Tagged: The University of California-San Diego Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:24 pm on August 11, 2022 Permalink | Reply
    Tags: "More Evidence that California Weather Is Trending Toward Extremes", , , The University of California-San Diego   

    From The Scripps Institution of Oceanography At The University of California-San Diego : “More Evidence that California Weather Is Trending Toward Extremes” 

    From The Scripps Institution of Oceanography

    At

    The University of California-San Diego

    8.11.22
    Robert Monroe

    1
    Chaparral Fire in 2021.Photo credit: JeffHall / Cal Fire.

    A team led by Kristen Guirguis, a climate researcher at Scripps Institution of Oceanography at UC San Diego, found evidence that the risk of hazardous weather is increasing in the Southwest.

    The researchers investigated the daily relationships among four major modes of weather affecting California. How they interact governs the formation of weather events such as atmospheric rivers capable of bringing torrential rains and Santa Ana winds that can spread devastating wildfires.

    “This study suggests that weather patterns are changing in a way that enhances hot, dry Santa Ana winds, while reducing precipitation frequency in the Southwest,” said Guirguis. “These changes in atmospheric circulation are raising the risk of wildfires during California winters.”

    The study was published in the journal Climate Dynamics [below] July 17, 2022.

    The basis of the research was an examination of the dominant atmospheric circulation patterns over the North Pacific Ocean, known as Baja-Pacific, Alaskan-Pacific, Canadian-Pacific, and Offshore-California modes. What distinguishes them from each other are the relative positions of ridges and troughs in the atmosphere.

    2
    Dillard Road is flooded near the Hwy 99 off ramp, located south of Elk Grove, California. Photo credit: Florence Low / California Department of Water Resources.

    The research team identified 16 recurring weather patterns that are created daily as these modes interact with each other. One product of the work was a summary of California weather patterns from 1949 to 2017. The patterns associated with the formation of dry gusty Santa Ana winds that often stoke Southern California fires are becoming more frequent. Patterns associated with what might be considered “normal” rainfall are decreasing in the Southwest thus promoting drought, but patterns associated with extreme precipitation and strong atmospheric river episodes have remained steady over the study period. The researchers noted that while the patterns associated with heavy precipitation and strong atmospheric rivers have not changed in frequency, a warmer atmosphere [Earth’s Future (below)] is capable of holding more water so these storms are becoming more damaging.

    The results suggest an increasing probability of compounding environmental hazards during California winters, said the research team. Though winter atmospheric rivers are the antithesis of hot, dry Santa Ana wind conditions, sequences of wildfires followed by strong atmospheric rivers often compound the damage from fires when they trigger flash floods and destructive debris flows from burn scars.

    3
    Photo of the Thomas Fire taken from a Santa Barbara beach. Photo credit: Carsten Schertzer / iStock.

    “This spells challenges for wildfire and water resource management and provides observational support to our previous results [ScientificReports (below)] projecting that California will increasingly have to depend on potentially hazardous atmospheric rivers and floodwater for water resource generation in a warming climate,” said study co-author Alexander Gershunov, a Scripps Oceanography climate scientist.

    Study authors say this work is helping to inform an experimental subseasonal-to-seasonal (S2S) forecast product being developed at Scripps Oceanography’s Center for Western Weather and Water Extremes (CW3E) that predicts extreme weather in California including atmospheric river landfalls, Santa Ana winds, drought, and heat waves.

    The U.S. Department of the Interior via the Bureau of Reclamation and the Southwest Climate Adaptation Science Center, the California Department of Water Resources, and the Regional Integrated Sciences and Assessments (RISA) California—Nevada Climate Applications Program and the International Research Applications Program of the National Oceanic and Atmospheric Administration funded the study. Additional funding was provided by the University of California Office of the President MRPI grant.

    5
    High water levels on the Tuolumne River close River Road in the city of Modesto, California, part of Stanislaus County. Photo credit: Dale Kolke / California Department of Water Resources.

    Study co-authors include Benjamin Hatchett of the Desert Research Institute in Nevada; Tamara Shulgina, Michael DeFlorio, Rosana Aguilera, achel Clemesha, Tom Corringham, Luca Delle Monache, and Marty Ralph of CW3E at Scripps Oceanography; Aneesh Subramanian and David Reynolds of the University of Colorado Boulder; Janin Guzman-Morales of the University of California Santa Barbara; and Alex Tardy and Ivory Small of the National Weather Service.

    Science papers:
    Climate Dynamics
    Earth’s Future
    ScientificReports

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    A department of The University of California-San Diego, The Scripps Institution of Oceanography is one of the oldest, largest, and most important centers for ocean, earth and atmospheric science research, education, and public service in the world.

    Research at Scripps encompasses physical, chemical, biological, geological, and geophysical studies of the oceans, Earth, and planets. Scripps undergraduate and graduate programs provide transformative educational and research opportunities in ocean, earth, and atmospheric sciences, as well as degrees in climate science and policy and marine biodiversity and conservation.

    The University of California-San Diego is a public research university located in the La Jolla area of San Diego, California, in the United States. The university occupies 2,141 acres (866 ha) near the coast of the Pacific Ocean with the main campus resting on approximately 1,152 acres (466 ha). Established in 1960 near the pre-existing Scripps Institution of Oceanography, The University of California-San Diego is the seventh oldest of the 10 University of California campuses and offers over 200 undergraduate and graduate degree programs, enrolling about 22,700 undergraduate and 6,300 graduate students. The University of California-San Diego is one of America’s Public Ivy universities, which recognizes top public research universities in the United States. The University of California-San Diego was ranked 8th among public universities and 37th among all universities in the United States, and rated the 18th Top World University by U.S. News & World Report’s 2015 rankings.

     
  • richardmitnick 11:58 am on July 3, 2022 Permalink | Reply
    Tags: "US and Czech Scientists Collaborate To Explore Gamma-Ray Production With High Power Lasers", , , , , , , , , The L3-HAPLS laser system installed at the ELI Beamlines Research Center in Dolní Břežany Czech Republic., The University of California-San Diego   

    From The University of California-San Diego: “US and Czech Scientists Collaborate To Explore Gamma-Ray Production With High Power Lasers” 

    From The University of California-San Diego

    July 01, 2022
    Daniel Kane
    858-534-3262
    dbkane@ucsd.edu

    The U.S. National Science Foundation (NSF) and the Czech Science Foundation (GACR) are funding a new collaborative project of scientists from the University of California San Diego in the U.S. and ELI Beamlines (Institute of Physics of the Czech Academy of Sciences) in the Czech Republic which aims to leverage the capabilities of the ELI Beamlines multi-petawatt laser facility.

    Researchers hope these experiments can achieve a breakthrough by demonstrating efficient generation of dense gamma-ray beams.

    Stellar objects like pulsars can create matter and antimatter directly from light because of their extreme energies. In fact, the magnetic field, or “magnetosphere,” of a pulsar is filled with electrons and positrons that are created by colliding photons.

    Reproducing the same phenomena in a laboratory on Earth is extremely challenging. It requires a dense cloud of photons with energies that are millions of times higher than visible light, an achievement that has so far eluded the scientists working in this field. However, theories suggest that high-power lasers ought to be able to produce such a photon cloud.

    As the first international laser research infrastructure dedicated to the application of high-power and high-intensity lasers, the Extreme Light Infrastructure (ELI ERIC) facilities will enable such research possibilities. The ELI ERIC is a multi-site research infrastructure based on specialized and complementary facilities ELI Beamlines (Czech Republic) and ELI ALPS (Hungary). The new capabilities at ELI will create the necessary conditions to test the theories in a laboratory.

    2
    Super computer simulation of energetic gamma-ray emission (yellow arrows) by a dense plasma (green) irradiated by a high-intensity laser beam (red and blue). The laser propagates from left to right, with the emitted photons flying in the same direction. The smooth blue and red regions represent a strong magnetic field generated by the plasma, whereas the oscillation region corresponds to the laser magnetic field.

    This project combines theoretical expertise from the University of California San Diego (U.S.), experimental expertise from ELI Beamlines, as well as target fabrication and engineering expertise from General Atomics (U.S.). The roughly $1,000,000 project, jointly funded by NSF and GACR, will be led by Prof. Alexey Arefiev at UC San Diego. Target development for rep-rated deployment will take place at General Atomics, led by Dr. Mario Manuel, while the primary experiments will be conducted at ELI Beamlines by a team led by Dr. Florian Condamine and Dr. Stefan Weber.

    The concept for the project was developed by Arefiev’s research group at UC San Diego, which specializes in supercomputer simulations of intense light-matter interactions. The approach for this project leverages an effect that occurs when electrons in a plasma are accelerated to near light speeds by a high-powered laser. This effect is called “relativistic transparency” because it causes a previously opaque dense plasma to become transparent to laser light.

    In this regime, extremely strong magnetic fields are generated as the laser propagates through the plasma. During this process, the relativistic electrons oscillate in the magnetic field, which in turn causes the emission of gamma-rays, predominantly in the direction of the laser.

    “It is very exciting that we are in a position to generate the sort of magnetic fields that previously only existed in extreme astrophysical objects, such as neutron stars,” says Arefiev. “The ability of the ELI Beamlines lasers to reach very high on-target intensity is the key to achieving this regime.”

    These experiments will provide the first statistically relevant study of gamma-ray generation using high-powered lasers. Researchers hope the work will open the way for secondary high-energy photon sources that can be used not only for fundamental physics studies, but also for a range of important industrial applications such as material science, nuclear waste imaging, nuclear fuel assay, security, high-resolution deep-penetration radiography, etc. Such “extreme imaging” requires robust, reproducible, and well-controlled gamma-ray sources. The present proposal aims exactly at the development of such unprecedented sources.

    The experiments will be greatly assisted by another technological advance. Until recently, high-power laser facilities could execute about one shot every hour, which limited the amount of data that could be collected. However, new facilities like ELI Beamlines are capable of multiple shots per second. These capabilities allow for statistical studies of laser-target interactions in ways that were impossible only a few years ago. That means a shift in the way such experiments are designed and executed is necessary to take full advantage of the possibilities.

    “The P3 installation at ELI Beamlines is a unique and versatile experimental infrastructure for sophisticated high-field experiments and perfectly adapted to the planned program,” comments Condamine. Weber notes, “This collaboration between San Diego and ELI Beamlines is expected to be a major step forward to bring together the US community and the ELI-team for joint experiments.”

    Thus, a major part of this project is training the next generation of scientists at ELI Beamlines to develop techniques that can fully leverage its rep-rated capabilities. UC San Diego students and postdoctoral researchers will also train on rep-rated target deployment and data acquisition on General Atomics’ new GALADRIEL laser facility to help improve the efficiency of the experiments conducted at ELI Beamlines.

    3
    The P3 (Plasma Physics Platform)-installation at ELI Beamlines where the experiments will take place.

    “This is the first project funded by the Czech Science Foundation and the US National Science Foundation. I believe that the new collaboration between the agencies will lead to a number of successful projects and collaborating scientific teams from the Czech Republic and the USA will benefit from it,” says GACR president Dr. Petr Baldrian.

    “We are thrilled to be working with our counterparts in the Czech Republic to further expand international scientific cooperation in artificial intelligence, nanotechnology, and plasma science research. I am optimistic this will be the first of many collaborative projects between NSF and GACR,” says the Director of NSF, Dr. Sethuraman Panchanathan.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    The University of California- San Diego, is a public research university located in the La Jolla area of San Diego, California, in the United States. The university occupies 2,141 acres (866 ha) near the coast of the Pacific Ocean with the main campus resting on approximately 1,152 acres (466 ha). Established in 1960 near the pre-existing Scripps Institution of Oceanography, University of California-San Diego is the seventh oldest of the 10 University of California campuses and offers over 200 undergraduate and graduate degree programs, enrolling about 22,700 undergraduate and 6,300 graduate students. The University of California-San Diego is one of America’s “Public Ivy” universities, which recognizes top public research universities in the United States. The University of California-San Diego was ranked 8th among public universities and 37th among all universities in the United States, and rated the 18th Top World University by U.S. News & World Report’s 2015 rankings.

    The University of California-San Diego is organized into seven undergraduate residential colleges (Revelle; John Muir; Thurgood Marshall; Earl Warren; Eleanor Roosevelt; Sixth; and Seventh), four academic divisions (Arts and Humanities; Biological Sciences; Physical Sciences; and Social Sciences), and seven graduate and professional schools (Jacobs School of Engineering; Rady School of Management; Scripps Institution of Oceanography; School of Global Policy and Strategy; School of Medicine; Skaggs School of Pharmacy and Pharmaceutical Sciences; and the newly established Wertheim School of Public Health and Human Longevity Science). University of California-San Diego Health, the region’s only academic health system, provides patient care; conducts medical research; and educates future health care professionals at the University of California-San Diego Medical Center, Hillcrest; Jacobs Medical Center; Moores Cancer Center; Sulpizio Cardiovascular Center; Shiley Eye Institute; Institute for Genomic Medicine; Koman Family Outpatient Pavilion and various express care and urgent care clinics throughout San Diego.

    The university operates 19 organized research units (ORUs), including the Center for Energy Research; Qualcomm Institute (a branch of the California Institute for Telecommunications and Information Technology); San Diego Supercomputer Center; and the Kavli Institute for Brain and Mind, as well as eight School of Medicine research units, six research centers at Scripps Institution of Oceanography and two multi-campus initiatives, including the Institute on Global Conflict and Cooperation. The University of California-San Diego is also closely affiliated with several regional research centers, such as the Salk Institute; the Sanford Burnham Prebys Medical Discovery Institute; the Sanford Consortium for Regenerative Medicine; and the Scripps Research Institute. It is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation, UC San Diego spent $1.265 billion on research and development in fiscal year 2018, ranking it 7th in the nation.

    The University of California-San Diego is considered one of the country’s “Public Ivies”. As of February 2021, The University of California-San Diego faculty, researchers and alumni have won 27 Nobel Prizes and three Fields Medals, eight National Medals of Science, eight MacArthur Fellowships, and three Pulitzer Prizes. Additionally, of the current faculty, 29 have been elected to the National Academy of Engineering, 70 to the National Academy of Sciences, 45 to the National Academy of Medicine and 110 to the American Academy of Arts and Sciences.

    History

    When the Regents of the University of California originally authorized the San Diego campus in 1956, it was planned to be a graduate and research institution, providing instruction in the sciences, mathematics, and engineering. Local citizens supported the idea, voting the same year to transfer to the university 59 acres (24 ha) of mesa land on the coast near the preexisting Scripps Institution of Oceanography. The Regents requested an additional gift of 550 acres (220 ha) of undeveloped mesa land northeast of Scripps, as well as 500 acres (200 ha) on the former site of Camp Matthews from the federal government, but Roger Revelle, then director of Scripps Institution and main advocate for establishing the new campus, jeopardized the site selection by exposing the La Jolla community’s exclusive real estate business practices, which were antagonistic to minority racial and religious groups. This outraged local conservatives, as well as Regent Edwin W. Pauley.

    University of California President Clark Kerr satisfied San Diego city donors by changing the proposed name from University of California, La Jolla, to University of California-San Diego. The city voted in agreement to its part in 1958, and the University of California approved construction of the new campus in 1960. Because of the clash with Pauley, Revelle was not made chancellor. Herbert York, first director of DOE’s Lawrence Livermore National Laboratory, was designated instead. York planned the main campus according to the “Oxbridge” model, relying on many of Revelle’s ideas.

    According to Kerr, “San Diego always asked for the best,” though this created much friction throughout the University of California system, including with Kerr himself, because University of California-San Diego often seemed to be “asking for too much and too fast.” Kerr attributed University of California-San Diego’s “special personality” to Scripps, which for over five decades had been the most isolated University of California unit in every sense: geographically, financially, and institutionally. It was a great shock to the Scripps community to learn that Scripps was now expected to become the nucleus of a new University of California campus and would now be the object of far more attention from both the university administration in Berkeley and the state government in Sacramento.

    The University of California-San Diego was the first general campus of the University of California to be designed “from the top down” in terms of research emphasis. Local leaders disagreed on whether the new school should be a technical research institute or a more broadly based school that included undergraduates as well. John Jay Hopkins of General Dynamics Corporation pledged one million dollars for the former while the City Council offered free land for the latter. The original authorization for the University of California-San Diego campus given by the University of California Regents in 1956 approved a “graduate program in science and technology” that included undergraduate programs, a compromise that won both the support of General Dynamics and the city voters’ approval.

    Nobel laureate Harold Urey, a physicist from the University of Chicago, and Hans Suess, who had published the first paper on the greenhouse effect with Revelle in the previous year, were early recruits to the faculty in 1958. Maria Goeppert-Mayer, later the second female Nobel laureate in physics, was appointed professor of physics in 1960. The graduate division of the school opened in 1960 with 20 faculty in residence, with instruction offered in the fields of physics, biology, chemistry, and earth science. Before the main campus completed construction, classes were held in the Scripps Institution of Oceanography.

    By 1963, new facilities on the mesa had been finished for the School of Science and Engineering, and new buildings were under construction for Social Sciences and Humanities. Ten additional faculty in those disciplines were hired, and the whole site was designated the First College, later renamed after Roger Revelle, of the new campus. York resigned as chancellor that year and was replaced by John Semple Galbraith. The undergraduate program accepted its first class of 181 freshman at Revelle College in 1964. Second College was founded in 1964, on the land deeded by the federal government, and named after environmentalist John Muir two years later. The University of California-San Diego School of Medicine also accepted its first students in 1966.

    Political theorist Herbert Marcuse joined the faculty in 1965. A champion of the New Left, he reportedly was the first protester to occupy the administration building in a demonstration organized by his student, political activist Angela Davis. The American Legion offered to buy out the remainder of Marcuse’s contract for $20,000; the Regents censured Chancellor William J. McGill for defending Marcuse on the basis of academic freedom, but further action was averted after local leaders expressed support for Marcuse. Further student unrest was felt at the university, as the United States increased its involvement in the Vietnam War during the mid-1960s, when a student raised a Viet Minh flag over the campus. Protests escalated as the war continued and were only exacerbated after the National Guard fired on student protesters at Kent State University in 1970. Over 200 students occupied Urey Hall, with one student setting himself on fire in protest of the war.

    Early research activity and faculty quality, notably in the sciences, was integral to shaping the focus and culture of the university. Even before The University of California-San Diego had its own campus, faculty recruits had already made significant research breakthroughs, such as the Keeling Curve, a graph that plots rapidly increasing carbon dioxide levels in the atmosphere and was the first significant evidence for global climate change; the Kohn–Sham equations, used to investigate particular atoms and molecules in quantum chemistry; and the Miller–Urey experiment, which gave birth to the field of prebiotic chemistry.

    Engineering, particularly computer science, became an important part of the university’s academics as it matured. University researchers helped develop University of California-San Diego Pascal, an early machine-independent programming language that later heavily influenced Java; the National Science Foundation Network, a precursor to the Internet; and the Network News Transfer Protocol during the late 1970s to 1980s. In economics, the methods for analyzing economic time series with time-varying volatility (ARCH), and with common trends (cointegration) were developed. The University of California-San Diego maintained its research intense character after its founding, racking up 25 Nobel Laureates affiliated within 50 years of history; a rate of five per decade.

    Under Richard C. Atkinson’s leadership as chancellor from 1980 to 1995, the university strengthened its ties with the city of San Diego by encouraging technology transfer with developing companies, transforming San Diego into a world leader in technology-based industries. He oversaw a rapid expansion of the School of Engineering, later renamed after Qualcomm founder Irwin M. Jacobs, with the construction of the San Diego Supercomputer Center and establishment of the computer science, electrical engineering, and bioengineering departments. Private donations increased from $15 million to nearly $50 million annually, faculty expanded by nearly 50%, and enrollment doubled to about 18,000 students during his administration. By the end of his chancellorship, the quality of The University of California-San Diego graduate programs was ranked 10th in the nation by the National Research Council.

    The university continued to undergo further expansion during the first decade of the new millennium with the establishment and construction of two new professional schools — the Skaggs School of Pharmacy and Rady School of Management—and the California Institute for Telecommunications and Information Technology, a research institute run jointly with University of California Irvine. The University of California-San Diego also reached two financial milestones during this time, becoming the first university in the western region to raise over $1 billion in its eight-year fundraising campaign in 2007 and also obtaining an additional $1 billion through research contracts and grants in a single fiscal year for the first time in 2010. Despite this, due to the California budget crisis, the university loaned $40 million against its own assets in 2009 to offset a significant reduction in state educational appropriations. The salary of Pradeep Khosla, who became chancellor in 2012, has been the subject of controversy amidst continued budget cuts and tuition increases.

    On November 27, 2017, the university announced it would leave its longtime athletic home of the California Collegiate Athletic Association, an NCAA Division II league, to begin a transition to Division I in 2020. At that time, it will join the Big West Conference, already home to four other UC campuses (Davis, Irvine, Riverside, Santa Barbara). The transition period will run through the 2023–24 school year. The university prepares to transition to NCAA Division I competition on July 1, 2020.

    Research

    Applied Physics and Mathematics

    The Nature Index lists The University of California-San Diego as 6th in the United States for research output by article count in 2019. In 2017, The University of California-San Diego spent $1.13 billion on research, the 7th highest expenditure among academic institutions in the U.S. The university operates several organized research units, including the Center for Astrophysics and Space Sciences (CASS), the Center for Drug Discovery Innovation, and the Institute for Neural Computation. The University of California-San Diego also maintains close ties to the nearby Scripps Research Institute and Salk Institute for Biological Studies. In 1977, The University of California-San Diego developed and released the University of California-San Diego Pascal programming language. The university was designated as one of the original national Alzheimer’s disease research centers in 1984 by the National Institute on Aging. In 2018, The University of California-San Diego received $10.5 million from the DOE National Nuclear Security Administration to establish the Center for Matters under Extreme Pressure (CMEC).

    The university founded the San Diego Supercomputer Center (SDSC) in 1985, which provides high performance computing for research in various scientific disciplines. In 2000, The University of California-San Diego partnered with The University of California-Irvine to create the Qualcomm Institute – University of California-San Diego, which integrates research in photonics, nanotechnology, and wireless telecommunication to develop solutions to problems in energy, health, and the environment.

    The University of California-San Diego also operates the Scripps Institution of Oceanography, one of the largest centers of research in earth science in the world, which predates the university itself. Together, SDSC and SIO, along with funding partner universities California Institute of Technology, San Diego State University, and The University of California-Santa Barbara, manage the High Performance Wireless Research and Education Network.

     
  • richardmitnick 4:40 pm on June 21, 2022 Permalink | Reply
    Tags: "The University of California-San Diego and Scripps Institution of Oceanography Researchers Part of $25M Project To Build Artificial Coral Reefs for Coastal Protection", 3D print coral-inspired microscale structures, , , , , , , The University of California-San Diego   

    From The University of California-San Diego and Scripps Institution of Oceanography : “The University of California-San Diego and Scripps Institution of Oceanography Researchers Part of $25M Project To Build Artificial Coral Reefs for Coastal Protection” 

    From The University of California-San Diego

    and

    Scripps Institution of Oceanography

    Liezel Labios
    858-246-1124
    llabios@ucsd.edu

    Robert Monroe
    858-534-3624
    scrippsnews@ucsd.edu

    Images by Daniel Wangpraseurt.

    A team of researchers involving the University of California San Diego has received a $25 million award from the U.S. Department of Defense’s Defense Advanced Research Projects Agency (DARPA) to build artificial coral reefs to protect coastal areas in Hawai’i against flooding, erosion and storm damage.

    The artificial reefs will be designed to work with local ecology to create a living, growing and self-healing system. The reefs will provide a natural defense that can keep pace with sea-level rise over time and slow down waves, dissipating their energy before they reach land. A big benefit of artificial reefs is that they can be rapidly deployed to provide immediate protection while promoting the growth of reef-supporting organisms. Natural reefs take decades to mature, but the artificial versions can reach full functionality in a matter of months to years.

    The project is an academic-industry partnership led by the University of Hawai’i, with other partners including UC San Diego, Florida Atlantic University and Makai Ocean Engineering.

    1
    Coral larvae crawling over a bioactive coating to look for a settlement habitat. Such a bioactive material can be rapidly fabricated via 3D printing.

    The UC San Diego team is working on two methods for attracting both corals and beneficial reef fish to the artificial structures. First, researchers at the UC San Diego Department of NanoEngineering will 3D print biomaterials that will be coated onto the artificial reefs. The biomaterials will be designed with special microstructures to enhance coral recruitment, the process in which tiny drifting coral larvae attach and establish themselves on a reef. The microstructures also aim to inhibit algal and bacterial fouling on the artificial reefs.

    Scientists at UC San Diego’s Scripps Institution of Oceanography will also test “acoustic enrichment,” a process where sounds from other healthy reef environments are broadcast to attract both algae-eating fish and coral larvae to the structures. Scripps Oceanography scientists will also conduct passive acoustic monitoring of the reef structure to help monitor what and how many organisms settle on the structure over time.

    Daniel Wangpraseurt, an assistant project scientist at the UC San Diego Jacobs School of Engineering, will lead the effort with co-investigators Shaochen Chen, professor and chair of nanoengineering at the UC San Diego Jacobs School of Engineering, and Aaron Thode, a research scientist at Scripps Oceanography. The UC San Diego effort will be funded with $4 million of the DARPA award.

    “This is an exciting opportunity for radical innovation, with the potential to be a game changer for the engineering of artificial coral reefs,” said Wangpraseurt. “Our team will develop new biomaterials that will kick-start the living reef by applying state-of-the-art medical tissue engineering approaches.”

    2
    3D printed skeletal microarchitecture that can be used as inspiration for new reef-like materials.

    To create the biomaterials, the UC San Diego team will use a rapid, 3D bioprinting technology developed in Chen’s lab. The technology can reproduce detailed microscale structures in mere seconds, mimicking the complex designs and functions of living tissues. Wangpraseurt and Chen have collaborated in recent years to 3D print coral-inspired microscale structures that are capable of growing dense populations of microscopic algae. The new DARPA-funded project takes their work to the next level, expanding their efforts to help create hybrid biological and engineered reef-mimicking structures for coastal defenses suited to a changing environment.

    “We are now scaling up our rapid bioprinting platform, which will be critical to manufacture biomaterials for large scale coral reef engineering,” said Chen.

    Thode, who recently participated in another recent DARPA-funded project on coral reef acoustics, will be adapting underwater sound playback technology initially developed to attract sperm whales away from fishing vessels to prevent the 70-foot animals from taking fish from their haul.

    “In addition to developing methods to encourage rapid ecosystem development on artificial reefs, I’m hoping in the future this research could also help accelerate efforts to recover degraded or dying natural reefs,” said Thode.

    3D printed corals provide more fertile ground for algae growth
    3
    Left: Close-up of coral reef microstructures consisting of a coral skeleton (white) and coral tissue (orange-yellow). Right: SEM image of 3D printed coral skeleton. Images courtesy of Nature Communications.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    A department of UC San Diego, Scripps Institution of Oceanography is one of the oldest, largest, and most important centers for ocean, earth and atmospheric science research, education, and public service in the world.

    Research at Scripps encompasses physical, chemical, biological, geological, and geophysical studies of the oceans, Earth, and planets. Scripps undergraduate and graduate programs provide transformative educational and research opportunities in ocean, earth, and atmospheric sciences, as well as degrees in climate science and policy and marine biodiversity and conservation.

    The University of California- San Diego, is a public research university located in the La Jolla area of San Diego, California, in the United States. The university occupies 2,141 acres (866 ha) near the coast of the Pacific Ocean with the main campus resting on approximately 1,152 acres (466 ha). Established in 1960 near the pre-existing Scripps Institution of Oceanography, University of California-San Diego is the seventh oldest of the 10 University of California campuses and offers over 200 undergraduate and graduate degree programs, enrolling about 22,700 undergraduate and 6,300 graduate students. The University of California-San Diego is one of America’s “Public Ivy” universities, which recognizes top public research universities in the United States. The University of California-San Diego was ranked 8th among public universities and 37th among all universities in the United States, and rated the 18th Top World University by U.S. News & World Report’s 2015 rankings.

    The University of California-San Diego is organized into seven undergraduate residential colleges (Revelle; John Muir; Thurgood Marshall; Earl Warren; Eleanor Roosevelt; Sixth; and Seventh), four academic divisions (Arts and Humanities; Biological Sciences; Physical Sciences; and Social Sciences), and seven graduate and professional schools (Jacobs School of Engineering; Rady School of Management; Scripps Institution of Oceanography; School of Global Policy and Strategy; School of Medicine; Skaggs School of Pharmacy and Pharmaceutical Sciences; and the newly established Wertheim School of Public Health and Human Longevity Science). University of California-San Diego Health, the region’s only academic health system, provides patient care; conducts medical research; and educates future health care professionals at the University of California-San Diego Medical Center, Hillcrest; Jacobs Medical Center; Moores Cancer Center; Sulpizio Cardiovascular Center; Shiley Eye Institute; Institute for Genomic Medicine; Koman Family Outpatient Pavilion and various express care and urgent care clinics throughout San Diego.

    The university operates 19 organized research units (ORUs), including the Center for Energy Research; Qualcomm Institute (a branch of the California Institute for Telecommunications and Information Technology); San Diego Supercomputer Center; and the Kavli Institute for Brain and Mind, as well as eight School of Medicine research units, six research centers at Scripps Institution of Oceanography and two multi-campus initiatives, including the Institute on Global Conflict and Cooperation. The University of California-San Diego is also closely affiliated with several regional research centers, such as the Salk Institute; the Sanford Burnham Prebys Medical Discovery Institute; the Sanford Consortium for Regenerative Medicine; and the Scripps Research Institute. It is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation, UC San Diego spent $1.265 billion on research and development in fiscal year 2018, ranking it 7th in the nation.

    The University of California-San Diego is considered one of the country’s “Public Ivies”. As of February 2021, The University of California-San Diego faculty, researchers and alumni have won 27 Nobel Prizes and three Fields Medals, eight National Medals of Science, eight MacArthur Fellowships, and three Pulitzer Prizes. Additionally, of the current faculty, 29 have been elected to the National Academy of Engineering, 70 to the National Academy of Sciences, 45 to the National Academy of Medicine and 110 to the American Academy of Arts and Sciences.

    History

    When the Regents of the University of California originally authorized the San Diego campus in 1956, it was planned to be a graduate and research institution, providing instruction in the sciences, mathematics, and engineering. Local citizens supported the idea, voting the same year to transfer to the university 59 acres (24 ha) of mesa land on the coast near the preexisting Scripps Institution of Oceanography. The Regents requested an additional gift of 550 acres (220 ha) of undeveloped mesa land northeast of Scripps, as well as 500 acres (200 ha) on the former site of Camp Matthews from the federal government, but Roger Revelle, then director of Scripps Institution and main advocate for establishing the new campus, jeopardized the site selection by exposing the La Jolla community’s exclusive real estate business practices, which were antagonistic to minority racial and religious groups. This outraged local conservatives, as well as Regent Edwin W. Pauley.

    University of California President Clark Kerr satisfied San Diego city donors by changing the proposed name from University of California, La Jolla, to University of California-San Diego. The city voted in agreement to its part in 1958, and the University of California approved construction of the new campus in 1960. Because of the clash with Pauley, Revelle was not made chancellor. Herbert York, first director of DOE’s Lawrence Livermore National Laboratory, was designated instead. York planned the main campus according to the “Oxbridge” model, relying on many of Revelle’s ideas.

    According to Kerr, “San Diego always asked for the best,” though this created much friction throughout the University of California system, including with Kerr himself, because University of California-San Diego often seemed to be “asking for too much and too fast.” Kerr attributed University of California-San Diego’s “special personality” to Scripps, which for over five decades had been the most isolated University of California unit in every sense: geographically, financially, and institutionally. It was a great shock to the Scripps community to learn that Scripps was now expected to become the nucleus of a new University of California campus and would now be the object of far more attention from both the university administration in Berkeley and the state government in Sacramento.

    The University of California-San Diego was the first general campus of the University of California to be designed “from the top down” in terms of research emphasis. Local leaders disagreed on whether the new school should be a technical research institute or a more broadly based school that included undergraduates as well. John Jay Hopkins of General Dynamics Corporation pledged one million dollars for the former while the City Council offered free land for the latter. The original authorization for the University of California-San Diego campus given by the University of California Regents in 1956 approved a “graduate program in science and technology” that included undergraduate programs, a compromise that won both the support of General Dynamics and the city voters’ approval.

    Nobel laureate Harold Urey, a physicist from the University of Chicago, and Hans Suess, who had published the first paper on the greenhouse effect with Revelle in the previous year, were early recruits to the faculty in 1958. Maria Goeppert-Mayer, later the second female Nobel laureate in physics, was appointed professor of physics in 1960. The graduate division of the school opened in 1960 with 20 faculty in residence, with instruction offered in the fields of physics, biology, chemistry, and earth science. Before the main campus completed construction, classes were held in the Scripps Institution of Oceanography.

    By 1963, new facilities on the mesa had been finished for the School of Science and Engineering, and new buildings were under construction for Social Sciences and Humanities. Ten additional faculty in those disciplines were hired, and the whole site was designated the First College, later renamed after Roger Revelle, of the new campus. York resigned as chancellor that year and was replaced by John Semple Galbraith. The undergraduate program accepted its first class of 181 freshman at Revelle College in 1964. Second College was founded in 1964, on the land deeded by the federal government, and named after environmentalist John Muir two years later. The University of California-San Diego School of Medicine also accepted its first students in 1966.

    Political theorist Herbert Marcuse joined the faculty in 1965. A champion of the New Left, he reportedly was the first protester to occupy the administration building in a demonstration organized by his student, political activist Angela Davis. The American Legion offered to buy out the remainder of Marcuse’s contract for $20,000; the Regents censured Chancellor William J. McGill for defending Marcuse on the basis of academic freedom, but further action was averted after local leaders expressed support for Marcuse. Further student unrest was felt at the university, as the United States increased its involvement in the Vietnam War during the mid-1960s, when a student raised a Viet Minh flag over the campus. Protests escalated as the war continued and were only exacerbated after the National Guard fired on student protesters at Kent State University in 1970. Over 200 students occupied Urey Hall, with one student setting himself on fire in protest of the war.

    Early research activity and faculty quality, notably in the sciences, was integral to shaping the focus and culture of the university. Even before The University of California-San Diego had its own campus, faculty recruits had already made significant research breakthroughs, such as the Keeling Curve, a graph that plots rapidly increasing carbon dioxide levels in the atmosphere and was the first significant evidence for global climate change; the Kohn–Sham equations, used to investigate particular atoms and molecules in quantum chemistry; and the Miller–Urey experiment, which gave birth to the field of prebiotic chemistry.

    Engineering, particularly computer science, became an important part of the university’s academics as it matured. University researchers helped develop University of California-San Diego Pascal, an early machine-independent programming language that later heavily influenced Java; the National Science Foundation Network, a precursor to the Internet; and the Network News Transfer Protocol during the late 1970s to 1980s. In economics, the methods for analyzing economic time series with time-varying volatility (ARCH), and with common trends (cointegration) were developed. The University of California-San Diego maintained its research intense character after its founding, racking up 25 Nobel Laureates affiliated within 50 years of history; a rate of five per decade.

    Under Richard C. Atkinson’s leadership as chancellor from 1980 to 1995, the university strengthened its ties with the city of San Diego by encouraging technology transfer with developing companies, transforming San Diego into a world leader in technology-based industries. He oversaw a rapid expansion of the School of Engineering, later renamed after Qualcomm founder Irwin M. Jacobs, with the construction of the San Diego Supercomputer Center and establishment of the computer science, electrical engineering, and bioengineering departments. Private donations increased from $15 million to nearly $50 million annually, faculty expanded by nearly 50%, and enrollment doubled to about 18,000 students during his administration. By the end of his chancellorship, the quality of The University of California-San Diego graduate programs was ranked 10th in the nation by the National Research Council.

    The university continued to undergo further expansion during the first decade of the new millennium with the establishment and construction of two new professional schools — the Skaggs School of Pharmacy and Rady School of Management—and the California Institute for Telecommunications and Information Technology, a research institute run jointly with University of California Irvine. The University of California-San Diego also reached two financial milestones during this time, becoming the first university in the western region to raise over $1 billion in its eight-year fundraising campaign in 2007 and also obtaining an additional $1 billion through research contracts and grants in a single fiscal year for the first time in 2010. Despite this, due to the California budget crisis, the university loaned $40 million against its own assets in 2009 to offset a significant reduction in state educational appropriations. The salary of Pradeep Khosla, who became chancellor in 2012, has been the subject of controversy amidst continued budget cuts and tuition increases.

    On November 27, 2017, the university announced it would leave its longtime athletic home of the California Collegiate Athletic Association, an NCAA Division II league, to begin a transition to Division I in 2020. At that time, it will join the Big West Conference, already home to four other UC campuses (Davis, Irvine, Riverside, Santa Barbara). The transition period will run through the 2023–24 school year. The university prepares to transition to NCAA Division I competition on July 1, 2020.

    Research

    Applied Physics and Mathematics

    The Nature Index lists The University of California-San Diego as 6th in the United States for research output by article count in 2019. In 2017, The University of California-San Diego spent $1.13 billion on research, the 7th highest expenditure among academic institutions in the U.S. The university operates several organized research units, including the Center for Astrophysics and Space Sciences (CASS), the Center for Drug Discovery Innovation, and the Institute for Neural Computation. The University of California-San Diego also maintains close ties to the nearby Scripps Research Institute and Salk Institute for Biological Studies. In 1977, The University of California-San Diego developed and released the University of California-San Diego Pascal programming language. The university was designated as one of the original national Alzheimer’s disease research centers in 1984 by the National Institute on Aging. In 2018, The University of California-San Diego received $10.5 million from the DOE National Nuclear Security Administration to establish the Center for Matters under Extreme Pressure (CMEC).

    The university founded the San Diego Supercomputer Center (SDSC) in 1985, which provides high performance computing for research in various scientific disciplines. In 2000, The University of California-San Diego partnered with The University of California-Irvine to create the Qualcomm Institute – University of California-San Diego, which integrates research in photonics, nanotechnology, and wireless telecommunication to develop solutions to problems in energy, health, and the environment.

    The University of California-San Diego also operates the Scripps Institution of Oceanography, one of the largest centers of research in earth science in the world, which predates the university itself. Together, SDSC and SIO, along with funding partner universities California Institute of Technology, San Diego State University, and The University of California-Santa Barbara, manage the High Performance Wireless Research and Education Network.

     
  • richardmitnick 4:13 pm on May 26, 2022 Permalink | Reply
    Tags: "As California Cliffs Erode UC San Diego Team Works to Track and Understand these Changes", , , , , , , The University of California-San Diego   

    From The University of California-San Diego and Scripps Institution of Oceanography : “As California Cliffs Erode UC San Diego Team Works to Track and Understand these Changes” 

    From The University of California-San Diego

    and

    Scripps Institution of Oceanography

    5.26.22
    Lauren Fimbres Wood

    1
    The Coastal Process Group at Scripps Instiution of Oceanography deploys a drone to conduct a LiDAR survey. Photo by Erik Jepsen/University Communications.

    Advanced imaging and geotechnical technology are powering understanding of our coastline and its hazards.

    The cliff-top parking lot was fenced off and the trail marked “Unstable Cliffs – Active Landslide Area – Stay Back,” but that didn’t stop Adam Young and City of Encinitas officials from carefully traversing the uneven landscape at the Beacon’s Beach switchback trail to get a closer look.

    “There are definitely new cracks here,” said Young, a coastal geomorphologist and researcher at UC San Diego’s Scripps Institution of Oceanography.

    Young studies coastal erosion, overseeing coastline surveys throughout the state of California that use advanced laser imaging technology—called LiDAR, which stands for Light Detection and Ranging—to create high-resolution maps of cliffs to measure how they are eroding and changing over time.

    2
    The Beacons Beach switchback trail suffered damage in a landslide on May 2, 2022. Photo credit: Lauren Fimbres Wood.

    On May 2, 2022, a landslide at the Leucadia, California beach damaged part of the trail, closing the popular access point. Young and a team of fellow scientists from Scripps Oceanography went into rapid response mode, working with city officials to conduct a LiDAR survey of the landslide and install advanced geophysical instruments to determine if the landslide was still moving.

    At the site, a seismometer now monitors any shaking in the cliff face, a GPS monument allows for measuring ongoing changes in position of the cliff top, and wave pressure sensors measure wave impacts hitting the base of the cliff. These pressure sensors allow scientists to measure how often the waves reach the base of the cliff and potentially contribute to the movement of the slide.

    “Right now the beach is pretty eroded, and you can see the high tide water line is all the way up to the base of the cliff,” said Young on May 17, when he was back for the installation and monitoring of equipment.

    Tiltmeters, which Scripps geophysical engineer Frank Wyatt typically uses to measure movement of the San Andreas Fault, are instruments that can monitor slope stability, measuring to an accuracy of 10 micrometers if the ground is continuing to move. Tiltmeters have also been widely used across the U.S. and Europe to monitor railroad tracks. They get adhered to railroad ties to determine if a track has gone askew, and provide real-time monitoring to officials.

    Most of the data is disseminated from the instruments using cellular signals to “the cloud.” Results of the data collected will be shared with city geotechnical experts to help determine when the landslide is sicist Mark Zumberge are already conducting ongoing enhanced coastal monitoring. This research is funded as part of Assembly Bill 66, which was introduced by Assembly member Tasha Boerner Horvath, whose district includes San Diego’s coastal North County. The legislation was spurred in part by a fatal accident in which a 30-by-25-foot sandstone chunk broke loose and fell onto three women at Grandview Beach in Encinitas in August 2019.

    The bill has allowed for an expansion of coastal LiDAR surveys from Black’s Beach to Carlsbad. The surveys are now being conducted weekly. The LiDAR system, which can be operated by a truck-mounted system or drone depending on the width of the beach and other factors, sends hundreds of thousands of laser pulses per second.

    4
    Adam Young and Lucian Perry conduct a truck-based LiDAR scan of the cliffs at Torrey Pines State Beach.

    When the laser pulse hits an object, the laser signal bounces back to the LiDAR instrument, yielding a detailed measurement of the time it takes the laser to return to the sensor. This results in a centimeter-scale resolution point cloud map of the cliff face, beach elevation and beach cobble—the smooth rocks that are often found on San Diego beaches in the winter.

    4
    Brian Woodward with the Coastal Processes Group at Scripps conducts a survey at Torrey Pines State Beach. Here they are tracking the beach cobble to better understand how the rocks on the beach build up and retreat, and potentially act as a barrier to coastal erosion. Photo by Erik Jepsen/University Communications.

    “Each LiDAR survey provides a snapshot that we compare to previous surveys, to measure and track erosion over time,” said Young. “We use these surveys to quantify the erosion processes, identify erosion patterns on cliffs and beach, and examine stability conditions. The LiDAR surveys allow us to examine the site conditions before and after a landslide and help inform coastal management.”

    High tides, large surf, wave run up, groundwater intrusion, rainfall, weathering and sea-level rise can all contribute to beach and cliff erosion. Young and Zumberge are hoping to gain a better understanding of the complex processes that lead up to cliff failures.

    Better understanding this interplay may help answer the question of whether signals exist that can forecast where and when an increased risk for collapse is developing. If these signals exist, they would be foundational to informing recommendations towards the development of a potential early landslide warning system also envisioned in the AB 66 bill.

    The second phase of AB 66, which is still awaiting permitting approval, would also see the installation of optical-fiber strainmeters at key locations along the cliffs. The strainmeters, which were also developed at Scripps for earthquake research, can measure earth movements at the scale of nanometers.

    The strainmeters would be installed by embedding a fiber cable near the cliff top. The quarter-inch cable “uses light as a measuring tape,” according to Wyatt, to capture any strains of movements in the ground, sampling as quickly as 50,000 times per second.

    5
    LiDAR scanning creates high resolution spatial maps of the cliff face and beach elevation. These two maps show scans of Torrey Pines colored by elevation (green being lower and red higher elevation), and in true color. The 3D model shown here is made up of more than 11 million data points. Comparing these models over time allows scientists to measure the volume of cliff or beach that has eroded. Photo credit: Coastal Processes Group at Scripps.

    Any movement detected is measured instantly, creating a record similar to that from an earthquake seismograph. These important measurements may help identify small ground movement signals that precede a large cliff failure event.

    These innovations are part of a suite of instruments helping oceanographers and geologists project the future of California’s coastline in an era of changing climate. Other programs that complement this research include the Coastal Data Information Program at Scripps, which generates wave model forecasts that can help estimate how waves may interact with the coastline, and the Resilient Futures program, which works with the City of Imperial Beach to provide enhanced flood forecasting to help the community better prepare for sea-level rise.

    The beaches in San Diego County are among the most studied in California. Routine beach surveys conducted by Scripps using all-terrain vehicles and GPS date back more than twenty years. The newer mobile LiDAR surveys provide improved coastal coverage including the cliffs and other coastal features. The surveys have expanded over time thanks to advances in technology and increased demand for this critical research to understand threats to infrastructure. The new truck- and drone-based mobile data collection have facilitated higher frequency repeat surveys and are proving critical to better understanding coastal processes.

    The California coastline is home to significant and costly infrastructure on the coastline, including homes, railways, highways, wastewater treatment plants, military facilities, power plants and more. The railway corridor connecting San Diego to Los Angeles runs along the beach-top bluffs, with closures and service disruptions following cliff failures. There are calls to relocate the tracks off the bluffs, estimates of which could cost several billion dollars.

    “By better understanding how the coastline is evolving now, we can make better predictions for the future,” said Young.

    6
    The Scripps Coastal Processes Group conducts a LiDAR survey in Del Mar following a cliff collapse next to the rail corridor in February 2021. Photo credit: Coastal Process Group at Scripps Institution of Oceanography.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    A department of UC San Diego, Scripps Institution of Oceanography is one of the oldest, largest, and most important centers for ocean, earth and atmospheric science research, education, and public service in the world.

    Research at Scripps encompasses physical, chemical, biological, geological, and geophysical studies of the oceans, Earth, and planets. Scripps undergraduate and graduate programs provide transformative educational and research opportunities in ocean, earth, and atmospheric sciences, as well as degrees in climate science and policy and marine biodiversity and conservation

    The University of California- San Diego, is a public research university located in the La Jolla area of San Diego, California, in the United States. The university occupies 2,141 acres (866 ha) near the coast of the Pacific Ocean with the main campus resting on approximately 1,152 acres (466 ha). Established in 1960 near the pre-existing Scripps Institution of Oceanography, University of California, San Diego is the seventh oldest of the 10 University of California campuses and offers over 200 undergraduate and graduate degree programs, enrolling about 22,700 undergraduate and 6,300 graduate students. The University of California-San Diego is one of America’s “Public Ivy” universities, which recognizes top public research universities in the United States. The University of California-San Diego was ranked 8th among public universities and 37th among all universities in the United States, and rated the 18th Top World University by U.S. News & World Report’s 2015 rankings.

    The University of California-San Diego is organized into seven undergraduate residential colleges (Revelle; John Muir; Thurgood Marshall; Earl Warren; Eleanor Roosevelt; Sixth; and Seventh), four academic divisions (Arts and Humanities; Biological Sciences; Physical Sciences; and Social Sciences), and seven graduate and professional schools (Jacobs School of Engineering; Rady School of Management; Scripps Institution of Oceanography; School of Global Policy and Strategy; School of Medicine; Skaggs School of Pharmacy and Pharmaceutical Sciences; and the newly established Wertheim School of Public Health and Human Longevity Science). University of California-San Diego Health, the region’s only academic health system, provides patient care; conducts medical research; and educates future health care professionals at the University of California-San Diego Medical Center, Hillcrest; Jacobs Medical Center; Moores Cancer Center; Sulpizio Cardiovascular Center; Shiley Eye Institute; Institute for Genomic Medicine; Koman Family Outpatient Pavilion and various express care and urgent care clinics throughout San Diego.

    The university operates 19 organized research units (ORUs), including the Center for Energy Research; Qualcomm Institute (a branch of the California Institute for Telecommunications and Information Technology); San Diego Supercomputer Center; and the Kavli Institute for Brain and Mind, as well as eight School of Medicine research units, six research centers at Scripps Institution of Oceanography and two multi-campus initiatives, including the Institute on Global Conflict and Cooperation. The University of California-San Diego is also closely affiliated with several regional research centers, such as the Salk Institute; the Sanford Burnham Prebys Medical Discovery Institute; the Sanford Consortium for Regenerative Medicine; and the Scripps Research Institute. It is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation, UC San Diego spent $1.265 billion on research and development in fiscal year 2018, ranking it 7th in the nation.

    The University of California-San Diego is considered one of the country’s “Public Ivies”. As of February 2021, The University of California-San Diego faculty, researchers and alumni have won 27 Nobel Prizes and three Fields Medals, eight National Medals of Science, eight MacArthur Fellowships, and three Pulitzer Prizes. Additionally, of the current faculty, 29 have been elected to the National Academy of Engineering, 70 to the National Academy of Sciences, 45 to the National Academy of Medicine and 110 to the American Academy of Arts and Sciences.

    History

    When the Regents of the University of California originally authorized the San Diego campus in 1956, it was planned to be a graduate and research institution, providing instruction in the sciences, mathematics, and engineering. Local citizens supported the idea, voting the same year to transfer to the university 59 acres (24 ha) of mesa land on the coast near the preexisting Scripps Institution of Oceanography. The Regents requested an additional gift of 550 acres (220 ha) of undeveloped mesa land northeast of Scripps, as well as 500 acres (200 ha) on the former site of Camp Matthews from the federal government, but Roger Revelle, then director of Scripps Institution and main advocate for establishing the new campus, jeopardized the site selection by exposing the La Jolla community’s exclusive real estate business practices, which were antagonistic to minority racial and religious groups. This outraged local conservatives, as well as Regent Edwin W. Pauley.

    University of California President Clark Kerr satisfied San Diego city donors by changing the proposed name from University of California, La Jolla, to University of California-San Diego. The city voted in agreement to its part in 1958, and the University of California approved construction of the new campus in 1960. Because of the clash with Pauley, Revelle was not made chancellor. Herbert York, first director of DOE’s Lawrence Livermore National Laboratory, was designated instead. York planned the main campus according to the “Oxbridge” model, relying on many of Revelle’s ideas.

    According to Kerr, “San Diego always asked for the best,” though this created much friction throughout the University of California system, including with Kerr himself, because University of California-San Diego often seemed to be “asking for too much and too fast.” Kerr attributed University of California-San Diego’s “special personality” to Scripps, which for over five decades had been the most isolated University of California unit in every sense: geographically, financially, and institutionally. It was a great shock to the Scripps community to learn that Scripps was now expected to become the nucleus of a new University of California campus and would now be the object of far more attention from both the university administration in Berkeley and the state government in Sacramento.

    The University of California-San Diego was the first general campus of the University of California to be designed “from the top down” in terms of research emphasis. Local leaders disagreed on whether the new school should be a technical research institute or a more broadly based school that included undergraduates as well. John Jay Hopkins of General Dynamics Corporation pledged one million dollars for the former while the City Council offered free land for the latter. The original authorization for the University of California-San Diego campus given by the University of California Regents in 1956 approved a “graduate program in science and technology” that included undergraduate programs, a compromise that won both the support of General Dynamics and the city voters’ approval.

    Nobel laureate Harold Urey, a physicist from the University of Chicago, and Hans Suess, who had published the first paper on the greenhouse effect with Revelle in the previous year, were early recruits to the faculty in 1958. Maria Goeppert-Mayer, later the second female Nobel laureate in physics, was appointed professor of physics in 1960. The graduate division of the school opened in 1960 with 20 faculty in residence, with instruction offered in the fields of physics, biology, chemistry, and earth science. Before the main campus completed construction, classes were held in the Scripps Institution of Oceanography.

    By 1963, new facilities on the mesa had been finished for the School of Science and Engineering, and new buildings were under construction for Social Sciences and Humanities. Ten additional faculty in those disciplines were hired, and the whole site was designated the First College, later renamed after Roger Revelle, of the new campus. York resigned as chancellor that year and was replaced by John Semple Galbraith. The undergraduate program accepted its first class of 181 freshman at Revelle College in 1964. Second College was founded in 1964, on the land deeded by the federal government, and named after environmentalist John Muir two years later. The University of California-San Diego School of Medicine also accepted its first students in 1966.

    Political theorist Herbert Marcuse joined the faculty in 1965. A champion of the New Left, he reportedly was the first protester to occupy the administration building in a demonstration organized by his student, political activist Angela Davis. The American Legion offered to buy out the remainder of Marcuse’s contract for $20,000; the Regents censured Chancellor William J. McGill for defending Marcuse on the basis of academic freedom, but further action was averted after local leaders expressed support for Marcuse. Further student unrest was felt at the university, as the United States increased its involvement in the Vietnam War during the mid-1960s, when a student raised a Viet Minh flag over the campus. Protests escalated as the war continued and were only exacerbated after the National Guard fired on student protesters at Kent State University in 1970. Over 200 students occupied Urey Hall, with one student setting himself on fire in protest of the war.

    Early research activity and faculty quality, notably in the sciences, was integral to shaping the focus and culture of the university. Even before The University of California-San Diego had its own campus, faculty recruits had already made significant research breakthroughs, such as the Keeling Curve, a graph that plots rapidly increasing carbon dioxide levels in the atmosphere and was the first significant evidence for global climate change; the Kohn–Sham equations, used to investigate particular atoms and molecules in quantum chemistry; and the Miller–Urey experiment, which gave birth to the field of prebiotic chemistry.

    Engineering, particularly computer science, became an important part of the university’s academics as it matured. University researchers helped develop University of California-San Diego Pascal, an early machine-independent programming language that later heavily influenced Java; the National Science Foundation Network, a precursor to the Internet; and the Network News Transfer Protocol during the late 1970s to 1980s. In economics, the methods for analyzing economic time series with time-varying volatility (ARCH), and with common trends (cointegration) were developed. The University of California-San Diego maintained its research intense character after its founding, racking up 25 Nobel Laureates affiliated within 50 years of history; a rate of five per decade.

    Under Richard C. Atkinson’s leadership as chancellor from 1980 to 1995, the university strengthened its ties with the city of San Diego by encouraging technology transfer with developing companies, transforming San Diego into a world leader in technology-based industries. He oversaw a rapid expansion of the School of Engineering, later renamed after Qualcomm founder Irwin M. Jacobs, with the construction of the San Diego Supercomputer Center and establishment of the computer science, electrical engineering, and bioengineering departments. Private donations increased from $15 million to nearly $50 million annually, faculty expanded by nearly 50%, and enrollment doubled to about 18,000 students during his administration. By the end of his chancellorship, the quality of The University of California-San Diego graduate programs was ranked 10th in the nation by the National Research Council.

    The university continued to undergo further expansion during the first decade of the new millennium with the establishment and construction of two new professional schools — the Skaggs School of Pharmacy and Rady School of Management—and the California Institute for Telecommunications and Information Technology, a research institute run jointly with University of California Irvine. The University of California-San Diego also reached two financial milestones during this time, becoming the first university in the western region to raise over $1 billion in its eight-year fundraising campaign in 2007 and also obtaining an additional $1 billion through research contracts and grants in a single fiscal year for the first time in 2010. Despite this, due to the California budget crisis, the university loaned $40 million against its own assets in 2009 to offset a significant reduction in state educational appropriations. The salary of Pradeep Khosla, who became chancellor in 2012, has been the subject of controversy amidst continued budget cuts and tuition increases.

    On November 27, 2017, the university announced it would leave its longtime athletic home of the California Collegiate Athletic Association, an NCAA Division II league, to begin a transition to Division I in 2020. At that time, it will join the Big West Conference, already home to four other UC campuses (Davis, Irvine, Riverside, Santa Barbara). The transition period will run through the 2023–24 school year. The university prepares to transition to NCAA Division I competition on July 1, 2020.

    Research

    Applied Physics and Mathematics

    The Nature Index lists The University of California-San Diego as 6th in the United States for research output by article count in 2019. In 2017, The University of California-San Diego spent $1.13 billion on research, the 7th highest expenditure among academic institutions in the U.S. The university operates several organized research units, including the Center for Astrophysics and Space Sciences (CASS), the Center for Drug Discovery Innovation, and the Institute for Neural Computation. The University of California-San Diego also maintains close ties to the nearby Scripps Research Institute and Salk Institute for Biological Studies. In 1977, The University of California-San Diego developed and released the University of California-San Diego Pascal programming language. The university was designated as one of the original national Alzheimer’s disease research centers in 1984 by the National Institute on Aging. In 2018, The University of California-San Diego received $10.5 million from the DOE National Nuclear Security Administration to establish the Center for Matters under Extreme Pressure (CMEC).

    The university founded the San Diego Supercomputer Center (SDSC) in 1985, which provides high performance computing for research in various scientific disciplines. In 2000, The University of California-San Diego partnered with The University of California-Irvine to create the Qualcomm Institute – University of California-San Diego, which integrates research in photonics, nanotechnology, and wireless telecommunication to develop solutions to problems in energy, health, and the environment.

    The University of California-San Diego also operates the Scripps Institution of Oceanography, one of the largest centers of research in earth science in the world, which predates the university itself. Together, SDSC and SIO, along with funding partner universities California Institute of Technology, San Diego State University, and The University of California-Santa Barbara, manage the High Performance Wireless Research and Education Network.

     
  • richardmitnick 12:13 pm on May 23, 2022 Permalink | Reply
    Tags: "Using everyday WiFi to help robots see and navigate better indoors", , , , , The Jacobs School of Engineering, The University of California-San Diego, The WiFi technology could offer an economical alternative to expensive and power hungry LiDARs which are in common use., Using WiFi signals to help a robot map where it’s going.   

    From The Jacobs School of Engineering: “Using everyday WiFi to help robots see and navigate better indoors” 


    From The Jacobs School of Engineering

    At

    The University of California-San Diego

    May 20, 2022

    Liezel Labios
    Jacobs School of Engineering
    858-246-1124
    llabios@ucsd.edu

    1
    Robot navigation. Credit: Westend61/Getty Images.

    Engineers at the University of California-San Diego have developed a low cost, low power technology to help robots accurately map their way indoors, even in poor lighting and without recognizable landmarks or features.


    WiFi helps robots navigate indoors.

    The technology consists of sensors that use WiFi signals to help the robot map where it’s going. It’s a new approach to indoor robot navigation. Most systems rely on optical light sensors such as cameras and LiDARs. In this case, the so-called “WiFi sensors” use radio frequency signals rather than light or visual cues to see, so they can work in conditions where cameras and LiDARs struggle—in low light, changing light, and repetitive environments such as long corridors and warehouses.

    And by using WiFi, the technology could offer an economical alternative to expensive and power hungry LiDARs, the researchers noted.

    A team of researchers from the Wireless Communication Sensing and Networking Group, led by UC San Diego electrical and computer engineering professor Dinesh Bharadia, will present their work at the 2022 International Conference on Robotics and Automation (ICRA), which will take place from May 23 to 27 in Philadelphia.

    “We are surrounded by wireless signals almost everywhere we go. The beauty of this work is that we can use these everyday signals to do indoor localization and mapping with robots,” said Bharadia.

    “Using WiFi, we have built a new kind of sensing modality that fills in the gaps left behind by today’s light-based sensors, and it can enable robots to navigate in scenarios where they currently cannot,” added Aditya Arun, who is an electrical and computer engineering Ph.D. student in Bharadia’s lab and the first author of the study.

    The researchers built their prototype system using off-the-shelf hardware. The system consists of a robot that has been equipped with the WiFi sensors, which are built from commercially available WiFi transceivers. These devices transmit and receive wireless signals to and from WiFi access points in the environment. What makes these WiFi sensors special is that they use this constant back and forth communication with the WiFi access points to map the robot’s location and direction of movement.

    “This two-way communication is already happening between mobile devices like your phone and WiFi access points all the time—it’s just not telling you where you are,” said Roshan Ayyalasomayajula, who is also an electrical and computer engineering Ph.D. student in Bharadia’s lab and a co-author on the study. “Our technology piggybacks on that communication to do localization and mapping in an unknown environment.”

    Here’s how it works. At the start, the WiFi sensors are unaware of the robot’s location and where any of the WiFi access points are in the environment. Figuring that out is like playing a game of Marco Polo—as the robot moves, the sensors call out to the access points and listen for their replies, using them as landmarks. The key here is that every incoming and outgoing wireless signal carries its own unique physical information—an angle of arrival and direct path length to (or from) an access point—that can be used to figure out where the robot and access points are in relation to each other. Algorithms developed by Bharadia’s team enable the WiFi sensors to extract this information and make these calculations. As the call and response continues, the sensors pick up more information and can accurately locate where the robot is going.

    The researchers tested their technology on a floor of an office building. They placed several access points around the space and equipped a robot with the WiFi sensors, as well as a camera and a LiDAR to perform measurements for comparison. The team controlled their robot to travel several times around the floor, turning corners, going down long and narrow corridors, and passing through both bright and dimly lit spaces.

    In these tests, the accuracy of localization and mapping provided by the WiFi sensors was on par with that of the commercial camera and LiDAR sensors.

    “We can use WiFi signals, which are essentially free, to do robust and reliable sensing in visually challenging environments,” said Arun. “WiFi sensing could potentially replace expensive LiDARs and complement other low cost sensors such as cameras in these scenarios.”

    That’s what the team is now exploring. The researchers will be combining WiFi sensors (which provide accuracy and reliability) with cameras (which provide visual and contextual information about the environment) to develop a more complete, yet inexpensive, mapping technology.

    Science paper:
    IEEEXplore

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    About the Jacobs School
    Innovation Happens Here

    The UC San Diego Jacobs School of Engineering is a premier research school set apart by our entrepreneurial culture and integrative engineering approach.

    The Jacobs School’s Mission:

    Educate Tomorrow’s Technology Leaders
    Conduct Leading Edge Research and Drive Innovation
    Transfer Discoveries for the Benefit of Society

    The Jacobs School’s Values:

    Engineering for the global good
    Exponential impact through entrepreneurism
    Collaboration to enrich relevance
    Our education models focus on deep and broad engineering fundamentals, enhanced by real-world design and research, often in partnership with industry. Through our Team Internship Program and GlobalTeams in Engineering Service program, for example, we encourage students to develop their communications and leadership skills while working in the kind of multi-disciplinary team environment experienced by real-world engineers.

    We are home to exciting research centers, such as the San Diego Supercomputer Center, a national resource for data-intensive computing; our Powell Structural Research Laboratories, the largest and most active in the world for full-scale structural testing; and the Qualcomm Institute, which is the UC San Diego division of the California Institute for Telecommunications and Information Technology (Calit2), which is forging new ground in multi-disciplinary applications for information technology.

    Located at the hub of San Diego’s thriving information technology, biotechnology, clean technology, and nanotechnology sectors, the Jacobs School proactively seeks corporate partners to collaborate with us in research, education and innovation.

    The University of California-San Diego

    The University of California- San Diego, is a public research university located in the La Jolla area of San Diego, California, in the United States. The university occupies 2,141 acres (866 ha) near the coast of the Pacific Ocean with the main campus resting on approximately 1,152 acres (466 ha). Established in 1960 near the pre-existing Scripps Institution of Oceanography, University of California, San Diego is the seventh oldest of the 10 University of California campuses and offers over 200 undergraduate and graduate degree programs, enrolling about 22,700 undergraduate and 6,300 graduate students. The University of California-San Diego is one of America’s “Public Ivy” universities, which recognizes top public research universities in the United States. The University of California-San Diego was ranked 8th among public universities and 37th among all universities in the United States, and rated the 18th Top World University by U.S. News & World Report’s 2015 rankings.

    The University of California-San Diego is organized into seven undergraduate residential colleges (Revelle; John Muir; Thurgood Marshall; Earl Warren; Eleanor Roosevelt; Sixth; and Seventh), four academic divisions (Arts and Humanities; Biological Sciences; Physical Sciences; and Social Sciences), and seven graduate and professional schools (Jacobs School of Engineering; Rady School of Management; Scripps Institution of Oceanography; School of Global Policy and Strategy; School of Medicine; Skaggs School of Pharmacy and Pharmaceutical Sciences; and the newly established Wertheim School of Public Health and Human Longevity Science). University of California-San Diego Health, the region’s only academic health system, provides patient care; conducts medical research; and educates future health care professionals at the University of California-San Diego Medical Center, Hillcrest; Jacobs Medical Center; Moores Cancer Center; Sulpizio Cardiovascular Center; Shiley Eye Institute; Institute for Genomic Medicine; Koman Family Outpatient Pavilion and various express care and urgent care clinics throughout San Diego.

    The university operates 19 organized research units (ORUs), including the Center for Energy Research; Qualcomm Institute (a branch of the California Institute for Telecommunications and Information Technology); San Diego Supercomputer Center; and the Kavli Institute for Brain and Mind, as well as eight School of Medicine research units, six research centers at Scripps Institution of Oceanography and two multi-campus initiatives, including the Institute on Global Conflict and Cooperation. The University of California-San Diego is also closely affiliated with several regional research centers, such as the Salk Institute; the Sanford Burnham Prebys Medical Discovery Institute; the Sanford Consortium for Regenerative Medicine; and the Scripps Research Institute. It is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation, UC San Diego spent $1.265 billion on research and development in fiscal year 2018, ranking it 7th in the nation.

    The University of California-San Diego is considered one of the country’s “Public Ivies”. As of February 2021, The University of California-San Diego faculty, researchers and alumni have won 27 Nobel Prizes and three Fields Medals, eight National Medals of Science, eight MacArthur Fellowships, and three Pulitzer Prizes. Additionally, of the current faculty, 29 have been elected to the National Academy of Engineering, 70 to the National Academy of Sciences, 45 to the National Academy of Medicine and 110 to the American Academy of Arts and Sciences.

    History

    When the Regents of the University of California originally authorized the San Diego campus in 1956, it was planned to be a graduate and research institution, providing instruction in the sciences, mathematics, and engineering. Local citizens supported the idea, voting the same year to transfer to the university 59 acres (24 ha) of mesa land on the coast near the preexisting Scripps Institution of Oceanography. The Regents requested an additional gift of 550 acres (220 ha) of undeveloped mesa land northeast of Scripps, as well as 500 acres (200 ha) on the former site of Camp Matthews from the federal government, but Roger Revelle, then director of Scripps Institution and main advocate for establishing the new campus, jeopardized the site selection by exposing the La Jolla community’s exclusive real estate business practices, which were antagonistic to minority racial and religious groups. This outraged local conservatives, as well as Regent Edwin W. Pauley.

    University of California President Clark Kerr satisfied San Diego city donors by changing the proposed name from University of California, La Jolla, to University of California-San Diego. The city voted in agreement to its part in 1958, and the University of California approved construction of the new campus in 1960. Because of the clash with Pauley, Revelle was not made chancellor. Herbert York, first director of DOE’s Lawrence Livermore National Laboratory, was designated instead. York planned the main campus according to the “Oxbridge” model, relying on many of Revelle’s ideas.

    According to Kerr, “San Diego always asked for the best,” though this created much friction throughout the University of California system, including with Kerr himself, because University of California-San Diego often seemed to be “asking for too much and too fast.” Kerr attributed University of California-San Diego’s “special personality” to Scripps, which for over five decades had been the most isolated University of California unit in every sense: geographically, financially, and institutionally. It was a great shock to the Scripps community to learn that Scripps was now expected to become the nucleus of a new University of California campus and would now be the object of far more attention from both the university administration in Berkeley and the state government in Sacramento.

    The University of California-San Diego was the first general campus of the University of California to be designed “from the top down” in terms of research emphasis. Local leaders disagreed on whether the new school should be a technical research institute or a more broadly based school that included undergraduates as well. John Jay Hopkins of General Dynamics Corporation pledged one million dollars for the former while the City Council offered free land for the latter. The original authorization for the University of California-San Diego campus given by the University of California Regents in 1956 approved a “graduate program in science and technology” that included undergraduate programs, a compromise that won both the support of General Dynamics and the city voters’ approval.

    Nobel laureate Harold Urey, a physicist from the University of Chicago, and Hans Suess, who had published the first paper on the greenhouse effect with Revelle in the previous year, were early recruits to the faculty in 1958. Maria Goeppert-Mayer, later the second female Nobel laureate in physics, was appointed professor of physics in 1960. The graduate division of the school opened in 1960 with 20 faculty in residence, with instruction offered in the fields of physics, biology, chemistry, and earth science. Before the main campus completed construction, classes were held in the Scripps Institution of Oceanography.

    By 1963, new facilities on the mesa had been finished for the School of Science and Engineering, and new buildings were under construction for Social Sciences and Humanities. Ten additional faculty in those disciplines were hired, and the whole site was designated the First College, later renamed after Roger Revelle, of the new campus. York resigned as chancellor that year and was replaced by John Semple Galbraith. The undergraduate program accepted its first class of 181 freshman at Revelle College in 1964. Second College was founded in 1964, on the land deeded by the federal government, and named after environmentalist John Muir two years later. The University of California-San Diego School of Medicine also accepted its first students in 1966.

    Political theorist Herbert Marcuse joined the faculty in 1965. A champion of the New Left, he reportedly was the first protester to occupy the administration building in a demonstration organized by his student, political activist Angela Davis. The American Legion offered to buy out the remainder of Marcuse’s contract for $20,000; the Regents censured Chancellor William J. McGill for defending Marcuse on the basis of academic freedom, but further action was averted after local leaders expressed support for Marcuse. Further student unrest was felt at the university, as the United States increased its involvement in the Vietnam War during the mid-1960s, when a student raised a Viet Minh flag over the campus. Protests escalated as the war continued and were only exacerbated after the National Guard fired on student protesters at Kent State University in 1970. Over 200 students occupied Urey Hall, with one student setting himself on fire in protest of the war.

    Early research activity and faculty quality, notably in the sciences, was integral to shaping the focus and culture of the university. Even before The University of California-San Diego had its own campus, faculty recruits had already made significant research breakthroughs, such as the Keeling Curve, a graph that plots rapidly increasing carbon dioxide levels in the atmosphere and was the first significant evidence for global climate change; the Kohn–Sham equations, used to investigate particular atoms and molecules in quantum chemistry; and the Miller–Urey experiment, which gave birth to the field of prebiotic chemistry.

    Engineering, particularly computer science, became an important part of the university’s academics as it matured. University researchers helped develop University of California-San Diego Pascal, an early machine-independent programming language that later heavily influenced Java; the National Science Foundation Network, a precursor to the Internet; and the Network News Transfer Protocol during the late 1970s to 1980s. In economics, the methods for analyzing economic time series with time-varying volatility (ARCH), and with common trends (cointegration) were developed. The University of California-San Diego maintained its research intense character after its founding, racking up 25 Nobel Laureates affiliated within 50 years of history; a rate of five per decade.

    Under Richard C. Atkinson’s leadership as chancellor from 1980 to 1995, the university strengthened its ties with the city of San Diego by encouraging technology transfer with developing companies, transforming San Diego into a world leader in technology-based industries. He oversaw a rapid expansion of the School of Engineering, later renamed after Qualcomm founder Irwin M. Jacobs, with the construction of the San Diego Supercomputer Center and establishment of the computer science, electrical engineering, and bioengineering departments. Private donations increased from $15 million to nearly $50 million annually, faculty expanded by nearly 50%, and enrollment doubled to about 18,000 students during his administration. By the end of his chancellorship, the quality of The University of California-San Diego graduate programs was ranked 10th in the nation by the National Research Council.

    The university continued to undergo further expansion during the first decade of the new millennium with the establishment and construction of two new professional schools — the Skaggs School of Pharmacy and Rady School of Management—and the California Institute for Telecommunications and Information Technology, a research institute run jointly with University of California Irvine. The University of California-San Diego also reached two financial milestones during this time, becoming the first university in the western region to raise over $1 billion in its eight-year fundraising campaign in 2007 and also obtaining an additional $1 billion through research contracts and grants in a single fiscal year for the first time in 2010. Despite this, due to the California budget crisis, the university loaned $40 million against its own assets in 2009 to offset a significant reduction in state educational appropriations. The salary of Pradeep Khosla, who became chancellor in 2012, has been the subject of controversy amidst continued budget cuts and tuition increases.

    On November 27, 2017, the university announced it would leave its longtime athletic home of the California Collegiate Athletic Association, an NCAA Division II league, to begin a transition to Division I in 2020. At that time, it will join the Big West Conference, already home to four other UC campuses (Davis, Irvine, Riverside, Santa Barbara). The transition period will run through the 2023–24 school year. The university prepares to transition to NCAA Division I competition on July 1, 2020.

    Research

    Applied Physics and Mathematics

    The Nature Index lists The University of California-San Diego as 6th in the United States for research output by article count in 2019. In 2017, The University of California-San Diego spent $1.13 billion on research, the 7th highest expenditure among academic institutions in the U.S. The university operates several organized research units, including the Center for Astrophysics and Space Sciences (CASS), the Center for Drug Discovery Innovation, and the Institute for Neural Computation. The University of California-San Diego also maintains close ties to the nearby Scripps Research Institute and Salk Institute for Biological Studies. In 1977, The University of California-San Diego developed and released the University of California-San Diego Pascal programming language. The university was designated as one of the original national Alzheimer’s disease research centers in 1984 by the National Institute on Aging. In 2018, The University of California-San Diego received $10.5 million from the DOE National Nuclear Security Administration to establish the Center for Matters under Extreme Pressure (CMEC).

    The university founded the San Diego Supercomputer Center (SDSC) in 1985, which provides high performance computing for research in various scientific disciplines. In 2000, The University of California-San Diego partnered with The University of California-Irvine to create the Qualcomm Institute – University of California-San Diego, which integrates research in photonics, nanotechnology, and wireless telecommunication to develop solutions to problems in energy, health, and the environment.

    The University of California-San Diego also operates the Scripps Institution of Oceanography, one of the largest centers of research in earth science in the world, which predates the university itself. Together, SDSC and SIO, along with funding partner universities California Institute of Technology, San Diego State University, and The University of California-Santa Barbara, manage the High Performance Wireless Research and Education Network.

    The University of California

    The University of California is a public land-grant research university system in the U.S. state of California. The system is composed of the campuses at Berkeley, Davis, Irvine, Los Angeles, Merced, Riverside, San Diego, San Francisco, Santa Barbara, and Santa Cruz, along with numerous research centers and academic abroad centers. The system is the state’s land-grant university.

    The University of California was founded on March 23, 1868, and operated in Oakland before moving to Berkeley in 1873. Over time, several branch locations and satellite programs were established. In March 1951, the University of California began to reorganize itself into something distinct from its campus in Berkeley, with University of California President Robert Gordon Sproul staying in place as chief executive of the University of California system, while Clark Kerr became the first chancellor of The University of California-Berkeley and Raymond B. Allen became the first chancellor of The University of California-Los Angeles. However, the 1951 reorganization was stalled by resistance from Sproul and his allies, and it was not until Kerr succeeded Sproul as University of California President that University of California was able to evolve into a university system from 1957 to 1960. At that time, chancellors were appointed for additional campuses and each was granted some degree of greater autonomy.

    The University of California currently has 10 campuses, a combined student body of 285,862 students, 24,400 faculty members, 143,200 staff members and over 2.0 million living alumni. Its newest campus in Merced opened in fall 2005. Nine campuses enroll both undergraduate and graduate students; one campus, The University of California-San Francisco, enrolls only graduate and professional students in the medical and health sciences. In addition, the University of California Hastings College of the Law, located in San Francisco, is legally affiliated with University of California, but other than sharing its name is entirely autonomous from the rest of the system. Under the California Master Plan for Higher Education, the University of California is a part of the state’s three-system public higher education plan, which also includes the California State University system and the California Community Colleges system. University of California is governed by a Board of Regents whose autonomy from the rest of the state government is protected by the state constitution. The University of California also manages or co-manages three national laboratories for the U.S. Department of Energy: The DOE’s Lawrence Berkeley National Laboratory , The DOE’s Lawrence Livermore National Laboratory , and The Doe’s Los Alamos National Laboratory.

    Collectively, the colleges, institutions, and alumni of the University of California make it the most comprehensive and advanced post-secondary educational system in the world, responsible for nearly $50 billion per year of economic impact. Major publications generally rank most University of California campuses as being among the best universities in the world. Eight of the campuses, Berkeley, Davis, Irvine, Los Angeles, Santa Barbara, San Diego, Santa Cruz, and Riverside, are considered Public Ivies, making California the state with the most universities in the nation to hold the title. University of California campuses have large numbers of distinguished faculty in almost every academic discipline, with University of California faculty and researchers having won 71 Nobel Prizes as of 2021.

    In 1849, the state of California ratified its first constitution, which contained the express objective of creating a complete educational system including a state university. Taking advantage of the Morrill Land-Grant Acts, the California State Legislature established an Agricultural, Mining, and Mechanical Arts College in 1866. However, it existed only on paper, as a placeholder to secure federal land-grant funds.

    Meanwhile, Congregational minister Henry Durant, an alumnus of Yale University, had established the private Contra Costa Academy, on June 20, 1853, in Oakland, California. The initial site was bounded by Twelfth and Fourteenth Streets and Harrison and Franklin Streets in downtown Oakland (and is marked today by State Historical Plaque No. 45 at the northeast corner of Thirteenth and Franklin). In turn, the academy’s trustees were granted a charter in 1855 for a College of California, though the college continued to operate as a college preparatory school until it added college-level courses in 1860. The college’s trustees, educators, and supporters believed in the importance of a liberal arts education (especially the study of the Greek and Roman classics), but ran into a lack of interest in liberal arts colleges on the American frontier (as a true college, the college was graduating only three or four students per year).

    In November 1857, the college’s trustees began to acquire various parcels of land facing the Golden Gate in what is now Berkeley for a future planned campus outside of Oakland. But first, they needed to secure the college’s water rights by buying a large farm to the east. In 1864, they organized the College Homestead Association, which borrowed $35,000 to purchase the land, plus another $33,000 to purchase 160 acres (650,000 m^2) of land to the south of the future campus. The Association subdivided the latter parcel and started selling lots with the hope it could raise enough money to repay its lenders and also create a new college town. But sales of new homesteads fell short.

    Governor Frederick Low favored the establishment of a state university based upon The University of Michigan plan, and thus in one sense may be regarded as the founder of the University of California. At the College of California’s 1867 commencement exercises, where Low was present, Benjamin Silliman Jr. criticized Californians for creating a state polytechnic school instead of a real university. That same day, Low reportedly first suggested a merger of the already-functional College of California (which had land, buildings, faculty, and students, but not enough money) with the nonfunctional state college (which had money and nothing else), and went on to participate in the ensuing negotiations. On October 9, 1867, the college’s trustees reluctantly agreed to join forces with the state college to their mutual advantage, but under one condition—that there not be simply an “Agricultural, Mining, and Mechanical Arts College”, but a complete university, within which the assets of the College of California would be used to create a College of Letters (now known as the College of Letters and Science). Accordingly, the Organic Act, establishing the University of California, was introduced as a bill by Assemblyman John W. Dwinelle on March 5, 1868, and after it was duly passed by both houses of the state legislature, it was signed into state law by Governor Henry H. Haight (Low’s successor) on March 23, 1868. However, as legally constituted, the new university was not an actual merger of the two colleges, but was an entirely new institution which merely inherited certain objectives and assets from each of them. The University of California’s second president, Daniel Coit Gilman, opened its new campus in Berkeley in September 1873.

    Section 8 of the Organic Act authorized the Board of Regents to affiliate the University of California with independent self-sustaining professional colleges. “Affiliation” meant University of California and its affiliates would “share the risk in launching new endeavors in education.” The affiliates shared the prestige of the state university’s brand, and University of California agreed to award degrees in its own name to their graduates on the recommendation of their respective faculties, but the affiliates were otherwise managed independently by their own boards of trustees, charged their own tuition and fees, and maintained their own budgets separate from the University of California budget. It was through the process of affiliation that University of California was able to claim it had medical and law schools in San Francisco within a decade of its founding.

    In 1879, California adopted its second and current constitution, which included unusually strong language to ensure University of California’s independence from the rest of the state government. This had lasting consequences for the Hastings College of the Law, which had been separately chartered and affiliated in 1878 by an act of the state legislature at the behest of founder Serranus Clinton Hastings. After a falling out with his own handpicked board of directors, the founder persuaded the state legislature in 1883 and 1885 to pass new laws to place his law school under the direct control of the Board of Regents. In 1886, the Supreme Court of California declared those newer acts to be unconstitutional because the clause protecting University of California’s independence in the 1879 state constitution had stripped the state legislature of the ability to amend the 1878 act. To this day, the Hastings College of the Law remains an affiliate of University of California, maintains its own board of directors, and is not governed by the Regents.

    In contrast, Toland Medical College (founded in 1864 and affiliated in 1873) and later, the dental, pharmacy, and nursing schools in SF were affiliated with University of California through written agreements, and not statutes invested with constitutional importance by court decisions. In the early 20th century, the Affiliated Colleges (as they came to be called) began to agree to submit to the Regents’ governance during the term of President Benjamin Ide Wheeler, as the Board of Regents had come to recognize the problems inherent in the existence of independent entities that shared the University of California brand but over which University of California had no real control. While Hastings remained independent, the Affiliated Colleges were able to increasingly coordinate their operations with one another under the supervision of the University of California President and Regents, and evolved into the health sciences campus known today as the University of California-San Francisco.

    In August 1882, the California State Normal School (whose original normal school in San Jose is now San Jose State University) opened a second school in Los Angeles to train teachers for the growing population of Southern California. In 1887, the Los Angeles school was granted its own board of trustees independent of the San Jose school, and in 1919, the state legislature transferred it to University of California control and renamed it the Southern Branch of the University of California. In 1927, it became The University of California-Los Angeles; the “at” would be replaced with a comma in 1958.

    Los Angeles surpassed San Francisco in the 1920 census to become the most populous metropolis in California. Because Los Angeles had become the state government’s single largest source of both tax revenue and votes, its residents felt entitled to demand more prestige and autonomy for their campus. Their efforts bore fruit in March 1951, when UCLA became the first University of California site outside of Berkeley to achieve de jure coequal status with the Berkeley campus. That month, the Regents approved a reorganization plan under which both the Berkeley and Los Angeles campuses would be supervised by chancellors reporting to the University of California President. However, the 1951 plan was severely flawed; it was overly vague about how the chancellors were to become the “executive heads” of their campuses. Due to stubborn resistance from President Sproul and several vice presidents and deans—who simply carried on as before—the chancellors ended up as glorified provosts with limited control over academic affairs and long-range planning while the President and the Regents retained de facto control over everything else.

    Upon becoming president in October 1957, Clark Kerr supervised University of California’s rapid transformation into a true public university system through a series of proposals adopted unanimously by the Regents from 1957 to 1960. Kerr’s reforms included expressly granting all campus chancellors the full range of executive powers, privileges, and responsibilities which Sproul had denied to Kerr himself, as well as the radical decentralization of a tightly knit bureaucracy in which all lines of authority had always run directly to the President at Berkeley or to the Regents themselves. In 1965, UCLA Chancellor Franklin D. Murphy tried to push this to what he saw as its logical conclusion: he advocated for authorizing all chancellors to report directly to the Board of Regents, thereby rendering the University of California President redundant. Murphy wanted to transform University of California from one federated university into a confederation of independent universities, similar to the situation in Kansas (from where he was recruited). Murphy was unable to develop any support for his proposal, Kerr quickly put down what he thought of as “Murphy’s rebellion”, and therefore Kerr’s vision of University of California as a university system prevailed: “one university with pluralistic decision-making”.

    During the 20th century, University of California acquired additional satellite locations which, like Los Angeles, were all subordinate to administrators at the Berkeley campus. California farmers lobbied for University of California to perform applied research responsive to their immediate needs; in 1905, the Legislature established a “University Farm School” at Davis and in 1907 a “Citrus Experiment Station” at Riverside as adjuncts to the College of Agriculture at Berkeley. In 1912, University of California acquired a private oceanography laboratory in San Diego, which had been founded nine years earlier by local business promoters working with a Berkeley professor. In 1944, University of California acquired Santa Barbara State College from the California State Colleges, the descendants of the State Normal Schools. In 1958, the Regents began promoting these locations to general campuses, thereby creating The University of California-Santa Barbara (1958), The University of California-Davis (1959), The University of California-Riverside (1959), The University of California-San Diego (1960), and The University of California-San Francisco (1964). Each campus was also granted the right to have its own chancellor upon promotion. In response to California’s continued population growth, University of California opened two additional general campuses in 1965, with The University of California-Irvine opening in Irvine and The University of California-Santa Cruz opening in Santa Cruz. The youngest campus, The University of California-Merced opened in fall 2005 to serve the San Joaquin Valley.

    After losing campuses in Los Angeles and Santa Barbara to the University of California system, supporters of the California State College system arranged for the state constitution to be amended in 1946 to prevent similar losses from happening again in the future.

    The California Master Plan for Higher Education of 1960 established that University of California must admit undergraduates from the top 12.5% (one-eighth) of graduating high school seniors in California. Prior to the promulgation of the Master Plan, University of California was to admit undergraduates from the top 15%. University of California does not currently adhere to all tenets of the original Master Plan, such as the directives that no campus was to exceed total enrollment of 27,500 students (in order to ensure quality) and that public higher education should be tuition-free for California residents. Five campuses, Berkeley, Davis, Irvine, Los Angeles, and San Diego each have current total enrollment at over 30,000.

    After the state electorate severely limited long-term property tax revenue by enacting Proposition 13 in 1978, University of California was forced to make up for the resulting collapse in state financial support by imposing a variety of fees which were tuition in all but name. On November 18, 2010, the Regents finally gave up on the longstanding legal fiction that University of California does not charge tuition by renaming the Educational Fee to “Tuition.” As part of its search for funds during the 2000s and 2010s, University of California quietly began to admit higher percentages of highly accomplished (and more lucrative) students from other states and countries, but was forced to reverse course in 2015 in response to the inevitable public outcry and start admitting more California residents.

    As of 2019, University of California controls over 12,658 active patents. University of California researchers and faculty were responsible for 1,825 new inventions that same year. On average, University of California researchers create five new inventions per day.

    Seven of University of California’s ten campuses (UC Berkeley, UC Davis, UC Irvine, UCLA, UC San Diego, UC Santa Barbara, and UC Santa Cruz) are members of the Association of American Universities, an alliance of elite American research universities founded in 1900 at University of California’s suggestion. Collectively, the system counts among its faculty (as of 2002):

    389 members of the Academy of Arts and Sciences
    5 Fields Medal recipients
    19 Fulbright Scholars
    25 MacArthur Fellows
    254 members of the National Academy of Sciences
    91 members of the National Academy of Engineering
    13 National Medal of Science Laureates
    61 Nobel laureates.
    106 members of the Institute of Medicine

    Davis, Los Angeles, Riverside, and Santa Barbara all followed Berkeley’s example by aggregating the majority of arts, humanities, and science departments into a relatively large College of Letters and Science. Therefore, at Berkeley, Davis, Los Angeles, and Santa Barbara, their respective College of Letters and Science is by far the single largest academic unit on each campus. The College of Letters and Science at Los Angeles is the largest academic unit in the entire University of California system.

    Finally, Irvine is organized into 13 schools and San Francisco is organized into four schools, all of which are relatively narrow in scope.

    In 2006 the Scholarly Publishing and Academic Resources Coalition awarded the University of California the SPARC Innovator Award for its “extraordinarily effective institution-wide vision and efforts to move scholarly communication forward”, including the 1997 founding (under then University of California President Richard C. Atkinson) of the California Digital Library (CDL) and its 2002 launching of CDL’s eScholarship, an institutional repository. The award also specifically cited the widely influential 2005 academic journal publishing reform efforts of University of California faculty and librarians in “altering the marketplace” by publicly negotiating contracts with publishers, as well as their 2006 proposal to amend University of California’s copyright policy to allow open access to University of California faculty research. On July 24, 2013, the University of California Academic Senate adopted an Open Access Policy, mandating that all University of California faculty produced research with a publication agreement signed after that date be first deposited in University of California’s eScholarship open access repository.

    University of California system-wide research on the SAT exam found that, after controlling for familial income and parental education, so-called achievement tests known as the SAT II had 10 times more predictive ability of college aptitude than the SAT I.

    All University of California campuses except Hastings College of the Law are governed by the Regents of the University of California as required by the Constitution of the State of California. Eighteen regents are appointed by the governor for 12-year terms. One member is a student appointed for a one-year term. There are also seven ex officio members—the governor, lieutenant governor, speaker of the State Assembly, State Superintendent of Public Instruction, president and vice president of the alumni associations of University of California, and the University of California president. The Academic Senate, made up of faculty members, is empowered by the regents to set academic policies. In addition, the system-wide faculty chair and vice-chair sit on the Board of Regents as non-voting members.

    Originally, the president was the chief executive of the first campus, Berkeley. In turn, other University of California locations (with the exception of Hastings College of the Law) were treated as off-site departments of the Berkeley campus, and were headed by provosts who were subordinate to the president. In March 1951, the regents reorganized the university’s governing structure. Starting with the 1952–53 academic year, day-to-day “chief executive officer” functions for the Berkeley and Los Angeles campuses were transferred to chancellors who were vested with a high degree of autonomy, and reported as equals to University of California’s president. As noted above, the regents promoted five additional University of California locations to campuses and allowed them to have chancellors of their own in a series of decisions from 1958 to 1964, and the three campuses added since then have also been run by chancellors. In turn, all chancellors (again, with the exception of Hastings) report as equals to the University of California President. Today, the University of California Office of the President (UCOP) and the Office of the Secretary and Chief of Staff to the Regents of the University of California share an office building in downtown Oakland that serves as the University of California system’s headquarters.

    Kerr’s vision for University of California governance was “one university with pluralistic decision-making.” In other words, the internal delegation of operational authority to chancellors at the campus level and allowing nine other campuses to become separate centers of academic life independent of Berkeley did not change the fact that all campuses remain part of one legal entity. As a 1968 University of California centennial coffee table book explained: “Yet for all its campuses, colleges, schools, institutes, and research stations, it remains one University, under one Board of Regents and one president—the University of California.” University of California continues to take a “united approach” as one university in matters in which it inures to University of California’s advantage to do so, such as when negotiating with the legislature and governor in Sacramento. University of California continues to manage certain matters at the system wide level in order to maintain common standards across all campuses, such as student admissions, appointment and promotion of faculty, and approval of academic programs.

    The State of California currently (2021–2022) spends $3.467 billion on the University of California system, out of total University of California operating revenues of $41.6 billion. The “University of California Budget for Current Operations” lists the medical centers as the largest revenue source, contributing 39% of the budget, the federal government 11%, Core Funds (State General Funds, University of California General Funds, student tuition) 21%, private support (gifts, grants, endowments) 7% ,and Sales and Services at 21%. In 1980, the state funded 86.8% of the University of California budget. While state funding has somewhat recovered, as of 2019 state support still lags behind even recent historic levels (e.g. 2001) when adjusted for inflation.

    According to the California Public Policy Institute, California spends 12% of its General Fund on higher education, but that percentage is divided between the University of California, California State University and California Community Colleges. Over the past forty years, state funding of higher education has dropped from 18% to 12%, resulting in a drop in University of California’s per student funding from $23,000 in 2016 to a current $8,000 per year per student.

    In May 2004, University of California President Robert C. Dynes and CSU Chancellor Charles B. Reed struck a private deal, called the “Higher Education Compact”, with Governor Schwarzenegger. They agreed to slash spending by about a billion dollars (about a third of the university’s core budget for academic operations) in exchange for a funding formula lasting until 2011. The agreement calls for modest annual increases in state funds (but not enough to replace the loss in state funds Dynes and Schwarzenegger agreed to), private fundraising to help pay for basic programs, and large student fee hikes, especially for graduate and professional students. A detailed analysis of the Compact by the Academic Senate “Futures Report” indicated, despite the large fee increases, the university core budget did not recover to 2000 levels. Undergraduate student fees have risen 90% from 2003 to 2007. In 2011, for the first time in Univerchity of California’s history, student fees exceeded contributions from the State of California.

    The First District Court of Appeal in San Francisco ruled in 2007 that the University of California owed nearly $40 million in refunds to about 40,000 students who were promised that their tuition fees would remain steady, but were hit with increases when the state ran short of money in 2003.

    In September 2019, the University of California announced it will divest its $83 billion in endowment and pension funds from the fossil fuel industry, citing ‘financial risk’.

    At present, the University of California system officially describes itself as a “ten campus” system consisting of the campuses listed below.

    Berkeley
    Davis
    Irvine
    Los Angeles
    Merced
    Riverside
    San Diego
    San Francisco
    Santa Barbara
    Santa Cruz

    These campuses are under the direct control of the Regents and President. Only these ten campuses are listed on the official University of California letterhead.

    Although it shares the name and public status of the University of California system, the Hastings College of the Law is not controlled by the Regents or President; it has a separate board of directors and must seek funding directly from the Legislature. However, under the California Education Code, Hastings degrees are awarded in the name of the Regents and bear the signature of the University of California president. Furthermore, Education Code section 92201 states that Hastings “is affiliated with the University of California, and is the law department thereof”.

     
  • richardmitnick 8:34 am on May 10, 2022 Permalink | Reply
    Tags: , "Research confirms atmospheric helium levels are rising", , The atmospheric abundance of the 4-helium (4He) isotope is rising because 4He is released during the burning and extraction of fossil fuels., , The University of California-San Diego   

    From The University of California-San Diego via phys.org: “Research confirms atmospheric helium levels are rising” 

    From The University of California-San Diego

    via

    phys.org

    May 9, 2022

    1
    Study lead author Benni Birner of The Scripps Institution of Oceanography at UC San Diego. Credit: Erik Jepsen/UC San Diego.

    Scientists at Scripps Institution of Oceanography at UC San Diego used an unprecedented technique to detect that levels of helium are rising in the atmosphere, resolving an issue that has lingered among atmospheric chemists for decades.

    The atmospheric abundance of the 4-helium (4He) isotope is rising because 4He is released during the burning and extraction of fossil fuels. The researchers report that it is increasing at a very small but, for the first time, clearly measurable rate. The 4He isotope itself does not add to the greenhouse effect that is making the planet warmer, but measures of it could serve as indirect markers of fossil-fuel use.

    The study appears today in the journal Nature Geoscience.

    “The main motivation was to resolve a longstanding controversy in the science community about atmospheric helium concentrations,” said study lead author Benni Birner, a former graduate student and now postdoctoral researcher at Scripps Institution of Oceanography at UC San Diego.

    The isotope 4He is produced by radioactive decay in the Earth’s crust and accumulates in the same reservoirs as fossil fuels, in particular those of natural gas. During the extraction and combustion of fossil fuels, 4He is coincidentally released, which creates another means to evaluate the scale of industrial activity.

    The study’s breakthrough is in the technique the Scripps Oceanography team used to measure how much helium is in the atmosphere. Birner and Scripps geoscientists Jeff Severinghaus, Bill Paplawsky, and Ralph Keeling created a precise method to compare the 4He isotope to levels of the common atmospheric gas nitrogen. Because nitrogen levels in the atmosphere are constant, an increase in He/N2 is indicative of the rate of 4He buildup in the atmosphere.

    Study co-author and Scripps Oceanography geochemist Ralph Keeling, overseer of the famed carbon dioxide measurement known as the Keeling Curve, describes the study as a “masterpiece of fundamental geochemistry.” Though helium is relatively easy for scientists to detect in air samples, present at levels of five parts per million of air, no one had done the work to measure it carefully enough to observe an atmospheric increase, he said.

    The study also provides a foundation for scientists to better understand the valuable 3-helium (3He) isotope, which has uses for nuclear fusion, cryogenics, and other applications. Proposals to acquire the scarce gas from the moon are an indication of the lengths to which manufacturers will go to harvest it.

    According to previous work by other researchers, the 4He isotope exists in the atmosphere in what appears to be an unvarying ratio with 3He. The atmospheric rise of 4He isotope measured at Scripps therefore implies that the 3He isotope must be rising at a comparable rate as 4He. The research by Birner’s team raises several questions about the accuracy of scientists’ previous assumptions about how 3He is produced and in what quantity.

    “We don’t know for sure, but I wonder if there is more 3He coming out of the Earth than we previously thought, which could perhaps be harvested and fuel our nuclear fusion reactors in the future,” Birner said.

    “The study lays in starker relief a controversy surrounding the rare helium isotope 3He,” said Keeling. “The implications are far from clear, but it begs additional work.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    The University of California- San Diego, is a public research university located in the La Jolla area of San Diego, California, in the United States. The university occupies 2,141 acres (866 ha) near the coast of the Pacific Ocean with the main campus resting on approximately 1,152 acres (466 ha). Established in 1960 near the pre-existing Scripps Institution of Oceanography, University of California, San Diego is the seventh oldest of the 10 University of California campuses and offers over 200 undergraduate and graduate degree programs, enrolling about 22,700 undergraduate and 6,300 graduate students. The University of California-San Diego is one of America’s “Public Ivy” universities, which recognizes top public research universities in the United States. The University of California-San Diego was ranked 8th among public universities and 37th among all universities in the United States, and rated the 18th Top World University by U.S. News & World Report’s 2015 rankings.

    The University of California-San Diego is organized into seven undergraduate residential colleges (Revelle; John Muir; Thurgood Marshall; Earl Warren; Eleanor Roosevelt; Sixth; and Seventh), four academic divisions (Arts and Humanities; Biological Sciences; Physical Sciences; and Social Sciences), and seven graduate and professional schools (Jacobs School of Engineering; Rady School of Management; Scripps Institution of Oceanography; School of Global Policy and Strategy; School of Medicine; Skaggs School of Pharmacy and Pharmaceutical Sciences; and the newly established Wertheim School of Public Health and Human Longevity Science). University of California-San Diego Health, the region’s only academic health system, provides patient care; conducts medical research; and educates future health care professionals at the University of California-San Diego Medical Center, Hillcrest; Jacobs Medical Center; Moores Cancer Center; Sulpizio Cardiovascular Center; Shiley Eye Institute; Institute for Genomic Medicine; Koman Family Outpatient Pavilion and various express care and urgent care clinics throughout San Diego.

    The university operates 19 organized research units (ORUs), including the Center for Energy Research; Qualcomm Institute (a branch of the California Institute for Telecommunications and Information Technology); San Diego Supercomputer Center; and the Kavli Institute for Brain and Mind, as well as eight School of Medicine research units, six research centers at Scripps Institution of Oceanography and two multi-campus initiatives, including the Institute on Global Conflict and Cooperation. The University of California-San Diego is also closely affiliated with several regional research centers, such as the Salk Institute; the Sanford Burnham Prebys Medical Discovery Institute; the Sanford Consortium for Regenerative Medicine; and the Scripps Research Institute. It is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation, UC San Diego spent $1.265 billion on research and development in fiscal year 2018, ranking it 7th in the nation.

    The University of California-San Diego is considered one of the country’s “Public Ivies”. As of February 2021, The University of California-San Diego faculty, researchers and alumni have won 27 Nobel Prizes and three Fields Medals, eight National Medals of Science, eight MacArthur Fellowships, and three Pulitzer Prizes. Additionally, of the current faculty, 29 have been elected to the National Academy of Engineering, 70 to the National Academy of Sciences, 45 to the National Academy of Medicine and 110 to the American Academy of Arts and Sciences.

    History

    When the Regents of the University of California originally authorized the San Diego campus in 1956, it was planned to be a graduate and research institution, providing instruction in the sciences, mathematics, and engineering. Local citizens supported the idea, voting the same year to transfer to the university 59 acres (24 ha) of mesa land on the coast near the preexisting Scripps Institution of Oceanography. The Regents requested an additional gift of 550 acres (220 ha) of undeveloped mesa land northeast of Scripps, as well as 500 acres (200 ha) on the former site of Camp Matthews from the federal government, but Roger Revelle, then director of Scripps Institution and main advocate for establishing the new campus, jeopardized the site selection by exposing the La Jolla community’s exclusive real estate business practices, which were antagonistic to minority racial and religious groups. This outraged local conservatives, as well as Regent Edwin W. Pauley.

    University of California President Clark Kerr satisfied San Diego city donors by changing the proposed name from University of California, La Jolla, to University of California-San Diego. The city voted in agreement to its part in 1958, and the University of California approved construction of the new campus in 1960. Because of the clash with Pauley, Revelle was not made chancellor. Herbert York, first director of DOE’s Lawrence Livermore National Laboratory, was designated instead. York planned the main campus according to the “Oxbridge” model, relying on many of Revelle’s ideas.

    According to Kerr, “San Diego always asked for the best,” though this created much friction throughout the University of California system, including with Kerr himself, because University of California-San Diego often seemed to be “asking for too much and too fast.” Kerr attributed University of California-San Diego’s “special personality” to Scripps, which for over five decades had been the most isolated University of California unit in every sense: geographically, financially, and institutionally. It was a great shock to the Scripps community to learn that Scripps was now expected to become the nucleus of a new University of California campus and would now be the object of far more attention from both the university administration in Berkeley and the state government in Sacramento.

    The University of California-San Diego was the first general campus of the University of California to be designed “from the top down” in terms of research emphasis. Local leaders disagreed on whether the new school should be a technical research institute or a more broadly based school that included undergraduates as well. John Jay Hopkins of General Dynamics Corporation pledged one million dollars for the former while the City Council offered free land for the latter. The original authorization for the University of California-San Diego campus given by the University of California Regents in 1956 approved a “graduate program in science and technology” that included undergraduate programs, a compromise that won both the support of General Dynamics and the city voters’ approval.

    Nobel laureate Harold Urey, a physicist from the University of Chicago, and Hans Suess, who had published the first paper on the greenhouse effect with Revelle in the previous year, were early recruits to the faculty in 1958. Maria Goeppert-Mayer, later the second female Nobel laureate in physics, was appointed professor of physics in 1960. The graduate division of the school opened in 1960 with 20 faculty in residence, with instruction offered in the fields of physics, biology, chemistry, and earth science. Before the main campus completed construction, classes were held in the Scripps Institution of Oceanography.

    By 1963, new facilities on the mesa had been finished for the School of Science and Engineering, and new buildings were under construction for Social Sciences and Humanities. Ten additional faculty in those disciplines were hired, and the whole site was designated the First College, later renamed after Roger Revelle, of the new campus. York resigned as chancellor that year and was replaced by John Semple Galbraith. The undergraduate program accepted its first class of 181 freshman at Revelle College in 1964. Second College was founded in 1964, on the land deeded by the federal government, and named after environmentalist John Muir two years later. The University of California-San Diego School of Medicine also accepted its first students in 1966.

    Political theorist Herbert Marcuse joined the faculty in 1965. A champion of the New Left, he reportedly was the first protester to occupy the administration building in a demonstration organized by his student, political activist Angela Davis. The American Legion offered to buy out the remainder of Marcuse’s contract for $20,000; the Regents censured Chancellor William J. McGill for defending Marcuse on the basis of academic freedom, but further action was averted after local leaders expressed support for Marcuse. Further student unrest was felt at the university, as the United States increased its involvement in the Vietnam War during the mid-1960s, when a student raised a Viet Minh flag over the campus. Protests escalated as the war continued and were only exacerbated after the National Guard fired on student protesters at Kent State University in 1970. Over 200 students occupied Urey Hall, with one student setting himself on fire in protest of the war.

    Early research activity and faculty quality, notably in the sciences, was integral to shaping the focus and culture of the university. Even before The University of California-San Diego had its own campus, faculty recruits had already made significant research breakthroughs, such as the Keeling Curve, a graph that plots rapidly increasing carbon dioxide levels in the atmosphere and was the first significant evidence for global climate change; the Kohn–Sham equations, used to investigate particular atoms and molecules in quantum chemistry; and the Miller–Urey experiment, which gave birth to the field of prebiotic chemistry.

    Engineering, particularly computer science, became an important part of the university’s academics as it matured. University researchers helped develop University of California-San Diego Pascal, an early machine-independent programming language that later heavily influenced Java; the National Science Foundation Network, a precursor to the Internet; and the Network News Transfer Protocol during the late 1970s to 1980s. In economics, the methods for analyzing economic time series with time-varying volatility (ARCH), and with common trends (cointegration) were developed. The University of California-San Diego maintained its research intense character after its founding, racking up 25 Nobel Laureates affiliated within 50 years of history; a rate of five per decade.

    Under Richard C. Atkinson’s leadership as chancellor from 1980 to 1995, the university strengthened its ties with the city of San Diego by encouraging technology transfer with developing companies, transforming San Diego into a world leader in technology-based industries. He oversaw a rapid expansion of the School of Engineering, later renamed after Qualcomm founder Irwin M. Jacobs, with the construction of the San Diego Supercomputer Center and establishment of the computer science, electrical engineering, and bioengineering departments. Private donations increased from $15 million to nearly $50 million annually, faculty expanded by nearly 50%, and enrollment doubled to about 18,000 students during his administration. By the end of his chancellorship, the quality of The University of California-San Diego graduate programs was ranked 10th in the nation by the National Research Council.

    The university continued to undergo further expansion during the first decade of the new millennium with the establishment and construction of two new professional schools — the Skaggs School of Pharmacy and Rady School of Management—and the California Institute for Telecommunications and Information Technology, a research institute run jointly with University of California Irvine. The University of California-San Diego also reached two financial milestones during this time, becoming the first university in the western region to raise over $1 billion in its eight-year fundraising campaign in 2007 and also obtaining an additional $1 billion through research contracts and grants in a single fiscal year for the first time in 2010. Despite this, due to the California budget crisis, the university loaned $40 million against its own assets in 2009 to offset a significant reduction in state educational appropriations. The salary of Pradeep Khosla, who became chancellor in 2012, has been the subject of controversy amidst continued budget cuts and tuition increases.

    On November 27, 2017, the university announced it would leave its longtime athletic home of the California Collegiate Athletic Association, an NCAA Division II league, to begin a transition to Division I in 2020. At that time, it will join the Big West Conference, already home to four other UC campuses (Davis, Irvine, Riverside, Santa Barbara). The transition period will run through the 2023–24 school year. The university prepares to transition to NCAA Division I competition on July 1, 2020.

    Research

    Applied Physics and Mathematics

    The Nature Index lists The University of California-San Diego as 6th in the United States for research output by article count in 2019. In 2017, The University of California-San Diego spent $1.13 billion on research, the 7th highest expenditure among academic institutions in the U.S. The university operates several organized research units, including the Center for Astrophysics and Space Sciences (CASS), the Center for Drug Discovery Innovation, and the Institute for Neural Computation. The University of California-San Diego also maintains close ties to the nearby Scripps Research Institute and Salk Institute for Biological Studies. In 1977, The University of California-San Diego developed and released the University of California-San Diego Pascal programming language. The university was designated as one of the original national Alzheimer’s disease research centers in 1984 by the National Institute on Aging. In 2018, The University of California-San Diego received $10.5 million from the DOE National Nuclear Security Administration to establish the Center for Matters under Extreme Pressure (CMEC).

    The university founded the San Diego Supercomputer Center (SDSC) in 1985, which provides high performance computing for research in various scientific disciplines. In 2000, The University of California-San Diego partnered with The University of California-Irvine to create the Qualcomm Institute – University of California-San Diego, which integrates research in photonics, nanotechnology, and wireless telecommunication to develop solutions to problems in energy, health, and the environment.

    The University of California-San Diego also operates the Scripps Institution of Oceanography, one of the largest centers of research in earth science in the world, which predates the university itself. Together, SDSC and SIO, along with funding partner universities California Institute of Technology, San Diego State University, and The University of California-Santa Barbara, manage the High Performance Wireless Research and Education Network.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: