Tagged: The University of Western Australia (AU) Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:13 pm on January 22, 2022 Permalink | Reply
    Tags: "This New Record in Laser Beam Stability Could Help Answer Physics' Biggest Questions", , , , , , , The University of Western Australia (AU)   

    From The University of Western Australia (AU) via Science Alert (AU) : “This New Record in Laser Beam Stability Could Help Answer Physics’ Biggest Questions” 

    U Western Australia bloc

    From The University of Western Australia (AU)

    via

    Science Alert (AU)

    1
    The laser setup at the University of Western Australia. Credit: D. Gozzard/UWA.

    22 JANUARY 2022
    DAVID NIELD

    Scientists are on a mission to create a global network of atomic clocks that will enable us to, among other things, better understand the fundamental laws of physics, investigate dark matter, and navigate across Earth and space more precisely.

    However, to be at their most effective, these clocks will need to be reliably and speedily linked together through layers of the atmosphere, which is far from easy. New research outlines a successful experiment with a laser beam that has been kept stable across a distance of 2.4 kilometers (1.5 miles).

    For comparison, the new link is around 100 times more stable than anything that’s been put together before. It also demonstrates stability that’s around 1,000 times better than the atomic clocks these lasers could be used to monitor.

    “The result shows that the phase and amplitude stabilization technologies presented in this paper can provide the basis for ultra-precise timescale comparison of optical atomic clocks through the turbulent atmosphere,” write the researchers in their published paper [Physical Review Letters].

    The system builds on research carried out last year in which scientists developed a laser link capable of holding its own through the atmosphere with unprecedented stability.

    In the new study, researchers shot a laser beam from a fifth-floor window to a reflector 1.2 kilometers (0.74 miles) away. The beam was then bounced back to the source to achieve the total distance for a period of five minutes.

    Using noise reduction techniques, temperature controls, and tiny adjustments to the reflector, the team was able to keep the laser stable through the pockets of fluctuating air. The atmospheric turbulence at ground level here is likely to equate to ground-to-satellite turbulence (the air is calmer and less dense higher in the atmosphere) of several hundred kilometers.

    While laser accuracy has remained fairly constant for a decade or so, we’ve seen some significant improvements recently, including a laser setup operated by the Boulder Atomic Clock Optical Network (BACON) Collaboration and tested last March [Nature].

    That setup involved a pulse laser rather than the continuous wave laser tested in this new study. Both have their advantages in different scenarios, but continuous wave lasers offer better stability and can transfer more data in a set period of time.

    “Both systems beat the current best atomic clock, so we’re splitting hairs here, but our ultimate precision is better,” says astrophysicist David Gozzard from the University of Western Australia.

    Once an atomic clock network is put together, among the tests scientists will be able to perform is Albert Einstein’s Theory of General Relativity, and how its incompatibility with what we know about quantum physics could be resolved.

    By very precisely comparing the time-keeping of two atomic clocks – one on Earth and one in space – scientists are eventually hoping to be able to work out where General Relativity does and doesn’t hold up. If Einstein’s ideas are correct, the clock further away from Earth’s gravity should tick ever-so-slightly faster.

    But its usefulness doesn’t stop there. Lasers like this could eventually be used for managing the launching of objects into orbit, for communications between Earth and space, or for connecting two points in space.

    “Of course, you can’t run fiber optic cable to a satellite,” says Gozzard.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Western Australia is a public research university in the Australian state of Western Australia. The university’s main campus is in Perth, the state capital, with a secondary campus in Albany and various other facilities elsewhere.

    UWA was established in 1911 by an act of the Parliament of Western Australia and began teaching students two years later. It is the sixth-oldest university in Australia and was Western Australia’s only university until the establishment of Murdoch University (AU) in 1973. Because of its age and reputation, UWA is classed one of the “sandstone universities”, an informal designation given to the oldest university in each state. The university also belongs to several more formal groupings, including The Group of Eight (AU) and The Matariki Network of Universities. In recent years, UWA has generally been ranked either in the bottom half or just outside the world’s top 100 universities, depending on the system used.

    Alumni of UWA include one Prime Minister of Australia (Bob Hawke), five Justices of the High Court of Australia (including one Chief Justice, Robert French, now Chancellor), one Governor of the Reserve Bank (H. C. Coombs), various federal cabinet ministers, and seven of Western Australia’s eight most recent premiers. In 2018 alumnus mathematician Akshay Venkatesh was a recipient of the Fields Medal. As at 2021, the university had produced 106 Rhodes Scholars. Two members of the UWA faculty, Barry Marshall and Robin Warren won Nobel Prizes as a result of research at the university.

    History

    The university was established in 1911 following the tabling of proposals by a royal commission in September 1910. The original campus, which received its first students in March 1913, was located on Irwin Street in the centre of Perth, and consisted of several buildings situated between Hay Street and St Georges Terrace. Irwin Street was also known as “Tin Pan Alley” as many buildings featured corrugated iron roofs. These buildings served as the university campus until 1932, when the campus relocated to its present-day site in Crawley.

    The founding chancellor, Sir John Winthrop Hackett, died in 1916, and bequeathed property which, after being carefully managed for ten years, yielded £425,000 to the university, a far larger sum than expected. This allowed the construction of the main buildings. Many buildings and landmarks within the university bear his name, including Winthrop Hall and Hackett Hall. In addition, his bequest funded many scholarships, because he did not wish eager students to be deterred from studying because they could not afford to do so.

    During UWA’s first decade there was controversy about whether the policy of free education was compatible with high expenditure on professorial chairs and faculties. An “old student” publicised his concern in 1921 that there were 13 faculties serving only 280 students.

    A remnant of the original buildings survives to this day in the form of the “Irwin Street Building”, so called after its former location. In the 1930s it was transported to the new campus and served a number of uses till its 1987 restoration, after which it was moved across campus to James Oval. Recently, the building has served as the Senate meeting room and is currently in use as a cricket pavilion and office of the university archives. The building has been heritage-listed by both the National Trust and the Australian Heritage Council.

    The university introduced the Doctorate of Philosophy degree in 1946 and made its first award in October 1950 to Warwick Bottomley for his research of the chemistry of native plants in Western Australia.

     
  • richardmitnick 9:22 pm on December 14, 2021 Permalink | Reply
    Tags: "Astronomers just got better at finding 'bright' black holes", , , , , Detecting active black holes in the Universe and measuring how much matter they are sucking in., , It is thought that an active black hole in a galaxy is able to decrease the amount of star formation really quickly and stop the galaxy from growing any further., Supermassive black holes are thought to have a huge impact on how galaxies evolve., The ICRAR International Centre for Radio Astronomy Research (AU), The new technique works on typical telescope observations that already exist for millions of galaxies., The University of Western Australia (AU)   

    From The University of Western Australia (AU) via phys.org : “Astronomers just got better at finding ‘bright’ black holes” 

    U Western Australia bloc

    From The University of Western Australia (AU)

    via

    phys.org

    December 14, 2021

    1
    Seyfert spiral galaxy. Credit: University of Western Australia.

    Astronomers have a new way of detecting active black holes in the Universe and measuring how much matter they are sucking in.

    The technique can be applied to millions of galaxies, searching for bright, supermassive black holes at the center of the galaxies.

    Lead author Jessica Thorne, a Ph.D. student at the University of Western Australia node of The ICRAR International Centre for Radio Astronomy Research (AU), said active black holes are typically found in the largest galaxies in the Universe.

    “The black holes we’re looking for are between a million and a billion times more massive than our Sun,” she said.

    “As they suck in matter from around them, the matter gets super-heated because of friction and becomes very, very luminous.”

    “And when they’re active, these black holes can outshine the rest of the galaxy.”

    Until now, identifying bright black holes has been challenging, with astronomers having to specifically look for them using complex methods unique to different types of telescopes.

    Instead, the new technique works on typical telescope observations that already exist for millions of galaxies.

    “We can identify these active black holes and look at how much light they’re emitting, but also measure the properties of the galaxy it is in at the same time,” Ms Thorne said.

    “By doing both at once, we can have a better idea of exactly how the black hole is impacting its host galaxy.”

    The researchers developed the new technique by using an algorithm called ProSpect to model emission from galaxies and black holes at different wavelengths of light.

    They then applied the method to almost half a million galaxies from Anglo-Australian Telescope’s DEVILS survey.


    AAO Anglo Australian Telescope, at Siding Spring Observatory, near Coonabarabran, New South Wales, Australia, at an altitude of 1,165 m (3,822 ft).

    Siding Spring Mountain Observatory – Research School of Astronomy & Astrophysics (AU) – ANU Mountain with Anglo-Australian Telescope dome visible near centre of image Coonabarabran, Warrumbungle National Park, NSW, Siding Spring Mountain [Mount Woorat] at an altitude of 1,165 m (3,822 ft).

    They also applied it to more than 200,000 galaxies from the GAMA survey, which brings together observations from six of the world’s best ground and space-based telescopes.

    ICRAR-UWA astronomer Dr. Sabine Bellstedt said scientists often fail to account for bright black holes in galaxies.

    “One of the reasons we’ve ignored them in the past is because it’s hard to find them all,” she said.

    “We don’t really understand these bright black holes to incorporate them into our modeling with sufficient detail.”

    Dr. Bellstedt said the new technique is easier, more consistent and more thorough.

    “It suddenly means we can look for active black holes in so many more places than we were able to before,” she said.

    “It’s going to help us search more galaxies, and look further back in time to the distant Universe.”

    Supermassive black holes are thought to have a huge impact on how galaxies evolve.

    “We think that an active black hole in a galaxy is able to decrease the amount of star formation really quickly and stop the galaxy from growing any further,” Thorne said. “It can effectively kill it.”

    With observations from new telescopes such as the James Webb Space Telescope, the Vera C. Rubin Observatory in Chile, and the Square Kilometre Array in Australia and South Africa, astronomers may be able to apply the technique to millions of galaxies at once.

    National Aeronautics Space Agency(USA)/European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ Canadian Space Agency [Agence Spatiale Canadienne](CA) Webb Infrared Space Telescope(US) James Webb Space Telescope annotated. Scheduled for launch in October 2021 delayed to December 2021.

    NSF (US) NOIRLab (US) NOAO (US) Vera C. Rubin Observatory [LSST] Telescope currently under construction on the El Peñón peak at Cerro Pachón Chile, a 2,682-meter-high mountain in Coquimbo Region, in northern Chile, alongside the existing NSF (US) NOIRLab (US) NOAO (US) AURA (US) Gemini South Telescope and Southern Astrophysical Research Telescope.

    SKA ASKAP Pathfinder Radio Telescope

    SKA SARAO Meerkat telescope , 90 km outside the small Northern Cape town of Carnarvon, SA.

    “It’s exciting to think about how many doors this has unlocked for the future,” Thorne said.

    The research was published in MNRAS.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Western Australia is a public research university in the Australian state of Western Australia. The university’s main campus is in Perth, the state capital, with a secondary campus in Albany and various other facilities elsewhere.

    UWA was established in 1911 by an act of the Parliament of Western Australia and began teaching students two years later. It is the sixth-oldest university in Australia and was Western Australia’s only university until the establishment of Murdoch University (AU) in 1973. Because of its age and reputation, UWA is classed one of the “sandstone universities”, an informal designation given to the oldest university in each state. The university also belongs to several more formal groupings, including The Group of Eight (AU) and The Matariki Network of Universities. In recent years, UWA has generally been ranked either in the bottom half or just outside the world’s top 100 universities, depending on the system used.

    Alumni of UWA include one Prime Minister of Australia (Bob Hawke), five Justices of the High Court of Australia (including one Chief Justice, Robert French, now Chancellor), one Governor of the Reserve Bank (H. C. Coombs), various federal cabinet ministers, and seven of Western Australia’s eight most recent premiers. In 2018 alumnus mathematician Akshay Venkatesh was a recipient of the Fields Medal. As at 2021, the university had produced 106 Rhodes Scholars. Two members of the UWA faculty, Barry Marshall and Robin Warren won Nobel Prizes as a result of research at the university.

    History

    The university was established in 1911 following the tabling of proposals by a royal commission in September 1910. The original campus, which received its first students in March 1913, was located on Irwin Street in the centre of Perth, and consisted of several buildings situated between Hay Street and St Georges Terrace. Irwin Street was also known as “Tin Pan Alley” as many buildings featured corrugated iron roofs. These buildings served as the university campus until 1932, when the campus relocated to its present-day site in Crawley.

    The founding chancellor, Sir John Winthrop Hackett, died in 1916, and bequeathed property which, after being carefully managed for ten years, yielded £425,000 to the university, a far larger sum than expected. This allowed the construction of the main buildings. Many buildings and landmarks within the university bear his name, including Winthrop Hall and Hackett Hall. In addition, his bequest funded many scholarships, because he did not wish eager students to be deterred from studying because they could not afford to do so.

    During UWA’s first decade there was controversy about whether the policy of free education was compatible with high expenditure on professorial chairs and faculties. An “old student” publicised his concern in 1921 that there were 13 faculties serving only 280 students.

    A remnant of the original buildings survives to this day in the form of the “Irwin Street Building”, so called after its former location. In the 1930s it was transported to the new campus and served a number of uses till its 1987 restoration, after which it was moved across campus to James Oval. Recently, the building has served as the Senate meeting room and is currently in use as a cricket pavilion and office of the university archives. The building has been heritage-listed by both the National Trust and the Australian Heritage Council.

    The university introduced the Doctorate of Philosophy degree in 1946 and made its first award in October 1950 to Warwick Bottomley for his research of the chemistry of native plants in Western Australia.

     
  • richardmitnick 10:20 am on December 10, 2021 Permalink | Reply
    Tags: "Arecibo data lives on and provides new galaxy insights", , , , , Fall relation, , , The University of Western Australia (AU)   

    From University of Western Australia (AU) and The International Centre for Radio Astronomy Research – ICRAR (AU) via EarthSky : “Arecibo data lives on and provides new galaxy insights” 

    U Western Australia bloc

    From The University of Western Australia (AU)

    and

    ICRAR Logo

    The International Centre for Radio Astronomy Research – ICRAR (AU)

    via

    1

    EarthSky

    December 5, 2021
    Kelly Kizer Whitt

    1
    NAIC Arecibo Observatory (PR) (US) before the 2020 collapse. It was built into a natural depression in the landscape, in Puerto Rico. Completed in 1963, it was the world’s largest dish-type radio telescope – cherished by astronomers and widely known in popular culture – for decades. In early 2020, not long before the collapse, China’s Five-hundred-meter Aperture Spherical Radio Telescope, or FAST, had replaced it as the world’s largest. Image via Nature.

    Astronomers suffered a painful loss last year when, on December 1, 2020, the Arecibo radio telescope in Puerto Rico – formerly the world’s largest dish-type radio telescope – collapsed and was decommissioned. Now, a year later, scientists have announced a new paper on galaxy evolution that uses data gathered at Arecibo. So the radio telescope is gone. But the data it gathered during its 57 years in operation live on.

    The MNRAS published the peer-reviewed study on galaxy evolution on December 1,2021.

    Using Arecibo data to study galaxies

    Astronomers from the University of Western Australia and the International Centre for Radio Astronomy Research (ICRAR), based in Perth, Australia) wanted to take a closer look at what’s called the Fall relation in astronomy. S. Michael Fall first proposed this relation in 1983. It shows how the mass of stars in a galaxy correlates to the galaxy’s angular momentum (its rotation, or spin). These astronomers used Arecibo to observe 564 galaxies. They said it was the largest grouping of galaxies ever studied at one time, in the context of learning about the Fall relation. The astronomers said their goal was to understand the correlation, in order to understand how galaxies grow and evolve.

    Astronomer Jennifer Hardwick of the University of Western Australia led the study. She said:

    “Although the Fall relation was first suggested almost 40 years ago, previous research to refine its properties had small samples and was limited in the types of galaxies used.”

    The survey of 564 galaxies enabled astronomers to examine galaxies of varying shapes and ages. And, as often happens, the results challenged what they thought they knew.

    2
    These are some of the 564 galaxies the Arecibo telescope observed. Scientists used that data to refine the Fall relation, which is the relationship between the mass of stars in a galaxy and its rotation. Image via Jennifer Hardwick/ ICRAR/ GALEX Arecibo SDSS Survey/ DESI Legacy Imaging Survey.

    Unraveling the results

    The results of the study show that the relationship between the mass of stars in a galaxy and its rotation is not what scientists first thought. Different galaxy types display a different relationship between those two elements. Hardwick said:

    “This work challenges astronomers’ current understanding of how galaxies change over their lifetime and provides a constraint for future researchers to develop these theories further.’

    The team is left with more questions about the lifecycle of galaxies. Hardwick continued:

    “Because galaxies evolve over billions of years, we have to work with snapshots of their evolution – taken from different stages of their life – and try to piece together their journey … By developing a better understanding of galaxies’ properties now, we can incorporate these into our simulations to work backwards.”

    3
    This graph plots galaxies by their specific angular momentum versus their stellar mass (the Fall relation). Analyzing this relationship among many galaxies helps astronomers understand how galaxies formed and evolved. Image: Jennifer Hardwick/ ICRAR.

    Testing the foundations of thought

    Co-author Luca Cortese of the University of Western Australia said:

    “This creates a cycle of technological development, resulting in new discoveries which push for further advances. However, before getting to the new discoveries, it is critical to revisit previous knowledge to make sure that our foundations are correct.

    Since the dawn of extragalactic astronomy, it was clear that angular momentum is a key property for understanding how galaxies form and evolve. But, due to the difficulty of measuring angular momentum, direct observational constraints to our theory have been lacking.

    This work provides an important reference for future studies, offering one of the best measurements of the connection between angular momentum and other galaxy properties in the local universe.”


    Arecibo Observatory – drone and ground view during the collapse & pre-collapse historical footage.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Western Australia Campus

    ICRAR(AU) is an equal joint venture between Curtin University and The University of Western Australia with funding support from the State Government of Western Australia. The Centre’s headquarters are located at UWA, with research nodes at both UWA and The Curtin Institute for Radio Astronomy (CIRA).
    ICRAR(AU) has strong support from the government of Australia and is working closely with industry and the astronomy community, including CSIRO(AU) and The Australian Telescope National Facility,
    ICRAR is:

    Playing a key role in the international The Square Kilometre Array (SKA) project, the world’s biggest ground-based telescope array.

    Attracting some of the world’s leading researchers in radio astronomy, who will also contribute to national and international scientific and technical programs for SKA and ASKAP.
    Creating a collaborative environment for scientists and engineers to engage and work with industry to produce studies, prototypes and systems linked to the overall scientific success of the SKA, MWA and ASKAP.

    SKA Murchison Widefield Array (AU), Boolardy station in outback Western Australia, at the Murchison Radio-astronomy Observatory (MRO), on the traditional lands of the Wajarri peoples.

    SKA ASKAP Pathfinder Radio Telescope

    Enhancing Australia’s position in the international SKA program by contributing to the development process for the SKA in scientific, technological and operational areas.
    Promoting scientific, technical, commercial and educational opportunities through public outreach, educational material, training students and collaborative developments with national and international educational organisations.
    Establishing and maintaining a pool of emerging and top-level scientists and technologists in the disciplines related to radio astronomy through appointments and training.
    Making world-class contributions to SKA science, with emphasis on the signature science themes associated with surveys for neutral hydrogen and variable (transient) radio sources.
    Making world-class contributions to SKA capability with respect to developments in the areas of Data Intensive Science and support for the Murchison Radio-astronomy Observatory.

    The University of Western Australia is a public research university in the Australian state of Western Australia. The university’s main campus is in Perth, the state capital, with a secondary campus in Albany and various other facilities elsewhere.

    UWA was established in 1911 by an act of the Parliament of Western Australia and began teaching students two years later. It is the sixth-oldest university in Australia and was Western Australia’s only university until the establishment of Murdoch University (AU) in 1973. Because of its age and reputation, UWA is classed one of the “sandstone universities”, an informal designation given to the oldest university in each state. The university also belongs to several more formal groupings, including The Group of Eight (AU) and The Matariki Network of Universities. In recent years, UWA has generally been ranked either in the bottom half or just outside the world’s top 100 universities, depending on the system used.

    Alumni of UWA include one Prime Minister of Australia (Bob Hawke), five Justices of the High Court of Australia (including one Chief Justice, Robert French, now Chancellor), one Governor of the Reserve Bank (H. C. Coombs), various federal cabinet ministers, and seven of Western Australia’s eight most recent premiers. In 2018 alumnus mathematician Akshay Venkatesh was a recipient of the Fields Medal. As at 2021, the university had produced 106 Rhodes Scholars. Two members of the UWA faculty, Barry Marshall and Robin Warren won Nobel Prizes as a result of research at the university.

    History

    The university was established in 1911 following the tabling of proposals by a royal commission in September 1910. The original campus, which received its first students in March 1913, was located on Irwin Street in the centre of Perth, and consisted of several buildings situated between Hay Street and St Georges Terrace. Irwin Street was also known as “Tin Pan Alley” as many buildings featured corrugated iron roofs. These buildings served as the university campus until 1932, when the campus relocated to its present-day site in Crawley.

    The founding chancellor, Sir John Winthrop Hackett, died in 1916, and bequeathed property which, after being carefully managed for ten years, yielded £425,000 to the university, a far larger sum than expected. This allowed the construction of the main buildings. Many buildings and landmarks within the university bear his name, including Winthrop Hall and Hackett Hall. In addition, his bequest funded many scholarships, because he did not wish eager students to be deterred from studying because they could not afford to do so.

    During UWA’s first decade there was controversy about whether the policy of free education was compatible with high expenditure on professorial chairs and faculties. An “old student” publicised his concern in 1921 that there were 13 faculties serving only 280 students.

    A remnant of the original buildings survives to this day in the form of the “Irwin Street Building”, so called after its former location. In the 1930s it was transported to the new campus and served a number of uses till its 1987 restoration, after which it was moved across campus to James Oval. Recently, the building has served as the Senate meeting room and is currently in use as a cricket pavilion and office of the university archives. The building has been heritage-listed by both the National Trust and the Australian Heritage Council.

    The university introduced the Doctorate of Philosophy degree in 1946 and made its first award in October 1950 to Warwick Bottomley for his research of the chemistry of native plants in Western Australia.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: