Tagged: The University of Pennsylvania Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:00 am on January 14, 2023 Permalink | Reply
    Tags: "How do customers feel about algorithms?", , , The University of Pennsylvania, The Wharton School,   

    From The Wharton School At The University of Pennsylvania Via “Today” : “How do customers feel about algorithms?” 

    1

    From The Wharton School

    At

    U Penn bloc

    The University of Pennsylvania

    Via

    From “Today”

    1.12.23

    1
    Wharton marketing professor Stefano Puntoni. (Image: Knowledge at Wharton)

    Many managers worry that algorithms alienate customers. New research from Wharton’s Stefano Puntoni looks at how the attitudes of customers are influenced by algorithmic versus human decision-making.

    Customers feel good about a company when its representatives make decisions in their favor, such as approving their loan application or gold member status. But when an algorithm reaches the same favorable conclusion, those warm and fuzzy feelings tend to fade.

    This surprising contradiction is revealed in a new paper that examines how customers react differently depending on whether a computer or a fellow human being decides their fate.

    This surprising contradiction is revealed in a new paper that examines how customers react differently depending on whether a computer or a fellow human being decides their fate.

    In the study, Wharton marketing professor Stefano Puntoni and his colleagues found that customers are happiest when they receive a positive decision from a person, less happy when the positive decision is made by an algorithm, and equally unhappy with both man and machine when the news is bad. Puntoni is a co-author “Thumbs Up or Down: Consumer Reactions to Decisions by Algorithms Versus Humans,” published in the Journal of Marketing Research [below].

    “What’s interesting is that if you talk to companies, they’ll often tell you that they’re reluctant to let algorithms make decisions because they are worried about what would happen to customers when things go wrong. But we don’t actually find that. The negative consequences of using algorithms for companies seem to be, in fact, when the news is good,” Puntoni says.

    The researchers believe the results can be explained through attribution theory, a psychology term that refers to how people translate their own experiences and perceptions to make sense of their place in the world. Simply put, people have a psychological need to feel good about themselves, and it helps to internalize a good decision and externalize a bad one. When a company representative greenlights a request, customers attribute that to their own exemplary behavior, social status, excellent credit score, or other value-adds to the firm. That’s harder to do when the decision-maker is a bot.

    “These decisions are diagnostic of some characteristic of ourselves,” Puntoni says. “People find it easier to internalize the good decision when the decision was made by a person. Now they get what they want, and it feels better to them that it was a human [deciding] than if it was an algorithm.”

    Science paper:
    Journal of Marketing Research

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    2

    The Wharton School of the University of Pennsylvania is the business school of the University of Pennsylvania, a private Ivy League research university in Philadelphia. Generally considered to be one of the most prestigious business schools in the world, the Wharton School is the world’s oldest collegiate business school, having been established in 1881 through a donation from Joseph Wharton.

    The Wharton School awards the Bachelor of Science with a school-specific economics major, with concentrations in over 18 disciplines in Wharton’s academic departments. The degree is a general business degree focused on core business skills. At the graduate level, the Master of Business Administration (MBA) program can be pursued standalone or offers dual studies leading to a joint degree from other schools (e.g., law, engineering, government). Similarly, in addition to its tracks in accounting, finance, operations, statistics, and other academic departments, the doctoral and post-doctoral programs co-sponsors several diploma programs in conjunction with other schools within the University. The college was a pioneer in so-called ‘Executive Education’; custom learning experiences that lead to academic enrichment, however with no standing.

    Since the establishment of journalistic rankings, Wharton’s undergraduate and graduate programs have been consistently ranked in the top tier. Its MBA program is ranked No. 1 in the World according to the Financial Times and No. 1 in the United States according to the 2023 U.S. News & World Report ranking. Meanwhile, Wharton’s undergraduate business program has been ranked No. 1 in the United States, and the MBA for Executives No. 2 in the US by U.S. News. MBA graduates of Wharton earn an average $175,000 (USD) first year base pay, the highest of all the leading business schools. Wharton’s MBA program is tied for the highest in the United States with an average GMAT score of 732 (97th percentile) for its entering class.

    Wharton School alumni include Tesla, SpaceX, and Twitter CEO Elon Musk, former U.S. President Donald Trump, and billionaire investor Warren Buffett. Current and former CEOs of Fortune 500 companies including Alphabet Inc., Boeing, Comcast, General Electric, Johnson & Johnson, Oracle, Pfizer, PepsiCo, and Tesla are also Wharton School alumni.

    U Penn campus

    Academic life at University of Pennsylvania is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946. In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences; 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University and Columbia University. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University, William & Mary, Yale Unversity, and The College of New Jersey—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health.

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University and Cornell University (Harvard University did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering.

    ENIAC UPenn

    It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
  • richardmitnick 11:00 am on January 7, 2023 Permalink | Reply
    Tags: "Identifying a vulnerability in critical spacecraft networks", "TTE": Time-Triggered Ethernet, A major security flaw in Time-Triggered Ethernet (TTE) discovered., , , Penn Engineering’s Linh Thi Xuan Phan and a team of researchers have identified a critical security flaw in the networking approach used in aerospace and other safety-critical systems., , The University of Pennsylvania, TTE allows critical systems like vehicle controls to share hardware with non-critical systems.   

    From The School of Engineering and Applied Science At The University of Pennsylvania : “Identifying a vulnerability in critical spacecraft networks” 

    From The School of Engineering and Applied Science

    At

    U Penn bloc

    The University of Pennsylvania

    1.5.23
    Evan Lerner

    Penn Engineering’s Linh Thi Xuan Phan and a team of researchers have identified a critical security flaw in the networking approach used in aerospace and other safety-critical systems.

    1
    Penn Engineering’s Linh Thi Xuan Phan. (Image: Penn Engineering Today)

    Two spacecraft need to bridge a connection in orbit they dock. This means the onboard computers controlling their thrusters need unfettered communication between one another that cannot be disrupted for even a split second. Instructions on how and when to move must be precisely synchronized and delivered on time, every time.

    Penn engineering’s Linh Thi Xuan Phan and collaborators from NASA and the University of Michigan have identified a major security flaw in Time-Triggered Ethernet (TTE), an efficient communication protocol not only used to facilitate spacecraft-to-spacecraft connections but is also widely used in aviation and energy generation.

    TTE allows critical systems like vehicle controls to share hardware with non-critical systems, like in-flight Wi-Fi, while ensuring they do not interfere with each other. Along with Andrew Loveless, Ronald Dreslinski and Baris Kasikci of the University of Michigan, Phan published these findings in the Proceedings of the 2023 IEEE Symposium on Security and Privacy [below], the first to show that TTE’s safety guarantees could be compromised via electromagnetic interference—disrupting the timing of the high-priority signals enough to cause critical failure on a simulated docking procedure.

    The researchers showed that low-priority signals could be sent in such a way that the Ethernet cables transmitting the message would generate electromagnetic interference, enough to slip a malicious message through switches that would normally block them. The team reported their findings to several organizations that use TTE, and many are implementing measures to mitigate any potential threats.

    “This approach was in widespread use in critical systems because of the guarantee that the two types of signals could not interfere with each other,” says Phan. “But if that assumption is wrong, everything else falls apart.”

    While working at NASA’s Johnson Space Center, Loveless began investigating the possibility of this security flaw with simulation data. He and his Michigan colleagues recruited Phan, an expert on the safety of cyber-physical systems, to look at a flaw rooted in the hardware of the TTE networks themselves.

    “This approach was in widespread use in critical systems because of the guarantee that the two types of signals could not interfere with each other,” says Phan. “But if that assumption is wrong, everything else falls apart.”

    The team privately disclosed their findings and proposed mitigations — including swapping copper cabling for fiber optics and other optical isolators — to major companies and organizations using TTE and to device manufacturers in 2021.

    “Everyone has been highly receptive about adopting mitigations,” Loveless says. “To our knowledge, there is not a current threat to anyone’s safety because of this attack. We have been very encouraged by the response we have seen from industry and government.”

    The research was supported in part by the NSF Graduate Research Fellowship (award DGE 1256260) and NSF grants CNS-1750158 and CNS-1703936.

    Proceedings of the 2023 IEEE Symposium on Security and Privacy

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Penn campus

    Academic life at University of Pennsylvania is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946. In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences; 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University and Columbia University. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University, William & Mary, Yale Unversity, and The College of New Jersey—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health.

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University and Cornell University (Harvard University did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering.

    ENIAC UPenn

    It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
  • richardmitnick 3:09 pm on December 22, 2022 Permalink | Reply
    Tags: "Wormhole-like dynamics", , , , , , Insinuating that there is an actual wormhole traversal happening in our world is misleading. The authors of the article and press are engaging in irresponsible representations of the work., , or a shortcut connection between two distant points in space. But what they’ve been able to achieve here is a good step forward for quantum computing., , , , The researchers built a quantum system that realized a stripped-down version of the SYK model and demonstrated characteristic dynamics that would be associated with a traversable wormhole., , The University of Pennsylvania, The work by the Caltech researchers was in the alternative-and equivalent-gravitational description., They haven’t created a wormhole, This is the so-called SYK model named after the condensed matter physicists who initially proposed it- Subir Sachdev and Jinwu Ye along with Alexei Kitaev who later modified it.   

    From “Penn Today” And The School of Arts & Sciences At The University of Pennsylvania : “Wormhole-like dynamics” 

    From “Penn Today”

    And

    The School of Arts & Sciences

    at

    U Penn bloc

    The University of Pennsylvania

    12.21.22
    Nathi Magubane

    Researchers from The California Institute of Technology recently claimed to have, for the first time, observed wormhole-like teleportation on a quantum computer. Penn Today spoke with two faculty members about the implications of this work to gain a better understanding of what it truly means to model a wormhole.

    1
    Theoretical physicists Vijay Balasubramanian and Jonathan Heckman of the School of Arts & Sciences explain the implications of new research claiming to have observed wormhole-like teleportation on a quantum computer.

    A recent Nature [below] publication continues to generate headlines over its findings that scientists from the California Institute of Technology developed a model of a traversable wormhole on the Google Sycamore quantum processing system.

    Penn Today spoke with physicists Vijay Balasubramanian and Jonathan Heckman from the Department of Physics and Astronomy in the School of Arts & Sciences to better understand the implications of this work. The two explained a few key concepts and shared their thoughts and opinions on some of the main take aways.

    Can you explain what these researchers did?

    Balasubramanian: These Caltech researchers were able to represent wormhole-like conditions on a quantum computer.

    They’ve used a quantum computer to construct a simple version of a model often used to understand strongly correlated materials, that is materials in which the basic components strongly influence the behavior of each other. This is the so-called SYK model, named after the condensed matter physicists who initially proposed it, Subir Sachdev and Jinwu Ye, along with Alexei Kitaev, who later modified it. Famously, this SYK model has an equivalent description in terms of a certain theory of gravity in a universe with just one spatial dimension. In the Nature paper, the researchers built a quantum system that realized a stripped-down version of the SYK model and demonstrated characteristic dynamics that would be associated with a traversable wormhole in the alternative, and equivalent, gravitational description.

    So, they haven’t made an actual wormhole?

    Balasubramanian: No, they haven’t created a wormhole, or a shortcut connection between two distant points in space. But what they’ve been able to achieve here is still very impressive and a good step forward for quantum computing.

    What do you mean by quantum computing, and why was it needed for this experiment?

    Heckman: Well, as opposed to an ordinary computer system that uses binary bits corresponding to 0’s and 1’s in receiving, processing, storing, and communicating information, a quantum system has a ‘superposition’ of 0’s and 1’s, meaning its bits, known as qubits, are able to simultaneously exist as a zero or one.

    So, the hope and promise of a quantum computer is that you could do computations that you would not be able to do on a classical machine, if you have enough qubits.

    And from my understanding, it seems these researchers were motivated by what’s known as anti-de Sitter/conformal field theory (AdS/CFT) correspondence, which much like the SYK model is useful for studying phenomena in systems whose components interact strongly with each other. But the AdS/CFT correspondence is particularly useful for studying equivalencies between two different types of physical theories.

    Balasubramanian: The AdS/CFT correspondence can be likened to expressing an idea in one language, then using a dictionary and grammar book to convey that same idea in a completely different set of sounds and grammatical practices associated to another language.

    In a bit more detail, the AdS/CFT correspondence gives a dictionary and set of physical rules for translating phenomena in certain kinds of higher-dimensional gravitating universes (so-called Anti-de Sitter Spaces) to phenomena in other lower-dimensional systems (so-called Conformal Field Theories) that don’t experience gravity. This correspondence actually has roots in a well-established notion in physics dating back to the late 19th century, which we refer to as a duality, but the new incarnation of duality is one is one of the most important discoveries in physics in the last quarter century.

    It seems initially incredible, perhaps impossible, that theories in different numbers of dimensions could be equivalent.

    After all, you would think dimension is kind of fundamental to the nature of physics; normally you feel that dimensions of space are kind of like a stage, that you can go backwards, forwards, left, right, up, or down in. But it’s turned out that we can construct examples where, for instance, you have some interaction happening in a three-dimensional theory that doesn’t contain gravity and you can show that it is equivalent to some other process in a four-dimensional theory with gravity.

    Heckman: And based on that, the Caltech researchers had an expectation that they could use the quantum processor to teleport, or translate, pieces of quantum information from one region to another without losing any fidelity in the signal. Via the AdS/CFT duality, in the equivalent gravitational description with an extra dimension, you would say that the signal went through a wormhole. But in the actual machine they used there isn’t one.

    In fact, there’s a version of this Nature paper that you could have written that makes absolutely no reference to quantum gravity or the AdS/CFT model.

    How so? Wouldn’t that negate the point of studying wormhole-like environments for parsing information?

    Heckman: Basically, the idea here is that gravity encodes information via a sort of hologram. In an actual hologram, you can have a two-dimensional system (like an image etched on a surface) that can be used to fully encode the original three-dimensional shape. Similarly, in the AdS/CFT duality, information of a higher dimensional gravitational system is encoded in a lower-dimensional system.

    But in terms of what they did, it gets tricky here because they motivated the experiment based on using some special considerations of gravity: particularly, this idea of a wormhole configuration of gravity. And to get a wormhole, you’d have to create a bridge between two black holes. The black holes in question don’t exist in our world. Rather, they are present in an alternative, ‘dual,’ description of their quantum computing system in terms of a theory of gravity in a different number of dimensions.

    So, in a sense, they used this ‘dual’ notion of gravity to imagine a traversable bridge, or wormhole, connecting two different quantum mechanical systems, and translated this back into equivalent phenomena in the actual system they built on their quantum computer.

    Much of the media coverage of this Nature paper suggests that the researchers have created a wormhole. What do you make of these claims?

    Heckman: Insinuating that there is an actual wormhole traversal happening in our world is quite misleading. The authors of the article and the press covering it are engaging in very irresponsible representations of the work.

    This particular model of gravity works best when the number of qubits is really large, as in, it approaches infinity, which isn’t possible right now, so the researchers address this by using a deep learning network to help them build a small enough quantum system that retains enough gravitational properties to work on a nine-qubit system and still hold true. So, then we need to ask, Are you going to learn anything about quantum gravity from the Sycamore system in this case?

    I mean, a priori, you could have done the entire experiment without saying anything about AdS/CFT correspondence and linking back to wormholes. In fact, the entire experiment could have been done on a classical machine; it just would have taken a lot more time.

    Balasubramanian: And in terms of there being a lab-made wormhole, it’s more like a Pixar version of a wormhole except it’s not what’s seen on screen. It’s more like the raw code running in the background; it hasn’t been converted to a decipherable image, but in theory, it could be. The image could look like a traversable wormhole, but it’s not an actual one.

    Once again, they have not built a wormhole in our world. To say that they done so requires some mental gymnastics. You basically must regard the gravitational ‘dual’ description of their system as the real world.

    Regardless, they have still produced a fascinating quantum phenomenon in a system that is very hard to simulate on a computer. This is a step forward in simulating complex interacting systems in quantum computers, and that’s interesting because one of the most useful applications for quantum computing is simulating physical interactions like the folding of proteins in living cells. This is incredibly hard to do on an ordinary machine, so there is an impetus to improve this technology beyond gleaning insights into theoretical physics models.

    Science paper:
    Nature

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Pennsylvania School of Arts and Sciences is the academic institution encompassing the humanities, social sciences, and natural sciences at the University of Pennsylvania.

    Formerly known as the Faculty of Arts and Sciences, the School of Arts and Sciences is an umbrella organization that is divided into three main academic components: The College of Arts & Sciences is Penn’s undergraduate liberal arts school. The Graduate Division offers post-undergraduate M.A., M.S., and Ph.D. programs. Finally, the College of Liberal and Professional Studies, originally called “College of General Studies”, is Penn’s continuing and professional education division, catered to working professionals.

    The School of Arts and Sciences contains the following departments:

    Africana Studies
    Anthropology
    Biology
    Chemistry
    Classical Studies
    Criminology
    Earth and Environmental Science
    East Asian Languages & Civilizations
    Economics
    English
    Germanic Languages and Literatures
    History
    History and Sociology of Science
    History of Art
    Linguistics
    Mathematics
    Music
    Near Eastern Languages & Civilizations
    Philosophy
    Physics and Astronomy
    Political Science
    Psychology
    Religious Studies
    Romance Languages
    Russian and East European Studies
    Sociology
    South Asia Studies

    U Penn campus

    Academic life at University of Pennsylvania is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946. In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences; 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University and Columbia University. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University, William & Mary, Yale Unversity, and The College of New Jersey—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health.

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University and Cornell University (Harvard University did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering.

    ENIAC UPenn

    It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
  • richardmitnick 11:40 am on December 13, 2022 Permalink | Reply
    Tags: "Glassy Discovery Offers Computational Windfall to Researchers Across Disciplines", A counterintuitive algorithmic strategy called “metadynamics”, , , , , Computational protein folding, , Crystals, Finding rare low-energy canyons in glassy materials., Folding peptide sequences into proteins, Glassy materials, , , , The University of Pennsylvania   

    From The School of Engineering and Applied Science At The University of Pennsylvania: “Glassy Discovery Offers Computational Windfall to Researchers Across Disciplines” 

    From The School of Engineering and Applied Science

    At

    U Penn bloc

    The University of Pennsylvania

    12.5.22
    Devorah Fischler

    1
    Penn Engineers used a counterintuitive algorithmic strategy called “metadynamics” to find rare low-energy canyons in glassy materials. Their breakthrough suggests the algorithm may have a wide range of useful scientific applications, potentially speeding up the pace of computational protein folding and eliminating the need for large data sets in machine learning. (Image credit: Dariusz Jemielniak)

    John Crocker had expected to see a flat line — a familiar horizontal track with some slight peaks and valleys — but the plot of energy in front of him dove sharply downward.

    “It’s a once-in-a-lifetime finding,” says Crocker. “It was as if the simulation had unexpectedly fallen into a deep canyon on an energy surface. This was lucky for two reasons. Firstly, it turned out to be a game changer for our study of glassy materials. And secondly, similar canyons have the potential to help others grappling with the same computational obstacles we face in our field, from computer scientists working on machine learning algorithms to bioengineers studying protein folding. We ended up with significant results because we were curious enough to try a method that shouldn’t have worked. But it did.”

    The method is metadynamics, a computational approach to exploring energy landscapes. Its counterintuitive application is the subject of a recent publication in PNAS [below] from a group of Penn Engineers at the University of Pennsylvania led by Crocker, Professor and Graduate Group Chair in the Department of Chemical and Biomolecular Engineering (CBE), along with Robert Riggleman, Associate Professor in CBE, and Amruthesh Thirumalaiswamy, Ph.D. student in CBE.

    Most solids are glasses (or glassy). We categorize the rest as crystals. These categorizations are not limited to glass or crystal as we might imagine them, but instead indicate how atoms in any solid are arranged. Crystals have neat, repetitive atomic structures. Glasses, however, are amorphous. Their atoms and molecules take on a vast number of disordered configurations.

    2
    Glassy and crystal solids.

    Glassy configurations get stuck while pursuing — as all systems do — their most stable, lowest energy states. Given enough time, glasses will still very slowly relax in energy, but their disordered atoms make it a slow and difficult process.

    Low-energy, stable glasses, or “ideal glasses,” are the key to a storehouse of knowledge that researchers are keen to unlock.

    Seeking to understand and eventually replicate the conditions of glassy materials that overcome the obstacles of their own atomic quirks, scientists use both experimental and theoretical approaches.

    Labs have, for example, melted and re-cooled fossilized amber to develop processes for recreating the encouraging effects that millions of years have had on its glassy pursuit of low-energy states. Crocker’s team, affiliated with the cross-disciplinary Penn Institute for Computational Science (PICS), explores physical structures with mathematical models.

    “We use computational models to simulate the positions and movements of atoms in different glasses,” says Thirumalaiswamy. “In order to keep track of a material’s particles, which are so numerous and dynamic they are impossible to visualize in three dimensions, we need to represent them mathematically in high-dimensional virtual spaces. If we have 300 atoms, for example, we need to represent them in 900 dimensions. We call these energy landscapes. We then investigate the landscapes, navigating them almost like explorers.”

    In these computational models, single configuration points, digests of atomic movement, tell the story of a glass’ energy levels. They show where a glass has gotten stuck and where it might have achieved a low-energy state.

    The problem is that until now, researchers have not been able to navigate landscapes efficiently enough to find these rare instances of stability.

    “Most studies do random walks around high-dimensional landscapes at enormous computational cost. It would take an infinite amount of time to find anything of interest. The landscapes are immense, and these walks are repetitive, wasting large amounts of time fixed in a single state before moving on to the next one,” says Riggleman.

    And so, they took a chance in trying metadynamics, a method that seemed destined to fail.

    Metadynamics is an algorithmic strategy developed to explore the entire landscape and avoid repetition. It assigns a penalty for going back to the same place twice. Metadynamics never works in high-dimensional spaces, however, because it takes too long to construct the penalties, canceling out the strategy’s potential for efficiency.

    Yet as the researchers watched their configuration energy trend downward, they realized it had succeeded.

    “We couldn’t have guessed it, but the landscapes proved to have these canyons with floors that are only two- or three-dimensional,” says Crocker. “Our algorithm literally fell right in. We found regularly occurring low-energy configurations in several different glasses with a method we think could be revolutionary for other disciplines as well.”

    The potential applications of the Crocker Lab canyons are wide-ranging.

    In the two decades since the Human Genome Project finished its mapping, scientists have been using computational models to fold peptide sequences into proteins. Proteins that fold well in nature have, through evolution, found ways to explore low-energy states analogous to those of ideal glasses.

    Theoretical studies of proteins use energy landscapes to learn about the folding processes that create the functional (or dysfunctional) foundations for biological health. Yet measuring these structures takes time, money and energy that scientists and the populations they aim to serve don’t have to spare. Bogged down by the same computational inefficiencies that glassy materials researchers face, genomic scientists may find similar successes with metadynamics-based approaches, accelerating the pace of medical research.

    Machine learning processes have a lot in common with random walks in high-dimensional space. Training artificial intelligence takes an enormous amount of computational time and power and has a long way to go in terms of predictive accuracies.

    A neural net needs to “see,” for example, thousands to millions of faces in order to acquire enough skill for facial recognition. With a more strategic computational process, machine learning could become faster, cheaper and more accessible. The metadynamics algorithm may have the potential to overcome the need for the huge and costly datasets typical of the process.

    Not only would this provide solutions for industry efficiency, but it could also democratize AI, allowing people with modest resources to do their own training and development.

    “We’re conjecturing that the landscapes in these different fields have similar geometric structures to ours,” says Crocker. “We suspect there might be a deep mathematical reason for why these canyons exist, and they may be present in these other related systems. This is our invitation; we look forward to the dialogue it begins.”

    This work was supported by NSF-Division of Material Research 1609525 and 1720530 and computational resources provided by XSEDE (Extreme Science and Engineering Discovery Environment) through TG-DMR150034.

    Science paper:
    PNAS

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The School of Engineering and Applied Science is an undergraduate and graduate school of The University of Pennsylvania. The School offers programs that emphasize hands-on study of engineering fundamentals (with an offering of approximately 300 courses) while encouraging students to leverage the educational offerings of the broader University. Engineering students can also take advantage of research opportunities through interactions with Penn’s School of Medicine, School of Arts and Sciences and the Wharton School.

    Penn Engineering offers bachelors, masters and Ph.D. degree programs in contemporary fields of engineering study. The nationally ranked bioengineering department offers the School’s most popular undergraduate degree program. The Jerome Fisher Program in Management and Technology, offered in partnership with the Wharton School, allows students to simultaneously earn a Bachelor of Science degree in Economics as well as a Bachelor of Science degree in Engineering. SEAS also offers several masters programs, which include: Executive Master’s in Technology Management, Master of Biotechnology, Master of Computer and Information Technology, Master of Computer and Information Science and a Master of Science in Engineering in Telecommunications and Networking.

    History

    The study of engineering at The University of Pennsylvania can be traced back to 1850 when the University trustees adopted a resolution providing for a professorship of “Chemistry as Applied to the Arts”. In 1852, the study of engineering was further formalized with the establishment of the School of Mines, Arts and Manufactures. The first Professor of Civil and Mining Engineering was appointed in 1852. The first graduate of the school received his Bachelor of Science degree in 1854. Since that time, the school has grown to six departments. In 1973, the school was renamed as the School of Engineering and Applied Science.

    The early growth of the school benefited from the generosity of two Philadelphians: John Henry Towne and Alfred Fitler Moore. Towne, a mechanical engineer and railroad developer, bequeathed the school a gift of $500,000 upon his death in 1875. The main administration building for the school still bears his name. Moore was a successful entrepreneur who made his fortune manufacturing telegraph cable. A 1923 gift from Moore established the Moore School of Electrical Engineering, which is the birthplace of the first electronic general-purpose Turing-complete digital computer, ENIAC, in 1946.

    During the latter half of the 20th century the school continued to break new ground. In 1958, Barbara G. Mandell became the first woman to enroll as an undergraduate in the School of Engineering. In 1965, the university acquired two sites that were formerly used as U.S. Army Nike Missile Base (PH 82L and PH 82R) and created the Valley Forge Research Center. In 1976, the Management and Technology Program was created. In 1990, a Bachelor of Applied Science in Biomedical Science and Bachelor of Applied Science in Environmental Science were first offered, followed by a master’s degree in Biotechnology in 1997.

    The school continues to expand with the addition of the Melvin and Claire Levine Hall for computer science in 2003, Skirkanich Hall for Bioengineering in 2006, and the Krishna P. Singh Center for Nanotechnology in 2013.

    Academics

    Penn’s School of Engineering and Applied Science is organized into six departments:

    Bioengineering
    Chemical and Biomolecular Engineering
    Computer and Information Science
    Electrical and Systems Engineering
    Materials Science and Engineering
    Mechanical Engineering and Applied Mechanics

    The school’s Department of Bioengineering, originally named Biomedical Electronic Engineering, consistently garners a top-ten ranking at both the undergraduate and graduate level from U.S. News & World Report. The department also houses the George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace (aka Biomakerspace) for training undergraduate through PhD students. It is Philadelphia’s and Penn’s only Bio-MakerSpace and it is open to the Penn community, encouraging a free flow of ideas, creativity, and entrepreneurship between Bioengineering students and students throughout the university.

    Founded in 1893, the Department of Chemical and Biomolecular Engineering is “America’s oldest continuously operating degree-granting program in chemical engineering.”

    The Department of Electrical and Systems Engineering is recognized for its research in electroscience, systems science and network systems and telecommunications.

    Originally established in 1946 as the School of Metallurgical Engineering, the Materials Science and Engineering Department “includes cutting edge programs in nanoscience and nanotechnology, biomaterials, ceramics, polymers, and metals.”

    The Department of Mechanical Engineering and Applied Mechanics draws its roots from the Department of Mechanical and Electrical Engineering, which was established in 1876.

    Each department houses one or more degree programs. The Chemical and Biomolecular Engineering, Materials Science and Engineering, and Mechanical Engineering and Applied Mechanics departments each house a single degree program.

    Bioengineering houses two programs (both a Bachelor of Science in Engineering degree as well as a Bachelor of Applied Science degree). Electrical and Systems Engineering offers four Bachelor of Science in Engineering programs: Electrical Engineering, Systems Engineering, Computer Engineering, and the Networked & Social Systems Engineering, the latter two of which are co-housed with Computer and Information Science (CIS). The CIS department, like Bioengineering, offers Computer and Information Science programs under both bachelor programs. CIS also houses Digital Media Design, a program jointly operated with PennDesign.

    Research

    Penn’s School of Engineering and Applied Science is a research institution. SEAS research strives to advance science and engineering and to achieve a positive impact on society.

    U Penn campus

    Academic life at University of Pennsylvania is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946. In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences; 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University and Columbia University. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University, William & Mary, Yale Unversity, and The College of New Jersey—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health.

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University and Cornell University (Harvard University did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering.

    ENIAC UPenn

    It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
  • richardmitnick 9:37 am on December 9, 2022 Permalink | Reply
    Tags: "Soft Robots Gain New Strength and Make Virtual Reality Gloves Feel More Real", , , , , , The University of Pennsylvania   

    From The School of Engineering and Applied Science At The University of Pennsylvania: “Soft Robots Gain New Strength and Make Virtual Reality Gloves Feel More Real” 

    From The School of Engineering and Applied Science

    At

    U Penn bloc

    The University of Pennsylvania

    11.30.22
    Melissa Pappas

    Soft robots, or those made with materials like rubber, gels and cloth, have advantages over their harder, heavier counterparts, especially when it comes to tasks that require direct human interaction. Robots that could safely and gently help people with limited mobility grocery shop, prepare meals, get dressed, or even walk would undoubtedly be life-changing.

    However, soft robots currently lack the strength needed to perform these sorts of tasks. This long-standing challenge — making soft robots stronger without compromising their ability to gently interact with their environment — has limited the development of these devices.

    With the relationship between strength and softness in mind, a team of Penn Engineers has devised a new electrostatically controlled clutch which enables a soft robotic hand to be able to hold 4 pounds – about the weight of a bag of apples – which is 40 times more than the hand could lift without the clutch. In addition, the ability to perform this task requiring both a soft touch and strength was accomplished with only 125 volts of electricity, a third of the voltage required for current clutches.

    1
    In a demonstration, the clutch was able to increase the strength of an elbow joint to be able to support the weight of a mannequin arm at the low energy demand of 125 volts. (Image: Penn Engineering Today)

    Their safe, low-power approach could also enable wearable soft robotic devices that would simulate the sensation of holding a physical object in augmented- and virtual-reality environments.

    James Pikul, Assistant Professor in Mechanical Engineering and Applied Mechanics (MEAM), Kevin Turner, Professor and Chair of MEAM with a secondary appointment in Materials Science Engineering, and their Ph.D. students, David Levine, Gokulanand Iyer and Daelan Roosa, published a study in Science Robotics [below] describing a new, fracture-mechanics-based model of electroadhesive clutches, a mechanical structure that can control the stiffness of soft robotic materials.

    Using this new model, the team was able to realize a clutch 63 times stronger than current electroadhesive clutches. The model not only increased force capacity of a clutch used in their soft robots, it also decreased the voltage required to power the clutch, making soft robots stronger and safer.

    Current soft robotic hands can hold small objects, such as an apple for example. Being soft, the robotic hand can delicately grasp objects of various shapes, understand the energy required to lift them, and become stiff or tense enough to pick an object up, a task similar to how we grasp and hold things in our own hands. An electroadhesive clutch is a thin device that enhances the change of stiffness in the materials which allows the robot to perform this task. The clutch, similar to a clutch in a car, is the mechanical connection between moving objects in the system. In the case of electroadhesive clutches, two electrodes coated with a dielectric material become attracted to each other when voltage is applied. The attraction between the electrodes creates a friction force at the interface that keeps the two plates from slipping past each other. The electrodes are attached to the flexible material of the robotic hand. By turning the clutch on with an electrical voltage, the electrodes stick to each other, and the robotic hand holds more weight than it could previously. Turning the clutch off allows the plates to slide past each other and the hand to relax, so the object can be released.


    Traditional models of clutches are based on a simple assumption of Coulombic friction between two parallel plates, where friction keeps the two plates of the clutch from sliding past each other. However, this model does not capture how mechanical stress is nonuniformly distributed in the system, and therefore, does not predict clutch force capacity well. It is also not robust enough to be used to develop stronger clutches without using high voltages, expensive materials, or intensive manufacturing processes. A robotic hand with a clutch created using the friction model may be able to pick up an entire bag of apples, but will require high voltages which make it unsafe for human interaction.

    “Our approach tackles the force capacity of clutches at the model level,” says Pikul. “And our model, the fracture-mechanics-based model, is unique. Instead of creating parallel plate clutches, we based our design on lap joints and examined where fractures might occur in these joints. The friction model assumes that the stress on the system is uniform, which is not realistic. In reality, stress is concentrated at various points, and our model helps us understand where those points are. The resulting clutch is both stronger and safer as it requires only a third of the voltage compared to traditional clutches.”

    “The fracture mechanics framework and model in this work have been used for the design of bonded joints and structural components for decades,” says Turner. “What is new here is the application of this model to the design of electroadhesive clutches.”

    The researchers’ improved clutch can now be easily integrated into existing devices.

    “The fracture-mechanics-based model provides fundamental insight into the workings of an electroadhesive clutch, helping us understand them more than the friction model ever could,” says Pikul. “We can already use the model to improve current clutches just by making very slight changes to material geometry and thickness, and we can continue to push the limits and improve the design of future clutches with this new understanding.”

    To demonstrate the strength of their clutch, the team attached it to a pneumatic finger. Without the researchers’ clutch, the finger was able to hold the weight of one apple while inflated into a curled position; with it, the finger could hold an entire bag of them.


    In another demonstration, the clutch was able to increase the strength of an elbow joint to be able to support the weight of a mannequin arm at the low energy demand of 125 volts.


    Future work that the team is excited to delve into includes using this new clutch model to develop wearable augmented and virtual-reality devices.

    “Traditional clutches require about 300 volts, a level that can be unsafe for human interaction,” says Levine. “We want to continue to improve our clutches, making them smaller, lighter and less energetically costly to bring these products to the real world. Eventually, these clutches could be used in wearable gloves that simulate object manipulation in a VR environment.”

    “Current technologies provide feedback through vibrations, but simulating physical contact with a virtual object is limited with today’s devices,” says Pikul. “Imagine having both the visual simulation and feeling of being in another environment. VR and AR could be used in training, remote working, or just simulating touch and movement for those who lack those experiences in the real world. This technology gets us closer to those possibilities.”

    Improving human-robot interactions is one of the main goals of Pikul’s lab and the direct benefits that this research presents is fuel for their own research passions.

    “We haven’t seen many soft robots in our world yet, and that is, in part, due to their lack of strength, but now we have one solution to that challenge,” says Levine. “This new way to design clutches might lead to applications of soft robots that we cannot imagine right now. I want to create robots that help people, make people feel good, and enhance the human experience, and this work is getting us closer to that goal. I’m really excited to see where we go next.”

    Science paper:
    Science Robotics

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The School of Engineering and Applied Science is an undergraduate and graduate school of The University of Pennsylvania. The School offers programs that emphasize hands-on study of engineering fundamentals (with an offering of approximately 300 courses) while encouraging students to leverage the educational offerings of the broader University. Engineering students can also take advantage of research opportunities through interactions with Penn’s School of Medicine, School of Arts and Sciences and the Wharton School.

    Penn Engineering offers bachelors, masters and Ph.D. degree programs in contemporary fields of engineering study. The nationally ranked bioengineering department offers the School’s most popular undergraduate degree program. The Jerome Fisher Program in Management and Technology, offered in partnership with the Wharton School, allows students to simultaneously earn a Bachelor of Science degree in Economics as well as a Bachelor of Science degree in Engineering. SEAS also offers several masters programs, which include: Executive Master’s in Technology Management, Master of Biotechnology, Master of Computer and Information Technology, Master of Computer and Information Science and a Master of Science in Engineering in Telecommunications and Networking.

    History

    The study of engineering at The University of Pennsylvania can be traced back to 1850 when the University trustees adopted a resolution providing for a professorship of “Chemistry as Applied to the Arts”. In 1852, the study of engineering was further formalized with the establishment of the School of Mines, Arts and Manufactures. The first Professor of Civil and Mining Engineering was appointed in 1852. The first graduate of the school received his Bachelor of Science degree in 1854. Since that time, the school has grown to six departments. In 1973, the school was renamed as the School of Engineering and Applied Science.

    The early growth of the school benefited from the generosity of two Philadelphians: John Henry Towne and Alfred Fitler Moore. Towne, a mechanical engineer and railroad developer, bequeathed the school a gift of $500,000 upon his death in 1875. The main administration building for the school still bears his name. Moore was a successful entrepreneur who made his fortune manufacturing telegraph cable. A 1923 gift from Moore established the Moore School of Electrical Engineering, which is the birthplace of the first electronic general-purpose Turing-complete digital computer, ENIAC, in 1946.

    During the latter half of the 20th century the school continued to break new ground. In 1958, Barbara G. Mandell became the first woman to enroll as an undergraduate in the School of Engineering. In 1965, the university acquired two sites that were formerly used as U.S. Army Nike Missile Base (PH 82L and PH 82R) and created the Valley Forge Research Center. In 1976, the Management and Technology Program was created. In 1990, a Bachelor of Applied Science in Biomedical Science and Bachelor of Applied Science in Environmental Science were first offered, followed by a master’s degree in Biotechnology in 1997.

    The school continues to expand with the addition of the Melvin and Claire Levine Hall for computer science in 2003, Skirkanich Hall for Bioengineering in 2006, and the Krishna P. Singh Center for Nanotechnology in 2013.

    Academics

    Penn’s School of Engineering and Applied Science is organized into six departments:

    Bioengineering
    Chemical and Biomolecular Engineering
    Computer and Information Science
    Electrical and Systems Engineering
    Materials Science and Engineering
    Mechanical Engineering and Applied Mechanics

    The school’s Department of Bioengineering, originally named Biomedical Electronic Engineering, consistently garners a top-ten ranking at both the undergraduate and graduate level from U.S. News & World Report. The department also houses the George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace (aka Biomakerspace) for training undergraduate through PhD students. It is Philadelphia’s and Penn’s only Bio-MakerSpace and it is open to the Penn community, encouraging a free flow of ideas, creativity, and entrepreneurship between Bioengineering students and students throughout the university.

    Founded in 1893, the Department of Chemical and Biomolecular Engineering is “America’s oldest continuously operating degree-granting program in chemical engineering.”

    The Department of Electrical and Systems Engineering is recognized for its research in electroscience, systems science and network systems and telecommunications.

    Originally established in 1946 as the School of Metallurgical Engineering, the Materials Science and Engineering Department “includes cutting edge programs in nanoscience and nanotechnology, biomaterials, ceramics, polymers, and metals.”

    The Department of Mechanical Engineering and Applied Mechanics draws its roots from the Department of Mechanical and Electrical Engineering, which was established in 1876.

    Each department houses one or more degree programs. The Chemical and Biomolecular Engineering, Materials Science and Engineering, and Mechanical Engineering and Applied Mechanics departments each house a single degree program.

    Bioengineering houses two programs (both a Bachelor of Science in Engineering degree as well as a Bachelor of Applied Science degree). Electrical and Systems Engineering offers four Bachelor of Science in Engineering programs: Electrical Engineering, Systems Engineering, Computer Engineering, and the Networked & Social Systems Engineering, the latter two of which are co-housed with Computer and Information Science (CIS). The CIS department, like Bioengineering, offers Computer and Information Science programs under both bachelor programs. CIS also houses Digital Media Design, a program jointly operated with PennDesign.

    Research

    Penn’s School of Engineering and Applied Science is a research institution. SEAS research strives to advance science and engineering and to achieve a positive impact on society.

    U Penn campus

    Academic life at University of Pennsylvania is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946. In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences; 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University and Columbia University. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University, William & Mary, Yale Unversity, and The College of New Jersey—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health.

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University and Cornell University (Harvard University did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering.

    ENIAC UPenn

    It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
  • richardmitnick 1:40 pm on December 6, 2022 Permalink | Reply
    Tags: "People and places at Penn Research", Alice Kate Li, Architecture using biomaterials, DumoLab, From Charles Addams Fine Arts Hall to the Schuylkill River four researchers share their science and their spaces., Laia Mogas-Soldevila, , , Poethig Lab, , Roderick B. Gagne, Scott Poethig, The BioPond, The University of Pennsylvania   

    From “Penn Today” At The University of Pennsylvania : “People and places at Penn Research” 

    From “Penn Today”

    at

    U Penn bloc

    The University of Pennsylvania

    12.5.22
    Kristina García – Writer
    Eric Sucar – Photographer

    From Charles Addams Fine Arts Hall to the Schuylkill River four researchers share their science and their spaces.

    1
    Clockwise from top left, Alice Kate Li, Laia Mogas-Soldevila, Erick Gagne, and Scott Poethig introduce their campus research workspaces.

    Laia Mogas-Soldevila is surrounded by possibilities—leather made from plants, ribbons of lattice that can filter air, sand structures that could replace concrete and rebar. She and the research team at DumoLab are experimenting with architecture using biomaterials that are healthy for humans and sustainable for the planet. Mogas-Soldevila is one of four researchers who share their science and their spaces in the fourth installment of People and Places at Penn.

    From robotics on the Schuylkill River to chronic wasting disease in Pennsylvania woodlands to a basement grow chamber near the BioPond, these individuals are searching for new ways to understand wildlife ecology, environmental engineering, sustainable architecture, and plant biology.

    Laia Mogas-Soldevila, DumoLab

    Laia Mogas-Soldevila’s office is a modern-day curiosity cabinet. Seed pods, feathers, cocoons, and barnacles coexist alongside science fiction offerings: a translucent, shell-like substance that curls up and stretches out again without cracking, a pink-and-orange, hexagonal-patterned fabric that feels like high-sheen leather, and a perforated, plastic-looking material with a snakeskin motif. But of course, nothing here is plastic or leather. It’s all biomaterials, reverse-engineered to make everyday objects that will biodegrade after they’ve fulfilled their purpose.

    2
    Laia Mogas-Soldevila in Meyerson Hall’s studio space looks up through “performative beacons,” student projects using lightweight natural materials.

    Mogas-Soldevila is assistant professor of graduate architecture at the Weitzman School of Design and her work explores material design. Using nature as inspiration, Mogas-Soldevila repurposes biomaterials to form everyday objects out of silk, cellulose, sand, and shrimp skins—everything is fair game, as long as it’s biodegradable.

    “Everything that we do is water-based,” Mogas-Soldevila says. “You, any human, is assembled in a water-based environment, in our mother’s womb. All this water-based fabrication already happens in nature, all the time.”

    Her lab has created a water-based gel that feels like plastic when it dries, but will degrade when it gets wet again. The hope is that this material could replace petroleum-based products, Mogas-Soldevila says. “It’s the plastic bag that you can use a couple of days and then the third day, it’s almost cracked.”

    3
    Mogas-Soldevila, a newly appointed professor at the Weitzman School of Design, creates biomaterials for architectural use, merging design with science. “If it was not beautiful, we would not do it,” she says.

    Originally from Spain, Mogas-Soldevila’s first advanced degree was in architecture. But she graduated during a construction crisis, she says. “I had to change gears. What else was out there?”

    Mogas-Soldevila earned an interdisciplinary Ph.D. working within a biomedical engineering lab, integrating biology and design at Tufts University, and two Master of Science degrees in design computation and digital fabrication from Massachusetts Institute of Technology.

    Now at Penn, “my intent is to bring it all back to architecture,” Mogas-Soldevila says. She wants to scale up, making these materials affordable, durable, and accessible. Her DumoLab Research group, housed in Charles Addams Fine Arts Hall, is a room with 3-D printers and Hobart mixers that looks like a mix of an industrial bakery, an art studio, and a technology lab.

    Everything DumoLab makes has to have aesthetic value. “If it was not beautiful, we would not do it,” Mogas-Soldevila says. She’s exploring materials that could replace leather, both in upholstery and in clothing, and alternatives for construction material, like concrete.

    Together with a team of Penn undergraduates, Mogas-Soldevila will spend her summer building a dome structure from their new “concrete,” which has the color and texture of earth, a substance made not only of sand, but also biopolymers from shrimp shells, algae, calcium, and corn, along with natural fibers like flax, bamboo, and burlap. It looks like caramelized sugar and weighs like lead.

    And, like everything else, the concrete substitute is water soluble. “If it comes in, it must go back to Earth without toxicity. And that’s a challenge,” Mogas-Soldevila says. A “decade, multi-decade challenge. That’s why it’s difficult. But it’s going to be very rewarding if we get there.”
    ________________________________________________________________
    Scott Poethig, Poethig Lab

    4
    Scott Poethig in his office overlooking the BioPond.

    Born on the windy shores of Lake Erie in Buffalo, New York, Scott Poethig was quickly whisked away to tropical Manila by his parents, both Presbyterian missionaries. They wanted to immerse their son in Filipino culture and society, enrolling him in a local school. “In our biology class, when we had to dissect a frog, we had to bring the frog,” Poethig says.

    For the last 40 years, Poethig has found a home at Penn as the John H. and Margaret B. Fassitt Professor of plant biology in the School of Arts & Sciences. He studies the transition between juvenile and adult development—everything from birth to puberty.

    “Almost every aspect of the plant changes during the juvenile-to-adult transition,” Poethig says. “But, for many years, the vast majority of plant biologists didn’t know that [this transition] exists and certainly didn’t believe it was important.”

    5
    Poethig in one grow chamber filled with Arabidopsis thaliana (left) and in his laboratory (right).

    As it turns out, this transition controls many other processes, Poethig says. Photosynthetic efficiency differs, disease resistance varies, and almost every aspect of the shape of a plant—from its branching pattern to leaf shape—is differentially expressed in a juvenile plant, compared to its mature state.

    Poethig discovered which gene controls maturation—a piece of small RNA called miR156. A large presence of miR156 suppresses the adult genes during the juvenile phase. When miR156 decreases, plants transition to the adult stage. Environmental impacts affect this as well, he says. Shade, for instance, delays the process.

    Since 2006, Poethig has conducted his research at the Carolyn Lynch Laboratory, where ceiling-height glass windows look out onto Kaskey Park and the BioPond, framing a panoply of native species and their horticultural guests. In the fall, asters and toad lilies bloom in the understory. Tulip popular leaves yellow and fall, wafting down to rest on the understory.

    Here, Poethig, three post-doctoral students, and one undergraduate conduct experiments on Arabidopsis thaliana, an inconspicuous, weedy-looking plant that, upon maturation, shoots up a flowering, foot-long stalk from a cluster of serrated leaves—and promptly dies.

    With A. thaliana, the team is currently studying what Poethig calls “the master regulator of the final switch—reproduction.”

    Every organism, both plants and animals, go through two major changes: somatic, or body change, and reproductive maturation, he says. “One of the big questions is, what is the relationship between vegetative phase change—the type of leaves the plant makes—and reproductive competence?”

    People assume that physical maturation and reproductive competence are part of the same process, Poethig says, meaning that a plant will flower when it looks like an adult. “That’s what’s been assumed in plants for over 100 years,” he says. At Lynch Laboratory, results from the A. thaliana experiments show that these two processes are independently regulated. While miR156 controls many aspects of plant development, it does not inhibit reproduction.
    ________________________________________________________________
    Alice Kate Li, Underwater Weather

    6
    Alice Kate Li (center) and her six member team work on deploying the autonomous surface vehicle (ASV) with an on-board sensor suite, designed and tested with Yue Mao, Sixuan Liu, Sandeep Manjanna, Jasleen Dhanoa, Bharg Mehta, and Torrie Edwards, using a pulley system.

    On an early morning in late October, Alice Kate Li and five teammates bundle up in hats and coats and head down to the river to deploy a 45-pound robot. The project, called Underwater Weather, uses an autonomous surface vehicle kitted out with flame-red kayak pontoons to collect data on river sediment and flow dynamics, along with riverbed structure, tidal cycles, and storm flooding.

    While it may look static, the Schuylkill River is tidally influenced, with about a five-foot difference between high-tide and low-tide, says Li, a Ph.D. candidate in the School of Engineering and Applied Sciences who works on Underwater Weather. The project is part of the ScalAR Lab at the General Robotics, Automation, Sensing & Perception (GRASP) Lab, housed in the Pennovation Center.

    Information the Underwater Weather team gathers could allow them to predict the impact of floods on urban infrastructure (like bridges and piers), the river ecosystem, and drinking water quality. “With all this data that we’re collecting, we should be able to model the dynamics—but also then extrapolate to make predictions on environmental changes, while climate change causes more frequent tornadoes and hurricanes, and therefore floods,” Li says.

    7
    (Left) Ph.D. candidate Victoria Edwards in a kayak, who follows the ASV during deployments, receives tools from Jeremy Wang, a design and mechatronics engineer for the GRASP Lab. (Right) Li sets up the monitoring system.

    True to the GRASP Lab’s collaborative nature, the Underwater Weather team is working with Douglas Jerolmack and Hugo Ulloa in the Department of Earth and Environmental Science, who will use the amalgamated data to better understand river dynamics. “I really want my work to be impactful,” Li says. “I would love to take this data and, in the future, find out it is valuable for understanding the potential impacts of climate change.”

    Originally from the south of England, Li spent her high school years in Hong Kong before moving to California for college. She spent two years at a community college before heading to the University of California, Irvine to study mechanical engineering. Now in her third year of the electrical and systems engineering doctoral program at Penn, Li is working on active sensing—creating robots that can make autonomous decisions in real time while they’re out in the field.

    The GRASP Lab is a great place to do this work, she says. “I think a lot of it is the people, the environment as well—it’s highly collaborative and welcoming.”

    The Lab’s large open space facilitates conversation, Li says. Everyone is “happy to discuss ideas that probably have nothing to do with their research,” she says, which makes students feel connected to others and their work.

    Doctoral work can be lonely, Li says. “You can feel like, ‘Oh, what did I get myself into?’ But this kind of environment allows for people to stay sane, to stay motivated and inspired.”
    ________________________________________________________________
    Roderick B. Gagne, Wildlife Futures Program

    8
    Roderick “Erick” B. Gagne on the New Bolton Center campus in Kennett Square, Pennsylvania. (Image: Hannah Kleckner Hall)

    It’s autumn at the School of Veterinary Medicine’s New Bolton Center in Kennett Square and the rolling hills of Chester County, Pennsylvania transmuted into a tapestry of green and gold, if only for a few weeks. Placid cows dot the hills, hemmed in by white fences. A murmuration of starlings undulates in the sky.

    Tucked off a gravel road on is the Wildlife Futures Program, which operates out of a stone farmhouse from 1792 and works in partnership with the Pennsylvania Game Commission on disease surveillance, management, and research in wildlife populations across the state.

    The program works on a variety of diseases, including chronic wasting disease (CWD), a fatal neurological illness that affects a variety of members of the deer family and is transmitted by animal-to-animal contact, including through saliva, feces, and carcasses. The illness is caused by misfolded proteins, called prions. There is currently no vaccine, no treatment, and no cure. Once CWD is established, it can spread within area herds.

    The Wildlife Futures team uses the enzyme-linked immunosorbent assay (ELISA) to detect protease-resistant proteins—a trait characteristic of prions—in CWD, says Roderick “Erick” B. Gagne, assistant professor of wildlife disease ecology. If positive, they administer an immunohistochemistry (IHC) screening, where a pathologist looks at a trimmed and stained piece of tissue under a microscope to look for look for evidence of binding with a prion-specific antibody. “That’s the gold standard,” Gagne says

    9
    Gagne works at his desk (left) and monitors test results (right). (Images: Hannah Kleckner Hall)

    The team is also experimenting with the real-time quaking-induced conversion (RT-Quic) test, which is more sensitive than ELISA, Gagne says—similar to a real-time COVID PCR test.

    “The potential is for early detection of CWD,” he says. “We’re looking at where the prion is in animals in the wild, and then trying to address, or start to think about, how it’s getting there.”

    Pennsylvania’s deer hunting season is their busiest time of year. The 27-member team spends months gearing up, hiring additional staff and buying lab equipment and supplies. By the first Saturday after Thanksgiving, it’s all hands on deck, says Gagne. The program processes thousands of samples per week, he says, each from separately tagged white-tailed deer.

    To do so, the Wildlife Futures Program works collaboratively with management agencies, developing research questions together and applying novel approaches to find solutions. “Disease is becoming increasingly recognized as something that wildlife management agencies need to deal with,” Gagne says. “I envision this academic and state agency partnership only increasing. It’s a really good roadmap to actively solve urgent and immediate issues.”

    Gagne is a new hire, not quite two years into his position, which he accepted just before the birth of his first child. With a full beard and a quiet demeanor, Gagne is here to put down roots, to help mold the program’s future. It has “a real, tangible feeling—like your work is making a difference,” he says. “It’s kind of exciting to see just how quickly it can take shape. And then having that happening at a university like Penn just really leverages the potential of what we can do.”

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Penn campus

    Academic life at University of Pennsylvania is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946. In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences; 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University and Columbia University. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University, William & Mary, Yale Unversity, and The College of New Jersey—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health.

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University and Cornell University (Harvard University did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering.

    ENIAC UPenn

    It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
  • richardmitnick 4:45 pm on December 5, 2022 Permalink | Reply
    Tags: "Microlaser Chip Adds New Dimensions to Quantum Communication", A quantum bit in a state of superposition greater than two levels is called a "qudit"., , Bits and Qubits and Qudits, , Quantum communication uses photons in tightly controlled states of superposition., , , Researchers at Penn Engineering have created a chip that outstrips the security and robustness of existing quantum communications hardware., Superposition makes it so a quantum pulse cannot be copied., The Feng Lab device’s four-level qudits enable significant advances in quantum cryptography raising the maximum secrete key rate for information exchange from 1 bit per pulse to 2 bits per pulse., The Physics of Cybersecurity, , The technology communicates in “qudits” doubling the quantum information space of any previous on-chip laser., The University of Pennsylvania, With only two levels of superposition the qubits used in today’s quantum communication technologies have limited storage space and low tolerance for interference.   

    From The School of Engineering and Applied Science At The University of Pennsylvania: “Microlaser Chip Adds New Dimensions to Quantum Communication” 

    From The School of Engineering and Applied Science

    At

    U Penn bloc

    The University of Pennsylvania

    11.21.22 [They are late, not me. I just got this.]
    Devorah Fischler

    1
    With only two levels of superposition the qubits used in today’s quantum communication technologies have limited storage space and low tolerance for interference. The Feng Lab’s hyperdimensional microlaser (above) generates qudits, photons with four simultaneous levels of information. The increase in dimension makes for robust quantum communication technology better suited for real-world applications.

    Researchers at Penn Engineering have created a chip that outstrips the security and robustness of existing quantum communications hardware. Their technology communicates in “qudits” doubling the quantum information space of any previous on-chip laser.

    Liang Feng, Professor in the Departments of Materials Science and Engineering (MSE) and Electrical Systems and Engineering (ESE), along with MSE postdoctoral fellow Zhifeng Zhang and ESE Ph.D. student Haoqi Zhao, debuted the technology in a recent study published in Nature [below]. The group worked in collaboration with scientists from the Polytechnic University of Milan, the Institute for Cross-Disciplinary Physics and Complex Systems, Duke University and the City University of New York (CUNY).

    Bits and Qubits and Qudits

    While non-quantum chips store, transmit and compute data using bits, state-of-the-art quantum devices use qubits. Bits can be 1s or 0s, while qubits are units of digital information capable of being both 1 and 0 at the same time. In quantum mechanics, this state of simultaneity is called “superposition.”

    A quantum bit in a state of superposition greater than two levels is called a “qudit” to signal these additional dimensions.

    “In classical communications,” says Feng, “a laser can emit a pulse coded as either 1 or 0. These pulses can easily be cloned by an interceptor looking to steal information and are therefore not very secure. In quantum communications with qubits, the pulse can have any superposition state between 1 and 0. Superposition makes it so a quantum pulse cannot be copied. Unlike algorithmic encryption, which blocks hackers using complex math, quantum cryptography is a physical system that keeps information secure.”

    Qubits, however, aren’t perfect. With only two levels of superposition, qubits have limited storage space and low tolerance for interference.

    The Feng Lab device’s four-level qudits enable significant advances in quantum cryptography raising the maximum secrete key rate for information exchange from 1 bit per pulse to 2 bits per pulse. The device offers four levels of superposition and opens the door to further increases in dimension.

    “The biggest challenge,” says Zhang, “was the complexity and non-scalability of the standard setup. We already knew how to generate these four-level systems, but it required a lab and many different optical tools to control all the parameters associated with the increase in dimension. Our goal was to achieve this on a single chip. And that’s exactly what we did.”

    The Physics of Cybersecurity

    Quantum communication uses photons in tightly controlled states of superposition. Properties such as location, momentum, polarization and spin exist as multiplicities at the quantum level, each of which is governed by probabilities. These probabilities describe the likelihood of a quantum system—an atom, a particle, a wave—taking on a single attribute when measured.

    In other words, quantum systems are neither here nor there. They are both here and there. It is only the act of observation—detecting, looking, measuring—that causes a quantum system to take on a fixed property. Like a subatomic game of Statues, quantum superpositions take on a single state as soon as they are observed, making it impossible to intercept them without detection or copy them.

    The hyperdimensional spin-orbit microlaser builds on the team’s earlier work with vortex microlasers, which sensitively tune the orbital angular momentum (OAM) of photons. The most recent device upgrades the capabilities of the previous laser by adding another level of command over photonic spin.

    This additional level of control—being able to manipulate and couple OAM and spin—is the breakthrough that allowed them to achieve a four-level system.

    The difficulty of controlling all these parameters at once is what had been hindering qudit generation in integrated photonics and represents the major experimental accomplishment of the team’s work.

    “Think of the quantum states of our photon as two planets stacked on top of each other,” says Zhao. “Before, we only had information about these planets’ latitude. With that, we could create a maximum of two levels of superposition. We didn’t have enough information to stack them into four. Now, we have longitude as well. This is the information we need to manipulate photons in a coupled way and achieve dimensional increase. We are coordinating each planet’s rotation and spin and holding the two planets in strategic relation to each other.”

    Quantum Cryptography with Alice, Bob and Eve

    Quantum cryptography relies on superposition as a tamper-evident seal. In a popular cryptography protocol known as Quantum Key Distribution (QKD), randomly generated quantum states are sent back and forth between sender and receiver to test the security of a communications channel.

    If sender and receiver (always Alice and Bob in the “storyworld” of cryptography) discover a certain amount of discrepancy between their messages, they know that someone has attempted to intercept their message. But, if the transmission remains mostly intact, Alice and Bob understand the channel to be safe and use the quantum transmission as a key for encrypted messages.

    How does this improve on non-quantum communication security? If we imagine the photon as a sphere rotating upwards, we can get a rough idea of how a photon might classically encode the binary digit 1. If we imagine it rotating downwards, we understand 0.

    When Alice sends classical photons coded in bits, Eve the eavesdropper can steal, copy and replace them without Alice or Bob realizing. Even if Eve cannot decrypt the data she has stolen, she may be squirreling it away for a near future when advances in computing technology might allow her to break through.

    Quantum communication adds a stronger layer of security. If we imagine the photon as a sphere rotating upwards and downwards at the same time, coding 1 and 0 simultaneously, we get an idea of how a qubit maintains dimension in its quantum state.

    When Eve tries to steal, copy and replace the qubit, her ability to capture the information will be compromised and her tampering will be apparent in the loss of superposition. Alice and Bob will know the channel is not secure and will not use a security key until they can prove that Eve has not intercepted it. Only then will they send the intended encrypted data using an algorithm enabled by the qubit key.

    However, while the laws of quantum physics may prevent Eve from copying the intercepted qubit, she may be able to disturb the quantum channel. Alice and Bob will need to continue generating keys and sending them back and forth until she stops interfering. Accidental disturbances that collapse superposition as the photon travels through space also contribute to interference patterns.

    A qubit’s information space, limited to two levels, has a low tolerance for these errors.

    To solve these problems, quantum communication requires additional dimensions. If we imagine a photon rotating (the way the earth rotates around the sun) and spinning (the way the earth spins on its own axis) in two different directions at once, we get a sense of how the Feng Lab qudits work.

    If Eve tries to steal, copy and replace the qudit, she will not be able to extract any information and her tampering will be clear. The message sent will have a much greater tolerance for error—not only for Eve’s interference, but also for accidental flaws introduced as the message travels through space. Alice and Bob will be able to efficiently and securely exchange information.

    “There is a lot of concern,” says Feng, “that mathematical encryption, no matter how complex, will become less and less effective because we are advancing so quickly in computing technologies. Quantum communication’s reliance on physical rather than mathematical barriers make it immune to these future threats. It’s more important than ever that we continue to develop and refine quantum communication technologies.”

    This research was supported by the US Army Research Office (ARO) (W911NF-19-1-0249 and W911NF-21-1-0148), National Science Foundation (NSF) (ECCS-1932803, ECCS-1842612, OMA-1936276 and PHY-1847240), Defense Advanced Research Projects Agency (DARPA) (W91NF-21-1-0340), Office of Naval Research (ONR) (N00014-20-1-2558) and King Abdullah University of Science & Technology (OSR-2020-CRG9-4374.3). L.F. also acknowledges the support from Sloan Research Fellowship. This work was partially supported by NSF through the University of Pennsylvania Materials Research Science and Engineering Center (MRSEC) (DMR-1720530) and carried out in part at the Singh Center for Nanotechnology, which is supported by the NSF National Nanotechnology Coordinated Infrastructure Program under grant NNCI-1542153.

    Science paper:
    Nature

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The School of Engineering and Applied Science is an undergraduate and graduate school of The University of Pennsylvania. The School offers programs that emphasize hands-on study of engineering fundamentals (with an offering of approximately 300 courses) while encouraging students to leverage the educational offerings of the broader University. Engineering students can also take advantage of research opportunities through interactions with Penn’s School of Medicine, School of Arts and Sciences and the Wharton School.

    Penn Engineering offers bachelors, masters and Ph.D. degree programs in contemporary fields of engineering study. The nationally ranked bioengineering department offers the School’s most popular undergraduate degree program. The Jerome Fisher Program in Management and Technology, offered in partnership with the Wharton School, allows students to simultaneously earn a Bachelor of Science degree in Economics as well as a Bachelor of Science degree in Engineering. SEAS also offers several masters programs, which include: Executive Master’s in Technology Management, Master of Biotechnology, Master of Computer and Information Technology, Master of Computer and Information Science and a Master of Science in Engineering in Telecommunications and Networking.

    History

    The study of engineering at The University of Pennsylvania can be traced back to 1850 when the University trustees adopted a resolution providing for a professorship of “Chemistry as Applied to the Arts”. In 1852, the study of engineering was further formalized with the establishment of the School of Mines, Arts and Manufactures. The first Professor of Civil and Mining Engineering was appointed in 1852. The first graduate of the school received his Bachelor of Science degree in 1854. Since that time, the school has grown to six departments. In 1973, the school was renamed as the School of Engineering and Applied Science.

    The early growth of the school benefited from the generosity of two Philadelphians: John Henry Towne and Alfred Fitler Moore. Towne, a mechanical engineer and railroad developer, bequeathed the school a gift of $500,000 upon his death in 1875. The main administration building for the school still bears his name. Moore was a successful entrepreneur who made his fortune manufacturing telegraph cable. A 1923 gift from Moore established the Moore School of Electrical Engineering, which is the birthplace of the first electronic general-purpose Turing-complete digital computer, ENIAC, in 1946.

    During the latter half of the 20th century the school continued to break new ground. In 1958, Barbara G. Mandell became the first woman to enroll as an undergraduate in the School of Engineering. In 1965, the university acquired two sites that were formerly used as U.S. Army Nike Missile Base (PH 82L and PH 82R) and created the Valley Forge Research Center. In 1976, the Management and Technology Program was created. In 1990, a Bachelor of Applied Science in Biomedical Science and Bachelor of Applied Science in Environmental Science were first offered, followed by a master’s degree in Biotechnology in 1997.

    The school continues to expand with the addition of the Melvin and Claire Levine Hall for computer science in 2003, Skirkanich Hall for Bioengineering in 2006, and the Krishna P. Singh Center for Nanotechnology in 2013.

    Academics

    Penn’s School of Engineering and Applied Science is organized into six departments:

    Bioengineering
    Chemical and Biomolecular Engineering
    Computer and Information Science
    Electrical and Systems Engineering
    Materials Science and Engineering
    Mechanical Engineering and Applied Mechanics

    The school’s Department of Bioengineering, originally named Biomedical Electronic Engineering, consistently garners a top-ten ranking at both the undergraduate and graduate level from U.S. News & World Report. The department also houses the George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace (aka Biomakerspace) for training undergraduate through PhD students. It is Philadelphia’s and Penn’s only Bio-MakerSpace and it is open to the Penn community, encouraging a free flow of ideas, creativity, and entrepreneurship between Bioengineering students and students throughout the university.

    Founded in 1893, the Department of Chemical and Biomolecular Engineering is “America’s oldest continuously operating degree-granting program in chemical engineering.”

    The Department of Electrical and Systems Engineering is recognized for its research in electroscience, systems science and network systems and telecommunications.

    Originally established in 1946 as the School of Metallurgical Engineering, the Materials Science and Engineering Department “includes cutting edge programs in nanoscience and nanotechnology, biomaterials, ceramics, polymers, and metals.”

    The Department of Mechanical Engineering and Applied Mechanics draws its roots from the Department of Mechanical and Electrical Engineering, which was established in 1876.

    Each department houses one or more degree programs. The Chemical and Biomolecular Engineering, Materials Science and Engineering, and Mechanical Engineering and Applied Mechanics departments each house a single degree program.

    Bioengineering houses two programs (both a Bachelor of Science in Engineering degree as well as a Bachelor of Applied Science degree). Electrical and Systems Engineering offers four Bachelor of Science in Engineering programs: Electrical Engineering, Systems Engineering, Computer Engineering, and the Networked & Social Systems Engineering, the latter two of which are co-housed with Computer and Information Science (CIS). The CIS department, like Bioengineering, offers Computer and Information Science programs under both bachelor programs. CIS also houses Digital Media Design, a program jointly operated with PennDesign.

    Research

    Penn’s School of Engineering and Applied Science is a research institution. SEAS research strives to advance science and engineering and to achieve a positive impact on society.

    U Penn campus

    Academic life at University of Pennsylvania is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946. In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences; 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University and Columbia University. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University, William & Mary, Yale Unversity, and The College of New Jersey—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health.

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University and Cornell University (Harvard University did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering.

    ENIAC UPenn

    It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
  • richardmitnick 5:01 pm on November 30, 2022 Permalink | Reply
    Tags: "Tiny Swimming Robots Can Restructure Materials on a Microscopic Level", , , , Microrobots, , , Since they’re too small for their own onboard computers microrobots move about by means of an external magnetic force., , The University of Pennsylvania   

    From The School of Engineering and Applied Science At The University of Pennsylvania: “Tiny Swimming Robots Can Restructure Materials on a Microscopic Level” 

    From The School of Engineering and Applied Science

    At

    U Penn bloc

    The University of Pennsylvania

    11.15.22
    Melissa Pappas

    1
    The researchers’ microrobots use “physical intelligence” to exert control over nearby objects. By spinning and disrupting the alignment of the liquid crystal surrounding them, the robots can attract smaller particles to their edges, then precisely deposit them.

    Controlling microscopic processes is inherently challenging. The everyday tools we use to manipulate matter on the macroscale can’t simply be shrunk down to the size of cell, and even if they could, the physical forces they rely on work differently when their targets are measured in nanometers. But while it’s no easy feat, attaining this type of control would pay enormous dividends: whether it’s transporting drugs to tumors for precise therapies, or making functional materials out of the liquid-suspended building blocks known as colloids, Penn Engineers are working to make these processes faster, safer and more reliable.

    One approach for controlling these processes is through the use of microrobots.

    We typically think of robots as computerized machines like those on assembly lines or in warehouses, programmed to move cargo and to build complex structures like automobiles and cellphones. However, programming a machine smaller than a microchip presents another kind of challenge. Too small for computerization, robots on this scale need to be designed in a completely different way — and adhere to completely different sets of physical and chemical laws — than their bigger counterparts.

    Since they’re too small for their own onboard computers microrobots move about by means of an external magnetic force. And to manipulate equally small cargo, they need to take advantage of the different physical and chemical laws that rule the microscale.

    At those sizes, every object is greatly influenced by the molecules surrounding it. Whether they are surrounded by gas, like the ambient atmosphere, or immersed in a liquid, microrobots must be designed to exploit this influence through a concept known as “physical intelligence.”

    By understanding the system, the surrounding media and the particles within it, physically intelligent microrobots can perform diverse tasks.

    Kathleen Stebe, Richer & Elizabeth Goodwin Professor in Chemical and Biomolecular Engineering and Mechanical Engineering and Applied Mechanics, Tianyi Yao, a former Ph.D. student in her lab, Qi Xing Zhang, a current Ph.D. student, and collaborators in the group of Professor Miha Ravnik at the University of Ljubljana are conducting fundamental research that will lay the groundwork for understanding these small-scale interactions in a colloidal fluid of nematic liquid crystals (NLCs), the fluid that makes up each pixel in a liquid crystal display (LCD) screen.

    “Nematic liquid crystals exist as a special phase, a structured fluid that is neither liquid nor solid,” says Stebe. “NLCs consist of elongated molecules that self-align in a configuration that requires the least amount of energy. Think of shaking a pan of rice; the grains all align. When you disturb the nematic alignment by introducing microrobots or colloidal cargo, you get really interesting dynamics that you don’t see in water, for example. It is the physics of NLCs that allow us to investigate these unique interactions.”

    In one study, published in Advanced Functional Materials [below], the research team describes a four-armed, magnetically controlled microrobot that can swim, carry cargo and actively restructure particles in this complex fluid.

    “We started with a complex shape, which produced complex behaviors,” says Stebe. “Here, the microrobot is being controlled by an external magnetic field and is using its physical intelligence to pick up a microparticle as cargo, then it bats it around as it swims to the textured surface. The grooves in the surface material are the perfect size to attract and hold the particle. In fact, it was that surface design that inspired the design of the four-armed microrobot. We took advantage of the physical shape, surface chemistry and special dynamics of the colloid in NLCs to control it.”

    “But, the more we observed these sophisticated functions, the more we didn’t understand,” she adds. “We had to turn back to the fundamentals to actually explain what was going on here.”

    How was this robot able to swim? How was it able to hold and move particles? In another study, published in Science Advances [below], the team answered those questions with a microrobot of a simpler shape.

    “The disk shape allowed us to better understand the microbot’s swimming ability,” says Stebe. “Here we can see that as one side of the disk tilts upwards, there is a topological defect that is created underneath it. The interaction between the topological defect and the disk itself creates an energy gradient that allows for self-propulsion of the disk.”

    The reason for the topological defect which allows for the swimming function of the robot is because of the complex organization of the NLCs, which differs dramatically from disorganized liquids like water.

    “Using physics of nematic liquid crystals,” says Yao, the lead author of both studies, “we can build physically intelligent microrobotic systems. We can make long-range interactions, tune binding strengths and reconfigure the space. While we have proven these interactions on the microscale, the prevailing physics are also effective on very small scales, on the order of 30–50 nanometers.”

    Being able to manipulate processes on this level is groundbreaking, and understanding how robotic systems are able to perform tasks in an indirect way, considering the fluid dynamics and physical interactions of the media as a part of the microrobot’s design, is key.

    Stebe and her team are now able to imagine real-world applications for this technology in the optical device industry as well as many other fields. Smart materials, aware of their environment, may be designed using temperature and light as controls for microrobotic tasks.

    “Together with dedicated colleagues and graduate students, we have been working hard on this technology, and are excited to see years of work come to fruition,” she says. “We are now standing on the edge of real applications and ready to explore.”

    Science papers:
    Advanced Functional Materials
    Science Advances
    See the science papers for instructive material with images.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The School of Engineering and Applied Science is an undergraduate and graduate school of The University of Pennsylvania. The School offers programs that emphasize hands-on study of engineering fundamentals (with an offering of approximately 300 courses) while encouraging students to leverage the educational offerings of the broader University. Engineering students can also take advantage of research opportunities through interactions with Penn’s School of Medicine, School of Arts and Sciences and the Wharton School.

    Penn Engineering offers bachelors, masters and Ph.D. degree programs in contemporary fields of engineering study. The nationally ranked bioengineering department offers the School’s most popular undergraduate degree program. The Jerome Fisher Program in Management and Technology, offered in partnership with the Wharton School, allows students to simultaneously earn a Bachelor of Science degree in Economics as well as a Bachelor of Science degree in Engineering. SEAS also offers several masters programs, which include: Executive Master’s in Technology Management, Master of Biotechnology, Master of Computer and Information Technology, Master of Computer and Information Science and a Master of Science in Engineering in Telecommunications and Networking.

    History

    The study of engineering at The University of Pennsylvania can be traced back to 1850 when the University trustees adopted a resolution providing for a professorship of “Chemistry as Applied to the Arts”. In 1852, the study of engineering was further formalized with the establishment of the School of Mines, Arts and Manufactures. The first Professor of Civil and Mining Engineering was appointed in 1852. The first graduate of the school received his Bachelor of Science degree in 1854. Since that time, the school has grown to six departments. In 1973, the school was renamed as the School of Engineering and Applied Science.

    The early growth of the school benefited from the generosity of two Philadelphians: John Henry Towne and Alfred Fitler Moore. Towne, a mechanical engineer and railroad developer, bequeathed the school a gift of $500,000 upon his death in 1875. The main administration building for the school still bears his name. Moore was a successful entrepreneur who made his fortune manufacturing telegraph cable. A 1923 gift from Moore established the Moore School of Electrical Engineering, which is the birthplace of the first electronic general-purpose Turing-complete digital computer, ENIAC, in 1946.

    During the latter half of the 20th century the school continued to break new ground. In 1958, Barbara G. Mandell became the first woman to enroll as an undergraduate in the School of Engineering. In 1965, the university acquired two sites that were formerly used as U.S. Army Nike Missile Base (PH 82L and PH 82R) and created the Valley Forge Research Center. In 1976, the Management and Technology Program was created. In 1990, a Bachelor of Applied Science in Biomedical Science and Bachelor of Applied Science in Environmental Science were first offered, followed by a master’s degree in Biotechnology in 1997.

    The school continues to expand with the addition of the Melvin and Claire Levine Hall for computer science in 2003, Skirkanich Hall for Bioengineering in 2006, and the Krishna P. Singh Center for Nanotechnology in 2013.

    Academics

    Penn’s School of Engineering and Applied Science is organized into six departments:

    Bioengineering
    Chemical and Biomolecular Engineering
    Computer and Information Science
    Electrical and Systems Engineering
    Materials Science and Engineering
    Mechanical Engineering and Applied Mechanics

    The school’s Department of Bioengineering, originally named Biomedical Electronic Engineering, consistently garners a top-ten ranking at both the undergraduate and graduate level from U.S. News & World Report. The department also houses the George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace (aka Biomakerspace) for training undergraduate through PhD students. It is Philadelphia’s and Penn’s only Bio-MakerSpace and it is open to the Penn community, encouraging a free flow of ideas, creativity, and entrepreneurship between Bioengineering students and students throughout the university.

    Founded in 1893, the Department of Chemical and Biomolecular Engineering is “America’s oldest continuously operating degree-granting program in chemical engineering.”

    The Department of Electrical and Systems Engineering is recognized for its research in electroscience, systems science and network systems and telecommunications.

    Originally established in 1946 as the School of Metallurgical Engineering, the Materials Science and Engineering Department “includes cutting edge programs in nanoscience and nanotechnology, biomaterials, ceramics, polymers, and metals.”

    The Department of Mechanical Engineering and Applied Mechanics draws its roots from the Department of Mechanical and Electrical Engineering, which was established in 1876.

    Each department houses one or more degree programs. The Chemical and Biomolecular Engineering, Materials Science and Engineering, and Mechanical Engineering and Applied Mechanics departments each house a single degree program.

    Bioengineering houses two programs (both a Bachelor of Science in Engineering degree as well as a Bachelor of Applied Science degree). Electrical and Systems Engineering offers four Bachelor of Science in Engineering programs: Electrical Engineering, Systems Engineering, Computer Engineering, and the Networked & Social Systems Engineering, the latter two of which are co-housed with Computer and Information Science (CIS). The CIS department, like Bioengineering, offers Computer and Information Science programs under both bachelor programs. CIS also houses Digital Media Design, a program jointly operated with PennDesign.

    Research

    Penn’s School of Engineering and Applied Science is a research institution. SEAS research strives to advance science and engineering and to achieve a positive impact on society.

    U Penn campus

    Academic life at University of Pennsylvania is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946. In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences; 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University and Columbia University. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University, William & Mary, Yale Unversity, and The College of New Jersey—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health.

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University and Cornell University (Harvard University did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering.

    ENIAC UPenn

    It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
  • richardmitnick 8:27 pm on November 29, 2022 Permalink | Reply
    Tags: "At the Penn Center for Innovation new discoveries for societal benefit", , The University of Pennsylvania   

    From “Penn Today” At The University of Pennsylvania : “At the Penn Center for Innovation new discoveries for societal benefit” 

    From “Penn Today”

    at

    U Penn bloc

    The University of Pennsylvania

    11.28.22
    Dee Patel

    1
    Credit: Eric Sucar

    The Penn Center for Innovation (PCI) is “the premier university innovation, venture creation, and commercialization center,” says Associate Vice Provost for Research and Managing Director John Swartley.

    The center helps translate discoveries and ideas created at Penn into new products and businesses for societal benefit.

    “I am truly excited about the future, and the opportunity and privilege of helping Penn innovators translate their ideas into real world solutions,” Swartley says. “It’s been a huge amount of work, but I’m 100% confident that we have the right team and structure to continue to accelerate innovation at Penn.”

    The Penn Center for Innovation’s Celebration of Innovation on Tuesday, Dec. 6, will honor the patent recipients from this past fiscal year, as well as select partners, inventors, and startups that made exceptional achievements. The event will take place at the Glandt Forum in the Singh Center for Nanotechnology at 3205 Walnut St. from 4 to 5:30 p.m.

    The Center also recently released its annual Year In Review. Inside this report, readers can learn more about the different ways that PCI catalyzed another record-breaking year for commercialization activity at Penn across multiple different technology sectors, further extending and expanding the University’s already prodigious global innovation impact.

    Swartley talks to Penn Today about what the Penn Center for Innovation is and some notable accomplishments and highlights.

    2
    At the December 2021 Celebration of Innovation, the Penn ICorps team describes their startup idea. (Image: Penn Center for Innovation)

    What is the Penn Center for Innovation?

    Formally launched in 2014, we help faculty, staff, and student innovators translate the discoveries and ideas they create at Penn into new products and businesses for societal impact and benefit. Unlike most licensing and commercialization offices at other universities, PCI differentiates itself as a one-stop shop for virtually every type of potential business relationship between Penn innovators and their partners in the commercial sector. The expert staff at PCI is highly adept at helping to structure mutually beneficial business arrangements across a wide range of industries and technology development interests. Every day at PCI, we help convene a variety of deals and commercial partnerships, including startup companies, corporate alliances, and technology access agreements that result in the translational advancement of important technologies and innovative business ideas created at Penn, frequently inclusive of significant inflows of sponsored research funding.

    One of the things that I often say to help explain the key difference between PCI and other more typical university technology transfer offices is that while traditional offices focus mainly on the ‘patent license’ transaction itself, PCI is more concerned with creating meaningful partnership connections and business relationships between Penn innovators and the private sector. Our philosophy is that if you get these types of vital connections right, the optimal business structure, transactional needs, and contractual agreements will naturally follow.

    Talk about some of the major accomplishments highlighted in this year’s report.

    We hit record levels in numerous categories across our key metrics dashboard in FY22. To me, this is absolute validation of the philosophical underpinnings of PCI and our single-minded focus on providing world-class client service to all our stakeholders across the University and building productive relationships with external partners. The number of executed commercial agreements is a great example of this. Prior to the launch of PCI, Penn typically entered into 200-250 commercial agreements per year, but nowadays that figure has nearly tripled, and we routinely enter into more than 700 agreements per year. These agreements are with startups and established companies alike, and they now form a broad, robust, and diverse pipeline and portfolio of commercial and translative activity.

    That is extraordinary growth, and the results of unleashing so much commercial activity is increasingly evident in the number of Penn startups that are launched and receive professional investor capital, as well as the substantial and transformative flows of licensing income back to the University that is available to further support a broad range of research activities at Penn. It’s a truly virtuous cycle that we hope will generate lasting returns for the University for many years to come.

    What is a key highlight for this fiscal year?

    There are so many highlights to choose from, but the one that really stands out for me for FY22 is the patient impact story. Penn expertise and technologies licensed from the University are key components in nearly two dozen FDA-approved drugs and devices, directly impacting and improving the lives of more than a billion human beings. These approved treatments include numerous small molecule and cell-based cancer therapies, gene therapies for genetic diseases, and a recently approved surgical device. This ever-growing list of approved treatments also includes the two most widely deployed COVID vaccines currently available, Comirnaty® and Spikevax®, both of which rely upon foundational mRNA technology discovered at Penn by Drew Weissman and Katalin Karikó.

    How does PCI help provide Penn innovations and inventors with the best chance to advance the University’s strategic goals and impact the world at large?

    The incredible and ever-expanding Penn mRNA story mentioned previously is a perfect example of how the technology nurturing, protection, and commercial partnership support provided by PCI is so vitally important to the overall innovative process at the University. At the time of Weissman’s and Karikó’s fundamental mRNA discoveries nearly two decades ago, it would have been virtually impossible to predict the immense and unprecedented impact their invention would eventually have on worldwide health, and in the midst of an unforeseen global pandemic to boot. But that is precisely what is so important about academic technology commercialization in direct support of promising early stage technologies at world-class research institutions like Penn. By encouraging, protecting, and seeking development partners for hundreds, if not thousands, of discoveries and inventions before it has become fully apparent that they will actually become products and make a societal impact, University programs like PCI play a critically important role in the overall continuum of technology development and eventual social impact.

    PCI’s model facilitates an efficient and comprehensive service for faculty through a variety of means. Talk about some of those initiatives.

    At PCI, we’re always interested in refining and expanding the range of services and products we offer to our many different innovation clients. During FY22, we were pleased to support complementary innovation efforts across the University, including programs and centers in the School of Engineering and Applied Science (SEAS), the School of Dental Medicine, and Wharton. We supported a SEAS-led initiative focused on the internet of things for agricultural technology development, and we entered into a new drug-development accelerator program with Autobahn Labs. These are just a few examples drawn from many, but they emphasize our commitment to understanding the diverse needs of our clients across the entire University and bringing new business connections and solutions to the table to meet those needs.

    Anything else you would like to add?

    I would like to take a few moments to specifically recognize my amazing staff and team at PCI who do the heavy lifting every day and deserve a large share of the credit for PCI’s achievements. I’d also like to express my sincere gratitude to my predecessor Mike Cleare, my visionary boss Dawn Bonnell, former President Amy Gutmann, and Penn’s entire executive leadership team and Board of Trustees. Their consistent support and encouragement over the last decade has been absolutely vital to ensuring the success of this groundbreaking new model in support of innovation at Penn. Of course, none of this would be possible without the amazing creativity, inventiveness, and relentless energy of Penn’s world-class faculty and research community.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Penn campus

    Academic life at University of Pennsylvania is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946. In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences; 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University and Columbia University. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University, William & Mary, Yale Unversity, and The College of New Jersey—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health.

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University and Cornell University (Harvard University did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering.

    ENIAC UPenn

    It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
  • richardmitnick 5:38 pm on November 29, 2022 Permalink | Reply
    Tags: "Stable and faster computer memory storage", , , , , Hafnium dioxide (HfO2)- a material that was found to retain a desirable property known as ferroelectricity even at the few-nanometer scale (~2nm)., HfO2 is special-it can rapidly switch between an up or down mode—corresponding to the ones and zeroes computers use—at reduced dimensions and retain this information until it is switched again., HfO2 undergoes a two-step transition resulting in a change in the arrangement of its atoms when grown on a thin film., , , Tension from being grown on a thin film and an unconventional change in HfO2’s polarization state drive a new reaction inducing an antiferroelectric state., The ability to have a material be both ferroelectric and antiferroelectric was a major surprise finding., , The University of Pennsylvania, When computer “brains” evolve they get smaller and smaller.   

    From The School of Arts & Sciences At The University of Pennsylvania: “Stable and faster computer memory storage” 

    From The School of Arts & Sciences

    At:

    U Penn bloc

    The University of Pennsylvania

    11.28.22
    Nathi Magubane

    1
    Researchers in the School of Arts & Sciences offer a new explanation for how certain materials can be grown on silicon and offer stable information storage at the nanometer scale for smaller, faster, more multifunctional processors.

    Unlike in humans, when computer “brains” evolve, they get smaller and smaller. This is because the components that perform calculations and consolidate stored information work more efficiently when there are more of them tightly packed on a chip. 

    Yet when the chip feature sizes get too small, say, to the nanometer scale, their physical and material properties can change, rendering them less reliable at doing their jobs. In the last decade, scientists have made great strides in uncovering new substances that instead become increasingly stable as they scale down, hinting at the promise of smaller storage devices that can be integrated onto silicon computer processing units (CPUs) to increase speed and functionality. 

    One such compound is hafnium dioxide (HfO2), a material that was found to retain a desirable property, known as ferroelectricity, even at the few-nanometer scale (~2nm). When a ferroelectric material is exposed to a strong enough external electric field, it becomes strongly electrically polarized, which is a state where the material has plus-minus charge dipoles in alignment. What’s great about ferroelectric materials is that this polarization persists, even if the external electric field is removed, analogous to how an iron nail can become permanently magnetized. This persistent polarization means that the material remembers the last direction it was electrically polarized.  

    What makes HfO2 special is that it can rapidly switch between an up or down mode—corresponding to the ones and zeroes computers use—at reduced dimensions and then retain this information until it is switched again. But how it’s able to achieve this feat has remained a mystery. 

    Now, a group of researchers led by Andrew M. Rappe, the Blanchard Professor of Chemistry in the School of Arts & Sciences, has uncovered how HfO2 retains its ferroelectric phase in these conditions and explains how it remains stable.

    Their research, published in Science Advances [below], details how HfO2 undergoes a two-step transition resulting in a change in the arrangement of its atoms when grown on a thin film. This allows it to “transition from one phase, which isn’t very useful, to a special one that could be useful for the next generation of information storage devices,” says co-first author of the paper, Songsong Zhou, a postdoctoral researcher in the School of Arts & Sciences.

    “The popular belief explaining the mechanism of this phase transition was that it was either a simple single proper phase transition, or a rare and complicated improper phase transition,” says Zhou. “However, we were able to present a third alternative: Tension from being grown on a thin film and an unconventional change in HfO2’s polarization state are linked together to drive a wholly new reaction that induces an antiferroelectric state that actually stabilizes HfO2’s ferroelectric state.” 

    The ability to have a material be both ferroelectric and antiferroelectric was a major surprise finding. The researchers were under the impression that these were competing states because antiferroelectric materials have their charges alternate between up and down, as opposed to the unidirectional ferroelectric charges. “Our model presents a new framework for understanding phase transitions for materials capable of retaining polarization states at the nanometer scale,” says co-first author of the paper, Jiahao Zhang, a sixth-year Ph.D. student in the chemistry department. 

    “HfO2 and a few other materials are competing to become successful computer memory materials, but all of them currently have problems,” says Rappe. “In offering a greater insight into the mechanism of ferroelectricity in HfO2, our work addresses some of these issues and paves the way for developing the next generation of materials that could someday soon integrate both processing and memory onto a single chip.”

    Next, the researchers will build on their models as they continuously merge experimental and theoretical insights to harness the nanomaterials world.

    Science paper:
    Science Advances
    See the science paper for instructive material with images.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Pennsylvania School of Arts and Sciences is the academic institution encompassing the humanities, social sciences, and natural sciences at the University of Pennsylvania.

    Formerly known as the Faculty of Arts and Sciences, the School of Arts and Sciences is an umbrella organization that is divided into three main academic components: The College of Arts & Sciences is Penn’s undergraduate liberal arts school. The Graduate Division offers post-undergraduate M.A., M.S., and Ph.D. programs. Finally, the College of Liberal and Professional Studies, originally called “College of General Studies”, is Penn’s continuing and professional education division, catered to working professionals.

    The School of Arts and Sciences contains the following departments:

    Africana Studies
    Anthropology
    Biology
    Chemistry
    Classical Studies
    Criminology
    Earth and Environmental Science
    East Asian Languages & Civilizations
    Economics
    English
    Germanic Languages and Literatures
    History
    History and Sociology of Science
    History of Art
    Linguistics
    Mathematics
    Music
    Near Eastern Languages & Civilizations
    Philosophy
    Physics and Astronomy
    Political Science
    Psychology
    Religious Studies
    Romance Languages
    Russian and East European Studies
    Sociology
    South Asia Studies

    U Penn campus

    Academic life at University of Pennsylvania is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946. In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences; 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University and Columbia University. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University, William & Mary, Yale Unversity, and The College of New Jersey—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health.

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University and Cornell University (Harvard University did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering.

    ENIAC UPenn

    It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: