Tagged: The University of Pennsylvania Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:48 pm on May 29, 2023 Permalink | Reply
    Tags: , "Folding@home - How You and Your Computer Can Play Scientist", 50000 computers are better than one., , , , , , Folding@home forms the largest supercomputer in the world., , , , , The Perelman School of Medicine, The University of Pennsylvania   

    From The Perelman School of Medicine At The University of Pennsylvania Folding@home: “Folding@home – How You and Your Computer Can Play Scientist” 

    From The Perelman School of Medicine

    At

    U Penn bloc

    The University of Pennsylvania

    5.16.23
    Alex Gardner

    1
    Two heads are better than one. The ethos behind the scientific research project Folding@home is that same idea, multiplied: 50,000 computers are better than one.

    Folding@home is a distributed computing project which is used to simulate protein folding, or how protein molecules assemble themselves into 3-D shapes.

    1
    Folding@home

    Research into protein folding allows scientists to better understand how these molecules function or malfunction inside the human body. Often, mutations in proteins influence the progression of many diseases like Alzheimer’s disease, cancer, and even COVID-19.

    Penn is home to both the computer brains and human minds behind the Folding@home project which, with its network, forms the largest supercomputer in the world [disputed below]. All of that computing power continually works together to answer scientific questions such as what areas of specific protein implicated in Parkinson’s disease may be susceptible to medication or other treatment.

    Led by Gregory Bowman, a Penn Integrates Knowledge professor of Biochemistry and Biophysics in the Perelman School of Medicine who has joint appointments in the Department of Biochemistry and Biophysics in the Perelman School of Medicine and the Department of Bioengineering in the School of Engineering and Applied Science, Folding@home is open for any individual around the world to participate in and essentially volunteer their computer to join a huge network of computers and do research.

    Using the network hub at Penn, Bowman and his team assign experiments to each individual computer which communicates with other computers and feeds info back to Philly. To date, the network is comprised of more than 50,000 computers spread across the world.

    “What we do is like drawing a map,” said Bowman, explaining how the networked computers work together in a type of system that experts call Markov state models. “Each computer is like a driver visiting different places and reporting back info on those locations so we can get a sense of the landscape.”

    Individuals can participate by signing up and then installing software to their standard personal desktop or laptop. Participants can direct the software to run in the background and limit it to a certain percentage of processing power or have the software run only when the computer is idle.

    When the software is at work, it’s conducting unique experiments designed and assigned by Bowman and his team back at Penn. Users can play scientist and watch the results of simulations and monitor the data in real time, or they can simply let their computer do the work while they go about their lives.

    Related:
    BOINC-Berkeley Infrastructure for Open Network Computing at UC-Berkeley

    BOINC computing power
    Totals
    24-hour average: 15.270 PetaFLOPS.
    Active: 44,440 volunteers. 151,719 computers [compare to folding@home’s claim at 50,000 computers to be “the largest supercomputer in the world”.

    BOINC lets you help cutting-edge science research using your computer. The BOINC app, running on your computer, downloads scientific computing jobs and runs them invisibly in the background. It’s easy and safe.

    About 30 science projects use BOINC. They investigate diseases, study climate change, discover pulsars, and do many other types of scientific research.

    The BOINC and Science United projects are located at the University of California-Berkeley and are supported by the National Science Foundation.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    About Penn Medicine

    Our history of patient care began more than two centuries ago with the founding of the nation’s first hospital, Pennsylvania Hospital, in 1751 and the nation’s first medical school at the University of Pennsylvania in 1765. Penn Medicine has pioneered medical frontiers with a staff comprised of innovators who have dedicated their lives to advancing medicine through excellence in education, research and patient care.

    When you choose Penn Medicine, you benefit from more than two centuries of the highest standards in patient care, education and research. The caliber of comfort and individual attention you receive is unmatched by any other hospital in the Mid-Atlantic region.

    Nationally Recognized

    We are consistently recognized nationally and internationally for excellence in health care. The cornerstone of our reputation is our medical and support staff, who choose to dedicate their careers to serving the needs of our patients and community.

    The Hospitals of the University of Pennsylvania — Penn Presbyterian are proud to be ranked #13 in the nation and once again the #1 hospital in Pennsylvania by U.S. News & World Report’s Honor Roll of Best Hospitals.

    Providing the Community with Resources

    We promote innovation and teaching excellence. We advance medical science through research and create the next generation of leaders in medicine. We’re constantly working towards an even more precise and personalized practice of health care.

    The results of these efforts are passed directly onto you, our patients.

    Health Equity Initiative at Penn Medicine

    At Penn, we strive to provide high quality and family-centered care for our patients and the community, and support an inclusive workforce and clinical learning environment for our employees.

    Mission and History

    U Penn campus

    Academic life at University of Pennsylvania is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946. In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences; 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University and Columbia University. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University, William & Mary, Yale Unversity, and The College of New Jersey—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health.

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University and Cornell University (Harvard University did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering.

    ENIAC UPenn

    It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
  • richardmitnick 1:58 pm on May 17, 2023 Permalink | Reply
    Tags: "Lithography-Free Photonic Chip Offers Speed and Accuracy for Artificial Intelligence", Achieving unparalleled control of light this device consists of spatially distributed optical gain and loss., , , , Photonic chips for machine learning applications have obstacles: intricate fabrication process with fixed lithographic patterning; limited reprogrammability; subject to error or damage and expensive., Photonic chips have revolutionized data-heavy technologies., Photonic circuits use significantly less energy than electronic ones., , Photonics and electronics draw on separate areas of science and use distinct architectural structures., Photons flow without losing energy generating no heat at all., Researchers at the University of Pennsylvania School of Engineering and Applied Science have created a photonic device that provides programmable on-chip information processing without lithography., Silicon-based electronic systems have clear limitations: they are slow in processing signal. They work through data serially and not in parallel. They can only be miniaturized to a certain extent., , The University of Pennsylvania, Without lithography these chips become adaptable data-processing powerhouses.   

    From The School of Engineering and Applied Science At The University of Pennsylvania: “Lithography-Free Photonic Chip Offers Speed and Accuracy for Artificial Intelligence” 

    From The School of Engineering and Applied Science

    At

    U Penn bloc

    The University of Pennsylvania

    5.1.23 [Just today in social media.]
    Devorah Fischler

    1
    Light creates a computational network on a piece of unpatterned semiconductor wafer. The Feng Lab team’s achievement allows for on-chip processing with no lithographic etching, signaling cheaper and easier manufacturing and superior accuracy for AI applications.

    Photonic chips have revolutionized data-heavy technologies. On their own or in concert with traditional electronic circuits, these laser-powered devices send and process information at the speed of light, making them a promising solution for artificial intelligence’s data-hungry applications.

    In addition to their incomparable speed, photonic circuits use significantly less energy than electronic ones. Electrons move relatively slowly through hardware, colliding with other particles and generating heat, while photons flow without losing energy, generating no heat at all. Unburdened by the energy loss inherent in electronics, integrated photonics are poised to play a leading role in sustainable computing.

    Photonics and electronics draw on separate areas of science and use distinct architectural structures. Both, however, rely on lithography to define their circuit elements and connect them sequentially. While photonic chips don’t make use of the transistors that populate electronic chips’ ever-shrinking and increasingly layered grooves, their complex lithographic patterning guides laser beams through a coherent circuit to form a photonic network that can perform computational algorithms.

    But now, for the first time, researchers at the University of Pennsylvania School of Engineering and Applied Science have created a photonic device that provides programmable on-chip information processing without lithography, offering the speed of photonics augmented by superior accuracy and flexibility for AI applications.

    Achieving unparalleled control of light, this device consists of spatially distributed optical gain and loss. Lasers cast light directly on a semiconductor wafer, without the need for defined lithographic pathways.

    Liang Feng, Professor in the Departments of Materials Science and Engineering (MSE) and Electrical Systems and Engineering (ESE), along with Ph.D. student Tianwei Wu (MSE) and postdoctoral fellows Zihe Gao and Marco Menarini (ESE), introduced the microchip in a recent study published in Nature Photonics [below].

    Silicon-based electronic systems have transformed the computational landscape. But they have clear limitations: they are slow in processing signal, they work through data serially and not in parallel, and they can only be miniaturized to a certain extent. Photonics is one of the most promising alternatives because it can overcome all these shortcomings.

    “But photonic chips intended for machine learning applications face the obstacles of an intricate fabrication process where lithographic patterning is fixed, limited in reprogrammability, subject to error or damage and expensive,” says Feng. “By removing the need for lithography, we are creating a new paradigm. Our chip overcomes those obstacles and offers improved accuracy and ultimate reconfigurability given the elimination of all kinds of constraints from predefined features.”

    Without lithography, these chips become adaptable data-processing powerhouses. Because patterns are not pre-defined and etched in, the device is intrinsically free of defects. Perhaps more impressively, the lack of lithography renders the microchip reprogrammable, able to tailor its laser-cast patterns for optimal performance, be the task simple (few inputs, small datasets) or complex (many inputs, large datasets).

    In other words, the intricacy or minimalism of the device is a sort of living thing, adaptable in ways no etched microchip could be.

    “What we have here is something incredibly simple,” says Wu. “We can build and use it very quickly. We can integrate it easily with classical electronics. And we can reprogram it, changing the laser patterns on the fly to achieve real-time reconfigurable computing for on-chip training of an AI network.”

    An unassuming slab of semiconductor, the device couldn’t be simpler. It’s the manipulation of this slab’s material properties that is the key to the research team’s breakthrough in projecting lasers into dynamically programmable patterns to reconfigure the computing functions of the photonic information processor.

    This ultimate reconfigurability is critical for real-time machine learning and AI.

    “The interesting part,” says Menarini, “is how we are controlling the light. Conventional photonic chips are technologies based on passive material, meaning its material scatters light, bouncing it back and forth. Our material is active. The beam of pumping light modifies the material such that when the signal beam arrives, it can release energy and increase the amplitude of signals.”

    “This active nature is the key to this science, and the solution required to achieve our lithography-free technology,” adds Gao. “We can use it to reroute optical signals and program optical information processing on-chip.”

    Feng compares the technology to an artistic tool, a pen for drawing pictures on a blank page.

    “What we have achieved is exactly the same: pumping light is our pen to draw the photonic computational network (the picture) on a piece of unpatterned semiconductor wafer (the blank page).”

    But unlike indelible lines of ink, these beams of light can be drawn and redrawn, their patterns tracing innumerable paths to the future.

    Nature Photonics

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The School of Engineering and Applied Science is an undergraduate and graduate school of The University of Pennsylvania. The School offers programs that emphasize hands-on study of engineering fundamentals (with an offering of approximately 300 courses) while encouraging students to leverage the educational offerings of the broader University. Engineering students can also take advantage of research opportunities through interactions with Penn’s School of Medicine, School of Arts and Sciences and the Wharton School.

    Penn Engineering offers bachelors, masters and Ph.D. degree programs in contemporary fields of engineering study. The nationally ranked bioengineering department offers the School’s most popular undergraduate degree program. The Jerome Fisher Program in Management and Technology, offered in partnership with the Wharton School, allows students to simultaneously earn a Bachelor of Science degree in Economics as well as a Bachelor of Science degree in Engineering. SEAS also offers several masters programs, which include: Executive Master’s in Technology Management, Master of Biotechnology, Master of Computer and Information Technology, Master of Computer and Information Science and a Master of Science in Engineering in Telecommunications and Networking.

    History

    The study of engineering at The University of Pennsylvania can be traced back to 1850 when the University trustees adopted a resolution providing for a professorship of “Chemistry as Applied to the Arts”. In 1852, the study of engineering was further formalized with the establishment of the School of Mines, Arts and Manufactures. The first Professor of Civil and Mining Engineering was appointed in 1852. The first graduate of the school received his Bachelor of Science degree in 1854. Since that time, the school has grown to six departments. In 1973, the school was renamed as the School of Engineering and Applied Science.

    The early growth of the school benefited from the generosity of two Philadelphians: John Henry Towne and Alfred Fitler Moore. Towne, a mechanical engineer and railroad developer, bequeathed the school a gift of $500,000 upon his death in 1875. The main administration building for the school still bears his name. Moore was a successful entrepreneur who made his fortune manufacturing telegraph cable. A 1923 gift from Moore established the Moore School of Electrical Engineering, which is the birthplace of the first electronic general-purpose Turing-complete digital computer, ENIAC, in 1946.

    During the latter half of the 20th century the school continued to break new ground. In 1958, Barbara G. Mandell became the first woman to enroll as an undergraduate in the School of Engineering. In 1965, the university acquired two sites that were formerly used as U.S. Army Nike Missile Base (PH 82L and PH 82R) and created the Valley Forge Research Center. In 1976, the Management and Technology Program was created. In 1990, a Bachelor of Applied Science in Biomedical Science and Bachelor of Applied Science in Environmental Science were first offered, followed by a master’s degree in Biotechnology in 1997.

    The school continues to expand with the addition of the Melvin and Claire Levine Hall for computer science in 2003, Skirkanich Hall for Bioengineering in 2006, and the Krishna P. Singh Center for Nanotechnology in 2013.

    Academics

    Penn’s School of Engineering and Applied Science is organized into six departments:

    Bioengineering
    Chemical and Biomolecular Engineering
    Computer and Information Science
    Electrical and Systems Engineering
    Materials Science and Engineering
    Mechanical Engineering and Applied Mechanics

    The school’s Department of Bioengineering, originally named Biomedical Electronic Engineering, consistently garners a top-ten ranking at both the undergraduate and graduate level from U.S. News & World Report. The department also houses the George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace (aka Biomakerspace) for training undergraduate through PhD students. It is Philadelphia’s and Penn’s only Bio-MakerSpace and it is open to the Penn community, encouraging a free flow of ideas, creativity, and entrepreneurship between Bioengineering students and students throughout the university.

    Founded in 1893, the Department of Chemical and Biomolecular Engineering is “America’s oldest continuously operating degree-granting program in chemical engineering.”

    The Department of Electrical and Systems Engineering is recognized for its research in electroscience, systems science and network systems and telecommunications.

    Originally established in 1946 as the School of Metallurgical Engineering, the Materials Science and Engineering Department “includes cutting edge programs in nanoscience and nanotechnology, biomaterials, ceramics, polymers, and metals.”

    The Department of Mechanical Engineering and Applied Mechanics draws its roots from the Department of Mechanical and Electrical Engineering, which was established in 1876.

    Each department houses one or more degree programs. The Chemical and Biomolecular Engineering, Materials Science and Engineering, and Mechanical Engineering and Applied Mechanics departments each house a single degree program.

    Bioengineering houses two programs (both a Bachelor of Science in Engineering degree as well as a Bachelor of Applied Science degree). Electrical and Systems Engineering offers four Bachelor of Science in Engineering programs: Electrical Engineering, Systems Engineering, Computer Engineering, and the Networked & Social Systems Engineering, the latter two of which are co-housed with Computer and Information Science (CIS). The CIS department, like Bioengineering, offers Computer and Information Science programs under both bachelor programs. CIS also houses Digital Media Design, a program jointly operated with PennDesign.

    Research

    Penn’s School of Engineering and Applied Science is a research institution. SEAS research strives to advance science and engineering and to achieve a positive impact on society.

    U Penn campus

    Academic life at University of Pennsylvania is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946. In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences; 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University and Columbia University. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University, William & Mary, Yale Unversity, and The College of New Jersey—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health.

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University and Cornell University (Harvard University did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering.

    ENIAC UPenn

    It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
  • richardmitnick 1:21 pm on May 5, 2023 Permalink | Reply
    Tags: "When Robots Touch the World", , , , , Robotics in the age of Artificial Intelligence, Robots will also need to navigate the unknown and unexpected in their environments., , The University of Pennsylvania, Why is it important to have robots that can touch the world the way humans do?, Why is it so difficult to get a robot to walk or hold things?   

    From The School of Engineering and Applied Science At The University of Pennsylvania: “When Robots Touch the World” 

    From The School of Engineering and Applied Science

    At

    U Penn bloc

    The University of Pennsylvania

    4.25.23
    Devorah Fischler

    1
    Penn Engineering Today spoke with Michael Posa about robotics in the age of artificial intelligence, the ambulatory genius of toddlers, navigating the unfamiliar and the elegance of not learning everything.

    Posa is an Assistant Professor in the Department of Mechanical Engineering and Applied Mechanics and the recipient of an April 2023 grant renewal from the Toyota Research Institute (TRI). His work with TRI untangles the complexities of legged locomotion — refining the still-limited ability of robots to walk and run — and streamlines manipulation, producing simulations that simplify the way robots grasp unknown contexts and objects.
    ________________________________________________________________________________________________
    Let’s start with the basics. Why is it so difficult to get a robot to walk or hold things?

    Right now, robots are burdened by a mismatch between the complex computerized instructions we give them and the level of simplicity required to be effective. Humans have an intuition for touching the world that doesn’t mesh with the type of algorithms designed to get robots to do the same. If you were to look at the physics of a problem — say, the dexterous manipulation of an object — and you were trying to simulate it on your computer, you would have some complicated geometries of the object, some complicated geometries of the hand and the interaction between these two geometries. This is where the bulk of computation would be done, and it would be inexact, energy-intensive and time-consuming. But, if you think about how a human might pick up and manipulate an object, that level of complexity seems unnecessary. If I pick up a mug, I’m using very complicated movements, yes, but I’m not reasoning about every possible spot I can put my fingers.

    If humans had to compute every level of complexity available to us, wouldn’t we also be too overloaded to function?

    Pretty much! You have around 20 different axes of motion in your hand. But if I ask you to hold something, there’s more like three independent movements that you’ll use. The human hand is complex, but in practice, it doesn’t often use its full complexity. Humans have found a way of simplifying the problem of planning, control and manipulation that we haven’t found the right equivalent for in computation. Same for walking. Toddlers have intuitive understanding of getting around and balancing that outstrips what most robots can achieve.

    Why is it important to have robots that can touch the world the way humans do?

    Some tasks are naturally suited to robots. It really comes down to work that is unsafe or undesirable for humans to do. In robotics, we talk about the three Ds: dirty, dangerous and dull. These are tasks that humans do with some risk that robots could alleviate, but it’s important to also realize that robots can do more than just take over the dirty work, they can also provide and enhance a social function. For example, we could imagine robots that help people maintain their autonomy at home as they age. Some people might prefer the comfort of a human helper. Others may favor the assistance of a reliable machine so they can keep a sense of independence.

    Will robots need anything else besides the ability to handle objects and walk in order to reliably fulfill these roles?

    Yes. These robots will also need to navigate the unknown and unexpected in their environments. Right now, there are a lot of reliable robots on the manufacturing floor. They are fast and accurate, but only in their preprogrammed environments. Once these robots leave those environments, they lose speed and precision. With TRI, we are confronting this roadblock by creating algorithms that give robots simplified instructions, reducing the data necessary to learn and act. We need robots that can not only move quickly and deftly, but also negotiate novelty and uncertainty.

    Could you give another example of how we might benefit from this future generation of data-efficient robotics?

    Disaster recovery is a big one. When the Fukushima disaster occurred in 2011, it became clear to the world, and the robotics community specifically, how unready robots were for emergency response. It inspired, in part, the DARPA Robotics Challenge, which I was a part of during my Ph.D. That year became a stake in the ground for robotics, forcing us to be realistic about how far along we were and how much farther we needed to go. In 2011, robots could spend half an hour opening a door and crossing a handful of steps and that was about it.

    How far have we come since then?

    Very far. We’ve seen more and more capable hardware platforms. The Agility Robotics Cassie, which we use in our lab, is something that didn’t exist in 2011. It came about a few years after that. We’ve seen the rise of a climate of commercialized robots, which wasn’t a thing at all back then and is now flourishing. With advances in hardware, software, and the rise of machine learning, robots are far more capable than they were in 2011. However, if Fukushima happened again today, there are still no robots that could go in there and make a real difference beyond survey or search. Nothing will be able to clear rubble and turn valves, fix wiring or press buttons that need to be pressed. But we are a lot closer.

    All your work with TRI seems driven by an ethos of simplification. Can you tell us what you’ve been able to achieve?

    In some ways, we are re-simplifying robotics for the age of machine learning. There is already a simplified model of walking that has been active in robotics for decades: the inverted pendulum. This model boiled down the complexity of walking to a minimum and got robots impressively far. But inevitably, if you take all of the natural complexity of walking and reduce it back down to a pendulum, you’ve given away a bit too much. You’ve restricted your robot to do things that only pendulums can do, which isn’t that many things. My research asks: How do we get the benefits of the simplicity while also bringing back some of the performance we gave away? In the legged locomotion work, we’ve kept the simplicity of the pendulum model, but we’ve expanded the set of tasks — walking and turning faster, getting up steeper slopes, for example — and significantly lowered energy consumption. In the manipulation work, we are doing simulation, creating simplicity from the ground up. We have robotic hands interacting with an object, collecting data and then coming up with a plan that its algorithm forces to be as simple as possible. It interacts, fumbles, learns and corrects itself until it gets it right. It can do this in four to five minutes, which is an achievement.

    Four to five minutes as opposed to what?

    If you don’t have any structure and you use reinforcement learning, it can take hours or days. Is that a fair comparison? Sort of. We enforce some minimal structure. But people do write papers about robots learning to manipulate and navigate unfamiliar environments where it takes hours or days. It’s all trial and error, but it depends on how much trial and error you are willing to accept. These other papers aren’t interested in the physical system, they treat it as a big black box. But what we’ve shown is that learning everything is very data inefficient.

    So, the incredible progress we’re seeing in artificial intelligence doesn’t translate as neatly into robotics as some people seem to think?

    Exactly. At this point, people have used ChatGPT and have seen robots learning. And they have become enamored with the idea that machine learning is going to solve all problems. The key in our lab is to contribute our domain expertise — our understanding of physics and dynamics — and mesh that with algorithms because there are overlaps and efficiencies to exploit. I think there’s a lot of value in deep learning and automation. Robots are going to have to learn things from their environment. It’s not all going to be models and physics. But we are also insisting on the value of techniques people have been thinking about for hundreds of years — physics, control, optimization — and showing that they are not going to go the way of the dinosaur with artificial intelligence taking over.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The School of Engineering and Applied Science is an undergraduate and graduate school of The University of Pennsylvania. The School offers programs that emphasize hands-on study of engineering fundamentals (with an offering of approximately 300 courses) while encouraging students to leverage the educational offerings of the broader University. Engineering students can also take advantage of research opportunities through interactions with Penn’s School of Medicine, School of Arts and Sciences and the Wharton School.

    Penn Engineering offers bachelors, masters and Ph.D. degree programs in contemporary fields of engineering study. The nationally ranked bioengineering department offers the School’s most popular undergraduate degree program. The Jerome Fisher Program in Management and Technology, offered in partnership with the Wharton School, allows students to simultaneously earn a Bachelor of Science degree in Economics as well as a Bachelor of Science degree in Engineering. SEAS also offers several masters programs, which include: Executive Master’s in Technology Management, Master of Biotechnology, Master of Computer and Information Technology, Master of Computer and Information Science and a Master of Science in Engineering in Telecommunications and Networking.

    History

    The study of engineering at The University of Pennsylvania can be traced back to 1850 when the University trustees adopted a resolution providing for a professorship of “Chemistry as Applied to the Arts”. In 1852, the study of engineering was further formalized with the establishment of the School of Mines, Arts and Manufactures. The first Professor of Civil and Mining Engineering was appointed in 1852. The first graduate of the school received his Bachelor of Science degree in 1854. Since that time, the school has grown to six departments. In 1973, the school was renamed as the School of Engineering and Applied Science.

    The early growth of the school benefited from the generosity of two Philadelphians: John Henry Towne and Alfred Fitler Moore. Towne, a mechanical engineer and railroad developer, bequeathed the school a gift of $500,000 upon his death in 1875. The main administration building for the school still bears his name. Moore was a successful entrepreneur who made his fortune manufacturing telegraph cable. A 1923 gift from Moore established the Moore School of Electrical Engineering, which is the birthplace of the first electronic general-purpose Turing-complete digital computer, ENIAC, in 1946.

    During the latter half of the 20th century the school continued to break new ground. In 1958, Barbara G. Mandell became the first woman to enroll as an undergraduate in the School of Engineering. In 1965, the university acquired two sites that were formerly used as U.S. Army Nike Missile Base (PH 82L and PH 82R) and created the Valley Forge Research Center. In 1976, the Management and Technology Program was created. In 1990, a Bachelor of Applied Science in Biomedical Science and Bachelor of Applied Science in Environmental Science were first offered, followed by a master’s degree in Biotechnology in 1997.

    The school continues to expand with the addition of the Melvin and Claire Levine Hall for computer science in 2003, Skirkanich Hall for Bioengineering in 2006, and the Krishna P. Singh Center for Nanotechnology in 2013.

    Academics

    Penn’s School of Engineering and Applied Science is organized into six departments:

    Bioengineering
    Chemical and Biomolecular Engineering
    Computer and Information Science
    Electrical and Systems Engineering
    Materials Science and Engineering
    Mechanical Engineering and Applied Mechanics

    The school’s Department of Bioengineering, originally named Biomedical Electronic Engineering, consistently garners a top-ten ranking at both the undergraduate and graduate level from U.S. News & World Report. The department also houses the George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace (aka Biomakerspace) for training undergraduate through PhD students. It is Philadelphia’s and Penn’s only Bio-MakerSpace and it is open to the Penn community, encouraging a free flow of ideas, creativity, and entrepreneurship between Bioengineering students and students throughout the university.

    Founded in 1893, the Department of Chemical and Biomolecular Engineering is “America’s oldest continuously operating degree-granting program in chemical engineering.”

    The Department of Electrical and Systems Engineering is recognized for its research in electroscience, systems science and network systems and telecommunications.

    Originally established in 1946 as the School of Metallurgical Engineering, the Materials Science and Engineering Department “includes cutting edge programs in nanoscience and nanotechnology, biomaterials, ceramics, polymers, and metals.”

    The Department of Mechanical Engineering and Applied Mechanics draws its roots from the Department of Mechanical and Electrical Engineering, which was established in 1876.

    Each department houses one or more degree programs. The Chemical and Biomolecular Engineering, Materials Science and Engineering, and Mechanical Engineering and Applied Mechanics departments each house a single degree program.

    Bioengineering houses two programs (both a Bachelor of Science in Engineering degree as well as a Bachelor of Applied Science degree). Electrical and Systems Engineering offers four Bachelor of Science in Engineering programs: Electrical Engineering, Systems Engineering, Computer Engineering, and the Networked & Social Systems Engineering, the latter two of which are co-housed with Computer and Information Science (CIS). The CIS department, like Bioengineering, offers Computer and Information Science programs under both bachelor programs. CIS also houses Digital Media Design, a program jointly operated with PennDesign.

    Research

    Penn’s School of Engineering and Applied Science is a research institution. SEAS research strives to advance science and engineering and to achieve a positive impact on society.

    U Penn campus

    Academic life at University of Pennsylvania is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946. In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences; 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University and Columbia University. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University, William & Mary, Yale Unversity, and The College of New Jersey—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health.

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University and Cornell University (Harvard University did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering.

    ENIAC UPenn

    It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
  • richardmitnick 2:00 pm on April 25, 2023 Permalink | Reply
    Tags: "People and Places at Penn: 'Makerspaces'", , Education Commons and the Precision Machining Laboratory and Tangen Hall all offer space for students to get their hands dirty., Hands-on learning fosters creativity and creates opportunities for collaboration and feels good., Makerspaces are where students can figure things out and fail and try again. And sometimes swing a hammer., Makerspaces offer a place to play with power tools and blast Metallica and drive robots into one another., , Open to anyone with a PennCard Education Commons is part of an initiative to make the high-tech accessible., , Sometimes the best way to teach problem-solving and self-reliance is to ask students to create something with their own two hands., The University of Pennsylvania   

    From “Penn Today” At The University of Pennsylvania : “People and Places at Penn: ‘Makerspaces'” Photo Essay 

    From “Penn Today”

    At

    U Penn bloc

    The University of Pennsylvania

    4.24.23
    Kristina García

    Hands-on learning fosters creativity, creates opportunities for collaboration, and feels good. Education Commons, the Precision Machining Laboratory, and Tangen Hall all offer space for students to get their hands dirty.

    1
    Tools lined up on a pegboard at the Precision Machining Laboratory in Towne Hall.

    In the 21st century, universities don’t just teach students about the known world—they help students to navigate the next horizon. What does this look like? In addition to lessons about critical reasoning, communication skills, and analytics, sometimes the best way to teach problem-solving and self-reliance is to ask students to create something with their own two hands.

    Whether it’s a highly technical place for trained engineers building metal engines, like the Precision Machining Laboratory, a place to brainstorm ideas and how to take them to the marketplace like the Venture Lab, or an open-access place to tinker like Education Commons, makerspaces offer a place to play with power tools, blast Metallica, and drive robots into one another. Essentially, they’re where students can figure things out, fail, and try again. And sometimes swing a hammer.

    Education Commons: Where to start

    3
    Tex Kang (left) helps a student troubleshoot their battle bot.

    A faint wisp of acrid smoke wafts up from the laser-cutting machine at Education Commons. “Don’t mind the smell,” says Tex Kang, the digital program coordinator of technology and play. “It’s literally wood burning.”

    Following a series of commands, the laser machine is burning precise cutouts in thin wafers of wood. In seven days, these wood wafers will be assembled into fully functional battle bots, capable of competing in an obstacle course race, a soccer game, and a death-match battle. (Death, in this instance, refers to the popping of a children’s balloon.) But today, the wood is just wood, one of many build-your-own-robot kits offered free to Penn students, faculty, and staff by Kang and Christine Kemp of Education Commons, a makerspace that is part of Penn Libraries.

    Located in a mezzanine above Franklin Field, Education Commons is a rectangular space with domed, steel framed windows giving a sense of light, space, and expansive possibility. Kemp and Kang are here to make those possibilities into reality. They help the Penn community navigate for class projects and team-building exercises—and manage school stress—with a laser-cutting machine, three 3D printers, and creative vision.

    Open to anyone with a PennCard Education Commons is part of an initiative to make the high-tech accessible, Kang says. “Like, the printing press was awesome. Now we have digital machines at home.”

    Times have changed, and education changes with them. “Libraries being a source of wealth, knowledge, and accessibility … we rent out technology, laptops, programs, so students have education beyond just books or academic needs,” he says.

    3D printers are open-source technology, Kang says. “We want to share it with everyone and that’s kind of the philosophy behind makerspaces. We want accessibility, we want freedom to just start building. We don’t want any hindrances—monetary or education—because anyone can join.”

    As such, Education Commons can help a student design a physical model of a brain using that student’s CAT scan (an actual project) or provide a kit to make wood-cut earrings or a template to 3D print a Minecraft-themed guitar pick.

    4
    6
    7
    Top and bottom Students navigate the obstacle course set up in the Goldstein Electronic Classroom in Van Pelt-Dietrich Library Center. Middle Students assemble battle bots at Education Commons.

    If someone came into Education Commons and was nervous or unsure of how to get started, Kang says he asks them what they like. If they are into Star Wars, he can help them make a lightsaber. If they have a dog, in 30 minutes he can help them make an NFC (near-field communication) dog tag with the canine’s medical information, veterinary practice, and favorite food. “I want to ease them into something they’re passionate about, because that’s what drives me, and I imagine that’s what drives them,” Kang says. “They’ll be more motivated to learn.”

    In April, Education Commons hosted two makerspace “build your own robot” events and a final battle with about a dozen bots. Kang built an obstacle course that involved robot vehicles racing around cones and across a minefield of golf balls and plastic that looks like clear, sparkling crushed ice.

    Except now the vehicles are getting stuck.

    “Tex,” Kemp says, “I think your obstacle course might be …”

    “Too difficult? I can adjust the difficulty.” Kang comes over and pulls up some of the intervening obstacles. Once again, vehicles zoom around the course. Spectators note which models do well, and which have trouble, cheering and egging one another on.

    “Oh,” says one student. “This is fun.”

    Precision Machining Laboratory: Where engineers learn how to build

    8
    Peter Bruno at the Garage Lab and Tool Library, one of several makerspaces in Towne Hall.

    On the ground floor of the Towne building are a cluster of makerspaces, or, as they’re known to engineers, laboratories. This is the home of Mechanical Engineering and Applied Mechanics (MEAM), a department within the School of Engineering and Applied Science. All of the laboratories support student coursework and research. There’s one with 3D printers. There’s one with laser cutters and 3D printers. There’s the Garage Lab and Tool Library, where students can borrow a miter saw or an orbital sander.

    Then there’s the Precision Machining Laboratory (PML), with four manual mills, five manual lathes, three Prototrak hybrid mills, three Computer Numerical Control (CNC) mills, and various other metal prototyping equipment with increasingly opaque nomenclature. There is Metallica on the stereo. There are metal shavings on the scrubbed concrete floor. There is very exclusive access to machines.

    The only way to gain entry without being an employee is to enroll in MEAM 201, a hands-on, project-based course designed to teach second-year undergraduate students to design and manufacture mechanical systems. Students spend the spring semester building their own heat engines, putting their own flash on the system. On engine test day, every machine is running, says Peter Bruno, the educational laboratory coordinator, one of four mechanical engineers who staffs the labs.

    Bruno’s job, he says, is “helping students figure out how to make the stuff they want to make.” The idea is to help students learn about the fabrication process from top to tail by making their own products.

    There’s a lot of moving parts, he says. There’s getting from a conceptual design to a real, fabricated product. Then there’s the budget. Can shelf parts be used for the fabrication, or does everything have to be custom? “The way you spec something out changes how much money you’re going to charge,” Bruno says.

    Plus, digital design is very different from physical design, he says. “The numbers that you put in, the shape that you create, it’s not the final thing,” Bruno says. Like many engineers, he has the mind of a problem-solver. “When you’re actually making a physical product, you need to be able to know: What’s it going to feel like when I get to the end? How is it going to move? What’s it going to sound like? All those bits and pieces. Is it going to look the way I want it to? All that matters.”

    All throughout Bruno’s explanation are affirmative interjections from Joe Valdez, one of two instrumentation technicians on staff who started machining more than four decades ago as an apprentice at the Navy Shipyard.

    9
    Heat engines built by students in MEAM 2010. Variations on the theme incorporate a pizza chef and Aang, the protagonist in Avatar: the Last Airbender.

    10
    Second-year Owen Shaffer machining a part on the lathe.

    11
    Joe Valdez (left) works with Vedansh Goenka (right) on the Prototrak Mill.

    “Students love Joe. He’s got a lot of experience and a can-do attitude,” Bruno says. The feeling is mutual. Students, Valdez says, are the best part of his job.

    “For me, it’s more technical,” Bruno says. “I’m in the education side of things because I love the idea of getting somebody from, you never thought you could even do this to, you’re ready to kick some …”

    “And I’m more a therapist,” Valdez says. “Wipe down the tears.”

    Tears happen, he says. There’s the workload, there’s general college stress, and sometimes personal issues, Valdez says. He’s been known to do some light relationship counseling.

    Then students stress over finding internships, Bruno says. “Sometimes they just need somebody—not their parents—to say, stuff’s hard, but you’re going to be okay.”

    “The other piece of this is, and there’s a ton of research on it, making is a mental health benefit,” Bruno says. “Like, actually being in, touching the stuff, doing the things.”

    When students get in the zone, they lose track of time. “It’s very Zen,” he says. “You’re turning the dials, you’re getting your numbers …”

    “It’s therapeutic,” Valdez says.

    In the background, a mechanical engineering student hammers a metal plate into place. “And sometimes you get to hit stuff with a hammer,” Bruno says. “That feels good.”

    Venture Lab: Where entrepreneurs learn how to manufacture and market ideas

    12
    Sebastián Jaramillo, director of operations, in Tangen Hall’s first-floor fabrication lab.

    Soaring over 40th and Sansom streets with blue-green plates of rectangular glass, Tangen Hall isn’t hiding its light under any bushels. Built in 2020, it’s a 68,000-square-foot space with seven stories of communal working space and nine laboratories and studios. It’s the home of Venture Lab, the center for entrepreneurship at the Wharton School.

    It could be easy to feel intimidated, but Sebastián Jaramillo, the director of operations, is here to make students feel welcome. Jaramillo, a 2010 graduate, is also a first-generation, low-income (FGLI) student. Born in Elizabeth, New Jersey, he spent his childhood in both Colombia and Staten Island, New York and is now passionate about making Tangen Hall (open Monday through Saturday, 7 a.m. to 9 p.m.) accessible to all Penn students, who, with a free membership, can secure additional after-hours access, along with 50 free 3D prints per semester and free headshots.

    Students can also submit applications for project ideas or apply to programs within one of Venture Lab’s four “pathways:” Explorers, Founders, Investors, or Navigators. You don’t have to wait for that million-dollar idea to develop skills, Jaramillo says.

    Jaramillo cut his teeth in the food industry, building community “shared/ghost” kitchens and starting a food business. “You don’t have to be a unicorn to be an entrepreneur,” he says. “Although sometimes, you just need a little time to figure it out.”

    Time, along with resources, support, and encouragement are all needed, he says. The test kitchen alone, had it existed when Jaramillo was a student, “would have shaved five years off my timeline,” he says. “If I had been in this building and community, I would have learned a lot before launching my own venture.”

    The fabrication labs on Tangen Hall’s first floor are geared towards physical creation, Jaramillo says, with students making everything from furniture to Bluetooth speakers to stress balls that look (and smell) like pan dulce, the Mexican pastry.

    13
    Kausi Raman, a second-year master’s student in the Integrated Product Design program at Penn Engineering, shows her “kid-safe power tool”.

    13
    Jessica Ramses’s pasta is made from an ancient Mediterranean grain.

    14
    Students have access to 50 free 3D prints per semester, using machines that can create anything from a guitar pick to a small-scale model of Auguste Rodin’s “The Thinker.”

    Kausi Raman, a second-year master’s student in the Integrated Product Design program at Penn Engineering, has used the fabrication lab to develop “a kid-safe power tool,” she says.

    The idea grew out of conversations that Raman and her co-founder, Max Liechty, had with educators. They wanted to teach design to children. But the children were frustrated at working with cardboard, their design material. It was bulky and hard to manage with oft-blunted scissors, tearing or folding easily.

    Raman and Liechty’s model is a green-and-blue square, printed on a 3D machine. They’ve built about 10 prototypes over the last year. It cuts seamless curves and lines in corrugated cardboard, without any blades or sharp edges.

    It’s impossible to stick even a pinky through the hole-punch guard, and the byproduct is tiny, little semicircles of cardboard. “How it works, is kind of like a really fast hole punch,” Raman says.

    When she graduates in May, Raman will become Tangen Hall’s first designer-in-residence. She’ll help students with their projects and continue to work on her own, which she hopes will become widely accessible for primary-school students.

    The second floor houses the Food Innovation Lab, a test kitchen with wide, garage-style doors flung open to reveal gleaming stainless-steel surfaces. Here, Jessica Ramses, also in the Integrated Product Design program, is working on crackers and a new kind of pasta, made from an ancient Mediterranean grain.

    Compared to pasta made from white flour, this mystery ingredient has 40% fewer calories, 60% fewer carbohydrates, 50% more protein, and twice the amount of fiber, Ramses says. It cooks in three minutes. Also? It tastes impossibly delicious, somehow both cheesy and nutty, without containing either cheese or nuts.

    “Everybody kept eating it dry,” Ramses says. “We were so confused. The pasta tasted great, but the first thing people did was eat dry pasta. So we thought today, we’re actually going to try to make a nut-free cracker using the same harvesting process and see if that tastes good, because it’s a potential expansion avenue for us.”

    She hopes her product will disrupt the industry. “Pasta is something that I’m passionate about because it’s comfort food. It’s a meal, and people consume a lot of it. It’s easy. And if we can make pasta—but make it really healthy—then I think the impact levels will be huge,” Ramses says.

    Tangen Hall was designed with the premise of creating a zero-to-100 space for entrepreneurship, Jaramillo says. Staff works with students on developing products or recipes, cost, market strategy, packaging, design, legal issues, licensing—everything from the nuts and bolts to the finishing touches.

    Managing Tangen Hall is like tending to a plant, Jaramillo says. “We, as an organization, are really positioned to help these ideas germinate and flourish. And I think that starts with a welcoming atmosphere.”

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Penn campus

    Academic life at The University of Pennsylvania is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946. In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences; 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University and Columbia University. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University, William & Mary, Yale Unversity, and The College of New Jersey—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health.

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University and Cornell University (Harvard University did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering.

    ENIAC UPenn

    It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
  • richardmitnick 8:24 am on April 12, 2023 Permalink | Reply
    Tags: "New findings reveal the most detailed mass map of dark matter", , , , , , Research led by the Atacama Cosmology Telescope collaboration maps the universe's cosmic growth supporting Albert Einstein's Theory of General Relativity., , The University of Pennsylvania   

    From The School of Arts & Sciences At The University of Pennsylvania Via “Penn Today” : “New findings reveal the most detailed mass map of dark matter” 

    From The School of Arts & Sciences

    At:

    U Penn bloc

    The University of Pennsylvania

    Via

    “Penn Today”

    4.11.23
    Nathi Magubane

    Research led by the Atacama Cosmology Telescope collaboration maps the universe’s cosmic growth supporting Albert Einstein’s Theory of General Relativity.

    1
    Research by the Atacama Cosmology Telescope collaboration has culminated in a groundbreaking new map of dark matter distributed across a quarter of the entire sky, reaching deep into the cosmos. Findings provide further support to Albert Einstein’s Theory of General Relativity, which has been the foundation of the Standard Model of Cosmology for more than a century, and offer new methods to demystify dark matter. (Image: Lucy Reading-Ikkanda/Simons Foundation)

    For millennia, humans have been fascinated by the mysteries of the cosmos. From ancient civilizations such as the Babylonians, Greeks, and Egyptians to modern-day astronomers, the allure of the starry sky has inspired countless quests to unravel the secrets of the universe.

    Although models explaining the cosmos have been around for centuries, the field of Cosmology, in which scientists employ quantitative methods to gain insights into the universe’s evolution and structure, is comparatively nascent. Its foundation was established in the early 20th century with the development of Albert Einstein’s Theory of General Relativity, which now serves as the basis for the Standard Model of Cosmology.

    Now, a set of papers submitted to The Astrophysical Journal [below] by researchers from the Atacama Cosmology Telescope (ACT) collaboration has revealed a groundbreaking new image that shows the most detailed map of matter distributed across a quarter of the entire sky, reaching deep into the cosmos. It confirms Einstein’s theory about how massive structures grow and bend light, with a test that spans the entire age of the universe.

    “We’ve made a new mass map using distortions of light left over from the Big Bang,” says Mathew Madhavacheril, lead author of one of the papers and assistant professor in the Department of Physics and Astronomy at the University of Pennsylvania. “Remarkably, it provides measurements that show that both the ‘lumpiness’ of the universe and the rate at which it is growing after 14 billion years of evolution are just what you’d expect from our Standard Model of Cosmology based on Einstein’s theory of gravity.”

    2
    The light captured by the ACT was used to produce a cosmic microwave background lensing mass map, a visualization of the distribution of dark matter in our sky. (Image: The Atacama Cosmology Telescope collaboration)

    Funded by the National Science Foundation, the ACT was built by Penn and Princeton University and started observations to track down the elusive dark matter in 2007. The more than 160 collaborators who have built and gathered data from ACT, which is situated in the high Chilean Andes, observe light emanating following the dawn of the universe’s formation, the Big Bang—when the universe was only 380,000 years old. Cosmologists often refer to this diffuse light that fills our entire universe as the “baby picture of the universe,” but formally it is known as cosmic microwave background radiation (CMB).

    3
    Image: Lucy Reading-Ikkanda/Simons Foundation.

    The team tracks how the gravitational pull of large, heavy structures including dark matter warps the CMB on its 14-billion-year journey to us, like how a magnifying glass bends light as it passes through its lens.

    “When we proposed this experiment in 2003, we had no idea the full extent of information that could be extracted from our telescope,” says Mark Devlin, the Reese Flower Professor of Astronomy at the Penn and the deputy director of ACT.“We owe this to the cleverness of the theorists, the many people who built new instruments to make our telescope more sensitive and the new analysis techniques our team came up with.”

    Penn researchers Gary Bernstein and Bhuvnesh Jain have led research mapping dark matter by using visible light emitted from relatively nearby galaxies as opposed to light from the CMB. “Interestingly, we found matter to be a little less lumpy than the simplest theory predicts,” Jain says “However, Mark and Mathew’s beautiful work on the CMB agrees perfectly with the theory.”

    5
    Image: Lucy Reading-Ikkanda/Simons Foundation.

    “The stunning ACT dark matter maps severely narrow down the times and places where the simplest theory could be going wrong,” Bernstein says. “One speculation is that a new feature of gravity or dark energy is appearing just in the last few billion years, after the era ACT is measuring.”

    ACT, which operated for 15 years, was decommissioned in September 2022. Nevertheless, more papers presenting results from the final set of observations are expected to be submitted soon, and the Simons Observatory will conduct future observations at the same site, with a new telescope slated to begin operations in 2024.

    This new instrument will be capable of mapping the sky almost 10 times faster than ACT.

    Available pdf’s from ApJ. Papers soon to be issued:
    The Atacama Cosmology Telescope: Mitigating the impact of extragalactic foregrounds for the DR6 CMB lensing analysis
    The Atacama Cosmology Telescope: A Measurement of the DR6 CMB Lensing Power Spectrum and its Implications for Structure Growth
    The Atacama Cosmology Telescope: DR6 Gravitational Lensing Map and Cosmological Parameters

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Pennsylvania School of Arts and Sciences is the academic institution encompassing the humanities, social sciences, and natural sciences at the University of Pennsylvania.

    Formerly known as the Faculty of Arts and Sciences, the School of Arts and Sciences is an umbrella organization that is divided into three main academic components: The College of Arts & Sciences is Penn’s undergraduate liberal arts school. The Graduate Division offers post-undergraduate M.A., M.S., and Ph.D. programs. Finally, the College of Liberal and Professional Studies, originally called “College of General Studies”, is Penn’s continuing and professional education division, catered to working professionals.

    The School of Arts and Sciences contains the following departments:

    Africana Studies
    Anthropology
    Biology
    Chemistry
    Classical Studies
    Criminology
    Earth and Environmental Science
    East Asian Languages & Civilizations
    Economics
    English
    Germanic Languages and Literatures
    History
    History and Sociology of Science
    History of Art
    Linguistics
    Mathematics
    Music
    Near Eastern Languages & Civilizations
    Philosophy
    Physics and Astronomy
    Political Science
    Psychology
    Religious Studies
    Romance Languages
    Russian and East European Studies
    Sociology
    South Asia Studies

    U Penn campus

    Academic life at University of Pennsylvania is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946. In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences; 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University and Columbia University. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University, William & Mary, Yale Unversity, and The College of New Jersey—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health.

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University and Cornell University (Harvard University did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering.

    ENIAC UPenn

    It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
  • richardmitnick 2:21 pm on April 7, 2023 Permalink | Reply
    Tags: "Designing for and with forests", , “Ecosystems are socioecological systems.” Pevzner says. “Humans are part of ecosystems and you really need to look at them always interacting with the social and built components.”, Cities scorched by the urban heat-island effect are looking for ways to expand their tree canopies and keep existing urban forests in good health., , Forest fires in the United States have gone from bad to worse in the last decade burning an estimated 7.6 million acres of land in 2022 foreshadowing larger blazes to come as global temperatures rise., Nicholas Pevzner, , The University of Pennsylvania, This spring Pevzner is leading a landscape architecture studio called "The Fire Studio: Wildfire Forests Jobs + Carbon" which is focused on forest management practices in the American West.   

    From “Penn Today” At The University of Pennsylvania : “Designing for and with forests” Nicholas Pevzner 

    From “Penn Today”

    At

    U Penn bloc

    The University of Pennsylvania

    4.6.23
    Jared Brey

    Nicholas Pevzner, assistant professor of landscape architecture at the Weitzman School of Design, is leading a landscape architecture studio that focuses on forest management in the American West.

    Forest fires in the United States have gone from bad to worse in the last decade, burning an estimated 7.6 million acres of land in 2022 and foreshadowing visions of ever-larger blazes to come as global temperatures rise. Meanwhile, cities scorched by the urban heat-island effect are looking for ways to expand their tree canopies and keep existing urban forests in good health, with health benefits for residents and carbon benefits for the environment.

    Working at the intersection of these issues is Nicholas Pevzner, assistant professor of landscape architecture at the Weitzman School of Design.

    This spring, Pevzner is leading a landscape architecture studio called “The Fire Studio: Wildfire, Forests, Jobs, + Carbon”, which is focused on forest management practices in the American West. He’s also finishing up research for an article in the Journal of Landscape Architecture about the past and future roles of designers in managing urban forests. And, working with a team of research assistants, he’s completing a greenhouse gas inventory of the Delaware River watershed, including the carbon contributions of forests.

    1
    Treated fire resilient forest, after thinning and prescribed burning, in the Tahoe National Forest, a project partner with the North Yuba Forest Partnership. From left: Lon Henderson, U.S. Forest Service; Weitzman students Ari Vamos, Vyusti Agarwalla, Jiajing Dai, Caz Gagne, and Oliver Atwood. (Image: Nicholas Pevzner)

    “Ecosystems are socioecological systems,” he says. “Humans are part of ecosystems, and you really need to look at them always interacting—the biophysical always interacting with the social and built components.”

    Designers are “only beginning to grapple with the spatial and land use challenges of fire risk and fire dynamics,” Pevzner says, “but smart new approaches to managing fire risk could unlock new approaches to reducing this climate threat for vulnerable communities, while simultaneously increasing forest resilience, keeping more carbon on the landscape, and creating lots of jobs in struggling rural communities.”

    The studio follows on a previous course Pevzner led as part of the Green New Deal SuperStudio in 2021. This year’s studio, focused on the areas around Tahoe National Forest and Plumas National Forest in Northern California, explores the roles industry, the U.S. Forest Service, and communities can play in managing forests for greater fire resilience and protecting communities for wildlife and people.

    In his studio, students take a systems approach to the problem, studying the logistics and spatial needs of emergent engineered wood products, biomass, and biochar industries with the goal of understanding how a range of social, economic, and environmental functions could complement each other.

    In February, the group visited forest restoration sites, sawmills and biomass utilization campuses in Northern California. They met with fire experts and forest managers to learn about “the labor and the physical transformation that these landscapes need to undergo to prepare for a healthy fire regime,” Pevzner says. For their final projects, they’re producing site analyses and designs that explore “multifunctional arrangements” for communities and industries that connect forest-management practices, carbon reduction, economic incentives and jobs.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Penn campus

    Academic life at The University of Pennsylvania is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946. In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences; 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University and Columbia University. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University, William & Mary, Yale Unversity, and The College of New Jersey—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health.

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University and Cornell University (Harvard University did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering.

    ENIAC UPenn

    It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
  • richardmitnick 1:21 pm on March 31, 2023 Permalink | Reply
    Tags: "The Big Bang at 75", , , , , , Nobel Prize in Physics for 2011 Expansion of the Universe, , , , The University of Pennsylvania,   

    From “Penn Today” At The University of Pennsylvania : “The Big Bang at 75” 

    From “Penn Today”

    At

    U Penn bloc

    The University of Pennsylvania

    3.30.23
    Kristina García

    Penn theoretical physicist Vijay Balasubramanian discusses the 75th anniversary of the alpha-beta-gamma paper, what we know—and don’t know—about the universe and the ‘very big gaps’ left to discover.

    1
    A child stops by an image of the cosmic microwave background at Shanghai Astrology Museum in Shanghai, China on July 18, 2021. (Image: FeatureChina via AP Images)

    There was a time before time when the universe was tiny, dense, and hot. In this world, time didn’t even exist. Space didn’t exist. That’s what current theories about the Big Bang posit, says Vijay Balasubramanian, the Cathy and Marc Lasry Professor of Physics. But what does this mean? What did the beginning of the universe look like? “I don’t know, maybe there was a timeless, spaceless soup,” Balasubramanian says. When we try to describe the beginning of everything, “our words fail us,” he says.

    Yet, for thousands of years, humans have been trying to do just that. One attempt came 75 years ago from physicists George Gamow and Ralph Alpher. In a paper published on April 1, 1948, Alpher and Gamow imagined the universe starts in a hot, dense state that cools as it expands. After some time, they argued, there should have been a gas of neutrons, protons, electrons, and neutrinos reacting with each other and congealing into atomic nuclei as the universe aged and cooled. As the universe changed, so did the rates of decay and the ratios of protons to neutrons. Alpher and Gamow were able to mathematically calculate how this process might have occurred.

    Now known as the alpha-beta-gamma theory, the paper predicted the surprisingly large fraction of helium and hydrogen in the universe. (By weight, hydrogen comprises 74% of nuclear matter, helium 24%, and heavier elements less than 1%.)

    The findings of Gamow and Alpher hold up today, Balasubramanian says, part of an increasingly complex picture of matter, time and space. Penn Today spoke with Balasubramanian about the paper, the Big Bang, and the origin of the universe.

    When did we first start to think about the Big Bang theory as it is known today?

    There’s actually a question of whether it’s even possible to talk about the origin of the universe. But across cultures, humans seem to have an innate drive to try to discuss this sort of question. In India, there was this idea of an infinite cyclic universe that went in gigantic cycles from origin to destruction, origin to destruction, over long lengths of time. The Aztecs had a cosmology that involves gigantic cycles of creation and construction, too. In the Christian West, people had the idea that the horizon of all of time was smaller, a few thousand years, although the Bible doesn’t actually say anything specific about that.

    In the 19th century, the first scientific inkling of the age of the world was given by Charles Lyell, a geologist, who wrote about the stratification of rocks. Charles Lyell basically gave Darwin the gift of time. Realizing that the earth was actually much older than a few thousand years gave room for the Theory of Evolution and expanded the horizon in time. That’s a prerequisite for being able to even conceive of the origin of the universe.

    Then in 1914, Albert Einstein comes up with the modern theory of gravity [Theory of General Relativity]. This led scientists to try to understand whether you could use this theory to think about the cosmos as a whole. One of the striking things that comes out of that kind of reasoning is that you get forced into a picture where the universe has to be dynamic, basically because gravity is constantly trying to squeeze it together.

    To start with, if you look around the sky, it looks reasonably stable and static. It doesn’t look like it’s going anywhere, right? So, people initially tried various ways to construct cosmologies in which they can be kind of stable and static. To do that, you’ve got to poise the universe exactly between an expanding phase and a shrinking phase. You need balance these tendencies. For example, you can give the universal an initial outward push, like a Big Bang, but gravity will try to pull everything back together. How the push and pull compete depends on the amount of kind of energy distributed in the cosmos: regular matter like the stuff that makes stars, pure energy like light, dark matter which does not make stars, and so-called dark energy which can either push the fabric of spacetime apart or try to pull it together. So theoretical physicists tried to figure out whether the laws of gravity, along with these kinds of energy, could explain the apparently static structure of observed universe.

    And then a series of astronomical measurements, notably by Edwin Hubble, showed definitively that despite initial appearances, the universe on large scales is not stable and static.

    Rather, all the stars and galaxies, as observed now, seem to be spreading apart from each other, as if they are embedded in a space-time fabric that is stretching wider as time passes.

    ___________________________________________________________________
    Inflation

    In physical cosmology, cosmic inflation, cosmological inflation is a theory of exponential expansion of space in the early universe. The inflationary epoch lasted from 10^−36 seconds after the conjectured Big Bang singularity to some time between 10^−33 and 10^−32 seconds after the singularity. Following the inflationary period, the universe continued to expand, but at a slower rate. The acceleration of this expansion due to dark energy began after the universe was already over 7.7 billion years old (5.4 billion years ago).

    Inflation theory was developed in the late 1970s and early 80s, with notable contributions by several theoretical physicists, including Alexei Starobinsky at Landau Institute for Theoretical Physics, Alan Guth at Cornell University, and Andrei Linde at Lebedev Physical Institute. Alexei Starobinsky, Alan Guth, and Andrei Linde won the 2014 Kavli Prize “for pioneering the theory of cosmic inflation.” It was developed further in the early 1980s. It explains the origin of the large-scale structure of the cosmos. Quantum fluctuations in the microscopic inflationary region, magnified to cosmic size, become the seeds for the growth of structure in the Universe. Many physicists also believe that inflation explains why the universe appears to be the same in all directions (isotropic), why the cosmic microwave background radiation is distributed evenly, why the universe is flat, and why no magnetic monopoles have been observed.

    The detailed particle physics mechanism responsible for inflation is unknown. The basic inflationary paradigm is accepted by most physicists, as a number of inflation model predictions have been confirmed by observation; however, a substantial minority of scientists dissent from this position. The hypothetical field thought to be responsible for inflation is called the inflaton.

    In 2002 three of the original architects of the theory were recognized for their major contributions; physicists Alan Guth of M.I.T., Andrei Linde of Stanford, and Paul Steinhardt of Princeton shared the prestigious Dirac Prize “for development of the concept of inflation in cosmology”. In 2012 Guth and Linde were awarded the Breakthrough Prize in Fundamental Physics for their invention and development of inflationary cosmology.

    4
    Alan Guth, from M.I.T., who first proposed Cosmic Inflation.

    Alan Guth’s notes:
    Alan Guth’s original notes on inflation.
    ___________________________________________________________________

    Nobel Prize in Physics for 2011 Expansion of the Universe

    4 October 2011

    The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics for 2011

    with one half to

    Saul Perlmutter
    The Supernova Cosmology Project
    The DOE’s Lawrence Berkeley National Laboratory and The University of California-Berkeley,

    and the other half jointly to

    Brian P. SchmidtThe High-z Supernova Search Team, The Australian National University, Weston Creek, Australia.

    and

    Adam G. Riess

    The High-z Supernova Search Team,The Johns Hopkins University and The Space Telescope Science Institute, Baltimore, MD.

    Written in the stars

    “Some say the world will end in fire, some say in ice…” *

    What will be the final destiny of the Universe? Probably it will end in ice, if we are to believe this year’s Nobel Laureates in Physics. They have studied several dozen exploding stars, called supernovae, and discovered that the Universe is expanding at an ever-accelerating rate. The discovery came as a complete surprise even to the Laureates themselves.

    In 1998, cosmology was shaken at its foundations as two research teams presented their findings. Headed by Saul Perlmutter, one of the teams had set to work in 1988. Brian Schmidt headed another team, launched at the end of 1994, where Adam Riess was to play a crucial role.

    The research teams raced to map the Universe by locating the most distant supernovae. More sophisticated telescopes on the ground and in space, as well as more powerful computers and new digital imaging sensors (CCD, Nobel Prize in Physics in 2009), opened the possibility in the 1990s to add more pieces to the cosmological puzzle.

    The teams used a particular kind of supernova, called Type 1a supernova. It is an explosion of an old compact star that is as heavy as the Sun but as small as the Earth. A single such supernova can emit as much light as a whole galaxy. All in all, the two research teams found over 50 distant supernovae whose light was weaker than expected – this was a sign that the expansion of the Universe was accelerating. The potential pitfalls had been numerous, and the scientists found reassurance in the fact that both groups had reached the same astonishing conclusion.

    For almost a century, the Universe has been known to be expanding as a consequence of the Big Bang about 14 billion years ago. However, the discovery that this expansion is accelerating is astounding. If the expansion will continue to speed up the Universe will end in ice.

    The acceleration is thought to be driven by dark energy, but what that dark energy is remains an enigma – perhaps the greatest in physics today. What is known is that dark energy constitutes about three quarters of the Universe. Therefore, the findings of the 2011 Nobel Laureates in Physics have helped to unveil a Universe that to a large extent is unknown to science. And everything is possible again.

    *Robert Frost, Fire and Ice, 1920
    _____________________________________________

    This was a revelation, because physicists realized that if the universe is expanding now, if you run the movie backward, it had to be smaller earlier. In fact, some 13 billion years ago all the matter and energy in the universe had to be crammed together at incredible densities that have never been seen on Earth. You can also conclude that the universe would have been a lot hotter in this compressed phase. This is just like what happens if you compress a bicycle pump; he air inside gets hotter because you are cramming more energy into a smaller space. And when things get that hot, the microscopic processes of nuclear physics and even quantum gravity play an important role because of the enormous energies involved.

    So, to summarize, the idea of the modern Big Bang comes about because General Relativity makes a prediction: Given the current expansion of the universe, if you run time backwards, you have to start from a very highly compressed phase. At some point, time begins. This didn’t have to be. It could have been very compressed forever, and time could have been infinite. But Einstein’s theory of gravity predicts a beginning for time from which the universe explodes out. That’s the Big Bang.

    What are the weaknesses of the Big Bang theory and our current conception of the origin of the universe?

    It involves an extrapolation of the things we know and can measure in the lab, along with rather uncertain measurements of the expansion rate of the universe. People like Hubble measured distant stars and galaxies and realized that they look as they’re moving away from us, as an expansion. You put that expansion together with the equations of general relativity. Physics can predict forward in time and can predict backward in time. The equations tell you, given the current state, what the future will look like. But they can also tell you about the past. You know, take your pick.

    If you assume Einstein’s theory of relativity and you run the movie backward, time begins some 13 or 14 billion years ago. The question is, should you believe such a wild prediction?

    While there are excellent reasons to believe the general theory of relativity—there’s lots of evidence about many things that it gets right—in the history of science, it’s been often the case that a well-tested theory, extrapolated to regimes very far from the region where it was tested, will need corrections of some kind.

    We’re extrapolating into regions that have been out of the reach of laboratory experiments to date, for which we do not have direct observational evidence. We should keep in mind that this theory may need corrections, and things like string theory attempt to correct it. Then there are unknown factors that the theory didn’t include, new forms of energy that could prevent the expansion or shrinking or could stabilize the universe.

    I’m laying out here the many uncertainties of the theory, but that’s partly because that’s where the opportunities are. If everything was already done, we wouldn’t have to think about it anymore.

    Physicists can imagine stuff that makes the world work. That’s what we do for a trade. We imagine stuff that would be necessary for the logical consistency of the world around us. The alpha-beta-gamma paper took Einstein’s theory for granted. They predicted the abundances of the primordial elements, the hydrogen-helium ratio, which turns out to be right. They said, ‘Okay, well, if the universe was very hot, it had to have cooled down over time. So if it cooled down, I’m going put all I know about nuclear physics in the lab to represent the expansion of the universe. As it cools, the primordial soup will freeze out into quarks and gluons and electrons, and those things will freeze out some more, and eventually, when it’s done freezing out, based on what I know about nuclear reaction rates, I predict the following ratio of hydrogen to helium.’ That’s what they did.

    The theory then proceeded to predict that you will see a glow in the distant sky as the Big Bang cooled down to a few degrees Kelvin. The discovery of that glow, the cosmic microwave background, in the 1960s, really nailed it.

    How do you predict this theory will evolve, or be adjusted, with time?

    The hydrogen-helium ratio and the cosmic microwave background are two primary reasons to support the Big Bang theory. Those are certainties that we are seeing now. But what does Hamlet say? ‘There are more things in Heaven and Earth, Horatio, than are dreamt of in your philosophy.’

    We keep discovering that our assumptions about the nature of the universe are incorrect or approximate.

    The laws of physics are full of laws that turn out not to be laws. They turn out to be approximations. So, Newton’s laws, which we still call Newton’s laws out of respect for Newton, are approximations to the more general laws of general relativity and quantum mechanics. There’s a progression in science where we devise rules and descriptions of nature that work extremely well in some regime, and then, as you push outside the regime, you have to be able to edit them. I try to remain aware that, while the default conclusion is there was a big bang, understood as a singularity in space and time, about 13, 14 billion years ago. There may be escape routes from that conclusion, if our understanding of the laws of nature or something in the data has not been fully correct.

    Questioning where the cosmos came from has long been part of human speculation, in philosophy and religion. Ancient peoples drew pictures in caves involving their cosmologies. There’s clearly a human need to talk about origins and causation of the universe. It is kind of amazing and remarkable that we live in a time when there’s a scientific approach to such questions, which we can use with any kind of confidence.

    We’re just little people sitting on this irrelevant little planet of a very medium-sized solar system on the edge of a no-account galaxy that is part of a local cluster. We’re sort of just tiny things, right? And yet, we’re claiming to be able to say something about the actual origin of everything. It’s amazing that we have a hope of doing that. But there’s pretty good evidence, that at least in the rough, that this picture is correct: There was a hot, dense space about 13 some billion years ago, and it’s expanded since then.

    The core description fits beautifully. The ballpark version seems correct. But the detailed version has gaps, so there is a lot left to do in this process of discovery to understand how the universe is organized and what is in it, Today the most important questions involve dark matter, a form of matter that does not form stars, and dark energy, a form of energy that appears to be forcing the universe apart at an ever faster rate. Together, these substances appear to constitute about 96% of the energy in the universe and have huge consequences for the large-scale organization of the cosmos, its past history, and its future. The race is on to figure out what dark matter and dark energy are.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Penn campus

    Academic life at The University of Pennsylvania is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946. In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences; 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University and Columbia University. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University, William & Mary, Yale Unversity, and The College of New Jersey—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health.

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University and Cornell University (Harvard University did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering.

    ENIAC UPenn

    It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
  • richardmitnick 1:45 pm on March 29, 2023 Permalink | Reply
    Tags: "The next generation of micrometer-scale batteries", , Automated sprinklers and lighting and security systems have been commonplace in homes and offices for several decades., Challenges engineers face in manufacturing the next generation of microbatteries, , Internet of Things (IoT), Learn how designing new configurations can allow for both smaller dimensions and greater energy storage, , , Metal-air batteries have been around for a while and are commonly used in hearing aids. Metal-air batteries are unique because they use the air around us as the cathode., , , , The University of Pennsylvania, This has led to the development of "microbatteries"., To make a battery 10-times smaller in every dimension it now has 10 times 10 times 10 (a thousand times) less energy. That is a major challenge.   

    From The School of Engineering and Applied Science At The University of Pennsylvania Via “Penn Today” : “The next generation of micrometer-scale batteries” 

    From The School of Engineering and Applied Science

    At

    U Penn bloc

    The University of Pennsylvania

    Via

    “Penn Today”

    3.28.23
    Nathi Magubane

    James Pikul speaks to the growth of interconnected devices and the robotics industry—leading to emerging designs and novel research unlocking the potential for smaller, more powerful batteries.

    1
    As the Internet of Things and robotics industries continue to grow and evolve, there is an increasing demand for smaller, more energy-dense batteries to power novel devices. (Image: iStock/Olga Shestakova)

    Automated sprinklers, lighting, and security systems have been commonplace in homes and offices for several decades. In recent years, however, they have become increasingly efficient at anticipating user needs and optimizing their performance due to their ability to communicate information over wireless networks. This emerging phenomenon is known as the Internet of Things (IoT), and it describes how interconnected devices parse data to one another without human intervention to enhance their convenience.

    And as the IoT and robotics industries continue to grow and evolve, there is an increasing demand for smaller, more energy-dense, batteries to power these interconnected devices. This has led to the development of “microbatteries”, miniature batteries that can provide power to small IoT devices like sensors, wearable smart devices, drones, and tiny robots.

    Penn Today met with James Pikul, assistant professor in the Department of Mechanical Engineering and Applied Mechanics at the School of Engineering and Applied Science, to discuss the challenges engineers face in manufacturing the next generation of microbatteries and to learn how designing new configurations can allow for both smaller dimensions and greater energy storage.

    Problems with downsizing

    Pikul’s lab develops and has been working to improve microbatteries. A major hurdle in designing batteries to power tiny devices is that batteries suffer from deficits in energy storage and performance when their dimensions are reduced, explains Pikul. “Energy scales with volume, which is length multiplied by length multiplied by length, so length cubed,” he says.

    “If you want to make a battery 10-times smaller in every dimension, it now has 10 times 10 times 10 (a thousand times) less energy. That’s one of the major challenges.”

    The packaging materials used to house batteries also pose a major impediment to scaling.

    “The electrochemical reactions that allow batteries to generate power are sensitive to contamination, so they need to be encased in a hermetically sealed packaging material,” Pikul says.

    He explains that packaging materials need to have a certain thickness to prevent leakages and contamination, but as batteries become smaller, the thickness of the materials can add unwanted volume and mass. Pikul likens this constraint to boxing up a laptop versus a phone with the same packaging materials.

    “In terms of total volume, the ratio of the cardboard box to the laptop is much less than the ratio of the cardboard box to the phone if the cardboard has the same thickness,” he says. “So, making packaging that’s really small, using battery materials that have a high amount of energy stored per unit of volume (energy density), and coming up with new architectures that optimally arrange these materials in 3D space are how we’re trying to overcome these problems.”

    Unpacking the energy storage problem

    In 2019, Pikul and his collaborators began addressing some of the packaging constraints as part of a project funded by DARPA’s SHort-Range Independent Microrobotic Platforms (SHRIMP) initiative to develop tiny insect-sized robots that could be used in search and rescue operations.

    He and his colleagues published a paper in 2021 in the journal Advanced Materials. They proposed a new way to reduce the size of packaging material by integrating it into components of the battery known as the current collectors. “So, our arrangement uses the current collectors to quickly transport electrons while also preventing the contamination of the battery,” Pikul says. “That way, we have this one material that does two things instead of having two materials that do one thing each.”

    These batteries also used a new cathode architecture that increases their energy density. The cathode is the part of the battery that takes in electrons during electrochemical reactions, says Pikul. “We made this new type of cathode we called ‘fully dense,’ which means the material that accepts electrons takes up almost all of the volume of the cathode so it stores more energy per unit of volume.”

    He draws a comparison between old cathodes and the type his team developed by describing how a bowl filled with baby potatoes occupies volume differently from a bowl filled with a big cut of corned beef. “With the baby potatoes, the arrangement isn’t as densely packed, which means there’s more room for stuff like water to get in—as opposed to the corned beef, which is too dense for water to get through. Can you tell I just ate lunch?” he jokes.

    Pikul and his team found that this fully dense cathode not only conferred an advantage in greater energy density, but also improved the battery’s power density.

    “Normally, when you’re making batteries, there’s a trade-off between energy density and power density, where energy density’s the amount of juice in the tank and power density is how fast your car can go, or how fast you can charge your car,” says Pikul. “By developing this fully dense arrangement, we were able to exploit another corned-beef-like quality: the ‘muscle fibers.’”

    He describes the muscle fibers, or grains as being a sort of conduit for ions to flow much faster. Battery manufacturers traditionally favored the baby potato-like arrangement, because ions had a shorter distance to travel between particles, compared to traversing the cross-section of a large, dense chunk of corned beef, he says. However, with their cathode arrangement, the team found a way to align the grains in a way to allow for ions to travel fast in specific directions. Thus, the batteries were able to take advantage of the higher energy density architecture (the corned beef), while retaining high power density.

    Taking it a step further

    On another SHRIMP project, Pikul worked with the same group and long-time collaborator Paul V. Braun of the University of Illinois Urbana-Champaign, who led the research. Once again, the team combined the fully dense cathodes with packaging material, but their focus was boosting the voltage for microbatteries to allow tiny robots to travel farther on a single charge.

    “Hearkening back to energy density or how much juice you have in the tank for a single trip, let’s say it’s about 100 gallons and that represents how much energy I can store,” says Pikul. “Now, if I need to make many trips, l would have to fill up the tank a lot of times. But with batteries, filling up the tank degrades the performance and so every time I fill it up, I get less utility and efficiency out of it.”

    Pikul explains how this is a common feature with battery-powered devices with long lifecycles like mobile phones. They need to charge over and over again, but this diminishes the amount of energy they can deliver on repeat charges and usage. “Usually, the way around this is to restrict how much energy you can take out, so it doesn’t go all the way down to zero each time, with the idea being that there’s a little left to prevent wear and tear from repeat draining and recharging. So, most batteries only take out 50 gallons each discharge instead of the full 100 gallons.”

    What Pikul and colleagues were able to do in this SHRIMP research, published in the journal Cell Reports Physical Science [below], is tap into an extra bit of energy stored within cathodes used for battery materials. Pikul notes that people do not typically do this because it sacrifices the ability to recharge the battery, which would make it unfeasible for a device used daily, like a phone, but would be ideal for robots or drones that only need to be used once. For example, a robot that explores and collects information in environments too dangerous or vast for humans to traverse.

    “Since we’re only using the battery once, we can get as much energy as possible out of it for a one-shot performance.”

    In a more recent study [ACS Applied Materials & Interfaces (below)], Pikul and his colleagues dealt with a similar set of challenges related to making batteries for insect-sized robots, but approached the battery architecture in a different way. Instead of a lithium-ion battery, they used zinc and air electrodes, and worked on ways to reduce the size of a battery component known as the electrolyte, which is like bridge between the positive and negative terminal.

    “Metal-air batteries have been around for a while and are commonly used in hearing aids,” Pikul says. “Metal-air batteries are unique because they use the air around us as the cathode, which makes them much lighter and able to store more energy per unit of mass.”

    He notes that this ability is a bit of a double-edged sword, however, because now engineers need to worry about controlling the interaction between the precise chemistry inside the battery and the open environment, which can cause problems in the electrolyte.

    Pikul explains that efforts to tap into these high energy densities have mostly focused on improving the electrodes rather than the electrolyte, so he and his team set out to fabricate a new type of leaner hydrogel electrolyte solution that could also resist contamination from the open-air system. “People normally use potassium hydroxide for the electrolyte, but it tends to react with CO2 in the air,” he says.

    “So, we took a step back and looked at the conventional chemistry behind the problem and proposed an electrolyte solution that incorporates the best elements of potassium hydroxide—namely its ability to be very thin compared to other solid electrolytes and how good it is at moving ions—but avoids contamination by adding a few more compounds at varying concentrations.”

    Pikul clarifies that this electrolyte solution does not is not a panacea for metal-air batteries, and that there is still a ways to go before such batteries can become more commonplace in larger devices like mobile phones. However, he says this still paves the way for developing microbatteries for tiny robots and drones.

    “For our use cases, where the robot or device needs to be operational and running at full capacity for a few weeks or days, the ways we can reduce the size and boost output present new possibilities for these devices,” says Pikul.

    Advanced Materials 2021
    Cell Reports Physical Science
    See the above science paper for instructive material with images.
    ACS Applied Materials & Interfaces

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The School of Engineering and Applied Science is an undergraduate and graduate school of The University of Pennsylvania. The School offers programs that emphasize hands-on study of engineering fundamentals (with an offering of approximately 300 courses) while encouraging students to leverage the educational offerings of the broader University. Engineering students can also take advantage of research opportunities through interactions with Penn’s School of Medicine, School of Arts and Sciences and the Wharton School.

    Penn Engineering offers bachelors, masters and Ph.D. degree programs in contemporary fields of engineering study. The nationally ranked bioengineering department offers the School’s most popular undergraduate degree program. The Jerome Fisher Program in Management and Technology, offered in partnership with the Wharton School, allows students to simultaneously earn a Bachelor of Science degree in Economics as well as a Bachelor of Science degree in Engineering. SEAS also offers several masters programs, which include: Executive Master’s in Technology Management, Master of Biotechnology, Master of Computer and Information Technology, Master of Computer and Information Science and a Master of Science in Engineering in Telecommunications and Networking.

    History

    The study of engineering at The University of Pennsylvania can be traced back to 1850 when the University trustees adopted a resolution providing for a professorship of “Chemistry as Applied to the Arts”. In 1852, the study of engineering was further formalized with the establishment of the School of Mines, Arts and Manufactures. The first Professor of Civil and Mining Engineering was appointed in 1852. The first graduate of the school received his Bachelor of Science degree in 1854. Since that time, the school has grown to six departments. In 1973, the school was renamed as the School of Engineering and Applied Science.

    The early growth of the school benefited from the generosity of two Philadelphians: John Henry Towne and Alfred Fitler Moore. Towne, a mechanical engineer and railroad developer, bequeathed the school a gift of $500,000 upon his death in 1875. The main administration building for the school still bears his name. Moore was a successful entrepreneur who made his fortune manufacturing telegraph cable. A 1923 gift from Moore established the Moore School of Electrical Engineering, which is the birthplace of the first electronic general-purpose Turing-complete digital computer, ENIAC, in 1946.

    During the latter half of the 20th century the school continued to break new ground. In 1958, Barbara G. Mandell became the first woman to enroll as an undergraduate in the School of Engineering. In 1965, the university acquired two sites that were formerly used as U.S. Army Nike Missile Base (PH 82L and PH 82R) and created the Valley Forge Research Center. In 1976, the Management and Technology Program was created. In 1990, a Bachelor of Applied Science in Biomedical Science and Bachelor of Applied Science in Environmental Science were first offered, followed by a master’s degree in Biotechnology in 1997.

    The school continues to expand with the addition of the Melvin and Claire Levine Hall for computer science in 2003, Skirkanich Hall for Bioengineering in 2006, and the Krishna P. Singh Center for Nanotechnology in 2013.

    Academics

    Penn’s School of Engineering and Applied Science is organized into six departments:

    Bioengineering
    Chemical and Biomolecular Engineering
    Computer and Information Science
    Electrical and Systems Engineering
    Materials Science and Engineering
    Mechanical Engineering and Applied Mechanics

    The school’s Department of Bioengineering, originally named Biomedical Electronic Engineering, consistently garners a top-ten ranking at both the undergraduate and graduate level from U.S. News & World Report. The department also houses the George H. Stephenson Foundation Educational Laboratory & Bio-MakerSpace (aka Biomakerspace) for training undergraduate through PhD students. It is Philadelphia’s and Penn’s only Bio-MakerSpace and it is open to the Penn community, encouraging a free flow of ideas, creativity, and entrepreneurship between Bioengineering students and students throughout the university.

    Founded in 1893, the Department of Chemical and Biomolecular Engineering is “America’s oldest continuously operating degree-granting program in chemical engineering.”

    The Department of Electrical and Systems Engineering is recognized for its research in electroscience, systems science and network systems and telecommunications.

    Originally established in 1946 as the School of Metallurgical Engineering, the Materials Science and Engineering Department “includes cutting edge programs in nanoscience and nanotechnology, biomaterials, ceramics, polymers, and metals.”

    The Department of Mechanical Engineering and Applied Mechanics draws its roots from the Department of Mechanical and Electrical Engineering, which was established in 1876.

    Each department houses one or more degree programs. The Chemical and Biomolecular Engineering, Materials Science and Engineering, and Mechanical Engineering and Applied Mechanics departments each house a single degree program.

    Bioengineering houses two programs (both a Bachelor of Science in Engineering degree as well as a Bachelor of Applied Science degree). Electrical and Systems Engineering offers four Bachelor of Science in Engineering programs: Electrical Engineering, Systems Engineering, Computer Engineering, and the Networked & Social Systems Engineering, the latter two of which are co-housed with Computer and Information Science (CIS). The CIS department, like Bioengineering, offers Computer and Information Science programs under both bachelor programs. CIS also houses Digital Media Design, a program jointly operated with PennDesign.

    Research

    Penn’s School of Engineering and Applied Science is a research institution. SEAS research strives to advance science and engineering and to achieve a positive impact on society.

    U Penn campus

    Academic life at University of Pennsylvania is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946. In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences; 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University and Columbia University. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University, William & Mary, Yale Unversity, and The College of New Jersey—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health.

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University and Cornell University (Harvard University did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering.

    ENIAC UPenn

    It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
  • richardmitnick 11:06 am on March 28, 2023 Permalink | Reply
    Tags: "Five things to know - Recent breakthrough in neutrino detection", , , Neutrinos and antineutrinos are tiny subatomic particles that are the most abundant particles in the universe and considered fundamental building blocks of matter., Nuclear reactors produce large amounts of antineutrinos and make them an ideal source for studying them., , , , Research by Joshua Klein of the School of Arts & Science and an international team has found a way to detect distant subatomic particles using water., SNO+ roughly 240km (about 149.13 mi) from the nearest nuclear reactor has detected subatomic particles known as antineutrinos using pure water., Sudbury Neutrino Observation (SNO+), , The University of Pennsylvania   

    From The School of Arts & Sciences At The University of Pennsylvania Via “Penn Today” : “Five things to know – Recent breakthrough in neutrino detection” 

    From The School of Arts & Sciences

    At

    U Penn bloc

    The University of Pennsylvania

    Via

    “Penn Today”

    3.27.23
    Nathi Magubane

    Research by Joshua Klein of the School of Arts & Science and an international team has found a way to detect distant subatomic particles using water.

    1
    A view inside the SNO detector when filled with water. In the background, there are 9,000 photomultiplier tubes that detect photons and the acrylic vessel that (now) holds liquid scintillator. The ropes that crisscross on the outside hold it down when the scintillator is added, to prevent it from floating upwards. The acrylic vessel is 12 m wide, which is about half of the width of Olympic-sized swimming pools. The facility is located in SNOLAB, a research facility located 2km underground near Sudbury, Canada. (Image: SNO+ Collaboration)

    Research published in the journal Physical Review Letters [below] conducted by an international team of scientists including Joshua Klein, the Edmund J. and Louise W. Kahn Term Professor in the School of Arts & Sciences, has resulted in a significant breakthrough in detecting neutrinos.

    The international collaborative experiment known as Sudbury Neutrino Observation (SNO+), located in a mine in Sudbury, Ontario, roughly 240km (about 149.13 mi) from the nearest nuclear reactor, has detected subatomic particles, known as antineutrinos, using pure water. Klein notes that prior experiments have done this with a liquid scintillator, an oil-like medium that produces a lot of light when charged particles like electrons or protons pass through it.

    “Given that the detector needs to be 240km, about half the length of New York state, away from the reactor, large amounts of scintillator are needed, which can be very expensive,” Klein says. “So, our work shows that very large detectors could be built to do this with just water.”

    What neutrinos and antineutrinos are and why you should care

    Klein explains that neutrinos and antineutrinos are tiny subatomic particles that are the most abundant particles in the universe and considered fundamental building blocks of matter, but scientists have had difficulty detecting them due to their sparse interactions with other matter and because they cannot be shielded, meaning they can pass through any and everything. But that doesn’t mean they’re harmful or radioactive: Nearly 100 trillion neutrinos pass through our bodies every second without notice.

    These properties, however, also make these elusive particles useful for understanding a range of physical phenomena, such as the formation of the universe and the study of distant astronomical objects, and they “have practical applications as they can be used to monitor nuclear reactors and potentially detect the clandestine nuclear activities,” Klein says.

    Where they come from

    While neutrinos are typically produced by high energy reactions like nuclear reactions in stars, such as the fusion of hydrogen into helium in the sun wherein protons and other particles collide and release neutrinos as a byproduct, antineutrinos, Klein says, are usually produced artificially, “for instance, nuclear reactors, which, to split atomic nuclei, produce antineutrinos as a result of radioactive beta decay from the reaction,” he says. “As such, nuclear reactors produce large amounts of antineutrinos and make them an ideal source for studying them.”

    Why this latest finding is a breakthrough

    “So, monitoring reactors by measuring their antineutrinos tells us whether they are on or off,” Klein says, “and perhaps even what nuclear fuel they are burning.”

    Klein explains that a reactor in a foreign country could therefore be monitored to see if that country is switching from a power-generating reactor to one that is making weapons-grade material. Making the assessment with water alone means an array of large but inexpensive reactors could be built to ensure that a country is adhering to its commitments in a nuclear weapons treaty, for example; it is a handle on ensuring nuclear nonproliferation.

    Why this hasn’t been done before

    “Reactor antineutrinos are very low in energy, and thus a detector must be very clean from even trace amounts of radioactivity,” Klein says. “In addition, the detector must be able to ‘trigger’ at a low enough threshold that the events can be detected.”

    He says that, for a reactor as far away as 240km, it’s particularly important that the reactor contain at least 1,000 tons of water. SNO+ satisfied all these criteria.

    Leading the charge

    Klein credits his former trainees Tanner Kaptanglu and Logan Lebanowski for spearheading this effort. While the idea for this measurement formed part of Kaptanglu’s doctoral thesis, Lebanowski, a former postdoctoral researcher, oversaw the operation.

    “With our instrumentation group here, we designed and built all the data acquisition electronics and developed the detector ‘trigger’ system, which is what allowed SNO+ to have an energy threshold low enough to detect the reactor antineutrinos.”

    Capital construction funds for the SNO+ experiment were provided by the Canada Foundation for Innovation (CFI) and matching partners. SNOLAB operations are supported by the CFI and the Province of Ontario Ministry of Research and Innovation, with underground access provided by Vale at the Creighton mine site.

    The research was funded by the Department of Energy Office of Nuclear Physics, the National Science Foundation, and the Department of Energy National Nuclear Security Administration through the Nuclear Science and Security Consortium.

    Physical Review Letters

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Pennsylvania School of Arts and Sciences is the academic institution encompassing the humanities, social sciences, and natural sciences at the University of Pennsylvania.

    Formerly known as the Faculty of Arts and Sciences, the School of Arts and Sciences is an umbrella organization that is divided into three main academic components: The College of Arts & Sciences is Penn’s undergraduate liberal arts school. The Graduate Division offers post-undergraduate M.A., M.S., and Ph.D. programs. Finally, the College of Liberal and Professional Studies, originally called “College of General Studies”, is Penn’s continuing and professional education division, catered to working professionals.

    The School of Arts and Sciences contains the following departments:

    Africana Studies
    Anthropology
    Biology
    Chemistry
    Classical Studies
    Criminology
    Earth and Environmental Science
    East Asian Languages & Civilizations
    Economics
    English
    Germanic Languages and Literatures
    History
    History and Sociology of Science
    History of Art
    Linguistics
    Mathematics
    Music
    Near Eastern Languages & Civilizations
    Philosophy
    Physics and Astronomy
    Political Science
    Psychology
    Religious Studies
    Romance Languages
    Russian and East European Studies
    Sociology
    South Asia Studies

    U Penn campus

    Academic life at University of Pennsylvania is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946. In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences; 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University and Columbia University. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University, William & Mary, Yale Unversity, and The College of New Jersey—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health.

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University and Cornell University (Harvard University did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering.

    ENIAC UPenn

    It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
  • richardmitnick 10:25 am on March 13, 2023 Permalink | Reply
    Tags: "Real or fake text? We can learn to spot the difference", Penn computer scientists prove that people can be trained to tell the difference between AI-generated and human-written text., , The University of Pennsylvania   

    From “Penn Today” At The University of Pennsylvania : “Real or fake text? We can learn to spot the difference” 

    From “Penn Today”

    At

    U Penn bloc

    The University of Pennsylvania

    3.10.23
    Devorah Fischler | Penn Engineering

    Penn computer scientists prove that people can be trained to tell the difference between AI-generated and human-written text. Their new paper debuts the results of the largest-ever human study on AI detection.

    The most recent generation of chatbots has surfaced longstanding concerns about the growing sophistication and accessibility of artificial intelligence.

    Fears about the integrity of the job market—from the creative economy to the managerial class—have spread to the classroom as educators rethink learning in the wake of ChatGPT.

    Yet while apprehensions about employment and schools dominate headlines, the truth is that the effects of large-scale language models such as ChatGPT will touch virtually every corner of our lives. These new tools raise society-wide concerns about artificial intelligence’s role in reinforcing social biases, committing fraud and identity theft, generating fake news, spreading misinformation and more.

    A team of researchers at Penn’s School of Engineering and Applied Science is seeking to empower tech users to mitigate these risks. In a peer-reviewed paper, the authors demonstrate that people can learn to spot the difference between machine-generated and human-written text.

    1
    Computer scientists at the University of Pennsylvania prove that people can be trained to tell the difference between AI-generated and human-written text. Their new paper debuts the results of the largest-ever human study on AI detection.

    Before you choose a recipe, share an article, or provide your credit card details, it’s important to know there are steps you can take to discern the reliability of your source.

    The study, led by Chris Callison-Burch, associate professor in the Department of Computer and Information Science (CIS), along with Liam Dugan and Daphne Ippolito, students in CIS, provides evidence that AI-generated text is detectable.

    “We’ve shown that people can train themselves to recognize machine-generated texts,” says Callison-Burch. “People start with a certain set of assumptions about what sort of errors a machine would make, but these assumptions aren’t necessarily correct. Over time, given enough examples and explicit instruction, we can learn to pick up on the types of errors that machines are currently making.”

    The study uses data collected using Real or Fake Text?, an original web-based training game.

    This training game is notable for transforming the standard experimental method for detection studies into a more accurate recreation of how people use AI to generate text.

    In standard methods, participants are asked to indicate in a yes-or-no fashion whether a machine has produced a given text. This task involves simply classifying a text as real or fake and responses are scored as correct or incorrect.

    The Penn model significantly refines the standard detection study into an effective training task by showing examples that all begin as human-written. Each example then transitions into generated text, asking participants to mark where they believe this transition begins. Trainees identify and describe the features of the text that indicate error and receive a score.

    The study results show that participants scored significantly better than random chance, providing evidence that AI-created text is, to some extent, detectable.

    “Our method not only gamifies the task, making it more engaging, it also provides a more realistic context for training,” says Dugan. “Generated texts, like those produced by ChatGPT, begin with human-provided prompts.”
    ===
    The study speaks not only to artificial intelligence today, but also outlines a reassuring, even exciting, future for our relationship to this technology.

    “Five years ago,” says Dugan, “models couldn’t stay on topic or produce a fluent sentence. Now, they rarely make a grammar mistake. Our study identifies the kind of errors that characterize AI chatbots, but it’s important to keep in mind that these errors have evolved and will continue to evolve. The shift to be concerned about is not that AI-written text is undetectable. It’s that people will need to continue training themselves to recognize the difference and work with detection software as a supplement.”

    “People are anxious about AI for valid reasons,” says Callison-Burch. “Our study gives points of evidence to allay these anxieties. Once we can harness our optimism about AI text generators, we will be able to devote attention to these tools’ capacity for helping us write more imaginative, more interesting texts.”

    Ippolito, the Penn study’s co-leader and current Research Scientist at Google, complements Dugan’s focus on detection with her work’s emphasis on exploring the most effective use cases for these tools. She contributed, for example, to Wordcraft, an AI creative writing tool developed in tandem with published writers. None of the writers or researchers found that AI was a compelling replacement for a fiction writer, but they did find significant value in its ability to support the creative process.

    “My feeling at the moment is that these technologies are best suited for creative writing,” says Callison-Burch. “News stories, term papers, or legal advice are bad use cases because there’s no guarantee of factuality.”

    “There are exciting positive directions that you can push this technology in,” says Dugan. “People are fixated on the worrisome examples, like plagiarism and fake news, but we know now that we can be training ourselves to be better readers and writers.”

    Learn to spot generated text and contribute to this ongoing research by playing Real or Fake Text here!

    See the full Penn Today article here .

    See the Penn Engineering article here.

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Penn campus

    Academic life at The University of Pennsylvania is unparalleled, with 100 countries and every U.S. state represented in one of the Ivy League’s most diverse student bodies. Consistently ranked among the top 10 universities in the country, Penn enrolls 10,000 undergraduate students and welcomes an additional 10,000 students to our world-renowned graduate and professional schools.

    Penn’s award-winning educators and scholars encourage students to pursue inquiry and discovery, follow their passions, and address the world’s most challenging problems through an interdisciplinary approach.

    The University of Pennsylvania is a private Ivy League research university in Philadelphia, Pennsylvania. The university claims a founding date of 1740 and is one of the nine colonial colleges chartered prior to the U.S. Declaration of Independence. Benjamin Franklin, Penn’s founder and first president, advocated an educational program that trained leaders in commerce, government, and public service, similar to a modern liberal arts curriculum.

    Penn has four undergraduate schools as well as twelve graduate and professional schools. Schools enrolling undergraduates include the College of Arts and Sciences; the School of Engineering and Applied Science; the Wharton School; and the School of Nursing. Penn’s “One University Policy” allows students to enroll in classes in any of Penn’s twelve schools. Among its highly ranked graduate and professional schools are a law school whose first professor wrote the first draft of the United States Constitution, the first school of medicine in North America (Perelman School of Medicine, 1765), and the first collegiate business school (Wharton School, 1881).

    Penn is also home to the first “student union” building and organization (Houston Hall, 1896), the first Catholic student club in North America (Newman Center, 1893), the first double-decker college football stadium (Franklin Field, 1924 when second deck was constructed), and Morris Arboretum, the official arboretum of the Commonwealth of Pennsylvania. The first general-purpose electronic computer (ENIAC) was developed at Penn and formally dedicated in 1946. In 2019, the university had an endowment of $14.65 billion, the sixth-largest endowment of all universities in the United States, as well as a research budget of $1.02 billion. The university’s athletics program, the Quakers, fields varsity teams in 33 sports as a member of the NCAA Division I Ivy League conference.

    As of 2018, distinguished alumni and/or Trustees include three U.S. Supreme Court justices; 32 U.S. senators; 46 U.S. governors; 163 members of the U.S. House of Representatives; eight signers of the Declaration of Independence and seven signers of the U.S. Constitution (four of whom signed both representing two-thirds of the six people who signed both); 24 members of the Continental Congress; 14 foreign heads of state and two presidents of the United States, including Donald Trump. As of October 2019, 36 Nobel laureates; 80 members of the American Academy of Arts and Sciences; 64 billionaires; 29 Rhodes Scholars; 15 Marshall Scholars and 16 Pulitzer Prize winners have been affiliated with the university.

    History

    The University of Pennsylvania considers itself the fourth-oldest institution of higher education in the United States, though this is contested by Princeton University and Columbia University. The university also considers itself as the first university in the United States with both undergraduate and graduate studies.

    In 1740, a group of Philadelphians joined together to erect a great preaching hall for the traveling evangelist George Whitefield, who toured the American colonies delivering open-air sermons. The building was designed and built by Edmund Woolley and was the largest building in the city at the time, drawing thousands of people the first time it was preached in. It was initially planned to serve as a charity school as well, but a lack of funds forced plans for the chapel and school to be suspended. According to Franklin’s autobiography, it was in 1743 when he first had the idea to establish an academy, “thinking the Rev. Richard Peters a fit person to superintend such an institution”. However, Peters declined a casual inquiry from Franklin and nothing further was done for another six years. In the fall of 1749, now more eager to create a school to educate future generations, Benjamin Franklin circulated a pamphlet titled Proposals Relating to the Education of Youth in Pensilvania, his vision for what he called a “Public Academy of Philadelphia”. Unlike the other colonial colleges that existed in 1749—Harvard University, William & Mary, Yale Unversity, and The College of New Jersey—Franklin’s new school would not focus merely on education for the clergy. He advocated an innovative concept of higher education, one which would teach both the ornamental knowledge of the arts and the practical skills necessary for making a living and doing public service. The proposed program of study could have become the nation’s first modern liberal arts curriculum, although it was never implemented because Anglican priest William Smith (1727-1803), who became the first provost, and other trustees strongly preferred the traditional curriculum.

    Franklin assembled a board of trustees from among the leading citizens of Philadelphia, the first such non-sectarian board in America. At the first meeting of the 24 members of the board of trustees on November 13, 1749, the issue of where to locate the school was a prime concern. Although a lot across Sixth Street from the old Pennsylvania State House (later renamed and famously known since 1776 as “Independence Hall”), was offered without cost by James Logan, its owner, the trustees realized that the building erected in 1740, which was still vacant, would be an even better site. The original sponsors of the dormant building still owed considerable construction debts and asked Franklin’s group to assume their debts and, accordingly, their inactive trusts. On February 1, 1750, the new board took over the building and trusts of the old board. On August 13, 1751, the “Academy of Philadelphia”, using the great hall at 4th and Arch Streets, took in its first secondary students. A charity school also was chartered on July 13, 1753 by the intentions of the original “New Building” donors, although it lasted only a few years. On June 16, 1755, the “College of Philadelphia” was chartered, paving the way for the addition of undergraduate instruction. All three schools shared the same board of trustees and were considered to be part of the same institution. The first commencement exercises were held on May 17, 1757.

    The institution of higher learning was known as the College of Philadelphia from 1755 to 1779. In 1779, not trusting then-provost the Reverend William Smith’s “Loyalist” tendencies, the revolutionary State Legislature created a University of the State of Pennsylvania. The result was a schism, with Smith continuing to operate an attenuated version of the College of Philadelphia. In 1791, the legislature issued a new charter, merging the two institutions into a new University of Pennsylvania with twelve men from each institution on the new board of trustees.

    Penn has three claims to being the first university in the United States, according to university archives director Mark Frazier Lloyd: the 1765 founding of the first medical school in America made Penn the first institution to offer both “undergraduate” and professional education; the 1779 charter made it the first American institution of higher learning to take the name of “University”; and existing colleges were established as seminaries (although, as detailed earlier, Penn adopted a traditional seminary curriculum as well).

    After being located in downtown Philadelphia for more than a century, the campus was moved across the Schuylkill River to property purchased from the Blockley Almshouse in West Philadelphia in 1872, where it has since remained in an area now known as University City. Although Penn began operating as an academy or secondary school in 1751 and obtained its collegiate charter in 1755, it initially designated 1750 as its founding date; this is the year that appears on the first iteration of the university seal. Sometime later in its early history, Penn began to consider 1749 as its founding date and this year was referenced for over a century, including at the centennial celebration in 1849. In 1899, the board of trustees voted to adjust the founding date earlier again, this time to 1740, the date of “the creation of the earliest of the many educational trusts the University has taken upon itself”. The board of trustees voted in response to a three-year campaign by Penn’s General Alumni Society to retroactively revise the university’s founding date to appear older than Princeton University, which had been chartered in 1746.

    Research, innovations and discoveries

    Penn is classified as an “R1” doctoral university: “Highest research activity.” Its economic impact on the Commonwealth of Pennsylvania for 2015 amounted to $14.3 billion. Penn’s research expenditures in the 2018 fiscal year were $1.442 billion, the fourth largest in the U.S. In fiscal year 2019 Penn received $582.3 million in funding from the National Institutes of Health.

    In line with its well-known interdisciplinary tradition, Penn’s research centers often span two or more disciplines. In the 2010–2011 academic year alone, five interdisciplinary research centers were created or substantially expanded; these include the Center for Health-care Financing; the Center for Global Women’s Health at the Nursing School; the $13 million Morris Arboretum’s Horticulture Center; the $15 million Jay H. Baker Retailing Center at Wharton; and the $13 million Translational Research Center at Penn Medicine. With these additions, Penn now counts 165 research centers hosting a research community of over 4,300 faculty and over 1,100 postdoctoral fellows, 5,500 academic support staff and graduate student trainees. To further assist the advancement of interdisciplinary research President Amy Gutmann established the “Penn Integrates Knowledge” title awarded to selected Penn professors “whose research and teaching exemplify the integration of knowledge”. These professors hold endowed professorships and joint appointments between Penn’s schools.

    Penn is also among the most prolific producers of doctoral students. With 487 PhDs awarded in 2009, Penn ranks third in the Ivy League, only behind Columbia University and Cornell University (Harvard University did not report data). It also has one of the highest numbers of post-doctoral appointees (933 in number for 2004–2007), ranking third in the Ivy League (behind Harvard and Yale University) and tenth nationally.

    In most disciplines Penn professors’ productivity is among the highest in the nation and first in the fields of epidemiology, business, communication studies, comparative literature, languages, information science, criminal justice and criminology, social sciences and sociology. According to the National Research Council nearly three-quarters of Penn’s 41 assessed programs were placed in ranges including the top 10 rankings in their fields, with more than half of these in ranges including the top five rankings in these fields.

    Penn’s research tradition has historically been complemented by innovations that shaped higher education. In addition to establishing the first medical school; the first university teaching hospital; the first business school; and the first student union Penn was also the cradle of other significant developments. In 1852, Penn Law was the first law school in the nation to publish a law journal still in existence (then called The American Law Register, now the Penn Law Review, one of the most cited law journals in the world). Under the deanship of William Draper Lewis, the law school was also one of the first schools to emphasize legal teaching by full-time professors instead of practitioners, a system that is still followed today. The Wharton School was home to several pioneering developments in business education. It established the first research center in a business school in 1921 and the first center for entrepreneurship center in 1973 and it regularly introduced novel curricula for which BusinessWeek wrote, “Wharton is on the crest of a wave of reinvention and change in management education”.

    Several major scientific discoveries have also taken place at Penn. The university is probably best known as the place where the first general-purpose electronic computer (ENIAC) was born in 1946 at the Moore School of Electrical Engineering.

    ENIAC UPenn

    It was here also where the world’s first spelling and grammar checkers were created, as well as the popular COBOL programming language. Penn can also boast some of the most important discoveries in the field of medicine. The dialysis machine used as an artificial replacement for lost kidney function was conceived and devised out of a pressure cooker by William Inouye while he was still a student at Penn Med; the Rubella and Hepatitis B vaccines were developed at Penn; the discovery of cancer’s link with genes; cognitive therapy; Retin-A (the cream used to treat acne), Resistin; the Philadelphia gene (linked to chronic myelogenous leukemia) and the technology behind PET Scans were all discovered by Penn Med researchers. More recent gene research has led to the discovery of the genes for fragile X syndrome, the most common form of inherited mental retardation; spinal and bulbar muscular atrophy, a disorder marked by progressive muscle wasting; and Charcot–Marie–Tooth disease, a progressive neurodegenerative disease that affects the hands, feet and limbs.

    Conductive polymer was also developed at Penn by Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa, an invention that earned them the Nobel Prize in Chemistry. On faculty since 1965, Ralph L. Brinster developed the scientific basis for in vitro fertilization and the transgenic mouse at Penn and was awarded the National Medal of Science in 2010. The theory of superconductivity was also partly developed at Penn, by then-faculty member John Robert Schrieffer (along with John Bardeen and Leon Cooper). The university has also contributed major advancements in the fields of economics and management. Among the many discoveries are conjoint analysis, widely used as a predictive tool especially in market research; Simon Kuznets’s method of measuring Gross National Product; the Penn effect (the observation that consumer price levels in richer countries are systematically higher than in poorer ones) and the “Wharton Model” developed by Nobel-laureate Lawrence Klein to measure and forecast economic activity. The idea behind Health Maintenance Organizations also belonged to Penn professor Robert Eilers, who put it into practice during then-President Nixon’s health reform in the 1970s.

    International partnerships

    Students can study abroad for a semester or a year at partner institutions such as the London School of Economics(UK), University of Barcelona [Universitat de Barcelona](ES), Paris Institute of Political Studies [Institut d’études politiques de Paris](FR), University of Queensland(AU), University College London(UK), King’s College London(UK), Hebrew University of Jerusalem(IL) and University of Warwick(UK).

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: