Tagged: The University of Michigan Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:51 pm on March 21, 2023 Permalink | Reply
    Tags: "Fiber 'barcodes' can make clothing labels that last", At the University of Michigan Brian Iezzi the was investigating ways to improve textile recyclability. His work focuses on applying photonics to fiber-based devices., Having a way to easily identify fabric types and sort them as they’re coming through could help make recycling processes scale up., In 2022 Massachusetts became the first state to enact a law banning the disposal of textiles in the trash aiming to up recycling percentages., In the United States an estimated 15 million tons of textiles end up in landfills or are burned every year., MIT Lincoln Laboratory and the University of Michigan offer a new way to label fabrics: weaving fibers with engineered reflectivity into them. This fiber is only reflective under certain infrared ligh, One such photonics device is called a structural-color fiber-a type of photonic fiber first developed at MIT more than 20 years ago., The fiber works like an optical barcode to identify a product., , , The University of Michigan   

    From The Lincoln Laboratory At The Massachusetts Institute of Technology And The University of Michigan: “Fiber ‘barcodes’ can make clothing labels that last” 

    From The Lincoln Laboratory

    At

    The Massachusetts Institute of Technology

    And

    U Michigan bloc

    The University of Michigan

    3.21.23
    Kylie Foy | MIT Lincoln Laboratory

    1
    At Lincoln Laboratory’s Defense Fabric Discovery Center, Erin Doran demonstrates how reflective fibers can be woven into textiles. Such fibers could function as indelible, scannable labels to easily sort fabrics for recycling. Photo: Glen Cooper.

    In the United States, an estimated 15 million tons of textiles end up in landfills or are burned every year. This waste, amounting to 85 percent of the textiles produced in a year, is a growing environmental problem. In 2022, Massachusetts became the first state to enact a law banning the disposal of textiles in the trash, aiming to up recycling percentages.

    But recycling textiles isn’t always easy. Those that can’t be resold as-is are sent to facilities to be sorted by fabric type. Sorting by hand is labor intensive, made harder by worn-out or missing labels. More advanced techniques that analyze a fabric’s chemistry often aren’t precise enough to identify materials in fabric blends, which make up most clothing.

    To improve this sorting process, a team from MIT Lincoln Laboratory and the University of Michigan offer a new way to label fabrics: by weaving fibers with engineered reflectivity into them. This fiber is only reflective under certain infrared light. Depending on the wavelengths of light that the fiber reflects when scanned, recyclers would know which type of fabric the fiber represents. In essence, the fiber works like an optical barcode to identify a product.

    “Having a way to easily identify fabric types and sort them as they’re coming through could help make recycling processes scale up. We want to find ways to identify materials for another use after the life cycle of the garment,” says Erin Doran, a co-author of the team’s study, which was recently published in Advanced Materials Technologies [below].

    Pulling threads

    Doran is a textile specialist at the Defense Fabric Discovery Center (DFDC) at Lincoln Laboratory. There, she works with researchers in the Advanced Materials and Microsystems Group to make “fabrics of the future” by integrating fibers ingrained with tiny electronics and sensors.

    At the University of Michigan Brian Iezzi the study’s lead author was investigating ways to improve textile recyclability. His work in U-Michigan’s Shtein Lab focuses on applying photonics to fiber-based devices. One such device is called a structural-color fiber, a type of photonic fiber first developed at MIT more than 20 years ago by Professor Yoel Fink’s research team. It’s one area of expertise today at the DFDC.

    2
    Brian Iezzi the study’s lead author investigating ways to improve textile recyclability.

    “It’s a fiber that acts like a perfect mirror,” says DFDC researcher Bradford Perkins, a co-author of the study. “By layering certain materials, you can design this mirror to reflect specific wavelengths. In this case, you’d want reflections at wavelengths that stand out from the optical signatures of the other materials in your fabric, which tend to be dark because common fabric materials absorb infrared radiation.”

    The fiber starts out as a block of polymer called a preform. The team carefully constructed the preform to contain more than 50 alternating layers of acrylic and polycarbonate. The preform is then heated and pulled like taffy from the top of a tower. Each layer ends up being less than a micron thick, and in combination produce a fiber that is the same size as a conventional yarn in fabric.

    While each individual layer is clear, the pairing of the two materials reflects and absorbs light to create an optical effect that can look like color. It’s the same effect that gives butterfly wings their rich, shimmering colors.

    “Butterfly wings are one example of structural color in nature,” says co-author Tairan Wang, also from Lincoln Laboratory. “When you look at them very closely, they’re really a sheath of material with nanostructured patterns that scatter light, similar to what we’re doing with the fibers.”

    By controlling the speed at which the fibers are drawn, researchers can “tune” them to reflect and absorb specific, periodic ranges of wavelengths — creating a unique optical barcode in each fiber. This barcode can then be assigned to corresponding fabric types, one symbolizing cotton, for example, and another polyester. The fibers would be woven into fabrics when the fabrics are manufactured, before being put to use in a garment and eventually recycled.

    Unlike the eye-catching designs of butterfly wings, the fibers are not meant to be showy. “They would make up less than a few percent of the fabric. Nobody would be able to tell that they’re there until they had an infrared detector,” Perkins says.

    A detector could be adapted from the kind used to sort plastics in the recycling industry, the researchers say. Those detectors similarly use infrared sensing to identify the unique optical signatures of different polymers.

    Trying it on in the future

    Today, the team has applied for patent protection on their technology, and Iezzi is evaluating ways to move toward commercialization. The fibers produced in this study are still slightly thick relative to clothing fibers, so thinning them more while retaining their reflectivity at the desired wavelengths is a continued area of research.

    Another avenue to explore is making the fibers more akin to sewing thread. This way, they could be sewn into a garment in cases when weaving them into a certain fabric type could affect its look or feel.

    The researchers are also thinking about how structural-color fibers could help tackle other environmental problems in the textile industry, like toxic waste from dyes. One could imagine using such fibers to make fabrics that are inherently imbued with color that never fades.

    “It’s important for us to consider recyclability as the electronic-textile market expands, too. This idea can open avenues for recovering chips and metals during the textile recycling process.” Doran says. “Sustainability is a big part of the future, and it’s been exciting to collaborate on this vision.”

    Advanced Materials Technologies

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    U MIchigan Campus

    The University of Michigan is a public research university located in Ann Arbor, Michigan, United States. Originally, founded in 1817 in Detroit as the Catholepistemiad, or University of Michigania, 20 years before the Michigan Territory officially became a state, the University of Michigan is the state’s oldest university. The university moved to Ann Arbor in 1837 onto 40 acres (16 ha) of what is now known as Central Campus. Since its establishment in Ann Arbor, the university campus has expanded to include more than 584 major buildings with a combined area of more than 34 million gross square feet (781 acres or 3.16 km²), and has two satellite campuses located in Flint and Dearborn. The University was one of the founding members of the Association of American Universities.

    Considered one of the foremost research universities in the United States, the university has very high research activity and its comprehensive graduate program offers doctoral degrees in the humanities, social sciences, and STEM fields (Science, Technology, Engineering and Mathematics) as well as professional degrees in business, medicine, law, pharmacy, nursing, social work and dentistry. Michigan’s body of living alumni (as of 2012) comprises more than 500,000. Besides academic life, Michigan’s athletic teams compete in Division I of the NCAA and are collectively known as the Wolverines. They are members of the Big Ten Conference.

    At over $12.4 billion in 2019, Michigan’s endowment is among the largest of any university. As of October 2019, 53 MacArthur “genius award” winners (29 alumni winners and 24 faculty winners), 26 Nobel Prize winners, six Turing Award winners, one Fields Medalist and one Mitchell Scholar have been affiliated with the university. Its alumni include eight heads of state or government, including President of the United States Gerald Ford; 38 cabinet-level officials; and 26 living billionaires. It also has many alumni who are Fulbright Scholars and MacArthur Fellows.

    Research

    Michigan is one of the founding members (in the year 1900) of the Association of American Universities. With over 6,200 faculty members, 73 of whom are members of the National Academy and 471 of whom hold an endowed chair in their discipline, the university manages one of the largest annual collegiate research budgets of any university in the United States. According to the National Science Foundation, Michigan spent $1.6 billion on research and development in 2018, ranking it 2nd in the nation. This figure totaled over $1 billion in 2009. The Medical School spent the most at over $445 million, while the College of Engineering was second at more than $160 million. U-M also has a technology transfer office, which is the university conduit between laboratory research and corporate commercialization interests.

    In 2009, the university signed an agreement to purchase a facility formerly owned by Pfizer. The acquisition includes over 170 acres (0.69 km^2) of property, and 30 major buildings comprising roughly 1,600,000 square feet (150,000 m^2) of wet laboratory space, and 400,000 square feet (37,000 m^2) of administrative space. At the time of the agreement, the university’s intentions for the space were not set, but the expectation was that the new space would allow the university to ramp up its research and ultimately employ in excess of 2,000 people.

    The university is also a major contributor to the medical field with the EKG and the gastroscope. The university’s 13,000-acre (53 km^2) biological station in the Northern Lower Peninsula of Michigan is one of only 47 Biosphere Reserves in the United States.

    In the mid-1960s U-M researchers worked with IBM to develop a new virtual memory architectural model that became part of IBM’s Model 360/67 mainframe computer (the 360/67 was initially dubbed the 360/65M where the “M” stood for Michigan). The Michigan Terminal System (MTS), an early time-sharing computer operating system developed at U-M, was the first system outside of IBM to use the 360/67’s virtual memory features.

    U-M is home to the National Election Studies and the University of Michigan Consumer Sentiment Index. The Correlates of War project, also located at U-M, is an accumulation of scientific knowledge about war. The university is also home to major research centers in optics, reconfigurable manufacturing systems, wireless integrated microsystems, and social sciences. The University of Michigan Transportation Research Institute and the Life Sciences Institute are located at the university. The Institute for Social Research (ISR), the nation’s longest-standing laboratory for interdisciplinary research in the social sciences, is home to the Survey Research Center, Research Center for Group Dynamics, Center for Political Studies, Population Studies Center, and Inter-Consortium for Political and Social Research. Undergraduate students are able to participate in various research projects through the Undergraduate Research Opportunity Program (UROP) as well as the UROP/Creative-Programs.

    The U-M library system comprises nineteen individual libraries with twenty-four separate collections—roughly 13.3 million volumes. U-M was the original home of the JSTOR database, which contains about 750,000 digitized pages from the entire pre-1990 backfile of ten journals of history and economics, and has initiated a book digitization program in collaboration with Google. The University of Michigan Press is also a part of the U-M library system.

    In the late 1960s U-M, together with Michigan State University and Wayne State University, founded the Merit Network, one of the first university computer networks. The Merit Network was then and remains today administratively hosted by U-M. Another major contribution took place in 1987 when a proposal submitted by the Merit Network together with its partners IBM, MCI, and the State of Michigan won a national competition to upgrade and expand the National Science Foundation Network (NSFNET) backbone from 56,000 to 1.5 million, and later to 45 million bits per second. In 2006, U-M joined with Michigan State University and Wayne State University to create the the University Research Corridor. This effort was undertaken to highlight the capabilities of the state’s three leading research institutions and drive the transformation of Michigan’s economy. The three universities are electronically interconnected via the Michigan LambdaRail (MiLR, pronounced ‘MY-lar’), a high-speed data network providing 10 Gbit/s connections between the three university campuses and other national and international network connection points in Chicago.

    The MIT Lincoln Laboratory, located in Lexington, Massachusetts, is a United States Department of Defense federally funded research and development center chartered to apply advanced technology to problems of national security. Research and development activities focus on long-term technology development as well as rapid system prototyping and demonstration. Its core competencies are in sensors, integrated sensing, signal processing for information extraction, decision-making support, and communications. These efforts are aligned within ten mission areas. The laboratory also maintains several field sites around the world.

    The laboratory transfers much of its advanced technology to government agencies, industry, and academia, and has launched more than 100 start-ups.

    At the urging of the United States Air Force, the Lincoln Laboratory was created in 1951 at the Massachusetts Institute of Technology as part of an effort to improve the U.S. air defense system. Primary advocates for the creation of the laboratory were two veterans of the World War II-era MIT Radiation Laboratory, physicist and electrical engineer Ivan A. Getting and physicist Louis Ridenour.

    The laboratory’s inception was prompted by the Air Defense Systems Engineering Committee’s 1950 report that concluded the United States was unprepared for the threat of an air attack. Because of MIT’s management of the Radiation Laboratory during World War II, the experience of some of its staff on the Air Defense Systems Engineering Committee, and its proven competence in advanced electronics, the Air Force suggested that MIT could provide the research needed to develop an air defense that could detect, identify, and ultimately intercept air threats.

    James R. Killian, the president of MIT, was not eager for MIT to become involved in air defense. He asked the United States Air Force if MIT could first conduct a study to evaluate the need for a new laboratory and to determine its scope. Killian’s proposal was approved, and a study named Project Charles (for the Charles River that flows past MIT) was carried out between February and August 1951. The final Project Charles report stated that the United States needed an improved air defense system and unequivocally supported the formation of a laboratory at MIT dedicated to air defense problems.

    This new undertaking was initially called Project Lincoln and the site chosen for the new laboratory was on the Laurence G. Hanscom Field (now Hanscom Air Force Base), where the Massachusetts towns of Bedford, Lexington and Lincoln meet. A Project Bedford (on antisubmarine warfare) and a Project Lexington (on nuclear propulsion of aircraft) were already in use, so Major General Putt, who was in charge of drafting the charter for the new laboratory, decided to name the project for the town of Lincoln.

    Since MIT Lincoln Laboratory’s establishment, the scope of the problems has broadened from the initial emphasis on air defense to include programs in space surveillance, missile defense, surface surveillance and object identification, communications, cyber security, homeland protection, high-performance computing, air traffic control, and intelligence, surveillance, and reconnaissance (ISR). The core competencies of the laboratory are in sensors, information extraction (signal processing and embedded computing), communications, integrated sensing, and decision support, all supported by a strong advanced electronic technology activity.

    Lincoln Laboratory conducts research and development pertinent to national security on behalf of the military services, the Office of the Secretary of Defense, and other government agencies. Projects focus on the development and prototyping of new technologies and capabilities. Program activities extend from fundamental investigations, through simulation and analysis, to design and field testing of prototype systems. Emphasis is placed on transitioning technology to industry.

    The work of Lincoln Laboratory revolves around a comprehensive set of mission areas:

    Space Control
    Air, Missile, and Maritime Defense Technology
    Communication Systems
    Cyber Security and Information Sciences
    Intelligence, Surveillance, and Reconnaissance Systems and Technology
    Advanced Technology
    Tactical Systems
    Homeland Protection
    Air Traffic Control
    Engineering
    Biotechnology

    Lincoln Laboratory also undertakes work for non-DoD agencies such as programs in space lasercom and space science as well as environmental monitoring for NASA and the National Oceanic and Atmospheric Administration.

    MIT Seal

    USPS “Forever” postage stamps celebrating Innovation at MIT.

    Massachusettes Institute of Technology-Haystack Observatory Westford, Massachusetts, USA, Altitude 131 m (430 ft).

    4

    The Computer Science and Artificial Intelligence Laboratory (CSAIL)

    The Kavli Institute For Astrophysics and Space Research

    MIT’s Institute for Medical Engineering and Science is a research institute at the Massachusetts Institute of Technology

    The MIT Laboratory for Nuclear Science

    The MIT Media Lab

    The MIT School of Engineering

    The MIT Sloan School of Management

    Spectrum

    MIT.nano

    Founded in 1861 in response to the increasing industrialization of the United States, Massachusetts Institute of Technology adopted a European polytechnic university model and stressed laboratory instruction in applied science and engineering. It has since played a key role in the development of many aspects of modern science, engineering, mathematics, and technology, and is widely known for its innovation and academic strength. It is frequently regarded as one of the most prestigious universities in the world.

    As of December 2020, 97 Nobel laureates, 26 Turing Award winners, and 8 Fields Medalists have been affiliated with MIT as alumni, faculty members, or researchers. In addition, 58 National Medal of Science recipients, 29 National Medals of Technology and Innovation recipients, 50 MacArthur Fellows, 80 Marshall Scholars, 3 Mitchell Scholars, 22 Schwarzman Scholars, 41 astronauts, and 16 Chief Scientists of the U.S. Air Force have been affiliated with The Massachusetts Institute of Technology . The university also has a strong entrepreneurial culture and MIT alumni have founded or co-founded many notable companies. Massachusetts Institute of Technology is a member of the Association of American Universities.

    Foundation and vision

    In 1859, a proposal was submitted to the Massachusetts General Court to use newly filled lands in Back Bay, Boston for a “Conservatory of Art and Science”, but the proposal failed. A charter for the incorporation of the Massachusetts Institute of Technology, proposed by William Barton Rogers, was signed by John Albion Andrew, the governor of Massachusetts, on April 10, 1861.

    Rogers, a professor from the University of Virginia , wanted to establish an institution to address rapid scientific and technological advances. He did not wish to found a professional school, but a combination with elements of both professional and liberal education, proposing that:

    “The true and only practicable object of a polytechnic school is, as I conceive, the teaching, not of the minute details and manipulations of the arts, which can be done only in the workshop, but the inculcation of those scientific principles which form the basis and explanation of them, and along with this, a full and methodical review of all their leading processes and operations in connection with physical laws.”

    The Rogers Plan reflected the German research university model, emphasizing an independent faculty engaged in research, as well as instruction oriented around seminars and laboratories.

    Early developments

    Two days after The Massachusetts Institute of Technology was chartered, the first battle of the Civil War broke out. After a long delay through the war years, MIT’s first classes were held in the Mercantile Building in Boston in 1865. The new institute was founded as part of the Morrill Land-Grant Colleges Act to fund institutions “to promote the liberal and practical education of the industrial classes” and was a land-grant school. In 1863 under the same act, the Commonwealth of Massachusetts founded the Massachusetts Agricultural College, which developed as the University of Massachusetts Amherst ). In 1866, the proceeds from land sales went toward new buildings in the Back Bay.

    The Massachusetts Institute of Technology was informally called “Boston Tech”. The institute adopted the European polytechnic university model and emphasized laboratory instruction from an early date. Despite chronic financial problems, the institute saw growth in the last two decades of the 19th century under President Francis Amasa Walker. Programs in electrical, chemical, marine, and sanitary engineering were introduced, new buildings were built, and the size of the student body increased to more than one thousand.

    The curriculum drifted to a vocational emphasis, with less focus on theoretical science. The fledgling school still suffered from chronic financial shortages which diverted the attention of the MIT leadership. During these “Boston Tech” years, Massachusetts Institute of Technology faculty and alumni rebuffed Harvard University president (and former MIT faculty) Charles W. Eliot’s repeated attempts to merge MIT with Harvard College’s Lawrence Scientific School. There would be at least six attempts to absorb MIT into Harvard. In its cramped Back Bay location, MIT could not afford to expand its overcrowded facilities, driving a desperate search for a new campus and funding. Eventually, the MIT Corporation approved a formal agreement to merge with Harvard, over the vehement objections of MIT faculty, students, and alumni. However, a 1917 decision by the Massachusetts Supreme Judicial Court effectively put an end to the merger scheme.

    In 1916, The Massachusetts Institute of Technology administration and the MIT charter crossed the Charles River on the ceremonial barge Bucentaur built for the occasion, to signify MIT’s move to a spacious new campus largely consisting of filled land on a one-mile-long (1.6 km) tract along the Cambridge side of the Charles River. The neoclassical “New Technology” campus was designed by William W. Bosworth and had been funded largely by anonymous donations from a mysterious “Mr. Smith”, starting in 1912. In January 1920, the donor was revealed to be the industrialist George Eastman of Rochester, New York, who had invented methods of film production and processing, and founded Eastman Kodak. Between 1912 and 1920, Eastman donated $20 million ($236.6 million in 2015 dollars) in cash and Kodak stock to MIT.

    Curricular reforms

    In the 1930s, President Karl Taylor Compton and Vice-President (effectively Provost) Vannevar Bush emphasized the importance of pure sciences like physics and chemistry and reduced the vocational practice required in shops and drafting studios. The Compton reforms “renewed confidence in the ability of the Institute to develop leadership in science as well as in engineering”. Unlike Ivy League schools, Massachusetts Institute of Technology catered more to middle-class families, and depended more on tuition than on endowments or grants for its funding. The school was elected to the Association of American Universities in 1934.

    Still, as late as 1949, the Lewis Committee lamented in its report on the state of education at The Massachusetts Institute of Technology that “the Institute is widely conceived as basically a vocational school”, a “partly unjustified” perception the committee sought to change. The report comprehensively reviewed the undergraduate curriculum, recommended offering a broader education, and warned against letting engineering and government-sponsored research detract from the sciences and humanities. The School of Humanities, Arts, and Social Sciences and the MIT Sloan School of Management were formed in 1950 to compete with the powerful Schools of Science and Engineering. Previously marginalized faculties in the areas of economics, management, political science, and linguistics emerged into cohesive and assertive departments by attracting respected professors and launching competitive graduate programs. The School of Humanities, Arts, and Social Sciences continued to develop under the successive terms of the more humanistically oriented presidents Howard W. Johnson and Jerome Wiesner between 1966 and 1980.

    The Massachusetts Institute of Technology‘s involvement in military science surged during World War II. In 1941, Vannevar Bush was appointed head of the federal Office of Scientific Research and Development and directed funding to only a select group of universities, including MIT. Engineers and scientists from across the country gathered at Massachusetts Institute of Technology ‘s Radiation Laboratory, established in 1940 to assist the British military in developing microwave radar. The work done there significantly affected both the war and subsequent research in the area. Other defense projects included gyroscope-based and other complex control systems for gunsight, bombsight, and inertial navigation under Charles Stark Draper’s Instrumentation Laboratory; the development of a digital computer for flight simulations under Project Whirlwind; and high-speed and high-altitude photography under Harold Edgerton. By the end of the war, The Massachusetts Institute of Technology became the nation’s largest wartime R&D contractor (attracting some criticism of Bush), employing nearly 4000 in the Radiation Laboratory alone and receiving in excess of $100 million ($1.2 billion in 2015 dollars) before 1946. Work on defense projects continued even after then. Post-war government-sponsored research at MIT included SAGE and guidance systems for ballistic missiles and Project Apollo.

    These activities affected The Massachusetts Institute of Technology profoundly. A 1949 report noted the lack of “any great slackening in the pace of life at the Institute” to match the return to peacetime, remembering the “academic tranquility of the prewar years”, though acknowledging the significant contributions of military research to the increased emphasis on graduate education and rapid growth of personnel and facilities. The faculty doubled and the graduate student body quintupled during the terms of Karl Taylor Compton, president of The Massachusetts Institute of Technology between 1930 and 1948; James Rhyne Killian, president from 1948 to 1957; and Julius Adams Stratton, chancellor from 1952 to 1957, whose institution-building strategies shaped the expanding university. By the 1950s, The Massachusetts Institute of Technology no longer simply benefited the industries with which it had worked for three decades, and it had developed closer working relationships with new patrons, philanthropic foundations and the federal government.

    In late 1960s and early 1970s, student and faculty activists protested against the Vietnam War and The Massachusetts Institute of Technology ‘s defense research. In this period Massachusetts Institute of Technology’s various departments were researching helicopters, smart bombs and counterinsurgency techniques for the war in Vietnam as well as guidance systems for nuclear missiles. The Union of Concerned Scientists was founded on March 4, 1969 during a meeting of faculty members and students seeking to shift the emphasis on military research toward environmental and social problems. The Massachusetts Institute of Technology ultimately divested itself from the Instrumentation Laboratory and moved all classified research off-campus to the MIT Lincoln Laboratory facility in 1973 in response to the protests. The student body, faculty, and administration remained comparatively unpolarized during what was a tumultuous time for many other universities. Johnson was seen to be highly successful in leading his institution to “greater strength and unity” after these times of turmoil. However six Massachusetts Institute of Technology students were sentenced to prison terms at this time and some former student leaders, such as Michael Albert and George Katsiaficas, are still indignant about MIT’s role in military research and its suppression of these protests. (Richard Leacock’s film, November Actions, records some of these tumultuous events.)

    In the 1980s, there was more controversy at The Massachusetts Institute of Technology over its involvement in SDI (space weaponry) and CBW (chemical and biological warfare) research. More recently, The Massachusetts Institute of Technology’s research for the military has included work on robots, drones and ‘battle suits’.

    Recent history

    The Massachusetts Institute of Technology has kept pace with and helped to advance the digital age. In addition to developing the predecessors to modern computing and networking technologies, students, staff, and faculty members at Project MAC, the Artificial Intelligence Laboratory, and the Tech Model Railroad Club wrote some of the earliest interactive computer video games like Spacewar! and created much of modern hacker slang and culture. Several major computer-related organizations have originated at MIT since the 1980s: Richard Stallman’s GNU Project and the subsequent Free Software Foundation were founded in the mid-1980s at the AI Lab; the MIT Media Lab was founded in 1985 by Nicholas Negroponte and Jerome Wiesner to promote research into novel uses of computer technology; the World Wide Web Consortium standards organization was founded at the Laboratory for Computer Science in 1994 by Tim Berners-Lee; the MIT OpenCourseWare project has made course materials for over 2,000 Massachusetts Institute of Technology classes available online free of charge since 2002; and the One Laptop per Child initiative to expand computer education and connectivity to children worldwide was launched in 2005.

    The Massachusetts Institute of Technology was named a sea-grant college in 1976 to support its programs in oceanography and marine sciences and was named a space-grant college in 1989 to support its aeronautics and astronautics programs. Despite diminishing government financial support over the past quarter century, MIT launched several successful development campaigns to significantly expand the campus: new dormitories and athletics buildings on west campus; the Tang Center for Management Education; several buildings in the northeast corner of campus supporting research into biology, brain and cognitive sciences, genomics, biotechnology, and cancer research; and a number of new “backlot” buildings on Vassar Street including the Stata Center. Construction on campus in the 2000s included expansions of the Media Lab, the Sloan School’s eastern campus, and graduate residences in the northwest. In 2006, President Hockfield launched the MIT Energy Research Council to investigate the interdisciplinary challenges posed by increasing global energy consumption.

    In 2001, inspired by the open source and open access movements, The Massachusetts Institute of Technology launched OpenCourseWare to make the lecture notes, problem sets, syllabi, exams, and lectures from the great majority of its courses available online for no charge, though without any formal accreditation for coursework completed. While the cost of supporting and hosting the project is high, OCW expanded in 2005 to include other universities as a part of the OpenCourseWare Consortium, which currently includes more than 250 academic institutions with content available in at least six languages. In 2011, The Massachusetts Institute of Technology announced it would offer formal certification (but not credits or degrees) to online participants completing coursework in its “MITx” program, for a modest fee. The “edX” online platform supporting MITx was initially developed in partnership with Harvard and its analogous “Harvardx” initiative. The courseware platform is open source, and other universities have already joined and added their own course content. In March 2009 the Massachusetts Institute of Technology faculty adopted an open-access policy to make its scholarship publicly accessible online.

    The Massachusetts Institute of Technology has its own police force. Three days after the Boston Marathon bombing of April 2013, MIT Police patrol officer Sean Collier was fatally shot by the suspects Dzhokhar and Tamerlan Tsarnaev, setting off a violent manhunt that shut down the campus and much of the Boston metropolitan area for a day. One week later, Collier’s memorial service was attended by more than 10,000 people, in a ceremony hosted by the Massachusetts Institute of Technology community with thousands of police officers from the New England region and Canada. On November 25, 2013, The Massachusetts Institute of Technology announced the creation of the Collier Medal, to be awarded annually to “an individual or group that embodies the character and qualities that Officer Collier exhibited as a member of The Massachusetts Institute of Technology community and in all aspects of his life”. The announcement further stated that “Future recipients of the award will include those whose contributions exceed the boundaries of their profession, those who have contributed to building bridges across the community, and those who consistently and selflessly perform acts of kindness”.

    In September 2017, the school announced the creation of an artificial intelligence research lab called the MIT-IBM Watson AI Lab. IBM will spend $240 million over the next decade, and the lab will be staffed by MIT and IBM scientists. In October 2018 MIT announced that it would open a new Schwarzman College of Computing dedicated to the study of artificial intelligence, named after lead donor and The Blackstone Group CEO Stephen Schwarzman. The focus of the new college is to study not just AI, but interdisciplinary AI education, and how AI can be used in fields as diverse as history and biology. The cost of buildings and new faculty for the new college is expected to be $1 billion upon completion.

    The Caltech/MIT Advanced aLIGO was designed and constructed by a team of scientists from California Institute of Technology , Massachusetts Institute of Technology, and industrial contractors, and funded by the National Science Foundation .

    Caltech /MIT Advanced aLigo

    It was designed to open the field of gravitational-wave astronomy through the detection of gravitational waves predicted by general relativity. Gravitational waves were detected for the first time by the LIGO detector in 2015. For contributions to the LIGO detector and the observation of gravitational waves, two Caltech physicists, Kip Thorne and Barry Barish, and Massachusetts Institute of Technology physicist Rainer Weiss won the Nobel Prize in physics in 2017. Weiss, who is also a Massachusetts Institute of Technology graduate, designed the laser interferometric technique, which served as the essential blueprint for the LIGO.

    The mission of The Massachusetts Institute of Technology is to advance knowledge and educate students in science, technology, and other areas of scholarship that will best serve the nation and the world in the twenty-first century. We seek to develop in each member of The Massachusetts Institute of Technology community the ability and passion to work wisely, creatively, and effectively for the betterment of humankind.

     
  • richardmitnick 9:28 pm on March 15, 2023 Permalink | Reply
    Tags: "For the first time controlling the degree of twist in nanostructured particles", , Being able to decide not only whether a micron-scale particle twists but also how much could open new avenues for machine vision and more., , , , , , The University of Michigan   

    From The University of Michigan: “For the first time controlling the degree of twist in nanostructured particles” 

    U Michigan bloc

    From The University of Michigan

    3.15.23
    Kate McAlpine

    Being able to decide not only whether a micron-scale particle twists but also how much could open new avenues for machine vision and more.

    1
    An array of different growth conditions, spanning from left-handed twists made with only left-handed cystine to flat pancakes made with a 50-50 mix to right-handed twists made only with right-handed cystine. The ability to control the degree of twist in a curling, nanostructured material could be a useful new tool in chemistry and machine vision. Image credit: Prashant Kumar, Kotov Lab, University of Michigan.

    Micron-sized “bow ties,” self-assembled from nanoparticles, form a variety of different curling shapes that can be precisely controlled, a research team led by the University of Michigan has shown.

    The development opens the way for easily producing materials that interact with twisted light, providing new tools for machine vision and producing medicines.

    While biology is full of twisted structures like DNA, known as chiral structures, the degree of twist is locked in—trying to change it breaks the structure. Now, researchers can engineer the degree of twist.

    2
    The graphic shows light waves approaching the twisted metal bowties and being turned by the bowtie shape. The ability to control the degree of twist in a curling, nanostructured material could be a useful new tool in chemistry and machine vision. Image credit: Ella Maru Studio.

    Such materials could enable robots to accurately navigate complex human environments. Twisted structures would encode information in the shapes of the light waves that reflect from the surface, rather than in the 2D arrangement of symbols that comprises most human-read signs. This would take advantage of an aspect of light that humans can barely sense, known as polarization. The twisted nanostructures preferentially reflect certain kinds of circularly polarized light, a shape that twists as it moves through space.

    “It is basically like polarization vision in crustaceans,” said Nicholas Kotov, the Irving Langmuir Distinguished University Professor of Chemical Sciences and Engineering, who led the study. “They pick up a lot of information in spite of murky environments.”

    Robots could read signs that look like white dots to human eyes; the information would be encoded in the combination of frequencies reflected, the tightness of the twist and whether the twist was left- or right-handed.

    By avoiding the use of natural and ambient light, relying instead on circularly polarized light generated by the robot, robots are less likely to miss or misinterpret a cue, whether in bright or dark environments. Materials that can selectively reflect twisted light, known as chiral metamaterials, are usually hard to make—but the bow ties aren’t.

    “Previously, chiral metasurfaces have been made with great difficulty using multimillion dollar equipment. Now, these complex surfaces with multiple attractive uses can be printed like a photograph,” Kotov said.

    Twisted nanostructures may also help create the right conditions to produce chiral medicines, which are challenging to manufacture with the correct molecular twist.

    “What hasn’t been seen in any chiral systems before is that we can control the twist from a fully twisted left-handed structure to a flat pancake to a fully twisted right-handed structure. We call this a chirality continuum,” said Prashant Kumar, a U-M postdoctoral research fellow in chemical engineering and first author of the study in Nature [below].

    3
    Micron-scale bowties with candy-wrapper twists in a colorized electron microscope image. The ability to control the degree of twist in a curling, nanostructured material could be a useful new tool in chemistry and machine vision. Image credit: Prashant Kumar, Kotov Lab, University of Michigan.

    Kumar tested the bow ties as a sort of paint, mixing them with polyacrylic acid and dabbing them onto glass, fabric, plastic and other materials. Experiments with lasers showed that this paint reflected twisted light only when the twist in the light matched the twist in the bow tie shape.

    The bow ties are made by mixing cadmium metal and cystine, a protein fragment that comes in left- and right-handed versions, in water spiked with lye. If the cystine was all left-handed, left-handed bow ties formed, and right-handed cystine yielded right-handed bow ties—each with a candy-wrapper twist.

    But with different ratios of left-and right-handed cystine, the team made intermediate twists, including the flat pancake at a 50-50 ratio. The pitch of the tightest bow ties, basically the length of a 360-degree turn, is about 4 microns long—within infrared light’s range of wavelengths.

    “Not only do we know the progression from the atomic scale all the way up to the micron-scale of the bow ties, we also have theory and experiments that show us the guiding forces. With that fundamental understanding, you can design a bunch of other particles,” said Thi Vo, a former U-M postdoctoral researcher in chemical engineering.

    He worked with Sharon Glotzer, co-corresponding author of the study and the Anthony C. Lembke Department Chair of Chemical Engineering at U-M.

    In contrast with other chiral nanostructures, which can take days to self-assemble, the bow ties formed in just 90 seconds. The team produced 5,000 different shapes within the bow tie spectrum. They studied the shapes in atomic detail using X-rays at The DOE’s Argonne National Laboratory ahead of the simulation analysis.

    Additional material analysis and contributions to theory were provided by collaborators at U-M, the University of Pennsylvania, the University of Palermo in Italy and Pro Vitam Ltd, Romania. The study was supported by the Office of Naval Research, National Science Foundation and Army Research Office.

    Kotov is also the Joseph B. and Florence V. Cejka Professor of Engineering and a professor of chemical engineering and macromolecular science and engineering. Vo is now a professor of chemical and biomolecular engineering at Johns Hopkins University. Glotzer is also the John Werner Cahn Distinguished University Professor of Engineering, the Stuart W. Churchill Collegiate Professor of Chemical Engineering, and a professor of materials science and engineering, macromolecular science and engineering, and physics.

    Nature
    See the science paper for instructive material with images.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please support STEM education in your local school system

    Stem Education Coalition

    U MIchigan Campus

    The University of Michigan is a public research university located in Ann Arbor, Michigan, United States. Originally, founded in 1817 in Detroit as the Catholepistemiad, or University of Michigania, 20 years before the Michigan Territory officially became a state, the University of Michigan is the state’s oldest university. The university moved to Ann Arbor in 1837 onto 40 acres (16 ha) of what is now known as Central Campus. Since its establishment in Ann Arbor, the university campus has expanded to include more than 584 major buildings with a combined area of more than 34 million gross square feet (781 acres or 3.16 km²), and has two satellite campuses located in Flint and Dearborn. The University was one of the founding members of the Association of American Universities.

    Considered one of the foremost research universities in the United States, the university has very high research activity and its comprehensive graduate program offers doctoral degrees in the humanities, social sciences, and STEM fields (Science, Technology, Engineering and Mathematics) as well as professional degrees in business, medicine, law, pharmacy, nursing, social work and dentistry. Michigan’s body of living alumni (as of 2012) comprises more than 500,000. Besides academic life, Michigan’s athletic teams compete in Division I of the NCAA and are collectively known as the Wolverines. They are members of the Big Ten Conference.

    At over $12.4 billion in 2019, Michigan’s endowment is among the largest of any university. As of October 2019, 53 MacArthur “genius award” winners (29 alumni winners and 24 faculty winners), 26 Nobel Prize winners, six Turing Award winners, one Fields Medalist and one Mitchell Scholar have been affiliated with the university. Its alumni include eight heads of state or government, including President of the United States Gerald Ford; 38 cabinet-level officials; and 26 living billionaires. It also has many alumni who are Fulbright Scholars and MacArthur Fellows.

    Research

    Michigan is one of the founding members (in the year 1900) of the Association of American Universities. With over 6,200 faculty members, 73 of whom are members of the National Academy and 471 of whom hold an endowed chair in their discipline, the university manages one of the largest annual collegiate research budgets of any university in the United States. According to the National Science Foundation, Michigan spent $1.6 billion on research and development in 2018, ranking it 2nd in the nation. This figure totaled over $1 billion in 2009. The Medical School spent the most at over $445 million, while the College of Engineering was second at more than $160 million. U-M also has a technology transfer office, which is the university conduit between laboratory research and corporate commercialization interests.

    In 2009, the university signed an agreement to purchase a facility formerly owned by Pfizer. The acquisition includes over 170 acres (0.69 km^2) of property, and 30 major buildings comprising roughly 1,600,000 square feet (150,000 m^2) of wet laboratory space, and 400,000 square feet (37,000 m^2) of administrative space. At the time of the agreement, the university’s intentions for the space were not set, but the expectation was that the new space would allow the university to ramp up its research and ultimately employ in excess of 2,000 people.

    The university is also a major contributor to the medical field with the EKG and the gastroscope. The university’s 13,000-acre (53 km^2) biological station in the Northern Lower Peninsula of Michigan is one of only 47 Biosphere Reserves in the United States.

    In the mid-1960s U-M researchers worked with IBM to develop a new virtual memory architectural model that became part of IBM’s Model 360/67 mainframe computer (the 360/67 was initially dubbed the 360/65M where the “M” stood for Michigan). The Michigan Terminal System (MTS), an early time-sharing computer operating system developed at U-M, was the first system outside of IBM to use the 360/67’s virtual memory features.

    U-M is home to the National Election Studies and the University of Michigan Consumer Sentiment Index. The Correlates of War project, also located at U-M, is an accumulation of scientific knowledge about war. The university is also home to major research centers in optics, reconfigurable manufacturing systems, wireless integrated microsystems, and social sciences. The University of Michigan Transportation Research Institute and the Life Sciences Institute are located at the university. The Institute for Social Research (ISR), the nation’s longest-standing laboratory for interdisciplinary research in the social sciences, is home to the Survey Research Center, Research Center for Group Dynamics, Center for Political Studies, Population Studies Center, and Inter-Consortium for Political and Social Research. Undergraduate students are able to participate in various research projects through the Undergraduate Research Opportunity Program (UROP) as well as the UROP/Creative-Programs.

    The U-M library system comprises nineteen individual libraries with twenty-four separate collections—roughly 13.3 million volumes. U-M was the original home of the JSTOR database, which contains about 750,000 digitized pages from the entire pre-1990 backfile of ten journals of history and economics, and has initiated a book digitization program in collaboration with Google. The University of Michigan Press is also a part of the U-M library system.

    In the late 1960s U-M, together with Michigan State University and Wayne State University, founded the Merit Network, one of the first university computer networks. The Merit Network was then and remains today administratively hosted by U-M. Another major contribution took place in 1987 when a proposal submitted by the Merit Network together with its partners IBM, MCI, and the State of Michigan won a national competition to upgrade and expand the National Science Foundation Network (NSFNET) backbone from 56,000 to 1.5 million, and later to 45 million bits per second. In 2006, U-M joined with Michigan State University and Wayne State University to create the the University Research Corridor. This effort was undertaken to highlight the capabilities of the state’s three leading research institutions and drive the transformation of Michigan’s economy. The three universities are electronically interconnected via the Michigan LambdaRail (MiLR, pronounced ‘MY-lar’), a high-speed data network providing 10 Gbit/s connections between the three university campuses and other national and international network connection points in Chicago.

     
  • richardmitnick 12:09 pm on March 12, 2023 Permalink | Reply
    Tags: "New kind of transistor could shrink communications devices on smartphones", , , , , Integrating a new ferroelectric semiconductor it paves the way for single amplifiers that can do the work of multiple conventional amplifiers among other possibilities., The University of Michigan   

    From Engineering At The University of Michigan: “New kind of transistor could shrink communications devices on smartphones” 

    1

    From Engineering

    At

    U Michigan bloc

    The University of Michigan

    3.8.23
    By Catharine June

    Contact:
    Kate McAlpine
    kmca@umich.edu

    Integrating a new ferroelectric semiconductor paves the way for single amplifiers that can do the work of multiple conventional amplifiers, among other possibilities.

    1
    Electrical & Computer Engineering research scientist Ding Wang and graduate student Minming He from Prof. Zetian Mi’s group, University of Michigan, are working on the epitaxy and fabrication of high electron mobility transistors (HEMTs) based on a new nitride material, ScAlN, which has been demonstrated recently as a promising high-k and ferroelectric gate dielectric that can foster new functionalities and boost device performances.” Image credit: Marcin Szczepanski/Lead Multimedia Storyteller, Michigan Engineering.

    One month after announcing a ferroelectric semiconductor at the nanoscale thinness required for modern computing components, a team at the University of Michigan has demonstrated a reconfigurable transistor using that material.

    The study is a featured article in Applied Physics Letters [below].

    “By realizing this new type of transistor, it opens up the possibility for integrating multifunctional devices, such as reconfigurable transistors, filters and resonators, on the same platform—all while operating at very high frequency and high power,” said Zetian Mi, U-M professor of electrical and computer engineering who led the research, “That’s a game changer for many applications.”

    2
    Electrical & Computer Engineering research scientist Ding Wang and graduate student Minming He from Prof. Zetian Mi’s group, University of Michigan, are working on the epitaxy and fabrication of high electron mobility transistors (HEMTs) based on a new nitride material, ScAlN, which has been demonstrated recently as a promising high-k and ferroelectric gate dielectric that can foster new functionalities and boost device performances.” Image credit: Marcin Szczepanski/Lead Multimedia Storyteller, Michigan Engineering.

    At its most basic level, a transistor is a kind of switch, letting an electric current through or preventing it from passing. The one demonstrated at Michigan is known as a ferroelectric high electron mobility transistor (FeHEMT)—a twist on the HEMTs that can increase the signal, known as gain, as well as offering high switching speed and low noise. This makes them well suited as amplifiers for sending out signals to cell towers and Wi-Fi routers at high speeds.

    Ferroelectric semiconductors stand out from others because they can sustain an electrical polarization, like the electric version of magnetism. But unlike a fridge magnet, they can switch which end is positive and which is negative. In the context of a transistor, this capability adds flexibility—the transistor can change how it behaves.

    “We can make our ferroelectric HEMT reconfigurable,” said Ding Wang, a research scientist in electrical and computer engineering and first author of the study. “That means it can function as several devices, such as one amplifier working as several amplifiers that we can dynamically control. This allows us to reduce the circuit area and lower the cost as well as the energy consumption.”

    3
    Electrical & Computer Engineering research scientist Ding Wang and graduate student Minming He from Prof. Zetian Mi’s group, University of Michigan, are working on the epitaxy and fabrication of high electron mobility transistors (HEMTs) based on a new nitride material, ScAlN, which has been demonstrated recently as a promising high-k and ferroelectric gate dielectric that can foster new functionalities and boost device performances.” Image credit: Marcin Szczepanski/Lead Multimedia Storyteller, Michigan Engineering.

    Areas of particular interest for this device are reconfigurable radio frequency and microwave communication as well as memory devices in next-generation electronics and computing systems.

    “By adding ferroelectricity to an HEMT, we can make the switching sharper. This could enable much lower power consumption in addition to high gain, making for much more efficient devices,” said Ping Wang, a research scientist in electrical and computer engineering and also the co-corresponding author of the research.

    The ferroelectric semiconductor is made of aluminum nitride spiked with scandium, a metal sometimes used to fortify aluminum in performance bicycles and fighter jets. It is the first nitride-based ferroelectric semiconductor, enabling it to be integrated with the next-gen semiconductor gallium nitride. Offering speeds up to 100 times that of silicon, as well as high efficiency and low cost, gallium nitride semiconductors are contenders to displace silicon as the preferred material for electronic devices.

    “This is a pivotal step toward integrating nitride ferroelectrics with mainstream electronics,” Mi said.

    The new transistor was grown using molecular beam epitaxy, the same approach used to make semiconductor crystals that drive the lasers in CD and DVD players.

    The University of Michigan has applied for patent protection. Early work leading to this study was funded by the Office of Naval Research and the Blue Sky Initiative at the U-M College of Engineering.

    The device was built in the Lurie Nanofabrication Facility and studied at the Michigan Center for Materials Characterization.

    Applied Physics Letters
    See the science paper for instructive material with images.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please support STEM education in your local school system

    Stem Education Coalition

    Michigan Engineering provides scientific and technological leadership to the people of the world. Through our people-first engineering approach, we’re committed to fostering a community of engineers who will close critical gaps and elevate all people. We aspire to be the world’s preeminent college of engineering serving the common good.

    Values

    Leadership and excellence
    Creativity, innovation and daring
    Diversity, equity and social impact
    Collegiality and collaboration
    Transparency and trustworthiness

    U MIchigan Campus

    U MIchigan Campus

    The University of Michigan is a public research university located in Ann Arbor, Michigan, United States. Originally, founded in 1817 in Detroit as the Catholepistemiad, or University of Michigania, 20 years before the Michigan Territory officially became a state, the University of Michigan is the state’s oldest university. The university moved to Ann Arbor in 1837 onto 40 acres (16 ha) of what is now known as Central Campus. Since its establishment in Ann Arbor, the university campus has expanded to include more than 584 major buildings with a combined area of more than 34 million gross square feet (781 acres or 3.16 km²), and has two satellite campuses located in Flint and Dearborn. The University was one of the founding members of the Association of American Universities.

    Considered one of the foremost research universities in the United States, the university has very high research activity and its comprehensive graduate program offers doctoral degrees in the humanities, social sciences, and STEM fields (Science, Technology, Engineering and Mathematics) as well as professional degrees in business, medicine, law, pharmacy, nursing, social work and dentistry. Michigan’s body of living alumni (as of 2012) comprises more than 500,000. Besides academic life, Michigan’s athletic teams compete in Division I of the NCAA and are collectively known as the Wolverines. They are members of the Big Ten Conference.

    At over $12.4 billion in 2019, Michigan’s endowment is among the largest of any university. As of October 2019, 53 MacArthur “genius award” winners (29 alumni winners and 24 faculty winners), 26 Nobel Prize winners, six Turing Award winners, one Fields Medalist and one Mitchell Scholar have been affiliated with the university. Its alumni include eight heads of state or government, including President of the United States Gerald Ford; 38 cabinet-level officials; and 26 living billionaires. It also has many alumni who are Fulbright Scholars and MacArthur Fellows.

    Research

    Michigan is one of the founding members (in the year 1900) of the Association of American Universities. With over 6,200 faculty members, 73 of whom are members of the National Academy and 471 of whom hold an endowed chair in their discipline, the university manages one of the largest annual collegiate research budgets of any university in the United States. According to the National Science Foundation, Michigan spent $1.6 billion on research and development in 2018, ranking it 2nd in the nation. This figure totaled over $1 billion in 2009. The Medical School spent the most at over $445 million, while the College of Engineering was second at more than $160 million. U-M also has a technology transfer office, which is the university conduit between laboratory research and corporate commercialization interests.

    In 2009, the university signed an agreement to purchase a facility formerly owned by Pfizer. The acquisition includes over 170 acres (0.69 km^2) of property, and 30 major buildings comprising roughly 1,600,000 square feet (150,000 m^2) of wet laboratory space, and 400,000 square feet (37,000 m^2) of administrative space. At the time of the agreement, the university’s intentions for the space were not set, but the expectation was that the new space would allow the university to ramp up its research and ultimately employ in excess of 2,000 people.

    The university is also a major contributor to the medical field with the EKG and the gastroscope. The university’s 13,000-acre (53 km^2) biological station in the Northern Lower Peninsula of Michigan is one of only 47 Biosphere Reserves in the United States.

    In the mid-1960s U-M researchers worked with IBM to develop a new virtual memory architectural model that became part of IBM’s Model 360/67 mainframe computer (the 360/67 was initially dubbed the 360/65M where the “M” stood for Michigan). The Michigan Terminal System (MTS), an early time-sharing computer operating system developed at U-M, was the first system outside of IBM to use the 360/67’s virtual memory features.

    U-M is home to the National Election Studies and the University of Michigan Consumer Sentiment Index. The Correlates of War project, also located at U-M, is an accumulation of scientific knowledge about war. The university is also home to major research centers in optics, reconfigurable manufacturing systems, wireless integrated microsystems, and social sciences. The University of Michigan Transportation Research Institute and the Life Sciences Institute are located at the university. The Institute for Social Research (ISR), the nation’s longest-standing laboratory for interdisciplinary research in the social sciences, is home to the Survey Research Center, Research Center for Group Dynamics, Center for Political Studies, Population Studies Center, and Inter-Consortium for Political and Social Research. Undergraduate students are able to participate in various research projects through the Undergraduate Research Opportunity Program (UROP) as well as the UROP/Creative-Programs.

    The U-M library system comprises nineteen individual libraries with twenty-four separate collections—roughly 13.3 million volumes. U-M was the original home of the JSTOR database, which contains about 750,000 digitized pages from the entire pre-1990 backfile of ten journals of history and economics, and has initiated a book digitization program in collaboration with Google. The University of Michigan Press is also a part of the U-M library system.

    In the late 1960s U-M, together with Michigan State University and Wayne State University, founded the Merit Network, one of the first university computer networks. The Merit Network was then and remains today administratively hosted by U-M. Another major contribution took place in 1987 when a proposal submitted by the Merit Network together with its partners IBM, MCI, and the State of Michigan won a national competition to upgrade and expand the National Science Foundation Network (NSFNET) backbone from 56,000 to 1.5 million, and later to 45 million bits per second. In 2006, U-M joined with Michigan State University and Wayne State University to create the the University Research Corridor. This effort was undertaken to highlight the capabilities of the state’s three leading research institutions and drive the transformation of Michigan’s economy. The three universities are electronically interconnected via the Michigan LambdaRail (MiLR, pronounced ‘MY-lar’), a high-speed data network providing 10 Gbit/s connections between the three university campuses and other national and international network connection points in Chicago.

     
  • richardmitnick 1:05 pm on February 24, 2023 Permalink | Reply
    Tags: "Making molecules faster - University of Michigan discovery dramatically reduces time it takes to build molecules", , , , , , The University of Michigan   

    From The University of Michigan: “Making molecules faster – University of Michigan discovery dramatically reduces time it takes to build molecules” 

    U Michigan bloc

    From The University of Michigan

    2.8.23
    Kim North Shine

    1
    Replica of the complex molecule, stemoamide, built in mere three steps in Tim Cernak’s Lab. Image credit: Austin Thomason, Michigan Photography.

    With a big assist from artificial intelligence and a heavy dose of human touch, Tim Cernak’s lab at the University of Michigan made a discovery that dramatically speeds up the time-consuming chemical process of building molecules that will be tomorrow’s medicines, agrichemicals or materials.

    The discovery, published in the Feb. 3 issue of Science [below], is the culmination of years of chemical synthesis and data science research by the Cernak Lab in the College of Pharmacy and Department of Chemistry.

    The goal of the research was to identify key reactions in the synthesis of a molecule, ultimately reducing the process to as few steps as possible. In the end, Cernak and his team achieved the synthesis of a complex alkaloid found in nature in just three steps. Previous syntheses took between seven and 26 steps.

    3
    Tim Cernak and team duplicated a complex molecule in only three steps. Image credit: The Cernak Lab.

    “Making a chemical structure that has atoms in just the right place to give you efficacious and nontoxic medicines, for instance, is tricky,” said Cernak, assistant professor of medicinal chemistry and chemistry. “It requires a chemical synthesis strategy grounded in the chemical building blocks you can actually buy and then stitch together using chemical reactions.”

    The accomplishment has powerful implications for speeding up the development of medicines.

    Cernak compared the construction of these complex molecules to playing chess. You need to orchestrate a series of moves to get to the end of the game. While there’s a near infinite number of possible moves, there’s a logic that can be followed.

    “We developed a logic here, based in graph theory, to get to the end as quickly as possible,” he said.

    4
    From left, Di Wang , Rui Zhang, Tim Cernak, and Yingfu Lin in the Cernak Lab at the Chemistry Building. Image credit: Austin Thomason, Michigan Photography.

    Cernak and colleagues used SYNTHIA Retrosynthesis Software, which provides scientists with a database of pathways, or steps, and formulas for millions of molecular structures. This gave the team an enormous amount of computational synthesis data to play with.

    Using an algorithm they developed to curate the data, the researchers identified the steps along the pathway that were high impact, or key steps, and the steps that were making progress toward completing the synthesis but ultimately inefficient for the whole process.

    “We hope this research can lead to better medicines,” Cernak said. “So far, we have been limited in the molecular structures we can quickly access with chemical synthesis.”

    Co-authors include Yingfu Lin, senior research fellow in pharmacy; Rui (Sam) Zhang, doctoral student in chemistry; and Di Wang, doctoral student in pharmacy.

    Science

    Efficient chemical synthesis is critical to satisfying future demands for medicines, materials, and agrochemicals. Retrosynthetic analysis of modestly complex molecules has been automated over the course of decades, but the combinatorial explosion of route possibilities has challenged computer hardware and software until only recently. Here, we explore a computational strategy that merges computer-aided synthesis planning with molecular graph editing to minimize the number of synthetic steps required to produce alkaloids. Our study culminated in an enantioselective three-step synthesis of (–)-stemoamide by leveraging high-impact key steps, which could be identified in computer-generated retrosynthesis plans using graph edit distances.

    2

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please support STEM education in your local school system

    Stem Education Coalition

    U MIchigan Campus

    The University of Michigan is a public research university located in Ann Arbor, Michigan, United States. Originally, founded in 1817 in Detroit as the Catholepistemiad, or University of Michigania, 20 years before the Michigan Territory officially became a state, the University of Michigan is the state’s oldest university. The university moved to Ann Arbor in 1837 onto 40 acres (16 ha) of what is now known as Central Campus. Since its establishment in Ann Arbor, the university campus has expanded to include more than 584 major buildings with a combined area of more than 34 million gross square feet (781 acres or 3.16 km²), and has two satellite campuses located in Flint and Dearborn. The University was one of the founding members of the Association of American Universities.

    Considered one of the foremost research universities in the United States, the university has very high research activity and its comprehensive graduate program offers doctoral degrees in the humanities, social sciences, and STEM fields (Science, Technology, Engineering and Mathematics) as well as professional degrees in business, medicine, law, pharmacy, nursing, social work and dentistry. Michigan’s body of living alumni (as of 2012) comprises more than 500,000. Besides academic life, Michigan’s athletic teams compete in Division I of the NCAA and are collectively known as the Wolverines. They are members of the Big Ten Conference.

    At over $12.4 billion in 2019, Michigan’s endowment is among the largest of any university. As of October 2019, 53 MacArthur “genius award” winners (29 alumni winners and 24 faculty winners), 26 Nobel Prize winners, six Turing Award winners, one Fields Medalist and one Mitchell Scholar have been affiliated with the university. Its alumni include eight heads of state or government, including President of the United States Gerald Ford; 38 cabinet-level officials; and 26 living billionaires. It also has many alumni who are Fulbright Scholars and MacArthur Fellows.

    Research

    Michigan is one of the founding members (in the year 1900) of the Association of American Universities. With over 6,200 faculty members, 73 of whom are members of the National Academy and 471 of whom hold an endowed chair in their discipline, the university manages one of the largest annual collegiate research budgets of any university in the United States. According to the National Science Foundation, Michigan spent $1.6 billion on research and development in 2018, ranking it 2nd in the nation. This figure totaled over $1 billion in 2009. The Medical School spent the most at over $445 million, while the College of Engineering was second at more than $160 million. U-M also has a technology transfer office, which is the university conduit between laboratory research and corporate commercialization interests.

    In 2009, the university signed an agreement to purchase a facility formerly owned by Pfizer. The acquisition includes over 170 acres (0.69 km^2) of property, and 30 major buildings comprising roughly 1,600,000 square feet (150,000 m^2) of wet laboratory space, and 400,000 square feet (37,000 m^2) of administrative space. At the time of the agreement, the university’s intentions for the space were not set, but the expectation was that the new space would allow the university to ramp up its research and ultimately employ in excess of 2,000 people.

    The university is also a major contributor to the medical field with the EKG and the gastroscope. The university’s 13,000-acre (53 km^2) biological station in the Northern Lower Peninsula of Michigan is one of only 47 Biosphere Reserves in the United States.

    In the mid-1960s U-M researchers worked with IBM to develop a new virtual memory architectural model that became part of IBM’s Model 360/67 mainframe computer (the 360/67 was initially dubbed the 360/65M where the “M” stood for Michigan). The Michigan Terminal System (MTS), an early time-sharing computer operating system developed at U-M, was the first system outside of IBM to use the 360/67’s virtual memory features.

    U-M is home to the National Election Studies and the University of Michigan Consumer Sentiment Index. The Correlates of War project, also located at U-M, is an accumulation of scientific knowledge about war. The university is also home to major research centers in optics, reconfigurable manufacturing systems, wireless integrated microsystems, and social sciences. The University of Michigan Transportation Research Institute and the Life Sciences Institute are located at the university. The Institute for Social Research (ISR), the nation’s longest-standing laboratory for interdisciplinary research in the social sciences, is home to the Survey Research Center, Research Center for Group Dynamics, Center for Political Studies, Population Studies Center, and Inter-Consortium for Political and Social Research. Undergraduate students are able to participate in various research projects through the Undergraduate Research Opportunity Program (UROP) as well as the UROP/Creative-Programs.

    The U-M library system comprises nineteen individual libraries with twenty-four separate collections—roughly 13.3 million volumes. U-M was the original home of the JSTOR database, which contains about 750,000 digitized pages from the entire pre-1990 backfile of ten journals of history and economics, and has initiated a book digitization program in collaboration with Google. The University of Michigan Press is also a part of the U-M library system.

    In the late 1960s U-M, together with Michigan State University and Wayne State University, founded the Merit Network, one of the first university computer networks. The Merit Network was then and remains today administratively hosted by U-M. Another major contribution took place in 1987 when a proposal submitted by the Merit Network together with its partners IBM, MCI, and the State of Michigan won a national competition to upgrade and expand the National Science Foundation Network (NSFNET) backbone from 56,000 to 1.5 million, and later to 45 million bits per second. In 2006, U-M joined with Michigan State University and Wayne State University to create the the University Research Corridor. This effort was undertaken to highlight the capabilities of the state’s three leading research institutions and drive the transformation of Michigan’s economy. The three universities are electronically interconnected via the Michigan LambdaRail (MiLR, pronounced ‘MY-lar’), a high-speed data network providing 10 Gbit/s connections between the three university campuses and other national and international network connection points in Chicago.

     
  • richardmitnick 10:15 am on February 3, 2023 Permalink | Reply
    Tags: "Robot: "I’m sorry'. Human: "I don’t care anymore!", , , The University of Michigan   

    From The University of Michigan: “Robot: “I’m sorry’. Human: “I don’t care anymore!” 

    U Michigan bloc

    From The University of Michigan

    2.2.23
    Jared Wadley

    1
    Humans are less forgiving of robots after multiple mistakes—and the trust is difficult to get back, according to a new University of Michigan study.

    Similar to human co-workers, robots can make mistakes that violate a human’s trust in them. When mistakes happen, humans often see robots as less trustworthy, which ultimately decreases their trust in them.

    The study examines four strategies that might repair and mitigate the negative impacts of these trust violations. These trust strategies were apologies, denials, explanations and promises on trustworthiness.

    An experiment was conducted where 240 participants worked with a robot co-worker to accomplish a task, which sometimes involved the robot making mistakes. The robot violated the participant’s trust and then provided a particular repair strategy.

    Results indicated that after three mistakes, none of the repair strategies ever fully repaired trustworthiness.

    “By the third violation, strategies used by the robot to fully repair the mistrust never materialized,” said Connor Esterwood, a researcher at the U-M School of Information and the study’s lead author.

    Esterwood and co-author Lionel Robert, professor of information, also noted that this research also introduces theories of forgiving, forgetting, informing and misinforming.

    The study results have two implications. Esterwood said researchers must develop more effective repair strategies to help robots better repair trust after these mistakes. Also, robots need to be sure that they have mastered a novel task before attempting to repair a human’s trust in them.

    “If not, they risk losing a human’s trust in them in a way that can not be recovered,” Esterwood said.

    What do the findings mean for human-human trust repair? Trust is never fully repaired by apologies, denials, explanations or promises, the researchers said.

    “Our study’s results indicate that after three violations and repairs, trust cannot be fully restored, thus supporting the adage ‘three strikes and you’re out,’” Robert said. “In doing so, it presents a possible limit that may exist regarding when trust can be fully restored.”

    Even when a robot can do better after making a mistake and adapting after that mistake, it may not be given the opportunity to do better, Esterwood said. Thus, the benefits of robots are lost.

    Lionel noted that people may attempt to work around or bypass the robot, reducing their performance. This could lead to performance problems which in turn could lead to them being fired for lack of either performance and/or compliance, he said.

    The findings appear in Computers in Human Behavior.
    https://www.sciencedirect.com/science/article/pii/S0747563223000092
    See the science paper for instructive material with images.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please support STEM education in your local school system

    Stem Education Coalition

    U MIchigan Campus

    The University of Michigan is a public research university located in Ann Arbor, Michigan, United States. Originally, founded in 1817 in Detroit as the Catholepistemiad, or University of Michigania, 20 years before the Michigan Territory officially became a state, the University of Michigan is the state’s oldest university. The university moved to Ann Arbor in 1837 onto 40 acres (16 ha) of what is now known as Central Campus. Since its establishment in Ann Arbor, the university campus has expanded to include more than 584 major buildings with a combined area of more than 34 million gross square feet (781 acres or 3.16 km²), and has two satellite campuses located in Flint and Dearborn. The University was one of the founding members of the Association of American Universities.

    Considered one of the foremost research universities in the United States, the university has very high research activity and its comprehensive graduate program offers doctoral degrees in the humanities, social sciences, and STEM fields (Science, Technology, Engineering and Mathematics) as well as professional degrees in business, medicine, law, pharmacy, nursing, social work and dentistry. Michigan’s body of living alumni (as of 2012) comprises more than 500,000. Besides academic life, Michigan’s athletic teams compete in Division I of the NCAA and are collectively known as the Wolverines. They are members of the Big Ten Conference.

    At over $12.4 billion in 2019, Michigan’s endowment is among the largest of any university. As of October 2019, 53 MacArthur “genius award” winners (29 alumni winners and 24 faculty winners), 26 Nobel Prize winners, six Turing Award winners, one Fields Medalist and one Mitchell Scholar have been affiliated with the university. Its alumni include eight heads of state or government, including President of the United States Gerald Ford; 38 cabinet-level officials; and 26 living billionaires. It also has many alumni who are Fulbright Scholars and MacArthur Fellows.

    Research

    Michigan is one of the founding members (in the year 1900) of the Association of American Universities. With over 6,200 faculty members, 73 of whom are members of the National Academy and 471 of whom hold an endowed chair in their discipline, the university manages one of the largest annual collegiate research budgets of any university in the United States. According to the National Science Foundation, Michigan spent $1.6 billion on research and development in 2018, ranking it 2nd in the nation. This figure totaled over $1 billion in 2009. The Medical School spent the most at over $445 million, while the College of Engineering was second at more than $160 million. U-M also has a technology transfer office, which is the university conduit between laboratory research and corporate commercialization interests.

    In 2009, the university signed an agreement to purchase a facility formerly owned by Pfizer. The acquisition includes over 170 acres (0.69 km^2) of property, and 30 major buildings comprising roughly 1,600,000 square feet (150,000 m^2) of wet laboratory space, and 400,000 square feet (37,000 m^2) of administrative space. At the time of the agreement, the university’s intentions for the space were not set, but the expectation was that the new space would allow the university to ramp up its research and ultimately employ in excess of 2,000 people.

    The university is also a major contributor to the medical field with the EKG and the gastroscope. The university’s 13,000-acre (53 km^2) biological station in the Northern Lower Peninsula of Michigan is one of only 47 Biosphere Reserves in the United States.

    In the mid-1960s U-M researchers worked with IBM to develop a new virtual memory architectural model that became part of IBM’s Model 360/67 mainframe computer (the 360/67 was initially dubbed the 360/65M where the “M” stood for Michigan). The Michigan Terminal System (MTS), an early time-sharing computer operating system developed at U-M, was the first system outside of IBM to use the 360/67’s virtual memory features.

    U-M is home to the National Election Studies and the University of Michigan Consumer Sentiment Index. The Correlates of War project, also located at U-M, is an accumulation of scientific knowledge about war. The university is also home to major research centers in optics, reconfigurable manufacturing systems, wireless integrated microsystems, and social sciences. The University of Michigan Transportation Research Institute and the Life Sciences Institute are located at the university. The Institute for Social Research (ISR), the nation’s longest-standing laboratory for interdisciplinary research in the social sciences, is home to the Survey Research Center, Research Center for Group Dynamics, Center for Political Studies, Population Studies Center, and Inter-Consortium for Political and Social Research. Undergraduate students are able to participate in various research projects through the Undergraduate Research Opportunity Program (UROP) as well as the UROP/Creative-Programs.

    The U-M library system comprises nineteen individual libraries with twenty-four separate collections—roughly 13.3 million volumes. U-M was the original home of the JSTOR database, which contains about 750,000 digitized pages from the entire pre-1990 backfile of ten journals of history and economics, and has initiated a book digitization program in collaboration with Google. The University of Michigan Press is also a part of the U-M library system.

    In the late 1960s U-M, together with Michigan State University and Wayne State University, founded the Merit Network, one of the first university computer networks. The Merit Network was then and remains today administratively hosted by U-M. Another major contribution took place in 1987 when a proposal submitted by the Merit Network together with its partners IBM, MCI, and the State of Michigan won a national competition to upgrade and expand the National Science Foundation Network (NSFNET) backbone from 56,000 to 1.5 million, and later to 45 million bits per second. In 2006, U-M joined with Michigan State University and Wayne State University to create the the University Research Corridor. This effort was undertaken to highlight the capabilities of the state’s three leading research institutions and drive the transformation of Michigan’s economy. The three universities are electronically interconnected via the Michigan LambdaRail (MiLR, pronounced ‘MY-lar’), a high-speed data network providing 10 Gbit/s connections between the three university campuses and other national and international network connection points in Chicago.

     
  • richardmitnick 10:11 pm on January 24, 2023 Permalink | Reply
    Tags: , "Plasma thrusters used on satellites could be much more powerful than previously believed", The University of Michigan   

    From Engineering At From The University of Michigan Via “phys.org” : “Plasma thrusters used on satellites could be much more powerful than previously believed” 

    1

    From Engineering

    At

    U Michigan bloc

    The University of Michigan

    Via

    “phys.org”

    1.24.23
    Kate McAlpine

    1
    The glow of the plasma from the H9 MUSCLE Hall thruster during a test with krypton propellant. Credit: Plasmadynamic and Electric Propulsion Laboratory.

    It has been believed that Hall thrusters, an efficient kind of electric propulsion widely used in orbit, must be large to produce a lot of thrust. Now, a new study from the University of Michigan suggests that smaller Hall thrusters can generate much more thrust—potentially making them candidates for interplanetary missions.

    “People had previously thought that you could only push a certain amount of current through a thruster area, which in turn translates directly into how much force or thrust you can generate per unit area,” said Benjamin Jorns, U-M associate professor of aerospace engineering who led the new Hall thruster study to be presented at the AIAA SciTech Forum in National Harbor, Maryland, today.

    His team challenged this limit by running a 9 kilowatt Hall thruster up to 45 kilowatts, maintaining roughly 80% of its nominal efficiency. This increased the amount of force generated per unit area by almost a factor of 10.

    Whether we call it a plasma thruster or an ion drive, electric propulsion is our best bet for interplanetary travel—but science is at a crossroads. While Hall thrusters are a well-proven technology, an alternative concept, known as a magnetoplasmadynamic thruster, promises to pack much more power into smaller engines. However, they are yet unproven in many ways, including lifetime.

    Hall thrusters were believed to be unable to compete because of the way they operate. The propellant, typically a noble gas like xenon, moves through a cylindrical channel where it is accelerated by a powerful electric field. It generates thrust in the forward direction as it departs out the back. But before the propellant can be accelerated, it needs to lose some electrons to give it a positive charge.


    Advances in Thruster Technology Lead the Way to Mars.

    Electrons accelerated by a magnetic field to run in a ring around that channel—described as a “buzz saw” by Jorns—knock electrons off the propellant atoms and turn them into positively charged ions. However, calculations suggested that if a Hall thruster tried to drive more propellant through the engine, the electrons whizzing in a ring would get knocked out of the formation, breaking down that “buzz saw” function.

    “It’s like trying to bite off more than you can chew,” Jorns said. “The buzz saw can’t work its way through that much material.”

    In addition, the engine would become extremely hot. Jorns’ team put these beliefs to the test.

    “We named our thruster the H9 MUSCLE because essentially, we took the H9 thruster and made a muscle car out of it by turning it up to ’11’—really up to a hundred, if we’re going by accurate scaling,” said Leanne Su, a doctoral student in aerospace engineering who will present the study.

    They tackled the heat problem by cooling it with water, which let them see how big a problem the buzz saw breakdown was going to be. Turns out, it wasn’t much trouble. Running with xenon, the conventional propellant, the H9 MUSCLE ran up to 37.5 kilowatts, with an overall efficiency of about 49%, not far off the 62% efficiency at its design power of 9 kilowatts.

    Running with krypton, a lighter gas, they maxed out their power supply at 45 kilowatts. At an overall efficiency of 51%, they achieved their maximum thrust of about 1.8 Newtons, on par with the much larger 100-kilowatt-class X3 Hall thruster.

    2
    Ph.D student Will Hurley leaves the chamber where the new Hall plasma thruster is tested at the PEPL lab. Credit: Marcin Szczepanski/Michigan Engineering.

    “This is kind of a crazy result because typically, krypton performs a lot worse than xenon on Hall thrusters. So it’s very cool and an interesting path forward to see that we can actually improve krypton’s performance relative to xenon by increasing the thruster current density,” Su said.

    Nested Hall thrusters like the X3—also developed in part by U-M—have been explored for interplanetary cargo transport, but they are much larger and heavier, making it difficult for them to transport humans. Now, ordinary Hall thrusters are back on the table for crewed journeys.

    Jorns says that the cooling problem would need a space-worthy solution if Hall thrusters are to run at these high powers. Still, he is optimistic that individual thrusters could run at 100 to 200 kilowatts, arranged into arrays that provide a megawatt’s worth of thrust. This could enable crewed missions to reach Mars even on the far side of the sun, traveling a distance of 250 million miles.

    The team hopes to pursue the cooling problem as well as challenges in developing both Hall thrusters and magnetoplasmadynamic thrusters on Earth, where few facilities can test Mars-mission-level thrusters. The amount of propellant exhausting from the thruster comes too fast for the vacuum pumps to keep the conditions inside the testing chamber space-like.

    AIAA SCITECH 2023 Forum

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please support STEM education in your local school system

    Stem Education Coalition

    Michigan Engineering provides scientific and technological leadership to the people of the world. Through our people-first engineering approach, we’re committed to fostering a community of engineers who will close critical gaps and elevate all people. We aspire to be the world’s preeminent college of engineering serving the common good.

    Values

    Leadership and excellence
    Creativity, innovation and daring
    Diversity, equity and social impact
    Collegiality and collaboration
    Transparency and trustworthiness

    U MIchigan Campus

    The University of Michigan is a public research university located in Ann Arbor, Michigan, United States. Originally, founded in 1817 in Detroit as the Catholepistemiad, or University of Michigania, 20 years before the Michigan Territory officially became a state, the University of Michigan is the state’s oldest university. The university moved to Ann Arbor in 1837 onto 40 acres (16 ha) of what is now known as Central Campus. Since its establishment in Ann Arbor, the university campus has expanded to include more than 584 major buildings with a combined area of more than 34 million gross square feet (781 acres or 3.16 km²), and has two satellite campuses located in Flint and Dearborn. The University was one of the founding members of the Association of American Universities.

    Considered one of the foremost research universities in the United States, the university has very high research activity and its comprehensive graduate program offers doctoral degrees in the humanities, social sciences, and STEM fields (Science, Technology, Engineering and Mathematics) as well as professional degrees in business, medicine, law, pharmacy, nursing, social work and dentistry. Michigan’s body of living alumni (as of 2012) comprises more than 500,000. Besides academic life, Michigan’s athletic teams compete in Division I of the NCAA and are collectively known as the Wolverines. They are members of the Big Ten Conference.

    At over $12.4 billion in 2019, Michigan’s endowment is among the largest of any university. As of October 2019, 53 MacArthur “genius award” winners (29 alumni winners and 24 faculty winners), 26 Nobel Prize winners, six Turing Award winners, one Fields Medalist and one Mitchell Scholar have been affiliated with the university. Its alumni include eight heads of state or government, including President of the United States Gerald Ford; 38 cabinet-level officials; and 26 living billionaires. It also has many alumni who are Fulbright Scholars and MacArthur Fellows.

    Research

    Michigan is one of the founding members (in the year 1900) of the Association of American Universities. With over 6,200 faculty members, 73 of whom are members of the National Academy and 471 of whom hold an endowed chair in their discipline, the university manages one of the largest annual collegiate research budgets of any university in the United States. According to the National Science Foundation, Michigan spent $1.6 billion on research and development in 2018, ranking it 2nd in the nation. This figure totaled over $1 billion in 2009. The Medical School spent the most at over $445 million, while the College of Engineering was second at more than $160 million. U-M also has a technology transfer office, which is the university conduit between laboratory research and corporate commercialization interests.

    In 2009, the university signed an agreement to purchase a facility formerly owned by Pfizer. The acquisition includes over 170 acres (0.69 km^2) of property, and 30 major buildings comprising roughly 1,600,000 square feet (150,000 m^2) of wet laboratory space, and 400,000 square feet (37,000 m^2) of administrative space. At the time of the agreement, the university’s intentions for the space were not set, but the expectation was that the new space would allow the university to ramp up its research and ultimately employ in excess of 2,000 people.

    The university is also a major contributor to the medical field with the EKG and the gastroscope. The university’s 13,000-acre (53 km^2) biological station in the Northern Lower Peninsula of Michigan is one of only 47 Biosphere Reserves in the United States.

    In the mid-1960s U-M researchers worked with IBM to develop a new virtual memory architectural model that became part of IBM’s Model 360/67 mainframe computer (the 360/67 was initially dubbed the 360/65M where the “M” stood for Michigan). The Michigan Terminal System (MTS), an early time-sharing computer operating system developed at U-M, was the first system outside of IBM to use the 360/67’s virtual memory features.

    U-M is home to the National Election Studies and the University of Michigan Consumer Sentiment Index. The Correlates of War project, also located at U-M, is an accumulation of scientific knowledge about war. The university is also home to major research centers in optics, reconfigurable manufacturing systems, wireless integrated microsystems, and social sciences. The University of Michigan Transportation Research Institute and the Life Sciences Institute are located at the university. The Institute for Social Research (ISR), the nation’s longest-standing laboratory for interdisciplinary research in the social sciences, is home to the Survey Research Center, Research Center for Group Dynamics, Center for Political Studies, Population Studies Center, and Inter-Consortium for Political and Social Research. Undergraduate students are able to participate in various research projects through the Undergraduate Research Opportunity Program (UROP) as well as the UROP/Creative-Programs.

    The U-M library system comprises nineteen individual libraries with twenty-four separate collections—roughly 13.3 million volumes. U-M was the original home of the JSTOR database, which contains about 750,000 digitized pages from the entire pre-1990 backfile of ten journals of history and economics, and has initiated a book digitization program in collaboration with Google. The University of Michigan Press is also a part of the U-M library system.

    In the late 1960s U-M, together with Michigan State University and Wayne State University, founded the Merit Network, one of the first university computer networks. The Merit Network was then and remains today administratively hosted by U-M. Another major contribution took place in 1987 when a proposal submitted by the Merit Network together with its partners IBM, MCI, and the State of Michigan won a national competition to upgrade and expand the National Science Foundation Network (NSFNET) backbone from 56,000 to 1.5 million, and later to 45 million bits per second. In 2006, U-M joined with Michigan State University and Wayne State University to create the the University Research Corridor. This effort was undertaken to highlight the capabilities of the state’s three leading research institutions and drive the transformation of Michigan’s economy. The three universities are electronically interconnected via the Michigan LambdaRail (MiLR, pronounced ‘MY-lar’), a high-speed data network providing 10 Gbit/s connections between the three university campuses and other national and international network connection points in Chicago.

     
  • richardmitnick 9:22 pm on January 23, 2023 Permalink | Reply
    Tags: "A new model for dark matter", A new candidate for dark matter-"HYPER": “HighlY Interactive ParticlE Relics.”, , , In particle physics an interaction is usually mediated by a specific particle -a so called mediator and so is the interaction of dark matter with normal matter., In the HYPER model some time after the formation of dark matter in the early universe the strength of its interaction with normal matter increases abruptly making it potentially detectable., , Phase transition in early universe changes strength of interaction between dark and normal matter., , The HYPER model can also explain the abundance of dark matter., , The University of Michigan   

    From The University of Michigan And The Johannes Gutenberg University Mainz [Johannes Gutenberg-Universität Mainz] (DE): “A new model for dark matter” 

    U Michigan bloc

    From The University of Michigan

    And

    The Johannes Gutenberg University Mainz [Johannes Gutenberg-Universität Mainz] (DE)

    1.23.23
    Bernie DeGroat
    734-647-1847
    bernied@umich.edu

    Phase transition in early universe changes strength of interaction between dark and normal matter.

    1
    This NASA Hubble Space Telescope image shows the distribution of dark matter in the center of the giant galaxy cluster Abell 1689, containing about 1,000 galaxies and trillions of stars. Dark matter is an invisible form of matter that accounts for most of the universe’s mass. Hubble cannot see the dark matter directly. Astronomers inferred its location by analyzing the effect of gravitational lensing, where light from galaxies behind Abell 1689 is distorted by intervening matter within the cluster.

    Researchers used the observed positions of 135 lensed images of 42 background galaxies to calculate the location and amount of dark matter in the cluster. They superimposed a map of these inferred dark matter concentrations, tinted blue, on an image of the cluster taken by Hubble’s Advanced Camera for Surveys.

    If the cluster’s gravity came only from the visible galaxies, the lensing distortions would be much weaker. The map reveals that the densest concentration of dark matter is in the cluster’s core. Abell 1689 resides 2.2 billion light-years from Earth. The image was taken in June 2002. Image credit: D. Coe (NASA Jet Propulsion Laboratory/California Institute of Technology, and Space Telescope Science Institute) NASA/ESA; , N. Benitez (Institute of Astrophysics of Andalusia, Spain), T. Broadhurst (University of the Basque Country, Spain), and H. Ford (Johns Hopkins University).

    Dark matter remains one of the greatest mysteries of modern physics. It is clear that it must exist, because without dark matter, for example, the motion of galaxies cannot be explained. But it has never been possible to detect dark matter in an experiment.

    Currently, there are many proposals for new experiments: They aim to detect dark matter directly via its scattering from the constituents of the atomic nuclei of a detection medium, i.e., protons and neutrons.

    A team of researchers—Robert McGehee and Aaron Pierce of the University of Michigan and Gilly Elor of Johannes Gutenberg University of Mainz in Germany—has now proposed a new candidate for dark matter-“HYPER”: “HighlY Interactive ParticlE Relics.”

    In the HYPER model some time after the formation of dark matter in the early universe the strength of its interaction with normal matter increases abruptly—which on the one hand makes it potentially detectable today and at the same time can explain the abundance of dark matter.

    The new diversity in the dark matter sector

    Since the search for heavy dark matter particles, or so-called WIMPS, has not yet led to success, the research community is looking for alternative dark matter particles, especially lighter ones. At the same time, one generically expects phase transitions in the dark sector—after all, there are several in the visible sector, the researchers say. But previous studies have tended to neglect them.

    “There has not been a consistent dark matter model for the mass range that some planned experiments hope to access. “However, our HYPER model illustrates that a phase transition can actually help make the dark matter more easily detectable,” said Elor, a postdoctoral researcher in theoretical physics at JGU.

    The challenge for a suitable model: If dark matter interacts too strongly with normal matter, its (precisely known) amount formed in the early universe would be too small, contradicting astrophysical observations. However, if it is produced in just the right amount, the interaction would conversely be too weak to detect dark matter in present-day experiments.

    “Our central idea, which underlies the HYPER model, is that the interaction changes abruptly once—so we can have the best of both worlds: the right amount of dark matter and a large interaction so we might detect it,” McGehee said.

    2
    Constraints in the mediator mass-nucleon coupling plane from cooling of HB stars [25] and SN 1987A [12], as well as rare kaon decays [26] (gray shading). Credit: Physical Review Letters (2023).

    And this is how the researchers envision it: In particle physics an interaction is usually mediated by a specific particle, a so-called mediator—and so is the interaction of dark matter with normal matter. Both the formation of dark matter and its detection function via this mediator, with the strength of the interaction depending on its mass: The larger the mass, the weaker the interaction.

    The mediator must first be heavy enough so that the correct amount of dark matter is formed and later light enough so that dark matter is detectable at all. The solution: There was a phase transition after the formation of dark matter, during which the mass of the mediator suddenly decreased.

    “Thus, on the one hand, the amount of dark matter is kept constant, and on the other hand, the interaction is boosted or strengthened in such a way that dark matter should be directly detectable,” Pierce said.

    New model covers almost the full parameter range of planned experiments

    “The HYPER model of dark matter is able to cover almost the entire range that the new experiments make accessible,” Elor said.

    Specifically, the research team first considered the maximum cross section of the mediator-mediated interaction with the protons and neutrons of an atomic nucleus to be consistent with astrological observations and certain particle-physics decays. The next step was to consider whether there was a model for dark matter that exhibited this interaction.

    “And here we came up with the idea of the phase transition,” McGehee said. “We then calculated the amount of dark matter that exists in the universe and then simulated the phase transition using our calculations.”

    There are a great many constraints to consider, such as a constant amount of dark matter.

    “Here, we have to systematically consider and include very many scenarios, for example, asking the question whether it is really certain that our mediator does not suddenly lead to the formation of new dark matter, which of course must not be,” Elor said. “But in the end, we were convinced that our HYPER model works.”

    The research is published in the journal Physical Review Letters.
    __________________________________
    Dark Matter Background
    Fritz Zwicky discovered Dark Matter in the 1930s when observing the movement of the Coma Cluster., and Vera Rubin a Woman in STEM, denied the Nobel, some 30 years later, did most of the work on Dark Matter.

    Fritz Zwicky.

    Coma cluster via NASA/ESA Hubble, the original example of Dark Matter discovered during observations by Fritz Zwicky and confirmed 30 years later by Vera Rubin.

    In modern times, it was astronomer Fritz Zwicky, in the 1930s, who made the first observations of what we now call dark matter. His 1933 observations of the Coma Cluster of galaxies seemed to indicated it has a mass 500 times more than that previously calculated by Edwin Hubble. Furthermore, this extra mass seemed to be completely invisible. Although Zwicky’s observations were initially met with much skepticism, they were later confirmed by other groups of astronomers.

    Thirty years later, astronomer Vera Rubin provided a huge piece of evidence for the existence of dark matter. She discovered that the centers of galaxies rotate at the same speed as their extremities, whereas, of course, they should rotate faster. Think of a vinyl LP on a record deck: its center rotates faster than its edge. That’s what logic dictates we should see in galaxies too. But we do not. The only way to explain this is if the whole galaxy is only the center of some much larger structure, as if it is only the label on the LP so to speak, causing the galaxy to have a consistent rotation speed from center to edge.

    Vera Rubin, following Zwicky, postulated that the missing structure in galaxies is dark matter. Her ideas were met with much resistance from the astronomical community, but her observations have been confirmed and are seen today as pivotal proof of the existence of dark matter.

    Astronomer Vera Rubin at the Lowell Observatory in 1965, worked on Dark Matter (The Carnegie Institution for Science).

    Vera Rubin, with Department of Terrestrial Magnetism (DTM) image tube spectrograph attached to the Kitt Peak 84-inch telescope, 1970.

    Vera Rubin measuring spectra, worked on Dark Matter(Emilio Segre Visual Archives AIP SPL).

    Dark Matter Research

    Super Cryogenic Dark Matter Search from DOE’s SLAC National Accelerator Laboratory at Stanford University at SNOLAB (Vale Inco Mine, Sudbury, Canada).

    LBNL LZ Dark Matter Experiment xenon detector at Sanford Underground Research Facility Credit: Matt Kapust.


    DAMA at Gran Sasso uses sodium iodide housed in copper to hunt for dark matter LNGS-INFN.

    Yale HAYSTAC axion dark matter experiment at Yale’s Wright Lab.

    DEAP Dark Matter detector, The DEAP-3600, suspended in the SNOLAB (CA) deep in Sudbury’s Creighton Mine.

    The LBNL LZ Dark Matter Experiment Dark Matter project at SURF, Lead, SD.

    DAMA-LIBRA Dark Matter experiment at the Italian National Institute for Nuclear Physics’ (INFN’s) Gran Sasso National Laboratories (LNGS) located in the Abruzzo region of central Italy.

    DARWIN Dark Matter experiment. A design study for a next-generation, multi-ton dark matter detector in Europe at The University of Zurich [Universität Zürich](CH).

    PandaX II Dark Matter experiment at Jin-ping Underground Laboratory (CJPL) in Sichuan, China.

    Inside the Axion Dark Matter eXperiment U Washington. Credit: Mark Stone U. of Washington. Axion Dark Matter Experiment.

    3
    The University of Western Australia ORGAN Experiment’s main detector. A small copper cylinder called a “resonant cavity” traps photons generated during dark matter conversion. The cylinder is bolted to a “dilution refrigerator” which cools the experiment to very low temperatures.
    __________________________________

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please support STEM education in your local school system

    Stem Education Coalition

    The The Johannes Gutenberg University Mainz [Johannes Gutenberg-Universität Mainz] (DE) is a public research university in Mainz, Rhineland Palatinate, Germany, named after the printer Johannes Gutenberg since 1946. With approximately 32,000 students (2018) in about 100 schools and clinics, it is among the largest universities in Germany. Starting on 1 January 2005 the university was reorganized into 11 faculties of study.

    The university is a member of the German U15, a coalition of fifteen major research-intensive and leading medical universities in Germany. The Johannes Gutenberg University is considered one of the most prestigious universities in Germany.

    The university is part of the IT-Cluster Rhine-Main-Neckar. The Johannes Gutenberg University Mainz, The Goethe University Frankfurt(DE) and The Technische Universität Darmstadt(DE) together form the Rhine-Main-Universities [Rhein-Main Universitäten](DE)(RMU).

    The first University of Mainz goes back to the Archbishop of Mainz, Prince-elector and Reichserzkanzler Adolf II von Nassau. At the time, establishing a university required papal approval and Adolf II initiated the approval process during his time in office. The university, however, was first opened in 1477 by Adolf’s successor to the bishopric, Diether von Isenburg. In 1784 the University was opened up for Protestants and Jews (curator Anselm Franz von Betzel). It fastly became one of the largest Catholic universities in Europe with ten chairs in theology alone. In the confusion after the establishment of the Mainz Republic of 1792 and its subsequent recapture by the Prussians, academic activity came to a gradual standstill. In 1798 the university became active again under French governance, and lectures in the department of medicine took place until 1823. Only the faculty of theology continued teaching during the 19th century, albeit as a theological Seminary (since 1877 “College of Philosophy and Theology”).

    The current Johannes Gutenberg University Mainz was founded in 1946 by the French occupying power. In a decree on 1 March the French military government implied that the University of Mainz would continue to exist: the University shall be “enabled to resume its function”. The remains of anti-aircraft warfare barracks erected in 1938 after the remilitarization of the Rhineland during the Third Reich served as the university’s first buildings and are still in use today.

    The continuation of academic activity between the old university and Johannes Gutenberg University Mainz, in spite of an interruption spanning over 100 years, is contested. During the time up to its reopening only a seminary and midwifery college survived.

    In 1972, the effect of the 1968 student protests began to take a toll on the University’s structure. The departments (Fakultäten) were dismantled and the University was organized into broad fields of study (Fachbereiche). Finally in 1974 Peter Schneider was elected as the first president of what was now a “constituted group-university” institute of higher education. In 1990 Jürgen Zöllner became University President yet spent only a year in the position after he was appointed Minister for “Science and Advanced Education” for the State of Rhineland-Palatinate. As the coordinator for the SPD’s higher education policy, this furloughed professor from the Institute for Physiological Chemistry played a decisive role in the SPD’s higher education policy and in the development of Study Accounts.

    U MIchigan Campus

    The University of Michigan is a public research university located in Ann Arbor, Michigan, United States. Originally, founded in 1817 in Detroit as the Catholepistemiad, or University of Michigania, 20 years before the Michigan Territory officially became a state, the University of Michigan is the state’s oldest university. The university moved to Ann Arbor in 1837 onto 40 acres (16 ha) of what is now known as Central Campus. Since its establishment in Ann Arbor, the university campus has expanded to include more than 584 major buildings with a combined area of more than 34 million gross square feet (781 acres or 3.16 km²), and has two satellite campuses located in Flint and Dearborn. The University was one of the founding members of the Association of American Universities.

    Considered one of the foremost research universities in the United States, the university has very high research activity and its comprehensive graduate program offers doctoral degrees in the humanities, social sciences, and STEM fields (Science, Technology, Engineering and Mathematics) as well as professional degrees in business, medicine, law, pharmacy, nursing, social work and dentistry. Michigan’s body of living alumni (as of 2012) comprises more than 500,000. Besides academic life, Michigan’s athletic teams compete in Division I of the NCAA and are collectively known as the Wolverines. They are members of the Big Ten Conference.

    At over $12.4 billion in 2019, Michigan’s endowment is among the largest of any university. As of October 2019, 53 MacArthur “genius award” winners (29 alumni winners and 24 faculty winners), 26 Nobel Prize winners, six Turing Award winners, one Fields Medalist and one Mitchell Scholar have been affiliated with the university. Its alumni include eight heads of state or government, including President of the United States Gerald Ford; 38 cabinet-level officials; and 26 living billionaires. It also has many alumni who are Fulbright Scholars and MacArthur Fellows.

    Research

    Michigan is one of the founding members (in the year 1900) of the Association of American Universities. With over 6,200 faculty members, 73 of whom are members of the National Academy and 471 of whom hold an endowed chair in their discipline, the university manages one of the largest annual collegiate research budgets of any university in the United States. According to the National Science Foundation, Michigan spent $1.6 billion on research and development in 2018, ranking it 2nd in the nation. This figure totaled over $1 billion in 2009. The Medical School spent the most at over $445 million, while the College of Engineering was second at more than $160 million. U-M also has a technology transfer office, which is the university conduit between laboratory research and corporate commercialization interests.

    In 2009, the university signed an agreement to purchase a facility formerly owned by Pfizer. The acquisition includes over 170 acres (0.69 km^2) of property, and 30 major buildings comprising roughly 1,600,000 square feet (150,000 m^2) of wet laboratory space, and 400,000 square feet (37,000 m^2) of administrative space. At the time of the agreement, the university’s intentions for the space were not set, but the expectation was that the new space would allow the university to ramp up its research and ultimately employ in excess of 2,000 people.

    The university is also a major contributor to the medical field with the EKG and the gastroscope. The university’s 13,000-acre (53 km^2) biological station in the Northern Lower Peninsula of Michigan is one of only 47 Biosphere Reserves in the United States.

    In the mid-1960s U-M researchers worked with IBM to develop a new virtual memory architectural model that became part of IBM’s Model 360/67 mainframe computer (the 360/67 was initially dubbed the 360/65M where the “M” stood for Michigan). The Michigan Terminal System (MTS), an early time-sharing computer operating system developed at U-M, was the first system outside of IBM to use the 360/67’s virtual memory features.

    U-M is home to the National Election Studies and the University of Michigan Consumer Sentiment Index. The Correlates of War project, also located at U-M, is an accumulation of scientific knowledge about war. The university is also home to major research centers in optics, reconfigurable manufacturing systems, wireless integrated microsystems, and social sciences. The University of Michigan Transportation Research Institute and the Life Sciences Institute are located at the university. The Institute for Social Research (ISR), the nation’s longest-standing laboratory for interdisciplinary research in the social sciences, is home to the Survey Research Center, Research Center for Group Dynamics, Center for Political Studies, Population Studies Center, and Inter-Consortium for Political and Social Research. Undergraduate students are able to participate in various research projects through the Undergraduate Research Opportunity Program (UROP) as well as the UROP/Creative-Programs.

    The U-M library system comprises nineteen individual libraries with twenty-four separate collections—roughly 13.3 million volumes. U-M was the original home of the JSTOR database, which contains about 750,000 digitized pages from the entire pre-1990 backfile of ten journals of history and economics, and has initiated a book digitization program in collaboration with Google. The University of Michigan Press is also a part of the U-M library system.

    In the late 1960s U-M, together with Michigan State University and Wayne State University, founded the Merit Network, one of the first university computer networks. The Merit Network was then and remains today administratively hosted by U-M. Another major contribution took place in 1987 when a proposal submitted by the Merit Network together with its partners IBM, MCI, and the State of Michigan won a national competition to upgrade and expand the National Science Foundation Network (NSFNET) backbone from 56,000 to 1.5 million, and later to 45 million bits per second. In 2006, U-M joined with Michigan State University and Wayne State University to create the the University Research Corridor. This effort was undertaken to highlight the capabilities of the state’s three leading research institutions and drive the transformation of Michigan’s economy. The three universities are electronically interconnected via the Michigan LambdaRail (MiLR, pronounced ‘MY-lar’), a high-speed data network providing 10 Gbit/s connections between the three university campuses and other national and international network connection points in Chicago.

     
  • richardmitnick 4:45 pm on January 15, 2023 Permalink | Reply
    Tags: "Shift to ultraviolet-driven chemistry in planet-forming disks marks beginning of late-stage planet formation", , , , Chemistry in late-stage planet development is fueled by ultraviolet rays rather than cosmic rays or X-rays., , The chemical reservoir in protoplanetary discs—the dust and gas from which planets form—directly impacts planet composition and potential for life., The University of Michigan, There are bright complex organic molecules present in the coldest and densest parts of planet-forming disks., These molecules are emitting from regions that are minus-400 degrees Fahrenheit.   

    From The University of Michigan: “Shift to ultraviolet-driven chemistry in planet-forming disks marks beginning of late-stage planet formation” 

    U Michigan bloc

    From The University of Michigan

    1
    Different stages of stellar formation, from upper left, molecular cloud, to molecular core/clump, to embedded disk surrounded by cloud material, to protoplanetary disk, to final planetary system formed out of the disk material. Image credit: Bill Saxton/NRAO/AUI/NSF.

    1.10.23
    Laura Bailey
    Morgan Sherburne

    The chemistry of planet formation has fascinated researchers for decades because the chemical reservoir in protoplanetary discs—the dust and gas from which planets form—directly impacts planet composition and potential for life.

    New research from the University of Michigan Department of Astronomy suggests that chemistry in late-stage planet development is fueled by ultraviolet rays, rather than cosmic rays or X-rays, and this new understanding provides a chemical signature that helps researchers trace exoplanets back to their cosmic nurseries in the planet-forming disks.

    Jenny Calahan, a doctoral student in astronomy and first author of the paper, which appears in Nature Astronomy [below], said the discovery was part happy accident, part building on previous work.

    “It has been shown that there are bright complex organic molecules present in the coldest and densest parts of planet-forming disks,” Calahan said. “This bright emission has been puzzling because we expect these molecules to be frozen out at these temperatures, not in the gas where we can observe them.”

    These molecules are emitting from regions that are minus-400 degrees Fahrenheit, and at these temperatures they’re thought to be frozen onto tiny solids that astronomers label as dust grains, or for the later mm-to-cm-sized solids as pebbles. These molecules should add to an icy coating on the grains, so they cannot be observed in the gas.

    The planet-forming disk has three main components, a pebble-rich dusty midplane, a gas atmosphere and a small dust population coupled to the gas. As the planet-forming disk evolves over time, the changing environment affects the chemistry within. To account for the observed brightness, Calahan adjusted her model to decrease the mass of the small dust population—which typically blocks UV photons––to allow more UV photons to penetrate deep into these coldest regions of the disc. This reproduced the observed brightness.

    “If we have a carbon-rich environment paired with a UV-rich environment due to the evolution of the small solids in planet forming regions, we can produce complex organics in the gas and reproduce these observations,” she said.

    This represents the evolution of small dust over time.

    About 20 years ago, researchers realized that the chemistry of the gaseous disk is governed by chemistry operating on shorter timescales and powered by sources such as cosmic rays and X-rays, said Edwin Bergin, principal investigator, professor and chair of astronomy.

    “Our new work suggests that what really matters is the ultraviolet radiation field generated by the star accreting matter from the disk,” he said. “The initial steps in making planets, forming larger and larger solids, shifts the chemistry from cosmic rays and X-ray-driven early, to UV-driven during the phase where giant planets are thought to be born.

    “Jenny’s work tells us for terrestrial worlds, if you wonder how they get things like water, the key part of the evolution is the early phases before this shift occurs. That is when the volatile molecules that comprise life––carbon, hydrogen, nitrogen––are implanted in solids that make Earth-like worlds. These planets are not born in this phase but rather the composition of solids becomes fixed. The later stages of this model tells us how to determine the composition of material that makes giant planets.”

    Science paper:
    Nature Astronomy

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please support STEM education in your local school system

    Stem Education Coalition

    U MIchigan Campus

    The University of Michigan is a public research university located in Ann Arbor, Michigan, United States. Originally, founded in 1817 in Detroit as the Catholepistemiad, or University of Michigania, 20 years before the Michigan Territory officially became a state, the University of Michigan is the state’s oldest university. The university moved to Ann Arbor in 1837 onto 40 acres (16 ha) of what is now known as Central Campus. Since its establishment in Ann Arbor, the university campus has expanded to include more than 584 major buildings with a combined area of more than 34 million gross square feet (781 acres or 3.16 km²), and has two satellite campuses located in Flint and Dearborn. The University was one of the founding members of the Association of American Universities.

    Considered one of the foremost research universities in the United States, the university has very high research activity and its comprehensive graduate program offers doctoral degrees in the humanities, social sciences, and STEM fields (Science, Technology, Engineering and Mathematics) as well as professional degrees in business, medicine, law, pharmacy, nursing, social work and dentistry. Michigan’s body of living alumni (as of 2012) comprises more than 500,000. Besides academic life, Michigan’s athletic teams compete in Division I of the NCAA and are collectively known as the Wolverines. They are members of the Big Ten Conference.

    At over $12.4 billion in 2019, Michigan’s endowment is among the largest of any university. As of October 2019, 53 MacArthur “genius award” winners (29 alumni winners and 24 faculty winners), 26 Nobel Prize winners, six Turing Award winners, one Fields Medalist and one Mitchell Scholar have been affiliated with the university. Its alumni include eight heads of state or government, including President of the United States Gerald Ford; 38 cabinet-level officials; and 26 living billionaires. It also has many alumni who are Fulbright Scholars and MacArthur Fellows.

    Research

    Michigan is one of the founding members (in the year 1900) of the Association of American Universities. With over 6,200 faculty members, 73 of whom are members of the National Academy and 471 of whom hold an endowed chair in their discipline, the university manages one of the largest annual collegiate research budgets of any university in the United States. According to the National Science Foundation, Michigan spent $1.6 billion on research and development in 2018, ranking it 2nd in the nation. This figure totaled over $1 billion in 2009. The Medical School spent the most at over $445 million, while the College of Engineering was second at more than $160 million. U-M also has a technology transfer office, which is the university conduit between laboratory research and corporate commercialization interests.

    In 2009, the university signed an agreement to purchase a facility formerly owned by Pfizer. The acquisition includes over 170 acres (0.69 km^2) of property, and 30 major buildings comprising roughly 1,600,000 square feet (150,000 m^2) of wet laboratory space, and 400,000 square feet (37,000 m^2) of administrative space. At the time of the agreement, the university’s intentions for the space were not set, but the expectation was that the new space would allow the university to ramp up its research and ultimately employ in excess of 2,000 people.

    The university is also a major contributor to the medical field with the EKG and the gastroscope. The university’s 13,000-acre (53 km^2) biological station in the Northern Lower Peninsula of Michigan is one of only 47 Biosphere Reserves in the United States.

    In the mid-1960s U-M researchers worked with IBM to develop a new virtual memory architectural model that became part of IBM’s Model 360/67 mainframe computer (the 360/67 was initially dubbed the 360/65M where the “M” stood for Michigan). The Michigan Terminal System (MTS), an early time-sharing computer operating system developed at U-M, was the first system outside of IBM to use the 360/67’s virtual memory features.

    U-M is home to the National Election Studies and the University of Michigan Consumer Sentiment Index. The Correlates of War project, also located at U-M, is an accumulation of scientific knowledge about war. The university is also home to major research centers in optics, reconfigurable manufacturing systems, wireless integrated microsystems, and social sciences. The University of Michigan Transportation Research Institute and the Life Sciences Institute are located at the university. The Institute for Social Research (ISR), the nation’s longest-standing laboratory for interdisciplinary research in the social sciences, is home to the Survey Research Center, Research Center for Group Dynamics, Center for Political Studies, Population Studies Center, and Inter-Consortium for Political and Social Research. Undergraduate students are able to participate in various research projects through the Undergraduate Research Opportunity Program (UROP) as well as the UROP/Creative-Programs.

    The U-M library system comprises nineteen individual libraries with twenty-four separate collections—roughly 13.3 million volumes. U-M was the original home of the JSTOR database, which contains about 750,000 digitized pages from the entire pre-1990 backfile of ten journals of history and economics, and has initiated a book digitization program in collaboration with Google. The University of Michigan Press is also a part of the U-M library system.

    In the late 1960s U-M, together with Michigan State University and Wayne State University, founded the Merit Network, one of the first university computer networks. The Merit Network was then and remains today administratively hosted by U-M. Another major contribution took place in 1987 when a proposal submitted by the Merit Network together with its partners IBM, MCI, and the State of Michigan won a national competition to upgrade and expand the National Science Foundation Network (NSFNET) backbone from 56,000 to 1.5 million, and later to 45 million bits per second. In 2006, U-M joined with Michigan State University and Wayne State University to create the the University Research Corridor. This effort was undertaken to highlight the capabilities of the state’s three leading research institutions and drive the transformation of Michigan’s economy. The three universities are electronically interconnected via the Michigan LambdaRail (MiLR, pronounced ‘MY-lar’), a high-speed data network providing 10 Gbit/s connections between the three university campuses and other national and international network connection points in Chicago.

     
  • richardmitnick 5:06 pm on January 5, 2023 Permalink | Reply
    Tags: "Cheap and sustainable hydrogen through solar power", A new kind of solar panel developed at the University of Michigan has achieved 9% efficiency in converting water into hydrogen and oxygen—mimicking a crucial step in natural photosynthesis., , , , , Computer Scinence and Engineering, Currently humans produce hydrogen from the fossil fuel methane using a great deal of fossil energy in the process., , , Hydrogen is attractive as both a standalone fuel and as a component in sustainable fuels made with recycled carbon dioxide., , Scientists believe that artificial photosynthesis devices will ultimately be much more efficient than natural photosynthesis., The biggest benefit is driving down the cost of sustainable hydrogen., The new process is nearly 10 times more efficient than solar water-splitting experiments of its kind., The University of Michigan, Withstanding high temperatures and the light of 160 suns a new catalyst is 10 times more efficient than previous sun-powered water-splitting devices of its kind.   

    From The University of Michigan: “Cheap and sustainable hydrogen through solar power” 

    U Michigan bloc

    From The University of Michigan

    1.4.23
    Kate McAlpine
    (734) 647-7087
    kmca@umich.edu

    Withstanding high temperatures and the light of 160 suns a new catalyst is 10 times more efficient than previous sun-powered water-splitting devices of its kind.


    A More Efficient Method for Harvesting Hydrogen.

    A new kind of solar panel developed at the University of Michigan has achieved 9% efficiency in converting water into hydrogen and oxygen—mimicking a crucial step in natural photosynthesis. Outdoors, it represents a major leap in the technology, nearly 10 times more efficient than solar water-splitting experiments of its kind.

    But the biggest benefit is driving down the cost of sustainable hydrogen. This is enabled by shrinking the semiconductor, typically the most expensive part of the device. The team’s self-healing semiconductor withstands concentrated light equivalent to 160 suns.

    1
    Peng Zhou uses a large lens to concentrate sunlight onto the water-splitting catalyst. Outdoors, the device was ten times more efficient than previous efforts at solar water splitting. Image credit: Brenda Ahearn/Michigan Engineering, Communications and Marketing.

    Currently humans produce hydrogen from the fossil fuel methane using a great deal of fossil energy in the process. However, plants harvest hydrogen atoms from water using sunlight. As humanity tries to reduce its carbon emissions, hydrogen is attractive as both a standalone fuel and as a component in sustainable fuels made with recycled carbon dioxide. Likewise, it is needed for many chemical processes, producing fertilizers for instance.

    “In the end, we believe that artificial photosynthesis devices will be much more efficient than natural photosynthesis, which will provide a path toward carbon neutrality,” said Zetian Mi, U-M professor of Electrical and Computer Engineering who led the study reported in Nature [below].

    2
    A close-up of the panel with the semiconductor catalyst and water inside. Bubbles of hydrogen and oxygen travel up the slope to be separated in the canister (maybe). Photo: Brenda Ahearn/Michigan Engineering, Communications and Marketing.

    The outstanding result comes from two advances. The first is the ability to concentrate the sunlight without destroying the semiconductor that harnesses the light.

    “We reduced the size of the semiconductor by more than 100 times compared to some semiconductors only working at low light intensity,” said Peng Zhou, U-M research fellow in electrical and computer engineering and first author of the study. “Hydrogen produced by our technology could be very cheap.”

    And the second is using both the higher energy part of the solar spectrum to split water and the lower part of the spectrum to provide heat that encourages the reaction. The magic is enabled by a semiconductor catalyst that improves itself with use, resisting the degradation that such catalysts usually experience when they harness sunlight to drive chemical reactions.

    3
    Ishtiaque Ahmed Navid, a doctoral student in Electrical and Computer Engineering, operates the molecular beam epitaxy device in which he grew the semiconductor that harnesses sunlight to split water. Image credit: Brenda Ahearn/Michigan Engineering, Communications and Marketing.

    In addition to handling high light intensities, it can thrive in high temperatures that are punishing to computer semiconductors. Higher temperatures speed up the water splitting process, and the extra heat also encourages the hydrogen and oxygen to remain separate rather than renewing their bonds and forming water once more. Both of these helped the team to harvest more hydrogen.

    For the outdoor experiment, Zhou set up a lens about the size of a house window to focus sunlight onto an experimental panel just a few inches across. Within that panel, the semiconductor catalyst was covered in a layer of water, bubbling with the hydrogen and oxygen gasses it separated.

    The catalyst is made of indium gallium nitride nanostructures, grown onto a silicon surface. That semiconductor wafer captures the light, converting it into free electrons and holes—positively charged gaps left behind when electrons are liberated by the light. The nanostructures are peppered with nanoscale balls of metal, 1/2000th of a millimeter across, that use those electrons and holes to help direct the reaction.

    4
    Peng Zhou, right, and Yuyang Pan, first year PhD student, observe the machine in which the semiconductor nanowires are grown. Image credit: Brenda Ahearn/Michigan Engineering, Communications and Marketing.

    A simple insulating layer atop the panel keeps the temperature at a toasty 75 degrees Celsius, or 167 degrees Fahrenheit, warm enough to help encourage the reaction while also being cool enough for the semiconductor catalyst to perform well. The outdoor version of the experiment, with less reliable sunlight and temperature, achieved 6.1% efficiency at turning the energy from the sun into hydrogen fuel. However, indoors, the system achieved 9% efficiency.

    The next challenges the team intends to tackle are to further improve the efficiency and to achieve ultrahigh purity hydrogen that can be directly fed into fuel cells.

    Some of the intellectual property related to this work has been licensed to NS Nanotech Inc. and NX Fuels Inc., which were co-founded by Mi. The University of Michigan and Mi have a financial interest in both companies.

    This work was supported by the National Science Foundation, the Department of Defense, the Michigan Translational Research and Commercialization Innovation Hub, the Blue Sky Program in the College of Engineering at the University of Michigan, and by the Army Research Office.

    Science paper:
    Nature

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please support STEM education in your local school system

    Stem Education Coalition

    U MIchigan Campus

    The University of Michigan is a public research university located in Ann Arbor, Michigan, United States. Originally, founded in 1817 in Detroit as the Catholepistemiad, or University of Michigania, 20 years before the Michigan Territory officially became a state, the University of Michigan is the state’s oldest university. The university moved to Ann Arbor in 1837 onto 40 acres (16 ha) of what is now known as Central Campus. Since its establishment in Ann Arbor, the university campus has expanded to include more than 584 major buildings with a combined area of more than 34 million gross square feet (781 acres or 3.16 km²), and has two satellite campuses located in Flint and Dearborn. The University was one of the founding members of the Association of American Universities.

    Considered one of the foremost research universities in the United States, the university has very high research activity and its comprehensive graduate program offers doctoral degrees in the humanities, social sciences, and STEM fields (Science, Technology, Engineering and Mathematics) as well as professional degrees in business, medicine, law, pharmacy, nursing, social work and dentistry. Michigan’s body of living alumni (as of 2012) comprises more than 500,000. Besides academic life, Michigan’s athletic teams compete in Division I of the NCAA and are collectively known as the Wolverines. They are members of the Big Ten Conference.

    At over $12.4 billion in 2019, Michigan’s endowment is among the largest of any university. As of October 2019, 53 MacArthur “genius award” winners (29 alumni winners and 24 faculty winners), 26 Nobel Prize winners, six Turing Award winners, one Fields Medalist and one Mitchell Scholar have been affiliated with the university. Its alumni include eight heads of state or government, including President of the United States Gerald Ford; 38 cabinet-level officials; and 26 living billionaires. It also has many alumni who are Fulbright Scholars and MacArthur Fellows.

    Research

    Michigan is one of the founding members (in the year 1900) of the Association of American Universities. With over 6,200 faculty members, 73 of whom are members of the National Academy and 471 of whom hold an endowed chair in their discipline, the university manages one of the largest annual collegiate research budgets of any university in the United States. According to the National Science Foundation, Michigan spent $1.6 billion on research and development in 2018, ranking it 2nd in the nation. This figure totaled over $1 billion in 2009. The Medical School spent the most at over $445 million, while the College of Engineering was second at more than $160 million. U-M also has a technology transfer office, which is the university conduit between laboratory research and corporate commercialization interests.

    In 2009, the university signed an agreement to purchase a facility formerly owned by Pfizer. The acquisition includes over 170 acres (0.69 km^2) of property, and 30 major buildings comprising roughly 1,600,000 square feet (150,000 m^2) of wet laboratory space, and 400,000 square feet (37,000 m^2) of administrative space. At the time of the agreement, the university’s intentions for the space were not set, but the expectation was that the new space would allow the university to ramp up its research and ultimately employ in excess of 2,000 people.

    The university is also a major contributor to the medical field with the EKG and the gastroscope. The university’s 13,000-acre (53 km^2) biological station in the Northern Lower Peninsula of Michigan is one of only 47 Biosphere Reserves in the United States.

    In the mid-1960s U-M researchers worked with IBM to develop a new virtual memory architectural model that became part of IBM’s Model 360/67 mainframe computer (the 360/67 was initially dubbed the 360/65M where the “M” stood for Michigan). The Michigan Terminal System (MTS), an early time-sharing computer operating system developed at U-M, was the first system outside of IBM to use the 360/67’s virtual memory features.

    U-M is home to the National Election Studies and the University of Michigan Consumer Sentiment Index. The Correlates of War project, also located at U-M, is an accumulation of scientific knowledge about war. The university is also home to major research centers in optics, reconfigurable manufacturing systems, wireless integrated microsystems, and social sciences. The University of Michigan Transportation Research Institute and the Life Sciences Institute are located at the university. The Institute for Social Research (ISR), the nation’s longest-standing laboratory for interdisciplinary research in the social sciences, is home to the Survey Research Center, Research Center for Group Dynamics, Center for Political Studies, Population Studies Center, and Inter-Consortium for Political and Social Research. Undergraduate students are able to participate in various research projects through the Undergraduate Research Opportunity Program (UROP) as well as the UROP/Creative-Programs.

    The U-M library system comprises nineteen individual libraries with twenty-four separate collections—roughly 13.3 million volumes. U-M was the original home of the JSTOR database, which contains about 750,000 digitized pages from the entire pre-1990 backfile of ten journals of history and economics, and has initiated a book digitization program in collaboration with Google. The University of Michigan Press is also a part of the U-M library system.

    In the late 1960s U-M, together with Michigan State University and Wayne State University, founded the Merit Network, one of the first university computer networks. The Merit Network was then and remains today administratively hosted by U-M. Another major contribution took place in 1987 when a proposal submitted by the Merit Network together with its partners IBM, MCI, and the State of Michigan won a national competition to upgrade and expand the National Science Foundation Network (NSFNET) backbone from 56,000 to 1.5 million, and later to 45 million bits per second. In 2006, U-M joined with Michigan State University and Wayne State University to create the the University Research Corridor. This effort was undertaken to highlight the capabilities of the state’s three leading research institutions and drive the transformation of Michigan’s economy. The three universities are electronically interconnected via the Michigan LambdaRail (MiLR, pronounced ‘MY-lar’), a high-speed data network providing 10 Gbit/s connections between the three university campuses and other national and international network connection points in Chicago.

     
  • richardmitnick 4:02 pm on December 8, 2022 Permalink | Reply
    Tags: "Old-growth trees more drought tolerant than younger ones providing a buffer against climate change", , , , , , The University of Michigan   

    From The University of Michigan: “Old-growth trees more drought tolerant than younger ones providing a buffer against climate change” Photo Essay 

    U Michigan bloc

    From The University of Michigan

    12.1.22
    Contact:
    Jim Erickson

    1
    The stump of a 500-year-old juniper on the Tibetan Plateau, China. Deforestation has made forests younger and has also negatively impacted associated ecosystem functions and biodiversity. Image credit: Tsun Fung Au.

    A new analysis of more than 20,000 trees on five continents shows that old-growth trees are more drought tolerant than younger trees in the forest canopy and may be better able to withstand future climate extremes.

    The findings highlight the importance of preserving the world’s remaining old-growth forests, which are biodiversity strongholds that store vast amounts of planet-warming carbon, according to University of Michigan forest ecologist Tsun Fung (Tom) Au, a postdoctoral fellow at the Institute for Global Change Biology.

    “The number of old-growth forests on the planet is declining, while drought is predicted to be more frequent and more intense in the future,” said Au, lead author of the study published online Dec. 1 in the journal Nature Climate Change [below].

    2
    Diverse age structure and composition could help forests withstand climate change. Photo taken in Sichuan, China. Image credit: Tsun Fung Au.

    “Given their high resistance to drought and their exceptional carbon storage capacity, conservation of older trees in the upper canopy should be the top priority from a climate mitigation perspective.”

    The researchers also found that younger trees in the upper canopy—if they manage to survive drought—showed greater resilience, defined as the ability to return to pre-drought growth rates.

    While deforestation, selective logging and other threats have led to the global decline of old-growth forests, subsequent reforestation—either through natural succession or through tree planting—has led to forests dominated by increasingly younger trees.

    3
    Drought is seriously affecting younger trees in the upper canopy, but younger trees also have a greater ability to recover after a drought. Photo taken in Kruger National Park, South Africa. Image credit: Tsun Fung Au.

    For example, the area covered by younger trees (<140 years old) in the upper canopy layer of temperate forests worldwide already far exceeds the area covered by older trees. As forest demographics continue to shift, younger trees are expected to play an increasingly important role in carbon sequestration and ecosystem functioning.

    “Our findings—that older trees in the upper canopy are more drought tolerant, while younger trees in the upper canopy are more drought resilient—have important implications for future carbon storage in forests,” Au said.

    “These results imply that in the short term, drought’s impact on forests may be severe due to the prevalence of younger trees and their greater sensitivity to drought. But in the long run, those younger trees have a greater ability to recover from drought, which could be beneficial to the carbon stock.”

    4
    Trees in the upper canopy layer provide important ecosystem functions, such as a higher carbon sequestration rate and a better cooling effect on the understory. Photo of a mixed forest in Indiana. Image credit: Tsun Fung Au.

    Those implications will require further study, according to Au and colleagues, given that reforestation has been identified by the Intergovernmental Panel on Climate Change as a potential nature-based solution to help mitigate climate change.

    The Sharm el-Sheikh Implementation Plan published during the 2022 United Nations Climate Change Conference in Egypt (COP27) also reaffirmed the importance of maintaining intact forest cover and associated carbon storage as a social and environmental safeguard.

    “These findings have implications for how we manage our forests. Historically, we have managed forests to promote tree species that have the best wood quality,” said Indiana University’s Justin Maxwell, a senior author of the study.

    5
    Older trees in the upper forest canopy are more drought tolerant, with less growth reduction. An old spruce tree in Sichuan, China. Image credit: Tsun Fung Au.

    “Our findings suggest that managing forests for their ability to store carbon and to be resilient to drought could be an important tool in responding to climate change, and thinking about the age of the forest is an important aspect of how the forest will respond to drought.”

    The researchers used long-term tree-ring data from the International Tree-Ring Data Bank to analyze the growth response of 21,964 trees from 119 drought-sensitive species, during and after droughts of the past century.

    They focused on trees in the uppermost canopy. The forest canopy is a multilayered, structurally complex and ecologically important zone formed by mature, overlapping tree crowns.

    The upper canopy trees were separated into three age groups—young, intermediate and old—and the researchers examined how age influenced drought response for different species of hardwoods and conifers.

    They found that young hardwoods in the upper canopy experienced a 28% growth reduction during drought, compared to a 21% growth reduction for old hardwoods. The 7% difference between young and old hardwoods grew to 17% during extreme drought.

    5
    6
    (2) Global tree planting programs and reforestation efforts lead to younger forest age. Tulip poplars (Liriodendron tulipifera) planted in North Carolina, above, and myrobalan (Phyllanthus emblica) planted in Hong Kong, below. Image credit: Tsun Fung Au.

    While those age-related differences may appear fairly minor, when applied at the global scale they could have “huge impacts” on regional carbon storage and the global carbon budget, according to the study authors. That’s especially true in temperate forests that are among the largest carbon sinks worldwide.

    In the study, age-related drought-response differences in conifers were smaller than in hardwoods, likely because needle-bearing trees tend to inhabit more arid environments, the researchers say.

    The current study was part of Au’s doctoral dissertation at Indiana University, and he continued the work after joining U-M’s Institute for Global Change Biology, which is based at the School for Environment and Sustainability.

    The new study is a synthesis that represents the net effects of thousands of trees in diverse forests across five continents, rather than focusing on single forest types. In addition, the new study is unique in its focus on trees in the upper forest canopy, which reduces the confounding effects of tree height and size, according to the authors.

    In addition to Au and Maxwell, the study’s authors include Scott Robeson, Sacha Siani, Kimberly Novick and Richard Phillips of Indiana University; Jinbao Li of the University of Hong Kong; Matthew Dannenberg of the University of Iowa; Teng Li of Guangzhou University; Zhenju Chen of Shenyang Agricultural University; and Jonathan Lenoir of the UMR CNRS 7058 at Université de Picardie Jules Verne in Amiens, France.

    Study authors received support from Indiana University, the Hong Kong Research Grants Council and the National Natural Science Foundation of China. The research was supported in part by Lilly Endowment Inc., through its support for the Indiana University Pervasive Technology Institute.

    Science paper:
    Nature Climate Change

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please support STEM education in your local school system

    Stem Education Coalition

    U MIchigan Campus

    The University of Michigan is a public research university located in Ann Arbor, Michigan, United States. Originally, founded in 1817 in Detroit as the Catholepistemiad, or University of Michigania, 20 years before the Michigan Territory officially became a state, the University of Michigan is the state’s oldest university. The university moved to Ann Arbor in 1837 onto 40 acres (16 ha) of what is now known as Central Campus. Since its establishment in Ann Arbor, the university campus has expanded to include more than 584 major buildings with a combined area of more than 34 million gross square feet (781 acres or 3.16 km²), and has two satellite campuses located in Flint and Dearborn. The University was one of the founding members of the Association of American Universities.

    Considered one of the foremost research universities in the United States, the university has very high research activity and its comprehensive graduate program offers doctoral degrees in the humanities, social sciences, and STEM fields (Science, Technology, Engineering and Mathematics) as well as professional degrees in business, medicine, law, pharmacy, nursing, social work and dentistry. Michigan’s body of living alumni (as of 2012) comprises more than 500,000. Besides academic life, Michigan’s athletic teams compete in Division I of the NCAA and are collectively known as the Wolverines. They are members of the Big Ten Conference.

    At over $12.4 billion in 2019, Michigan’s endowment is among the largest of any university. As of October 2019, 53 MacArthur “genius award” winners (29 alumni winners and 24 faculty winners), 26 Nobel Prize winners, six Turing Award winners, one Fields Medalist and one Mitchell Scholar have been affiliated with the university. Its alumni include eight heads of state or government, including President of the United States Gerald Ford; 38 cabinet-level officials; and 26 living billionaires. It also has many alumni who are Fulbright Scholars and MacArthur Fellows.

    Research

    Michigan is one of the founding members (in the year 1900) of the Association of American Universities. With over 6,200 faculty members, 73 of whom are members of the National Academy and 471 of whom hold an endowed chair in their discipline, the university manages one of the largest annual collegiate research budgets of any university in the United States. According to the National Science Foundation, Michigan spent $1.6 billion on research and development in 2018, ranking it 2nd in the nation. This figure totaled over $1 billion in 2009. The Medical School spent the most at over $445 million, while the College of Engineering was second at more than $160 million. U-M also has a technology transfer office, which is the university conduit between laboratory research and corporate commercialization interests.

    In 2009, the university signed an agreement to purchase a facility formerly owned by Pfizer. The acquisition includes over 170 acres (0.69 km^2) of property, and 30 major buildings comprising roughly 1,600,000 square feet (150,000 m^2) of wet laboratory space, and 400,000 square feet (37,000 m^2) of administrative space. At the time of the agreement, the university’s intentions for the space were not set, but the expectation was that the new space would allow the university to ramp up its research and ultimately employ in excess of 2,000 people.

    The university is also a major contributor to the medical field with the EKG and the gastroscope. The university’s 13,000-acre (53 km^2) biological station in the Northern Lower Peninsula of Michigan is one of only 47 Biosphere Reserves in the United States.

    In the mid-1960s U-M researchers worked with IBM to develop a new virtual memory architectural model that became part of IBM’s Model 360/67 mainframe computer (the 360/67 was initially dubbed the 360/65M where the “M” stood for Michigan). The Michigan Terminal System (MTS), an early time-sharing computer operating system developed at U-M, was the first system outside of IBM to use the 360/67’s virtual memory features.

    U-M is home to the National Election Studies and the University of Michigan Consumer Sentiment Index. The Correlates of War project, also located at U-M, is an accumulation of scientific knowledge about war. The university is also home to major research centers in optics, reconfigurable manufacturing systems, wireless integrated microsystems, and social sciences. The University of Michigan Transportation Research Institute and the Life Sciences Institute are located at the university. The Institute for Social Research (ISR), the nation’s longest-standing laboratory for interdisciplinary research in the social sciences, is home to the Survey Research Center, Research Center for Group Dynamics, Center for Political Studies, Population Studies Center, and Inter-Consortium for Political and Social Research. Undergraduate students are able to participate in various research projects through the Undergraduate Research Opportunity Program (UROP) as well as the UROP/Creative-Programs.

    The U-M library system comprises nineteen individual libraries with twenty-four separate collections—roughly 13.3 million volumes. U-M was the original home of the JSTOR database, which contains about 750,000 digitized pages from the entire pre-1990 backfile of ten journals of history and economics, and has initiated a book digitization program in collaboration with Google. The University of Michigan Press is also a part of the U-M library system.

    In the late 1960s U-M, together with Michigan State University and Wayne State University, founded the Merit Network, one of the first university computer networks. The Merit Network was then and remains today administratively hosted by U-M. Another major contribution took place in 1987 when a proposal submitted by the Merit Network together with its partners IBM, MCI, and the State of Michigan won a national competition to upgrade and expand the National Science Foundation Network (NSFNET) backbone from 56,000 to 1.5 million, and later to 45 million bits per second. In 2006, U-M joined with Michigan State University and Wayne State University to create the the University Research Corridor. This effort was undertaken to highlight the capabilities of the state’s three leading research institutions and drive the transformation of Michigan’s economy. The three universities are electronically interconnected via the Michigan LambdaRail (MiLR, pronounced ‘MY-lar’), a high-speed data network providing 10 Gbit/s connections between the three university campuses and other national and international network connection points in Chicago.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: