial Statue, a bronze statue of a seated William Marsh Rice, holding the original plans for the campus, was dedicated in 1930, and installed in the central academic quad, facing Lovett Hall. The statue was crafted by John Angel. In 2020, Rice students petitioned the university to take down the statue due to the founder’s history as slave owner.

    During World War II, Rice Institute was one of 131 colleges and universities nationally that took part in the V-12 Navy College Training Program, which offered students a path to a Navy commission.

    The residential college system proposed by President Lovett was adopted in 1958, with the East Hall residence becoming Baker College, South Hall residence becoming Will Rice College, West Hall becoming Hanszen College, and the temporary Wiess Hall becoming Wiess College.

    In 1959, the Rice Institute Computer went online. 1960 saw Rice Institute formally renamed William Marsh Rice University. Rice acted as a temporary intermediary in the transfer of land between Humble Oil and Refining Company and NASA, for the creation of NASA’s Manned Spacecraft Center (now called Johnson Space Center) in 1962. President John F. Kennedy then made a speech at Rice Stadium reiterating that the United States intended to reach the moon before the end of the decade of the 1960s, and “to become the world’s leading space-faring nation”. The relationship of NASA with Rice University and the city of Houston has remained strong to the present day.

    The original charter of Rice Institute dictated that the university admit and educate, tuition-free, “the white inhabitants of Houston, and the state of Texas”. In 1963, the governing board of Rice University filed a lawsuit to allow the university to modify its charter to admit students of all races and to charge tuition. Ph.D. student Raymond Johnson became the first black Rice student when he was admitted that year. In 1964, Rice officially amended the university charter to desegregate its graduate and undergraduate divisions. The Trustees of Rice University prevailed in a lawsuit to void the racial language in the trust in 1966. Rice began charging tuition for the first time in 1965. In the same year, Rice launched a $33 million ($268 million) development campaign. $43 million ($283 million) was raised by its conclusion in 1970. In 1974, two new schools were founded at Rice, the Jesse H. Jones Graduate School of Management and the Shepherd School of Music. The Brown Foundation Challenge, a fund-raising program designed to encourage annual gifts, was launched in 1976 and ended in 1996 having raised $185 million. The Rice School of Social Sciences was founded in 1979.

    On-campus housing was exclusively for men for the first forty years, until 1957. Jones College was the first women’s residence on the Rice campus, followed by Brown College. According to legend, the women’s colleges were purposefully situated at the opposite end of campus from the existing men’s colleges as a way of preserving campus propriety, which was greatly valued by Edgar Odell Lovett, who did not even allow benches to be installed on campus, fearing that they “might lead to co-fraternization of the sexes”. The path linking the north colleges to the center of campus was given the tongue-in-cheek name of “Virgin’s Walk”. Individual colleges became coeducational between 1973 and 1987, with the single-sex floors of colleges that had them becoming co-ed by 2006. By then, several new residential colleges had been built on campus to handle the university’s growth, including Lovett College, Sid Richardson College, and Martel College.

    Late twentieth and early twenty-first century

    The Economic Summit of Industrialized Nations was held at Rice in 1990. Three years later, in 1993, the James A. Baker III Institute for Public Policy was created. In 1997, the Edythe Bates Old Grand Organ and Recital Hall and the Center for Nanoscale Science and Technology, renamed in 2005 for the late Nobel Prize winner and Rice professor Richard E. Smalley, were dedicated at Rice. In 1999, the Center for Biological and Environmental Nanotechnology was created. The Rice Owls baseball team was ranked #1 in the nation for the first time in that year (1999), holding the top spot for eight weeks.

    In 2003, the Owls won their first national championship in baseball, which was the first for the university in any team sport, beating Southwest Missouri State in the opening game and then the University of Texas and Stanford University twice each en route to the title. In 2008, President David Leebron issued a ten-point plan titled “Vision for the Second Century” outlining plans to increase research funding, strengthen existing programs, and increase collaboration. The plan has brought about another wave of campus constructions, including the erection the newly renamed BioScience Research Collaborative building (intended to foster collaboration with the adjacent Texas Medical Center), a new recreational center and the renovated Autry Court basketball stadium, and the addition of two new residential colleges, Duncan College and McMurtry College.

    Beginning in late 2008, the university considered a merger with Baylor College of Medicine, though the merger was ultimately rejected in 2010. Rice undergraduates are currently guaranteed admission to Baylor College of Medicine upon graduation as part of the Rice/Baylor Medical Scholars program. According to History Professor John Boles’ recent book University Builder: Edgar Odell Lovett and the Founding of the Rice Institute, the first president’s original vision for the university included hopes for future medical and law schools.

    In 2018, the university added an online MBA program, MBA@Rice.

    In June 2019, the university’s president announced plans for a task force on Rice’s “past in relation to slave history and racial injustice”, stating that “Rice has some historical connections to that terrible part of American history and the segregation and racial disparities that resulted directly from it”.


    Rice’s campus is a heavily wooded 285-acre (115-hectare) tract of land in the museum district of Houston, located close to the city of West University Place.

    Five streets demarcate the campus: Greenbriar Street, Rice Boulevard, Sunset Boulevard, Main Street, and University Boulevard. For most of its history, all of Rice’s buildings have been contained within this “outer loop”. In recent years, new facilities have been built close to campus, but the bulk of administrative, academic, and residential buildings are still located within the original pentagonal plot of land. The new Collaborative Research Center, all graduate student housing, the Greenbriar building, and the Wiess President’s House are located off-campus.

    Rice prides itself on the amount of green space available on campus; there are only about 50 buildings spread between the main entrance at its easternmost corner, and the parking lots and Rice Stadium at the West end. The Lynn R. Lowrey Arboretum, consisting of more than 4000 trees and shrubs (giving birth to the legend that Rice has a tree for every student), is spread throughout the campus.

    The university’s first president, Edgar Odell Lovett, intended for the campus to have a uniform architecture style to improve its aesthetic appeal. To that end, nearly every building on campus is noticeably Byzantine in style, with sand and pink-colored bricks, large archways and columns being a common theme among many campus buildings. Noteworthy exceptions include the glass-walled Brochstein Pavilion, Lovett College with its Brutalist-style concrete gratings, Moody Center for the Arts with its contemporary design, and the eclectic-Mediterranean Duncan Hall. In September 2011, Travel+Leisure listed Rice’s campus as one of the most beautiful in the United States.

    Lovett Hall, named for Rice’s first president, is the university’s most iconic campus building. Through its Sallyport arch, new students symbolically enter the university during matriculation and depart as graduates at commencement. Duncan Hall, Rice’s computational engineering building, was designed to encourage collaboration between the four different departments situated there. The building’s foyer, drawn from many world cultures, was designed by the architect to symbolically express this collaborative purpose.

    The campus is organized in a number of quadrangles. The Academic Quad, anchored by a statue of founder William Marsh Rice, includes Ralph Adams Cram’s masterpiece, the asymmetrical Lovett Hall, the original administrative building; Fondren Library; Herzstein Hall; the original physics building and home to the largest amphitheater on campus; Sewall Hall for the social sciences and arts; Rayzor Hall for the languages; and Anderson Hall of the Architecture department. The Humanities Building winner of several architectural awards is immediately adjacent to the main quad. Further west lies a quad surrounded by McNair Hall of the Jones Business School; the Baker Institute; and Alice Pratt Brown Hall of the Shepherd School of Music. These two quads are surrounded by the university’s main access road, a one-way loop referred to as the “inner loop”. In the Engineering Quad, a trinity of sculptures by Michael Heizer, collectively entitled 45 Degrees; 90 Degrees; 180 Degrees are flanked by Abercrombie Laboratory; the Cox Building; and the Mechanical Laboratory housing the Electrical; Mechanical; and Earth Science/Civil Engineering departments respectively. Duncan Hall is the latest addition to this quad providing new offices for the Computer Science; Computational and Applied Math; Electrical and Computer Engineering; and Statistics departments.

    Roughly three-quarters of Rice’s undergraduate population lives on campus. Housing is divided among eleven residential colleges which form an integral part of student life at the university The colleges are named for university historical figures and benefactors.While there is wide variation in their appearance; facilities; and dates of founding are an important source of identity for Rice students functioning as dining halls; residence halls; sports teams among other roles. Rice does not have or endorse a Greek system with the residential college system taking its place. Five colleges: McMurtry; Duncan; Martel; Jones; and Brown are located on the north side of campus across from the “South Colleges”; Baker; Will Rice; Lovett, Hanszen; Sid Richardson; and Wiess on the other side of the Academic Quadrangle. Of the eleven colleges Baker is the oldest originally built in 1912 and the twin Duncan and McMurtry colleges are the newest and opened for the first time for the 2009–10 school year. Will Rice; Baker; and Lovett colleges are undergoing renovation to expand their dining facilities as well as the number of rooms available for students.

    The on-campus football facility-Rice Stadium opened in 1950 with a capacity of 70000 seats. After improvements in 2006 the stadium is currently configured to seat 47,000 for football but can readily be reconfigured to its original capacity of 70000, more than the total number of Rice alumni living and deceased. The stadium was the site of Super Bowl VIII and a speech by John F. Kennedy on September 12 1962 in which he challenged the nation to send a man to the moon by the end of the decade. The recently renovated Tudor Fieldhouse formerly known as Autry Court is home to the basketball and volleyball teams. Other stadia include the Rice Track/Soccer Stadium and the Jake Hess Tennis Stadium. A new Rec Center now houses the intramural sports offices and provide an outdoor pool and training and exercise facilities for all Rice students while athletics training will solely be held at Tudor Fieldhouse and the Rice Football Stadium.

    The university and Houston Independent School District jointly established The Rice School-a kindergarten through 8th grade public magnet school in Houston. The school opened in August 1994. Through Cy-Fair ISD Rice University offers a credit course based summer school for grades 8 through 12. They also have skills based classes during the summer in the Rice Summer School.

    Innovation District

    In early 2019 Rice announced the site where the abandoned Sears building in Midtown Houston stood along with its surrounding area would be transformed into the “The Ion” the hub of the 16-acre South Main Innovation District. President of Rice David Leebron stated “We chose the name Ion because it’s from the Greek ienai, which means ‘go’. We see it as embodying the ever-forward motion of discovery, the spark at the center of a truly original idea.”

    Students of Rice and other Houston-area colleges and universities making up the Student Coalition for a Just and Equitable Innovation Corridor are advocating for a Community Benefits Agreement (CBA)-a contractual agreement between a developer and a community coalition. Residents of neighboring Third Ward and other members of the Houston Coalition for Equitable Development Without Displacement (HCEDD) have faced consistent opposition from the City of Houston and Rice Management Company to a CBA as traditionally defined in favor of an agreement between the latter two entities without a community coalition signatory.


    Rice University is chartered as a non-profit organization and is governed by a privately appointed board of trustees. The board consists of a maximum of 25 voting members who serve four-year terms. The trustees serve without compensation and a simple majority of trustees must reside in Texas including at least four within the greater Houston area. The board of trustees delegates its power by appointing a president to serve as the chief executive of the university. David W. Leebron was appointed president in 2004 and succeeded Malcolm Gillis who served since 1993. The provost six vice presidents and other university officials report to the president. The president is advised by a University Council composed of the provost, eight members of the Faculty Council, two staff members, one graduate student, and two undergraduate students. The president presides over a Faculty Council which has the authority to alter curricular requirements, establish new degree programs, and approve candidates for degrees.

    The university’s academics are organized into several schools. Schools that have undergraduate and graduate programs include:

    The Rice University School of Architecture
    The George R. Brown School of Engineering
    The School of Humanities
    The Shepherd School of Music
    The Wiess School of Natural Sciences
    The Rice University School of Social Sciences

    Two schools have only graduate programs:

    The Jesse H. Jones Graduate School of Management
    The Susanne M. Glasscock School of Continuing Studies

    Rice’s undergraduate students benefit from a centralized admissions process which admits new students to the university as a whole, rather than a specific school (the schools of Music and Architecture are decentralized). Students are encouraged to select the major path that best suits their desires; a student can later decide that they would rather pursue study in another field or continue their current coursework and add a second or third major. These transitions are designed to be simple at Rice with students not required to decide on a specific major until their sophomore year of study.

    Rice’s academics are organized into six schools which offer courses of study at the graduate and undergraduate level, with two more being primarily focused on graduate education, while offering select opportunities for undergraduate students. Rice offers 360 degrees in over 60 departments. There are 40 undergraduate degree programs, 51 masters programs, and 29 doctoral programs.

    Faculty members of each of the departments elect chairs to represent the department to each School’s dean and the deans report to the Provost who serves as the chief officer for academic affairs.

    Rice Management Company

    The Rice Management Company manages the $6.5 billion Rice University endowment (June 2019) and $957 million debt. The endowment provides 40% of Rice’s operating revenues. Allison Thacker is the President and Chief Investment Officer of the Rice Management Company, having joined the university in 2011.


    Rice is a medium-sized highly residential research university. The majority of enrollments are in the full-time four-year undergraduate program emphasizing arts & sciences and professions. There is a high graduate coexistence with the comprehensive graduate program and a very high level of research activity. It is accredited by the Southern Association of Colleges and Schools as well as the professional accreditation agencies for engineering, management, and architecture.

    Each of Rice’s departments is organized into one of three distribution groups, and students whose major lies within the scope of one group must take at least 3 courses of at least 3 credit hours each of approved distribution classes in each of the other two groups, as well as completing one physical education course as part of the LPAP (Lifetime Physical Activity Program) requirement. All new students must take a Freshman Writing Intensive Seminar (FWIS) class, and for students who do not pass the university’s writing composition examination (administered during the summer before matriculation), FWIS 100, a writing class, becomes an additional requirement.

    The majority of Rice’s undergraduate degree programs grant B.S. or B.A. degrees. Rice has recently begun to offer minors in areas such as business, energy and water sustainability, and global health.

    Student body

    As of fall 2014, men make up 52% of the undergraduate body and 64% of the professional and post-graduate student body. The student body consists of students from all 50 states, including the District of Columbia, two U.S. Territories, and 83 foreign countries. Forty percent of degree-seeking students are from Texas.

    Research centers and resources

    Rice is noted for its applied science programs in the fields of nanotechnology, artificial heart research, structural chemical analysis, signal processing and space science.

    Rice Alliance for Technology and Entrepreneurship – supports entrepreneurs and early-stage technology ventures in Houston and Texas through education, collaboration, and research, ranked No. 1 among university business incubators.
    Baker Institute for Public Policy – a leading nonpartisan public policy think-tank
    BioScience Research Collaborative (BRC) – interdisciplinary, cross-campus, and inter-institutional resource between Rice University and Texas Medical Center
    Boniuk Institute – dedicated to religious tolerance and advancing religious literacy, respect and mutual understanding
    Center for African and African American Studies – fosters conversations on topics such as critical approaches to race and racism, the nature of diasporic histories and identities, and the complexity of Africa’s past, present and future
    Chao Center for Asian Studies – research hub for faculty, students and post-doctoral scholars working in Asian studies
    Center for the Study of Women, Gender, and Sexuality (CSWGS) – interdisciplinary academic programs and research opportunities, including the journal Feminist Economics
    Data to Knowledge Lab (D2K) – campus hub for experiential learning in data science
    Digital Signal Processing (DSP) – center for education and research in the field of digital signal processing
    Ethernest Hackerspace – student-run hackerspace for undergraduate engineering students sponsored by the ECE department and the IEEE student chapter
    Humanities Research Center (HRC) – identifies, encourages, and funds innovative research projects by faculty, visiting scholars, graduate, and undergraduate students in the School of Humanities and beyond
    Institute of Biosciences and Bioengineering (IBB) – facilitates the translation of interdisciplinary research and education in biosciences and bioengineering
    Ken Kennedy Institute for Information Technology – advances applied interdisciplinary research in the areas of computation and information technology
    Kinder Institute for Urban Research – conducts the Houston Area Survey, “the nation’s longest running study of any metropolitan region’s economy, population, life experiences, beliefs and attitudes”
    Laboratory for Nanophotonics (LANP) – a resource for education and research breakthroughs and advances in the broad, multidisciplinary field of nanophotonics
    Moody Center for the Arts – experimental arts space featuring studio classrooms, maker space, audiovisual editing booths, and a gallery and office space for visiting national and international artists
    OpenStax CNX (formerly Connexions) and OpenStax – an open source platform and open access publisher, respectively, of open educational resources
    Oshman Engineering Design Kitchen (OEDK) – space for undergraduate students to design, prototype and deploy solutions to real-world engineering challenges
    Rice Cinema – an independent theater run by the Visual and Dramatic Arts department at Rice which screens documentaries, foreign films, and experimental cinema and hosts film festivals and lectures since 1970
    Rice Center for Engineering Leadership (RCEL) – inspires, educates, and develops ethical leaders in technology who will excel in research, industry, non-engineering career paths, or entrepreneurship
    Religion and Public Life Program (RPLP) – a research, training and outreach program working to advance understandings of the role of religion in public life
    Rice Design Alliance (RDA) – outreach and public programs of the Rice School of Architecture
    Rice Center for Quantum Materials (RCQM) – organization dedicated to research and higher education in areas relating to quantum phenomena
    Rice Neuroengineering Initiative (NEI) – fosters research collaborations in neural engineering topics
    Rice Space Institute (RSI) – fosters programs in all areas of space research
    Smalley-Curl Institute for Nanoscale Science and Technology (SCI) – the nation’s first nanotechnology center
    Welch Institute for Advanced Materials – collaborative research institute to support the foundational research for discoveries in materials science, similar to the model of Salk Institute and Broad Institute
    Woodson Research Center Special Collections & Archives – publisher of print and web-based materials highlighting the department’s primary source collections such as the Houston African American, Asian American, and Jewish History Archives, University Archives, rare books, and hip hop/rap music-related materials from the Swishahouse record label and Houston Folk Music Archive, etc.

    Student life

    Situated on nearly 300 acres (120 ha) in the center of Houston’s Museum District and across the street from the city’s Hermann Park, Rice is a green and leafy refuge; an oasis of learning convenient to the amenities of the nation’s fourth-largest city. Rice’s campus adjoins Hermann Park, the Texas Medical Center, and a neighborhood commercial center called Rice Village. Hermann Park includes the Houston Museum of Natural Science, the Houston Zoo, Miller Outdoor Theatre and an 18-hole municipal golf course. NRG Park, home of NRG Stadium and the Astrodome, is two miles (3 km) south of the campus. Among the dozen or so museums in the Museum District was (until May 14, 2017) the Rice University Art Gallery, open during the school year from 1995 until it closed in 2017. Easy access to downtown’s theater and nightlife district and to Reliant Park is provided by the Houston METRORail system, with a station adjacent to the campus’s main gate. The campus recently joined the Zipcar program with two vehicles to increase the transportation options for students and staff who need but currently don’t utilize a vehicle.

    Residential colleges

    In 1957, Rice University implemented a residential college system, which was proposed by the university’s first president, Edgar Odell Lovett. The system was inspired by existing systems in place at Oxford(UK) and Cambridge(UK) and at several other universities in the United States, most notably Yale University. The existing residences known as East, South, West, and Wiess Halls became Baker, Will Rice, Hanszen, and Wiess Colleges, respectively.

    List of residential colleges:

    Baker College, named in honor of Captain James A. Baker, friend and attorney of William Marsh Rice, and first chair of the Rice Board of Governors.
    Will Rice College, named for William M. Rice, Jr., the nephew of the university’s founder, William Marsh Rice.
    Hanszen College, named for Harry Clay Hanszen, benefactor to the university and chairman of the Rice Board of Governors from 1946 to 1950.
    Wiess College, named for Harry Carothers Wiess (1887–1948), one of the founders and one-time president of Humble Oil, now ExxonMobil.
    Jones College, named for Mary Gibbs Jones, wife of prominent Houston philanthropist Jesse Holman Jones.
    Brown College, named for Margaret Root Brown by her in-laws, George R. Brown.
    Lovett College, named after the university’s first president, Edgar Odell Lovett.
    Sid Richardson College, named for the Sid Richardson Foundation, which was established by Texas oilman, cattleman, and philanthropist Sid W. Richardson.
    Martel College, named for Marian and Speros P. Martel, was built in 2002.
    McMurtry College, named for Rice alumni Burt and Deedee McMurtry, Silicon Valley venture capitalists.
    Duncan College, named for Charles Duncan, Jr., Secretary of Energy.

    Much of the social and academic life as an undergraduate student at Rice is centered around residential colleges. Each residential college has its own cafeteria (serveries) and each residential college has study groups and its own social practices.

    Although each college is composed of a full cross-section of students at Rice, they have over time developed their own traditions and “personalities”. When students matriculate they are randomly assigned to one of the eleven colleges, although “legacy” exceptions are made for students whose siblings or parents have attended Rice. Students generally remain members of the college that they are assigned to for the duration of their undergraduate careers, even if they move off-campus at any point. Students are guaranteed on-campus housing for freshman year and two of the next three years; each college has its own system for determining allocation of the remaining spaces, collectively known as “Room Jacking”. Students develop strong loyalties to their college and maintain friendly rivalry with other colleges, especially during events such as Beer Bike Race and O-Week. Colleges keep their rivalries alive by performing “jacks,” or pranks, on each other, especially during O-Week and Willy Week. During Matriculation, Commencement, and other formal academic ceremonies, the colleges process in the order in which they were established.

    Student-run media

    Rice has a weekly student newspaper (The Rice Thresher), a yearbook (The Campanile), college radio station (KTRU Rice Radio), and now defunct, campus-wide student television station (RTV5). They are based out of the RMC student center. In addition, Rice hosts several student magazines dedicated to a range of different topics; in fact, the spring semester of 2008 saw the birth of two such magazines, a literary sex journal called Open and an undergraduate science research magazine entitled Catalyst.

    The Rice Thresher is published every Wednesday and is ranked by Princeton Review as one of the top campus newspapers nationally for student readership. It is distributed around campus, and at a few other local businesses and has a website. The Thresher has a small, dedicated staff and is known for its coverage of campus news, open submission opinion page, and the satirical Backpage, which has often been the center of controversy. The newspaper has won several awards from the College Media Association, Associated Collegiate Press and Texas Intercollegiate Press Association.

    The Rice Campanile was first published in 1916 celebrating Rice’s first graduating class. It has published continuously since then, publishing two volumes in 1944 since the university had two graduating classes due to World War II. The website was created sometime in the early to mid 2000s. The 2015 won the first place Pinnacle for best yearbook from College Media Association.

    KTRU Rice Radio is the student-run radio station. Though most DJs are Rice students, anyone is allowed to apply. It is known for playing genres and artists of music and sound unavailable on other radio stations in Houston, and often, the US. The station takes requests over the phone or online. In 2000 and 2006, KTRU won Houston Press’ Best Radio Station in Houston. In 2003, Rice alum and active KTRU DJ DL’s hip-hip show won Houston Press‘ Best Hip-hop Radio Show. On August 17, 2010, it was announced that Rice University had been in negotiations to sell the station’s broadcast tower, FM frequency and license to the University of Houston System to become a full-time classical music and fine arts programming station. The new station, KUHA, would be operated as a not-for-profit outlet with listener supporters. The FCC approved the sale and granted the transfer of license to the University of Houston System on April 15, 2011, however, KUHA proved to be an even larger failure and so after four and a half years of operation, The University of Houston System announced that KUHA’s broadcast tower, FM frequency and license were once again up for sale in August 2015. KTRU continued to operate much as it did previously, streaming live on the Internet, via apps, and on HD2 radio using the 90.1 signal. Under student leadership, KTRU explored the possibility of returning to FM radio for a number of years. In spring 2015, KTRU was granted permission by the FCC to begin development of a new broadcast signal via LPFM radio. On October 1, 2015, KTRU made its official return to FM radio on the 96.1 signal. While broadcasting on HD2 radio has been discontinued, KTRU continues to broadcast via internet in addition to its LPFM signal.

    RTV5 is a student-run television network available as channel 5 on campus. RTV5 was created initially as Rice Broadcast Television in 1997; RBT began to broadcast the following year in 1998, and aired its first live show across campus in 1999. It experienced much growth and exposure over the years with successful programs like Drinking with Phil, The Meg & Maggie Show, which was a variety and call-in show, a weekly news show, and extensive live coverage in December 2000 of the shut down of KTRU by the administration. In spring 2001, the Rice undergraduate community voted in the general elections to support RBT as a blanket tax organization, effectively providing a yearly income of $10,000 to purchase new equipment and provide the campus with a variety of new programming. In the spring of 2005, RBT members decided the station needed a new image and a new name: Rice Television 5. One of RTV5’s most popular shows was the 24-hour show, where a camera and couch placed in the RMC stayed on air for 24 hours. One such show is held in fall and another in spring, usually during a weekend allocated for visits by prospective students. RTV5 has a video on demand site at rtv5.rice.edu. The station went off the air in 2014 and changed its name to Rice Video Productions. In 2015 the group’s funding was threatened, but ultimately maintained. In 2016 the small student staff requested to no longer be a blanket-tax organization. In the fall of 2017, the club did not register as a club.

    The Rice Review, also known as R2, is a yearly student-run literary journal at Rice University that publishes prose, poetry, and creative nonfiction written by undergraduate students, as well as interviews. The journal was founded in 2004 by creative writing professor and author Justin Cronin.

    The Rice Standard was an independent, student-run variety magazine modeled after such publications as The New Yorker and Harper’s. Prior to fall 2009, it was regularly published three times a semester with a wide array of content, running from analyses of current events and philosophical pieces to personal essays, short fiction and poetry. In August 2009, The Standard transitioned to a completely online format with the launch of their redesigned website, http://www.ricestandard.org. The first website of its kind on Rice’s campus, The Standard featured blog-style content written by and for Rice students. The Rice Standard had around 20 regular contributors, and the site features new content every day (including holidays). In 2017 no one registered The Rice Standard as a club within the university.

    Open, a magazine dedicated to “literary sex content,” predictably caused a stir on campus with its initial publication in spring 2008. A mixture of essays, editorials, stories and artistic photography brought Open attention both on campus and in the Houston Chronicle. The third and last annual edition of Open was released in spring of 2010.

    Vahalla is the Graduate Student Association on-campus bar under the steps of the chemistry building.


    Rice plays in NCAA Division I athletics and is part of Conference USA. Rice was a member of the Western Athletic Conference before joining Conference USA in 2005. Rice is the second-smallest school, measured by undergraduate enrollment, competing in NCAA Division I FBS football, only ahead of Tulsa.

    The Rice baseball team won the 2003 College World Series, defeating Stanford, giving Rice its only national championship in a team sport. The victory made Rice University the smallest school in 51 years to win a national championship at the highest collegiate level of the sport. The Rice baseball team has played on campus at Reckling Park since the 2000 season. As of 2010, the baseball team has won 14 consecutive conference championships in three different conferences: the final championship of the defunct Southwest Conference, all nine championships while a member of the Western Athletic Conference, and five more championships in its first five years as a member of Conference USA. Additionally, Rice’s baseball team has finished third in both the 2006 and 2007 College World Series tournaments. Rice now has made six trips to Omaha for the CWS. In 2004, Rice became the first school ever to have three players selected in the first eight picks of the MLB draft when Philip Humber, Jeff Niemann, and Wade Townsend were selected third, fourth, and eighth, respectively. In 2007, Joe Savery was selected as the 19th overall pick.

    Rice has been very successful in women’s sports in recent years. In 2004–05, Rice sent its women’s volleyball, soccer, and basketball teams to their respective NCAA tournaments. The women’s swim team has consistently brought at least one member of their team to the NCAA championships since 2013. In 2005–06, the women’s soccer, basketball, and tennis teams advanced, with five individuals competing in track and field. In 2006–07, the Rice women’s basketball team made the NCAA tournament, while again five Rice track and field athletes received individual NCAA berths. In 2008, the women’s volleyball team again made the NCAA tournament. In 2011 the Women’s Swim team won their first conference championship in the history of the university. This was an impressive feat considering they won without having a diving team. The team repeated their C-USA success in 2013 and 2014. In 2017, the women’s basketball team, led by second-year head coach Tina Langley, won the Women’s Basketball Invitational, defeating UNC-Greensboro 74–62 in the championship game at Tudor Fieldhouse. Though not a varsity sport, Rice’s ultimate frisbee women’s team, named Torque, won consecutive Division III national championships in 2014 and 2015.

    In 2006, the football team qualified for its first bowl game since 1961, ending the second-longest bowl drought in the country at the time. On December 22, 2006, Rice played in the New Orleans Bowl in New Orleans, Louisiana against the Sun Belt Conference champion, Troy. The Owls lost 41–17. The bowl appearance came after Rice had a 14-game losing streak from 2004–05 and went 1–10 in 2005. The streak followed an internally authorized 2003 McKinsey report that stated football alone was responsible for a $4 million deficit in 2002. Tensions remained high between the athletic department and faculty, as a few professors who chose to voice their opinion were in favor of abandoning the football program. The program success in 2006, the Rice Renaissance, proved to be a revival of the Owl football program, quelling those tensions. David Bailiff took over the program in 2007 and has remained head coach. Jarett Dillard set an NCAA record in 2006 by catching a touchdown pass in 13 consecutive games and took a 15-game overall streak into the 2007 season.

    In 2008, the football team posted a 9-3 regular season, capping off the year with a 38–14 victory over Western Michigan University in the Texas Bowl. The win over Western Michigan marked the Owls’ first bowl win in 45 years.

    Rice Stadium also serves as the performance venue for the university’s Marching Owl Band, or “MOB.” Despite its name, the MOB is a scatter band that focuses on performing humorous skits and routines rather than traditional formation marching.

    Rice Owls men’s basketball won 10 conference titles in the former Southwest Conference (1918, 1935*, 1940, 1942*, 1943*, 1944*, 1945, 1949*, 1954*, 1970; * denotes shared title). Most recently, guard Morris Almond was drafted in the first round of the 2007 NBA Draft by the Utah Jazz. Rice named former Cal Bears head coach Ben Braun as head basketball coach to succeed Willis Wilson, fired after Rice finished the 2007–2008 season with a winless (0-16) conference record and overall record of 3-27.

    Rice’s mascot is Sammy the Owl. In previous decades, the university kept several live owls on campus in front of Lovett College, but this practice has been discontinued, due to public pressure over the welfare of the owls.

    Rice also has a 12-member coed cheerleading squad and a coed dance team, both of which perform at football and basketball games throughout the year.

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: