Tagged: The University of Arizona Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:39 am on November 17, 2022 Permalink | Reply
    Tags: "Mapping rock glaciers to understand their future on Earth and Mars", A better understanding of water resources on both Earth and Mars., , , Beyond a certain thickness insulation basically turns off the melting allowing for the ice to be preserved and slowly move or flow down a valley at elevations where clean ice may be completely melted., Both pure ice glaciers and rock glaciers can move across landscapes – very slowly., Creating maps of four rock glaciers in Colorado and Wyoming and Alaska., , , , Martian rock glaciers are still not well understood., One of the big challenges for scientists is determining the thickness of the surface rock covering the glaciers on Mars., , Rock glaciers are hidden and insulated by debris on top of the ice., Rock glaciers are so named because unlike pure ice glaciers they are a mix of frozen water and sand and rocks., The debris in rock glaciers causes them to flow even more slowly than ice glaciers as the inclusion of rocks makes them much stiffer., , The researchers are continuing their analysis to understand signs of past climate change in rock glaciers and how these glaciers might have evolved through past climate changes., The researchers used ground-penetrating radar to measure both the radar wave speed and the angle at which the wave was reflected from the subsurface., The University of Arizona, University of Arizona researchers developed a new method for analyzing rock glaciers which could help scientists better understand these "hidden giants" on Earth and Mars.   

    From The Lunar and Planetary Laboratory At The University of Arizona: “Mapping rock glaciers to understand their future on Earth and Mars” 

    From The Lunar and Planetary Laboratory

    At

    The University of Arizona

    11.16.22

    Media contact(s)
    Mikayla Mace Kelley
    Science Writer, University Communications
    mikaylamace@arizona.edu
    520-621-1878

    Researcher contact(s)
    Tyler Meng
    Planetary Sciences
    tmeng@arizona.edu

    Jack Holt
    Lunar and Planetary Laboratory
    jwholt@arizona.edu
    520-621-6963

    University of Arizona researchers developed a new method for analyzing rock glaciers, which could help scientists better understand these “hidden giants” on Earth and Mars.

    1
    Lead author and graduate student Tyler Meng standing with radar equipment on the Sourdough rock glacier in Alaska in August 2021. Credit: Stefano Nerozzi.

    Standing on a rock glacier is what Tyler Meng imagines it would be like to stand on the surface of Mars. The glacier’s barren and wrinkled landscape looks like Silly Putty that’s drooped under gravity’s pull, offering few clues that a frozen, debris-laden giant lurks beneath the surface.

    Rock glaciers are so named because unlike pure ice glaciers, they are a mix of frozen water, sand and rocks. They are generally found at the base of steep mountainsides or cliffs that have slowly dropped rock debris, which then mixes with glacier ice and refrozen snowmelt. Rock glaciers also exist on Mars.

    Meng – who is pursuing a doctoral degree in planetary science at the University of Arizona, with a minor in geosciences – is lead author of a study in the Journal of Glaciology [below] that describes a new method to determine rock glaciers’ ice thickness and the ratio of ice to debris, allowing for more precise measurements of these glaciers than previously possible. Meng and his adviser and co-author Jack Holt, a UArizona planetary sciences and geosciences professor, used this information to create maps of four rock glaciers in Colorado, Wyoming and Alaska.

    Their work, and future work that uses this method, will allow scientists to better understand water resources on both Earth and Mars, as well as how resilient this type of buried ice will be to the changing climate on both planets.

    More than ice

    2
    A drone image of the Sourdough Rock Glacier flowing down from Sourdough Peakvin August 2021. Credit: Michael Christoffersen.

    Rock glaciers are hidden and insulated by debris on top of ice, and their movement is affected by the rocks trapped inside of them.

    “You can think of the rocks like an insulating blanket,” Meng said. “Beyond a certain thickness, insulation basically turns off the melting, allowing for the ice to be preserved and slowly move or flow down a valley at elevations and temperatures where clean ice may be completely melted.”

    Both pure ice glaciers and rock glaciers can move across landscapes – very slowly. However, the debris in rock glaciers causes them to flow even more slowly than ice glaciers, as the inclusion of rocks makes them much stiffer. They’re also typically smaller and thinner than clean ice glaciers, measuring just a couple miles in length, a few hundred or thousand feet wide and between 50 and 200 feet thick. Ice glaciers, in contrast, can be many miles in length and thousands of feet thick.

    To collect the information needed to map and characterize these hidden giants, Meng, Holt, other UArizona students and their collaborators hiked rugged mountain terrain in the western U.S., lugging computers, battery packs and radar antennas on their backs. They navigated steep landscapes with loose rocks ranging in size from grains of sand to houses.

    “Standing on a debris-covered glacier is pretty surreal, because it’s in this barren area on a mountainside, and each rock glacier seems to have its own personality,” Meng said. “They each have a slightly different type of bedrock supplying debris, and the valley geometry dictates its shape and appearance.”

    Using two different antenna configurations, the researchers used ground-penetrating radar to measure both the radar wave speed and the angle at which the wave was reflected from the subsurface. In the same way that humans have two eyes to see in three dimensions, two antenna configurations allowed the researchers to better calculate the dimensions of the rock glacier. They also estimated the ratio of ice to rock at each survey location using radar wave velocity.

    “In the process, we made the most precise estimates of rock glacier geometry and composition to date,” Meng said.

    From Earth to Mars

    Understanding rock glaciers on Earth is important because they are essentially water reservoirs, Meng said.

    “Our research gives us a better idea of the total water budget in mountainous regions, where major rivers have headwaters,” he said. “Snow is a year-to-year accumulation that covers an entire landscape, whereas rock glaciers are a more localized but permanent water reservoir that actually stores water for what could be hundreds to a few thousand years.”

    The researchers are continuing their analysis to understand signs of past climate change in rock glaciers and how these glaciers might have evolved through past climate changes.

    “By having a map of the debris thickness and ice concentration, we can essentially characterize the ability of rock glaciers to withstand effects of a warming climate compared to clean ice glaciers,” Meng said.

    Other scientists also recognized rock glaciers on Mars by their wrinkled putty-like flow pattern, even before radar data detected them.

    Martian rock glaciers are still not well understood, Meng said, but it is known that they are typically found between 30 and 60 degrees latitude in both of the planet’s hemispheres and are much older than the Martian polar ice.

    “These Martian rock glaciers are potential targets for water resources on Mars, too, because they’re actually really large compared to the ones on Earth, like hundreds of meters thick,” Meng said. “They’re also more accessible than polar ice because spacecraft wouldn’t have to change their orbits as much as they would if they were to land on a pole, which requires a lot more fuel to reach.”

    One of the big challenges for scientists is determining the thickness of the surface rock covering the glaciers on Mars. If there is 30 feet of rock and debris on rugged Martian terrain, then it might not be worth the trouble for astronauts to attempt to access the ice for water resources, Meng said.

    “Our goal is to use these rock glaciers on Earth as an analog for processes on Mars,” Meng said. “By mapping the patterns of debris thickness on Earth, we’re trying to understand how that debris thickness may also vary on Mars. Also, by learning about the differences in flow parameters between clean ice and debris-rich ice, that will help simulations for the Martian case as well.”

    Moving forward, Holt’s research group is continuing to make similar measurements using surface-based radar while collecting new data using drones. This drone-based data collection will help the group to gain a more complete understanding of rock glacier flow and subsurface characteristics, while also testing new geophysical methods that may be used in future exploration of Earth and Mars.

    Science paper:
    Journal of Glaciology
    See the science paper for instructive material with images.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Lunar and Planetary Laboratory is a research center for planetary science located in Tucson, Arizona. It is also a graduate school, constituting the Department of Planetary Sciences at the University of Arizona. The Lunar and Planetary Laboratory is one of the world’s largest programs dedicated exclusively to planetary science in a university setting. The Lunar and Planetary Lab collection is held at the University of Arizona Special Collections Library.

    The Lunar and Planetary Laboratory was founded in 1960 by astronomer Gerard Kuiper. Kuiper had long been a pioneer in observing the Solar System, especially the Moon, at a time when this was unfashionable among astronomers. Among his contributions are the discovery of Miranda and Nereid, the detection of carbon dioxide on Mars and of methane on Titan, and the prediction of the Kuiper Belt.

    Kuiper came to Tucson looking for greater independence than he had enjoyed at The University of Chicago, the chance to build a community dedicated to solar system studies, and also to be closer to southern Arizona’s many potential sites for world-class observatories, such as Kitt Peak National Observatory (founded in 1958)[below]. LPL was established under the auspices of the University of Arizona, with Kuiper serving as director until his death.

    The Lunar and Planetary Laboratory’s endeavors are truly interdisciplinary. The accumulated knowledge and techniques of astronomy, physics, chemistry, geology, geophysics, geochemistry, atmospheric science, and engineering are all brought to bear upon the single goal of studying planetary systems. Many students come to The Lunar and Planetary Laboratory having studied only one or two of these subjects in detail, so a broad-based curriculum is essential.

    In 1973, the university established a graduate Department of Planetary Sciences, operating continuously with The Lunar and Planetary Laboratory. This provided an administrative framework for The Lunar and Planetary Laboratory to admit graduate students and take a greater role in teaching. The Lunar and Planetary Laboratory’s chief officer is simultaneously “head” of the department and “director” of the laboratory.

    As of 2019, The University of Arizona enrolled 45,918 students in 19 separate colleges/schools, including The University of Arizona College of Medicine in Tucson and Phoenix and the James E. Rogers College of Law, and is affiliated with two academic medical centers (Banner – University Medical Center Tucson and Banner – University Medical Center Phoenix). The University of Arizona is one of three universities governed by the Arizona Board of Regents. The university is part of the Association of American Universities and is the only member from Arizona, and also part of the Universities Research Association . The university is classified among “R1: Doctoral Universities – Very High Research Activity”.

    Known as the Arizona Wildcats (often shortened to “Cats”), The University of Arizona’s intercollegiate athletic teams are members of the Pac-12 Conference of the NCAA. The University of Arizona athletes have won national titles in several sports, most notably men’s basketball, baseball, and softball. The official colors of the university and its athletic teams are cardinal red and navy blue.

    After the passage of the Morrill Land-Grant Act of 1862, the push for a university in Arizona grew. The Arizona Territory’s “Thieving Thirteenth” Legislature approved The University of Arizona in 1885 and selected the city of Tucson to receive the appropriation to build the university. Tucson hoped to receive the appropriation for the territory’s mental hospital, which carried a $100,000 allocation instead of the $25,000 allotted to the territory’s only university. (Arizona State University was also chartered in 1885, but it was created as Arizona’s normal school, and not a university). Flooding on the Salt River delayed Tucson’s legislators, and by the time they reached Prescott, back-room deals allocating the most desirable territorial institutions had been made. Tucson was largely disappointed with receiving what was viewed as an inferior prize.

    With no parties willing to provide land for the new institution, the citizens of Tucson prepared to return the money to the Territorial Legislature until two gamblers and a saloon keeper decided to donate the land to build the school. Construction of Old Main, the first building on campus, began on October 27, 1887, and classes met for the first time in 1891 with 32 students in Old Main, which is still in use today. Because there were no high schools in Arizona Territory, the university maintained separate preparatory classes for the first 23 years of operation.

    Research

    The University of Arizona is classified among “R1: Doctoral Universities – Very high research activity”. UArizona is the fourth most awarded public university by National Aeronautics and Space Administration for research. The University of Arizona was awarded over $325 million for its Lunar and Planetary Laboratory (LPL) to lead NASA’s 2007–08 mission to Mars to explore the Martian Arctic, and $800 million for its OSIRIS-REx mission, the first in U.S. history to sample an asteroid.

    National Aeronautics Space Agency OSIRIS-REx Spacecraft.

    The LPL’s work in the Cassini spacecraft orbit around Saturn is larger than any other university globally.

    National Aeronautics and Space Administration/European Space Agency [La Agencia Espacial Europea][Agence spatiale européenne][Europäische Weltraumorganization](EU)/ASI Italian Space Agency [Agenzia Spaziale Italiana](IT) Cassini Spacecraft.

    The University of Arizona laboratory designed and operated the atmospheric radiation investigations and imaging on the probe. The University of Arizona operates the HiRISE camera, a part of the Mars Reconnaissance Orbiter.

    U Arizona NASA Mars Reconnaisance HiRISE Camera.

    NASA Mars Reconnaissance Orbiter.

    While using the HiRISE camera in 2011, University of Arizona alumnus Lujendra Ojha and his team discovered proof of liquid water on the surface of Mars—a discovery confirmed by NASA in 2015. The University of Arizona receives more NASA grants annually than the next nine top NASA/JPL-Caltech-funded universities combined. As of March 2016, The University of Arizona’s Lunar and Planetary Laboratory is actively involved in ten spacecraft missions: Cassini VIMS; Grail; the HiRISE camera orbiting Mars; the Juno mission orbiting Jupiter; Lunar Reconnaissance Orbiter (LRO); Maven, which will explore Mars’ upper atmosphere and interactions with the sun; Solar Probe Plus, a historic mission into the Sun’s atmosphere for the first time; Rosetta’s VIRTIS; WISE; and OSIRIS-REx, the first U.S. sample-return mission to a near-earth asteroid, which launched on September 8, 2016.

    3
    NASA – GRAIL Flying in Formation (Artist’s Concept). Credit: NASA.
    National Aeronautics Space Agency Juno at Jupiter.

    NASA/Lunar Reconnaissance Orbiter.

    NASA/Mars MAVEN

    NASA Parker Solar Probe Plus named to honor Pioneering Physicist Eugene Parker. The Johns Hopkins University Applied Physics Lab.
    National Aeronautics and Space Administration Wise /NEOWISE Telescope.

    The University of Arizona students have been selected as Truman, Rhodes, Goldwater, and Fulbright Scholars. According to The Chronicle of Higher Education, UArizona is among the top 25 producers of Fulbright awards in the U.S.

    The University of Arizona is a member of the Association of Universities for Research in Astronomy , a consortium of institutions pursuing research in astronomy. The association operates observatories and telescopes, notably Kitt Peak National Observatory just outside Tucson.

    National Science Foundation NOIRLab National Optical Astronomy Observatory Kitt Peak National Observatory on Kitt Peak of the Quinlan Mountains in the Arizona-Sonoran Desert on the Tohono O’odham Nation, 88 kilometers (55 mi) west-southwest of Tucson, Arizona, Altitude 2,096 m (6,877 ft), annotated.

    Led by Roger Angel, researchers in the Steward Observatory Mirror Lab at The University of Arizona are working in concert to build the world’s most advanced telescope. Known as the Giant Magellan Telescope (CL), it will produce images 10 times sharper than those from the Earth-orbiting Hubble Telescope.

    GMT Giant Magellan Telescope(CL) 21 meters, to be at the Carnegie Institution for Science’s NOIRLab NOAO Las Campanas Observatory(CL), some 115 km (71 mi) north-northeast of La Serena, Chile, over 2,500 m (8,200 ft) high.

    GMT will ultimately cost $1 billion. Researchers from at least nine institutions are working to secure the funding for the project. The telescope will include seven 18-ton mirrors capable of providing clear images of volcanoes and riverbeds on Mars and mountains on the moon at a rate 40 times faster than the world’s current large telescopes. The mirrors of the Giant Magellan Telescope will be built at The University of Arizona and transported to a permanent mountaintop site in the Chilean Andes where the telescope will be constructed.

    Reaching Mars in March 2006, the Mars Reconnaissance Orbiter contained the HiRISE camera, with Principal Investigator Alfred McEwen as the lead on the project. This National Aeronautics and Space Agency mission to Mars carrying the UArizona-designed camera is capturing the highest-resolution images of the planet ever seen. The journey of the orbiter was 300 million miles. In August 2007, The University of Arizona, under the charge of Scientist Peter Smith, led the Phoenix Mars Mission, the first mission completely controlled by a university. Reaching the planet’s surface in May 2008, the mission’s purpose was to improve knowledge of the Martian Arctic. The Arizona Radio Observatory , a part of The University of Arizona Department of Astronomy Steward Observatory , operates the Submillimeter Telescope on Mount Graham.

    University of Arizona Radio Observatory at NOAO Kitt Peak National Observatory, AZ USA, U Arizona Department of Astronomy and Steward Observatory at altitude 2,096 m (6,877 ft).

    The National Science Foundation funded the iPlant Collaborative in 2008 with a $50 million grant. In 2013, iPlant Collaborative received a $50 million renewal grant. Rebranded in late 2015 as “CyVerse”, the collaborative cloud-based data management platform is moving beyond life sciences to provide cloud-computing access across all scientific disciplines.

    In June 2011, the university announced it would assume full ownership of the Biosphere 2 scientific research facility in Oracle, Arizona, north of Tucson, effective July 1. Biosphere 2 was constructed by private developers (funded mainly by Texas businessman and philanthropist Ed Bass) with its first closed system experiment commencing in 1991. The university had been the official management partner of the facility for research purposes since 2007.

    U Arizona mirror lab-Where else in the world can you find an astronomical observatory mirror lab under a football stadium?

    University of Arizona’s Biosphere 2, located in the Sonoran desert. An entire ecosystem under a glass dome? Visit our campus, just once, and you’ll quickly understand why The University of Arizona is a university unlike any other.

    University of Arizona Landscape Evolution Observatory at Biosphere 2.

     
  • richardmitnick 11:34 am on November 10, 2022 Permalink | Reply
    Tags: "Tropical cyclones act as 'massive heat pumps' that fuel extreme heat", Above-average temperatures almost always follow tropical cyclones – which include tropical storms and hurricanes – and may soar to nearly 10 degrees Fahrenheit higher than average., Above-average temperatures can occur days later and even in nearby areas that were not directly impacted by the storm., , , , , , Multiple extreme events happening within a very short window of time can complicate disaster recovery., Researchers have found that extreme heat often follows tropical cyclones and can complicate disaster recovery even further., The research team analyzed 53 tropical cyclones in the eastern Caribbean between 1991 and 2020 and 205 interactions between the cyclones and 14 Caribbean cities., The University of Arizona   

    From The University of Arizona: “Tropical cyclones act as ‘massive heat pumps’ that fuel extreme heat” 

    From The University of Arizona

    11.8.22

    Media contact
    Mikayla Mace Kelley
    Science Writer, University Communications
    mikaylamace@arizona.edu
    520-621-1878

    Researcher contact
    Zackry Guido
    Arizona Institutes for Resilience
    zguido@email.arizona.edu
    520-626-0252

    Researchers have found that extreme heat often follows tropical cyclones and can complicate disaster recovery even further.

    1
    Hurricane Fiona over the Dominican Republic and Puerto Rico on Sept. 19, 2022, captured by NOAA’s GOES-East satellite. Credit:CIRA/NOAA.

    Three days after Hurricane Fiona struck Puerto Rico in mid-September, the National Weather Service issued an extreme heat advisory, warning that the heat index – which incorporates humidity to calculate perceived temperature – could reach up to 109 degrees.

    Above-average temperatures almost always follow tropical cyclones – which by definition include tropical storms and hurricanes – and may soar to nearly 10 degrees Fahrenheit higher than average, according to a new University of Arizona-led study published in the Journal of Geophysical Research [below]. The study’s authors stressed that their results are likely conservative estimates of just how high temperatures can climb following a cyclone.

    Tropical cyclones often cause damage from strong winds, storm surges, intense rain and flooding, but extreme heat is an additional hazard, the researchers found. Above-average temperatures can occur days later and even in nearby areas that were not directly impacted by the storm.

    “Multiple extreme events happening within a very short window of time can complicate disaster recovery,” said lead study author Zackry Guido, an assistant research professor in the university’s School of Natural Resources and Environment and the Arizona Institutes for Resilience: Solutions for Environment and Societies, or AIRES. “To medical providers, heat is a concern. Our results suggest that tropical cyclone preparedness should also include public information about heat risk.”

    The research team analyzed 53 tropical cyclones in the eastern Caribbean between 1991 and 2020 and 205 interactions between the cyclones and 14 Caribbean cities. They found that the cities’ heat index values were always warmer than average after the storm.

    “Everyone’s focus is on the destructive power of tropical storms and hurricanes – the storm surge, winds, flooding – and that’s obviously quite substantial, but our focus is on the combined hazard of storm and subsequent heat,” Guido said. “Hurricanes are massive heat pumps, redistributing heat for a large spatial distance around the center of the storm, and they leave massive destruction in their wake that can knock out the energy grid. That combination is often dangerous because it slows recovery and poses risks to human health.”

    While the paper doesn’t explore how climate change may be impacting the phenomenon, the authors expect that high heat index values following tropical cyclones will increase in the future.

    “It’s very easy to understand the climate change impacts of this,” Guido said. “Our future will likely have hurricanes dropping more intense rain and have more people in harm’s way. Then, if you drape on top of that a hotter environment, you will therefore expect a greater overall impact.”

    Guido leads AIRES International Programs and works closely with the university’s new Arizona Initiative for Resilience and Development, which both support UArizona research in regions most sensitive to social and environmental changes and research on topics that advance sustainable development.

    The cyclone study is part of a larger effort to build climate resilience in Puerto Rico. The researchers held workshops with public health researchers and metrological service professionals in the Caribbean, who pointed to the need to better understand the impact of heat following tropical storms and hurricanes.

    “We want to call attention to this as a new hazard,” Guido said. “We worked with the National Weather Service in Puerto Rico, and part of the work, not discussed in the paper, was to build awareness about heat impacts. Puerto Rico has a heat awareness week from May 11 through 15, and we are working to help advance public education and establish a heat awareness day.”

    The research team also included Pablo Méndez-Lázaro from the University of Puerto Rico, Simon Mason from Columbia University’s International Research Institute for Climate and Society, and Teddy Allen from the Caribbean Institute for Meteorology and Hydrology.

    Science paper:
    Journal of Geophysical Research

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    As of 2019, The University of Arizona enrolled 45,918 students in 19 separate colleges/schools, including The University of Arizona College of Medicine in Tucson and Phoenix and the James E. Rogers College of Law, and is affiliated with two academic medical centers (Banner – University Medical Center Tucson and Banner – University Medical Center Phoenix). The University of Arizona is one of three universities governed by the Arizona Board of Regents. The university is part of the Association of American Universities and is the only member from Arizona, and also part of the Universities Research Association . The university is classified among “R1: Doctoral Universities – Very High Research Activity”.

    Known as the Arizona Wildcats (often shortened to “Cats”), The University of Arizona’s intercollegiate athletic teams are members of the Pac-12 Conference of the NCAA. The University of Arizona athletes have won national titles in several sports, most notably men’s basketball, baseball, and softball. The official colors of the university and its athletic teams are cardinal red and navy blue.

    After the passage of the Morrill Land-Grant Act of 1862, the push for a university in Arizona grew. The Arizona Territory’s “Thieving Thirteenth” Legislature approved The University of Arizona in 1885 and selected the city of Tucson to receive the appropriation to build the university. Tucson hoped to receive the appropriation for the territory’s mental hospital, which carried a $100,000 allocation instead of the $25,000 allotted to the territory’s only university. (Arizona State University was also chartered in 1885, but it was created as Arizona’s normal school, and not a university). Flooding on the Salt River delayed Tucson’s legislators, and by the time they reached Prescott, back-room deals allocating the most desirable territorial institutions had been made. Tucson was largely disappointed with receiving what was viewed as an inferior prize.

    With no parties willing to provide land for the new institution, the citizens of Tucson prepared to return the money to the Territorial Legislature until two gamblers and a saloon keeper decided to donate the land to build the school. Construction of Old Main, the first building on campus, began on October 27, 1887, and classes met for the first time in 1891 with 32 students in Old Main, which is still in use today. Because there were no high schools in Arizona Territory, the university maintained separate preparatory classes for the first 23 years of operation.

    Research

    The University of Arizona is classified among “R1: Doctoral Universities – Very high research activity”. UArizona is the fourth most awarded public university by National Aeronautics and Space Administration for research. The University of Arizona was awarded over $325 million for its Lunar and Planetary Laboratory (LPL) to lead NASA’s 2007–08 mission to Mars to explore the Martian Arctic, and $800 million for its OSIRIS-REx mission, the first in U.S. history to sample an asteroid.

    National Aeronautics Space Agency OSIRIS-REx Spacecraft.

    The LPL’s work in the Cassini spacecraft orbit around Saturn is larger than any other university globally.

    National Aeronautics and Space Administration/European Space Agency [La Agencia Espacial Europea][Agence spatiale européenne][Europäische Weltraumorganization](EU)/ASI Italian Space Agency [Agenzia Spaziale Italiana](IT) Cassini Spacecraft.

    The University of Arizona laboratory designed and operated the atmospheric radiation investigations and imaging on the probe. The University of Arizona operates the HiRISE camera, a part of the Mars Reconnaissance Orbiter.

    U Arizona NASA Mars Reconnaisance HiRISE Camera.

    NASA Mars Reconnaissance Orbiter.

    While using the HiRISE camera in 2011, University of Arizona alumnus Lujendra Ojha and his team discovered proof of liquid water on the surface of Mars—a discovery confirmed by NASA in 2015. The University of Arizona receives more NASA grants annually than the next nine top NASA/JPL-Caltech-funded universities combined. As of March 2016, The University of Arizona’s Lunar and Planetary Laboratory is actively involved in ten spacecraft missions: Cassini VIMS; Grail; the HiRISE camera orbiting Mars; the Juno mission orbiting Jupiter; Lunar Reconnaissance Orbiter (LRO); Maven, which will explore Mars’ upper atmosphere and interactions with the sun; Solar Probe Plus, a historic mission into the Sun’s atmosphere for the first time; Rosetta’s VIRTIS; WISE; and OSIRIS-REx, the first U.S. sample-return mission to a near-earth asteroid, which launched on September 8, 2016.

    3
    NASA – GRAIL Flying in Formation (Artist’s Concept). Credit: NASA.
    National Aeronautics Space Agency Juno at Jupiter.

    NASA/Lunar Reconnaissance Orbiter.

    NASA/Mars MAVEN

    NASA Parker Solar Probe Plus named to honor Pioneering Physicist Eugene Parker. The Johns Hopkins University Applied Physics Lab.
    National Aeronautics and Space Administration Wise /NEOWISE Telescope.

    The University of Arizona students have been selected as Truman, Rhodes, Goldwater, and Fulbright Scholars. According to The Chronicle of Higher Education, UArizona is among the top 25 producers of Fulbright awards in the U.S.

    The University of Arizona is a member of the Association of Universities for Research in Astronomy , a consortium of institutions pursuing research in astronomy. The association operates observatories and telescopes, notably Kitt Peak National Observatory just outside Tucson.

    National Science Foundation NOIRLab National Optical Astronomy Observatory Kitt Peak National Observatory on Kitt Peak of the Quinlan Mountains in the Arizona-Sonoran Desert on the Tohono O’odham Nation, 88 kilometers (55 mi) west-southwest of Tucson, Arizona, Altitude 2,096 m (6,877 ft), annotated.

    Led by Roger Angel, researchers in the Steward Observatory Mirror Lab at The University of Arizona are working in concert to build the world’s most advanced telescope. Known as the Giant Magellan Telescope (CL), it will produce images 10 times sharper than those from the Earth-orbiting Hubble Telescope.

    GMT Giant Magellan Telescope(CL) 21 meters, to be at the Carnegie Institution for Science’s NOIRLab NOAO Las Campanas Observatory(CL), some 115 km (71 mi) north-northeast of La Serena, Chile, over 2,500 m (8,200 ft) high.

    GMT will ultimately cost $1 billion. Researchers from at least nine institutions are working to secure the funding for the project. The telescope will include seven 18-ton mirrors capable of providing clear images of volcanoes and riverbeds on Mars and mountains on the moon at a rate 40 times faster than the world’s current large telescopes. The mirrors of the Giant Magellan Telescope will be built at The University of Arizona and transported to a permanent mountaintop site in the Chilean Andes where the telescope will be constructed.

    Reaching Mars in March 2006, the Mars Reconnaissance Orbiter contained the HiRISE camera, with Principal Investigator Alfred McEwen as the lead on the project. This National Aeronautics and Space Agency mission to Mars carrying the UArizona-designed camera is capturing the highest-resolution images of the planet ever seen. The journey of the orbiter was 300 million miles. In August 2007, The University of Arizona, under the charge of Scientist Peter Smith, led the Phoenix Mars Mission, the first mission completely controlled by a university. Reaching the planet’s surface in May 2008, the mission’s purpose was to improve knowledge of the Martian Arctic. The Arizona Radio Observatory , a part of The University of Arizona Department of Astronomy Steward Observatory , operates the Submillimeter Telescope on Mount Graham.

    University of Arizona Radio Observatory at NOAO Kitt Peak National Observatory, AZ USA, U Arizona Department of Astronomy and Steward Observatory at altitude 2,096 m (6,877 ft).

    The National Science Foundation funded the iPlant Collaborative in 2008 with a $50 million grant. In 2013, iPlant Collaborative received a $50 million renewal grant. Rebranded in late 2015 as “CyVerse”, the collaborative cloud-based data management platform is moving beyond life sciences to provide cloud-computing access across all scientific disciplines.

    In June 2011, the university announced it would assume full ownership of the Biosphere 2 scientific research facility in Oracle, Arizona, north of Tucson, effective July 1. Biosphere 2 was constructed by private developers (funded mainly by Texas businessman and philanthropist Ed Bass) with its first closed system experiment commencing in 1991. The university had been the official management partner of the facility for research purposes since 2007.

    U Arizona mirror lab-Where else in the world can you find an astronomical observatory mirror lab under a football stadium?

    University of Arizona’s Biosphere 2, located in the Sonoran desert. An entire ecosystem under a glass dome? Visit our campus, just once, and you’ll quickly understand why The University of Arizona is a university unlike any other.

    University of Arizona Landscape Evolution Observatory at Biosphere 2.

     
  • richardmitnick 9:49 am on October 13, 2022 Permalink | Reply
    Tags: "Life may have thrived on early Mars until it drove climate change that caused its demise", , The University of Arizona   

    From The University of Arizona: “Life may have thrived on early Mars until it drove climate change that caused its demise” 

    From The University of Arizona

    10.11.22

    Media contact
    Daniel Stolte
    Science Writer, University Communications
    stolte@arizona.edu
    520-626-4402

    Researcher contact
    Régis Ferrière
    Department of Ecology and Evolutionary Biology
    regisf@arizona.edu
    520-626-4741

    Early in its history, the red planet likely would have been habitable to methanogens, microbes that make a living in extreme habitats on Earth, according to a study that simulated the conditions on a young Mars.

    1
    Researchers in the UArizona Department of Ecology and Evolutionary Biology simulated the conditions hypothetical lifeforms would have encountered on Mars 4 billion years ago, when liquid water was likely present in abundance on the red planet. Credit: M. Kornmesser/The European Southern Observatory [La Observatorio Europeo Austral] [Observatoire européen austral][Europäische Südsternwarte](EU)(CL)

    If there ever was life on Mars – and that’s a huge “if” – conditions during the planet’s infancy most likely would have supported it, according to a study led by University of Arizona researchers.

    Dry and extremely cold, with a tenuous atmosphere, today’s Mars is extremely unlikely to sustain any form of life at the surface. But 4 billion years ago, Earth’s smaller, red neighbor may have been much more hospitable, according to the study, which is published in Nature Astronomy [below].

    Most Mars experts agree that the planet started out with an atmosphere that was much denser than it is today. Rich in carbon dioxide and hydrogen, it would have likely created a temperate climate that allowed water to flow and, possibly, microbial life to thrive, according to Regis Ferrière, a professor in the UArizona Department of Ecology and Evolutionary Biology and one of two senior authors on the paper.

    The authors are not arguing that life existed on early Mars, but if it did, Ferrière said, “our study shows that underground, early Mars would very likely have been habitable to methanogenic microbes.”

    Such microbes, which make a living by converting chemical energy from their environment and releasing methane as a waste product, are known to exist in extreme habitats on Earth, such as hydrothermal vents along fissures in the ocean floor. There, they support entire ecosystems adapted to crushing water pressures, near-freezing temperatures and total darkness.

    The research team tested a hypothetical scenario of an emerging Martian ecosystem by using state-of-the-art models of Mars’ crust, atmosphere and climate, coupled with an ecological model of a community of Earthlike microbes metabolizing carbon dioxide and hydrogen.

    2
    The study revealed that while ancient Martian life may have initially prospered, it would have rendered the planet’s surface covered in ice and uninhabitable, under the influence of hydrogen consumed from and methane released into the atmosphere. Credit: Boris Sauterey and Regis Ferrière.

    On Earth, most hydrogen is tied up in water and not frequently encountered on its own, other than in isolated environments such as hydrothermal vents. Its abundance in the Martian atmosphere, however, could have provided an ample supply of energy for methanogenic microbes about 4 billion years ago, at a time when conditions would have been more conducive to life, the authors suggest. Early Mars would have been very different from what it is today, Ferrière said, trending toward warm and wet rather than cold and dry, thanks to large concentrations of hydrogen and carbon dioxide – both strong greenhouse gases that trap heat in the atmosphere.

    “We think Mars may have been a little cooler than Earth at the time, but not nearly as cold as it is now, with average temperatures hovering most likely above the freezing point of water,” he said. “While current Mars has been described as an ice cube covered in dust, we imagine early Mars as a rocky planet with a porous crust, soaked in liquid water that likely formed lakes and rivers, perhaps even seas or oceans.”

    That water would have been extremely salty, he added, according to spectroscopic measurements of rocks exposed on the Martian surface.

    To simulate the conditions early lifeforms would have encountered on Mars, the researchers applied models that predict the temperatures at the surface and in the crust for a given atmospheric composition. They then combined those data with an ecosystem model that they developed to predict whether biological populations would have been able to survive in their local environment and how they would have affected it over time.

    “Once we had produced our model, we put it to work in the Martian crust – figuratively speaking,” said the paper’s first author, Boris Sauterey, a former postdoctoral fellow in Ferrière’s group who is now a postdoctoral fellow at Sorbonne Université in Paris. “This allowed us to evaluate how plausible a Martian underground biosphere would be. And if such a biosphere existed, how it would have modified the chemistry of the Martian crust, and how these processes in the crust would have affected the chemical composition of the atmosphere.”

    “Our goal was to make a model of the Martian crust with its mix of rock and salty water, let gases from the atmosphere diffuse into the ground, and see whether methanogens could live with that,” said Ferrière, who holds a joint appointment at Paris Sciences & Lettres University in Paris. “And the answer is, generally speaking, yes, these microbes could have made a living in the planet’s crust.”

    The researchers then set out to answer an intriguing question: If life thrived underground, how deep would one have had to go to find it? The Martian atmosphere would have provided the chemical energy that the organisms would have needed to thrive, Sauterey explained – in this case, hydrogen and carbon dioxide.

    “The problem is that even on early Mars, it was still very cold on the surface, so microbes would have had to go deeper into the crust to find habitable temperatures,” he said. “The question is how deep does the biology need to go to find the right compromise between temperature and availability of molecules from the atmosphere they needed to grow? We found that the microbial communities in our models would have been happiest in the upper few hundreds of meters.”

    By modifying their model to take into account how processes occurring above and below ground influence each other, they were able to predict the climatic feedback of the change in atmospheric composition caused by the biological activity of these microbes. In a surprising twist, the study revealed that while ancient Martian life may have initially prospered, its chemical feedback to the atmosphere would have kicked off a global cooling of the planet, ultimately rendering its surface uninhabitable and driving life deeper and deeper underground, and possibly to extinction.

    “According to our results, Mars’ atmosphere would have been completely changed by biological activity very rapidly, within a few tens or hundreds of thousands of years,” Sauterey said. “By removing hydrogen from the atmosphere, microbes would have dramatically cooled down the planet’s climate.”

    Early Mars’ surface would soon have become glacial as a consequence of the biological activity. In other words, climate change driven by Martian life might have contributed to making the planet’s surface uninhabitable very early on.

    “The problem these microbes would have then faced is that Mars’ atmosphere basically disappeared, completely thinned, so their energy source would have vanished and they would have had to find an alternate source of energy,” Sauterey said. “In addition to that, the temperature would have dropped significantly, and they would have had to go much deeper into the crust. For the moment, it is very difficult to say how long Mars would have remained habitable.”

    Future Mars exploration missions may provide answers, but challenges will remain, according to the authors. For example, while they identified Hellas Planitia, an extensive plain carved out by an impact of a large comet or asteroid very early in the history of Mars, as a particularly promising site to scour for evidence of past life, the location’s topography generates some of Mars’ most violent dust storms, which could make the area too risky to be explored by an autonomous rover.

    However, once humans begin to explore Mars, such sites could make it back onto the shortlist for future missions to the planet, Sauterey said. For now, the team focuses its research on modern Mars. NASA’s Curiosity rover and the European Space Agency’s Mars Express satellite have detected elevated levels of methane in the atmosphere, and while such spikes could result from processes other than microbial activity, they do allow for the intriguing possibility that lifeforms such as methanogens may have survived in isolated pockets on Mars, deep underground – oases of alien life in an otherwise hostile world.

    Science paper:
    Nature Astronomy

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    As of 2019, The University of Arizona enrolled 45,918 students in 19 separate colleges/schools, including The University of Arizona College of Medicine in Tucson and Phoenix and the James E. Rogers College of Law, and is affiliated with two academic medical centers (Banner – University Medical Center Tucson and Banner – University Medical Center Phoenix). The University of Arizona is one of three universities governed by the Arizona Board of Regents. The university is part of the Association of American Universities and is the only member from Arizona, and also part of the Universities Research Association . The university is classified among “R1: Doctoral Universities – Very High Research Activity”.

    Known as the Arizona Wildcats (often shortened to “Cats”), The University of Arizona’s intercollegiate athletic teams are members of the Pac-12 Conference of the NCAA. The University of Arizona athletes have won national titles in several sports, most notably men’s basketball, baseball, and softball. The official colors of the university and its athletic teams are cardinal red and navy blue.

    After the passage of the Morrill Land-Grant Act of 1862, the push for a university in Arizona grew. The Arizona Territory’s “Thieving Thirteenth” Legislature approved The University of Arizona in 1885 and selected the city of Tucson to receive the appropriation to build the university. Tucson hoped to receive the appropriation for the territory’s mental hospital, which carried a $100,000 allocation instead of the $25,000 allotted to the territory’s only university Arizona State University was also chartered in 1885, but it was created as Arizona’s normal school, and not a university). Flooding on the Salt River delayed Tucson’s legislators, and by the time they reached Prescott, back-room deals allocating the most desirable territorial institutions had been made. Tucson was largely disappointed with receiving what was viewed as an inferior prize.

    With no parties willing to provide land for the new institution, the citizens of Tucson prepared to return the money to the Territorial Legislature until two gamblers and a saloon keeper decided to donate the land to build the school. Construction of Old Main, the first building on campus, began on October 27, 1887, and classes met for the first time in 1891 with 32 students in Old Main, which is still in use today. Because there were no high schools in Arizona Territory, the university maintained separate preparatory classes for the first 23 years of operation.

    Research

    The University of Arizona is classified among “R1: Doctoral Universities – Very high research activity”. UArizona is the fourth most awarded public university by National Aeronautics and Space Administration for research. The University of Arizona was awarded over $325 million for its Lunar and Planetary Laboratory (LPL) to lead NASA’s 2007–08 mission to Mars to explore the Martian Arctic, and $800 million for its OSIRIS-REx mission, the first in U.S. history to sample an asteroid.

    National Aeronautics Space Agency OSIRIS-REx Spacecraft.

    The LPL’s work in the Cassini spacecraft orbit around Saturn is larger than any other university globally.

    National Aeronautics and Space Administration/European Space Agency [La Agencia Espacial Europea][Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ASI Italian Space Agency [Agenzia Spaziale Italiana](IT) Cassini Spacecraft.

    The University of Arizona laboratory designed and operated the atmospheric radiation investigations and imaging on the probe. The University of Arizona operates the HiRISE camera, a part of the Mars Reconnaissance Orbiter.

    U Arizona NASA Mars Reconnaisance HiRISE Camera.

    NASA Mars Reconnaissance Orbiter.

    While using the HiRISE camera in 2011, University of Arizona alumnus Lujendra Ojha and his team discovered proof of liquid water on the surface of Mars—a discovery confirmed by NASA in 2015. The University of Arizona receives more NASA grants annually than the next nine top NASA/JPL-Caltech-funded universities combined. As of March 2016, The University of Arizona’s Lunar and Planetary Laboratory is actively involved in ten spacecraft missions: Cassini VIMS; Grail; the HiRISE camera orbiting Mars; the Juno mission orbiting Jupiter; Lunar Reconnaissance Orbiter (LRO); Maven, which will explore Mars’ upper atmosphere and interactions with the sun; Solar Probe Plus, a historic mission into the Sun’s atmosphere for the first time; Rosetta’s VIRTIS; WISE; and OSIRIS-REx, the first U.S. sample-return mission to a near-earth asteroid, which launched on September 8, 2016.

    3
    NASA – GRAIL Flying in Formation (Artist’s Concept). Credit: NASA.
    National Aeronautics Space Agency Juno at Jupiter.

    NASA/Lunar Reconnaissance Orbiter.

    NASA/Mars MAVEN

    NASA Parker Solar Probe Plus named to honor Pioneering Physicist Eugene Parker. The Johns Hopkins University Applied Physics Lab.
    National Aeronautics and Space Administration Wise/NEOWISE Telescope.

    The University of Arizona students have been selected as Truman, Rhodes, Goldwater, and Fulbright Scholars. According to The Chronicle of Higher Education, UArizona is among the top 25 producers of Fulbright awards in the U.S.

    The University of Arizona is a member of the Association of Universities for Research in Astronomy , a consortium of institutions pursuing research in astronomy. The association operates observatories and telescopes, notably Kitt Peak National Observatory just outside Tucson.

    National Science Foundation NOIRLab National Optical Astronomy Observatory Kitt Peak National Observatory on Kitt Peak of the Quinlan Mountains in the Arizona-Sonoran Desert on the Tohono O’odham Nation, 88 kilometers (55 mi) west-southwest of Tucson, Arizona, Altitude 2,096 m (6,877 ft). annotated.

    Led by Roger Angel, researchers in the Steward Observatory Mirror Lab at The University of Arizona are working in concert to build the world’s most advanced telescope. Known as the Giant Magellan Telescope (CL), it will produce images 10 times sharper than those from the Earth-orbiting Hubble Telescope.

    GMT Giant Magellan Telescope(CL) 21 meters, to be at the Carnegie Institution for Science’s NOIRLab NOAO Las Campanas Observatory(CL), some 115 km (71 mi) north-northeast of La Serena, Chile, over 2,500 m (8,200 ft) high.

    The telescope is set to be completed in 2021. GMT will ultimately cost $1 billion. Researchers from at least nine institutions are working to secure the funding for the project. The telescope will include seven 18-ton mirrors capable of providing clear images of volcanoes and riverbeds on Mars and mountains on the moon at a rate 40 times faster than the world’s current large telescopes. The mirrors of the Giant Magellan Telescope will be built at The University of Arizona and transported to a permanent mountaintop site in the Chilean Andes where the telescope will be constructed.

    Reaching Mars in March 2006, the Mars Reconnaissance Orbiter contained the HiRISE camera, with Principal Investigator Alfred McEwen as the lead on the project. This National Aeronautics and Space Agency mission to Mars carrying the UArizona-designed camera is capturing the highest-resolution images of the planet ever seen. The journey of the orbiter was 300 million miles. In August 2007, The University of Arizona, under the charge of Scientist Peter Smith, led the Phoenix Mars Mission, the first mission completely controlled by a university. Reaching the planet’s surface in May 2008, the mission’s purpose was to improve knowledge of the Martian Arctic. The Arizona Radio Observatory , a part of The University of Arizona Department of Astronomy Steward Observatory , operates the Submillimeter Telescope on Mount Graham.

    University of Arizona Radio Observatory at NOAO Kitt Peak National Observatory, AZ USA, U Arizona Department of Astronomy and Steward Observatory at altitude 2,096 m (6,877 ft).

    Kitt Peak National Observatory in the Arizona-Sonoran Desert 88 kilometers 55 mi west-southwest of Tucson, Arizona in the Quinlan Mountains of the Tohono O’odham Nation, altitude 2,096 m (6,877 ft)

    The National Science Foundation funded the iPlant Collaborative in 2008 with a $50 million grant. In 2013, iPlant Collaborative received a $50 million renewal grant. Rebranded in late 2015 as “CyVerse”, the collaborative cloud-based data management platform is moving beyond life sciences to provide cloud-computing access across all scientific disciplines.

    In June 2011, the university announced it would assume full ownership of the Biosphere 2 scientific research facility in Oracle, Arizona, north of Tucson, effective July 1. Biosphere 2 was constructed by private developers (funded mainly by Texas businessman and philanthropist Ed Bass) with its first closed system experiment commencing in 1991. The university had been the official management partner of the facility for research purposes since 2007.

    U Arizona mirror lab-Where else in the world can you find an astronomical observatory mirror lab under a football stadium?

    University of Arizona’s Biosphere 2, located in the Sonoran desert. An entire ecosystem under a glass dome? Visit our campus, just once, and you’ll quickly understand why The University of Arizona is a university unlike any other.

    University of Arizona Landscape Evolution Observatory at Biosphere 2.

     
  • richardmitnick 12:23 pm on October 11, 2022 Permalink | Reply
    Tags: "Maps of the past may shed light on our climate future", Carbon dioxide in our atmosphere today is about 420 parts per million and it was about 280 parts per million before the Industrial Revolution., , Climate sensitivity is how much the planet warms per doubling of carbon dioxide., Maps created by blending geological data with climate model simulations using a technique called “paleoclimate data assimilation”., , Predictions are stronger monsoons and more intense winter storms and less rainfall at the edges of the tropics., Scientists can deduce temperatures from the past by chemically analyzing certain types of fossils from a given time period., The long-ago time period and our future both are characterized by faster warming at the poles than the rest of the globe – a phenomenon called arctic amplification., The University of Arizona   

    From The University of Arizona: “Maps of the past may shed light on our climate future” 

    From The University of Arizona

    10.11.22

    Media contact
    Daniel Stolte
    Science Writer, University Communications
    stolte@arizona.edu
    520-626-4402

    Researcher contact(s)
    Jessica Tierney
    Department of Geosciences
    jesst@email.arizona.edu

    Maps of climate in the distant past could provide insight into the future as carbon dioxide levels in the atmosphere increase.

    1
    Reconstructed surface air temperature (left) and rainfall amount (right) during the Paleocene-Eocene Thermal Maximum warming event, 56 million years ago. The maps were created by blending geological data with climate model simulations using a technique called paleoclimate data assimilation. Courtesy of Jessica Tierney.

    About 56 million years ago, volcanoes quickly dumped massive amounts of carbon dioxide into the atmosphere, heating the Earth rapidly.

    This time period – called the Paleocene-Eocene Thermal Maximum, or PETM – is often used as a historic parallel for our own future under climate change, since humans have also rapidly poured carbon dioxide into the atmosphere over the last 250 years.

    A University of Arizona-led team of researchers published a study in PNAS [below] that includes temperature and rainfall maps of Earth during the PETM to help better understand what conditions were like in that time period and how sensitive the climate was to soaring levels of carbon dioxide.

    The team, led by UArizona geosciences professor Jessica Tierney, combined previously published temperature data and climate models to confirm that the PETM is, in fact, a good indicator of what might happen to the climate under future carbon dioxide level projections.

    “The PETM is not a perfect analog for our future, but we were somewhat surprised to find that yes, the climate changes we reconstructed share a lot of similarities with future predictions as outlined in the latest IPCC (Intergovernmental Panel on Climate Change) AR6 report,” Tierney said.

    The long-ago time period and our future both are characterized by faster warming at the poles than the rest of the globe – a phenomenon called arctic amplification – as well as stronger monsoons, more intense winter storms and less rainfall at the edges of the tropics. The researchers also found that as more carbon dioxide is pumped into the air, the climate becomes more sensitive than previous studies predicted.

    “Overall, our work helps us to understand our future under climate change better,” Tierney said. “It gives some confirmation that the basics of climate change – such as polar amplification, more intense monsoons and winter storms – are features of high greenhouse gas climates both past and future.”

    Tierney and her team built their maps of the PETM by combining what’s called proxy temperature data with climate models. Paleoclimatologists like Tierney can deduce temperatures from the past by chemically analyzing certain types of fossils from a given time period. That proxy temperature data, combined with modern climate modeling technology, allowed Tierney and her collaborators to create global temperature maps of the PETM.

    The climate models used by the researchers to create the maps of the past are typically used to make future climate predictions – including those in the IPCC assessment reports. Tierney and her team instead used them to generate simulations of what Earth looked like 56 million years ago.

    “We moved the continents around to match the PETM and then we ran some simulations at a bunch of different levels of carbon dioxide, anywhere from three to 11 times today’s levels – or from 850 parts per million to a really high value of 3,000 parts per million – because those are all possible levels of carbon dioxide that could have occurred in the PETM,” Tierney said. “For context, carbon dioxide in our atmosphere today is about 420 parts per million and it was about 280 parts per million before the Industrial Revolution. By adding in the geological evidence, we narrowed down simulations to the ones that best matched that evidence.”

    Tierney and her team have used this method in past studies to reconstruct the climate in more recent time periods.

    The new study also more precisely estimates how much the globe warmed during the PETM. Previous studies suggested the PETM was 4 to 5 degrees Celsius warmer than the time period right before it. Tierney’s research, however, revealed that that number is 5.6 degrees Celsius, suggesting the climate is more sensitive to increases in carbon dioxide than previously thought.

    Climate sensitivity is how much the planet warms per doubling of carbon dioxide.

    “Nailing this number down really matters, because if climate sensitivity is high, then we’ll see more warming by the end of the century than if it’s lower,” Tierney said. “The IPCC AR6 predictions span 2 to 5 degrees Celsius per doubling of carbon dioxide. In this study, we quantify that sensitivity during the PETM and found that the sensitivity is between 5.7 to 7.4 degrees Celsius per doubling, which is much higher.”

    Ultimately, this means that under higher levels of carbon dioxide than we have today, the planet will get more sensitive to carbon dioxide, which, according to Tierney, “is something that’s important for thinking about longer-term climate change, beyond the end of the century.”

    Science paper:
    PNAS

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    As of 2019, The University of Arizona enrolled 45,918 students in 19 separate colleges/schools, including The University of Arizona College of Medicine in Tucson and Phoenix and the James E. Rogers College of Law, and is affiliated with two academic medical centers (Banner – University Medical Center Tucson and Banner – University Medical Center Phoenix). The University of Arizona is one of three universities governed by the Arizona Board of Regents. The university is part of the Association of American Universities and is the only member from Arizona, and also part of the Universities Research Association . The university is classified among “R1: Doctoral Universities – Very High Research Activity”.

    Known as the Arizona Wildcats (often shortened to “Cats”), The University of Arizona’s intercollegiate athletic teams are members of the Pac-12 Conference of the NCAA. The University of Arizona athletes have won national titles in several sports, most notably men’s basketball, baseball, and softball. The official colors of the university and its athletic teams are cardinal red and navy blue.

    After the passage of the Morrill Land-Grant Act of 1862, the push for a university in Arizona grew. The Arizona Territory’s “Thieving Thirteenth” Legislature approved The University of Arizona in 1885 and selected the city of Tucson to receive the appropriation to build the university. Tucson hoped to receive the appropriation for the territory’s mental hospital, which carried a $100,000 allocation instead of the $25,000 allotted to the territory’s only university Arizona State University was also chartered in 1885, but it was created as Arizona’s normal school, and not a university). Flooding on the Salt River delayed Tucson’s legislators, and by the time they reached Prescott, back-room deals allocating the most desirable territorial institutions had been made. Tucson was largely disappointed with receiving what was viewed as an inferior prize.

    With no parties willing to provide land for the new institution, the citizens of Tucson prepared to return the money to the Territorial Legislature until two gamblers and a saloon keeper decided to donate the land to build the school. Construction of Old Main, the first building on campus, began on October 27, 1887, and classes met for the first time in 1891 with 32 students in Old Main, which is still in use today. Because there were no high schools in Arizona Territory, the university maintained separate preparatory classes for the first 23 years of operation.

    Research

    The University of Arizona is classified among “R1: Doctoral Universities – Very high research activity”. UArizona is the fourth most awarded public university by National Aeronautics and Space Administration for research. The University of Arizona was awarded over $325 million for its Lunar and Planetary Laboratory (LPL) to lead NASA’s 2007–08 mission to Mars to explore the Martian Arctic, and $800 million for its OSIRIS-REx mission, the first in U.S. history to sample an asteroid.

    National Aeronautics Space Agency OSIRIS-REx Spacecraft.

    The LPL’s work in the Cassini spacecraft orbit around Saturn is larger than any other university globally.

    National Aeronautics and Space Administration/European Space Agency [La Agencia Espacial Europea][Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ASI Italian Space Agency [Agenzia Spaziale Italiana](IT) Cassini Spacecraft.

    The University of Arizona laboratory designed and operated the atmospheric radiation investigations and imaging on the probe. The University of Arizona operates the HiRISE camera, a part of the Mars Reconnaissance Orbiter.

    U Arizona NASA Mars Reconnaisance HiRISE Camera.

    NASA Mars Reconnaissance Orbiter.

    While using the HiRISE camera in 2011, University of Arizona alumnus Lujendra Ojha and his team discovered proof of liquid water on the surface of Mars—a discovery confirmed by NASA in 2015. The University of Arizona receives more NASA grants annually than the next nine top NASA/JPL-Caltech-funded universities combined. As of March 2016, The University of Arizona’s Lunar and Planetary Laboratory is actively involved in ten spacecraft missions: Cassini VIMS; Grail; the HiRISE camera orbiting Mars; the Juno mission orbiting Jupiter; Lunar Reconnaissance Orbiter (LRO); Maven, which will explore Mars’ upper atmosphere and interactions with the sun; Solar Probe Plus, a historic mission into the Sun’s atmosphere for the first time; Rosetta’s VIRTIS; WISE; and OSIRIS-REx, the first U.S. sample-return mission to a near-earth asteroid, which launched on September 8, 2016.

    3
    NASA – GRAIL Flying in Formation (Artist’s Concept). Credit: NASA.
    National Aeronautics Space Agency Juno at Jupiter.

    NASA/Lunar Reconnaissance Orbiter.

    NASA/Mars MAVEN

    NASA Parker Solar Probe Plus named to honor Pioneering Physicist Eugene Parker. The Johns Hopkins University Applied Physics Lab.
    National Aeronautics and Space Administration Wise/NEOWISE Telescope.

    The University of Arizona students have been selected as Truman, Rhodes, Goldwater, and Fulbright Scholars. According to The Chronicle of Higher Education, UArizona is among the top 25 producers of Fulbright awards in the U.S.

    The University of Arizona is a member of the Association of Universities for Research in Astronomy , a consortium of institutions pursuing research in astronomy. The association operates observatories and telescopes, notably Kitt Peak National Observatory just outside Tucson.

    National Science Foundation NOIRLab National Optical Astronomy Observatory Kitt Peak National Observatory on Kitt Peak of the Quinlan Mountains in the Arizona-Sonoran Desert on the Tohono O’odham Nation, 88 kilometers (55 mi) west-southwest of Tucson, Arizona, Altitude 2,096 m (6,877 ft). annotated.

    Led by Roger Angel, researchers in the Steward Observatory Mirror Lab at The University of Arizona are working in concert to build the world’s most advanced telescope. Known as the Giant Magellan Telescope (CL), it will produce images 10 times sharper than those from the Earth-orbiting Hubble Telescope.

    GMT Giant Magellan Telescope(CL) 21 meters, to be at the Carnegie Institution for Science’s NOIRLab NOAO Las Campanas Observatory(CL), some 115 km (71 mi) north-northeast of La Serena, Chile, over 2,500 m (8,200 ft) high.

    The telescope is set to be completed in 2021. GMT will ultimately cost $1 billion. Researchers from at least nine institutions are working to secure the funding for the project. The telescope will include seven 18-ton mirrors capable of providing clear images of volcanoes and riverbeds on Mars and mountains on the moon at a rate 40 times faster than the world’s current large telescopes. The mirrors of the Giant Magellan Telescope will be built at The University of Arizona and transported to a permanent mountaintop site in the Chilean Andes where the telescope will be constructed.

    Reaching Mars in March 2006, the Mars Reconnaissance Orbiter contained the HiRISE camera, with Principal Investigator Alfred McEwen as the lead on the project. This National Aeronautics and Space Agency mission to Mars carrying the UArizona-designed camera is capturing the highest-resolution images of the planet ever seen. The journey of the orbiter was 300 million miles. In August 2007, The University of Arizona, under the charge of Scientist Peter Smith, led the Phoenix Mars Mission, the first mission completely controlled by a university. Reaching the planet’s surface in May 2008, the mission’s purpose was to improve knowledge of the Martian Arctic. The Arizona Radio Observatory , a part of The University of Arizona Department of Astronomy Steward Observatory , operates the Submillimeter Telescope on Mount Graham.

    University of Arizona Radio Observatory at NOAO Kitt Peak National Observatory, AZ USA, U Arizona Department of Astronomy and Steward Observatory at altitude 2,096 m (6,877 ft).

    Kitt Peak National Observatory in the Arizona-Sonoran Desert 88 kilometers 55 mi west-southwest of Tucson, Arizona in the Quinlan Mountains of the Tohono O’odham Nation, altitude 2,096 m (6,877 ft)

    The National Science Foundation funded the iPlant Collaborative in 2008 with a $50 million grant. In 2013, iPlant Collaborative received a $50 million renewal grant. Rebranded in late 2015 as “CyVerse”, the collaborative cloud-based data management platform is moving beyond life sciences to provide cloud-computing access across all scientific disciplines.

    In June 2011, the university announced it would assume full ownership of the Biosphere 2 scientific research facility in Oracle, Arizona, north of Tucson, effective July 1. Biosphere 2 was constructed by private developers (funded mainly by Texas businessman and philanthropist Ed Bass) with its first closed system experiment commencing in 1991. The university had been the official management partner of the facility for research purposes since 2007.

    U Arizona mirror lab-Where else in the world can you find an astronomical observatory mirror lab under a football stadium?

    University of Arizona’s Biosphere 2, located in the Sonoran desert. An entire ecosystem under a glass dome? Visit our campus, just once, and you’ll quickly understand why The University of Arizona is a university unlike any other.

    University of Arizona Landscape Evolution Observatory at Biosphere 2.

     
  • richardmitnick 9:32 pm on October 4, 2022 Permalink | Reply
    Tags: "Scientists identify potential source of 'shock-darkened' meteorites with implications for hazardous asteroid deflection", , , “Shock darkening” is an alteration process caused when something impacts a planetary body hard enough that the temperatures partially or fully melt those rocks and alter their appearance., Ordinary chondrite asteroids can appear as carbonaceous in our classification tools if they are affected by shock darkening., , The University of Arizona   

    From The Lunar and Planetary Laboratory At The University of Arizona: “Scientists identify potential source of ‘shock-darkened’ meteorites with implications for hazardous asteroid deflection” 

    From The Lunar and Planetary Laboratory

    At

    The University of Arizona

    10.4.22

    Media contact
    Mikayla Mace Kelley
    Science Writer, University Communications
    mikaylamace@arizona.edu
    520-621-1878

    Researcher contact(s)
    Adam Battle
    Planetary Sciences
    adambattle@arizona.edu

    Vishnu Reddy
    Lunar and Planetary Laboratory
    reddy@lpl.arizona.edu
    808-342-8932

    University of Arizona planetary scientists identified a potential source of a special kind of meteorite. Its characteristics could explain certain discrepancies in how near-Earth asteroids are classified.

    1
    On the morning of Feb. 15, 2013, a meteor fell to Earth over Chelyabinsk, Russia. The resulting meteorites were of a certain type that until now didn’t have an obvious near-Earth asteroid source. Credit: Alex Alishevskikh.

    When the Chelyabinsk fireball exploded across Russian skies in 2013, it littered Earth with a relatively uncommon type of meteorite. What makes the Chelyabinsk meteorites and others like them special is their dark veins, created by a process called shock darkening. Yet, planetary scientists have been unable to pinpoint a nearby asteroid source of these kinds of meteorites – until now.

    In a new paper published in the Planetary Science Journal [below], University of Arizona scientists identified an asteroid named 1998 OR2 as one potential source of shock-darkened meteorites. The near-Earth asteroid is about 1 1/2 miles wide and made a close approach to Earth in April 2020. When pieces of asteroids break off into space and then land on Earth, they are considered meteorites.

    “‘Shock darkening’ is an alteration process caused when something impacts a planetary body hard enough that the temperatures partially or fully melt those rocks and alter their appearance both to the human eye and in our data,” said lead study author Adam Battle, a UArizona graduate student studying planetary science. “This process has been seen in meteorites many times but has only been seen on asteroids in one or two cases way out in the main asteroid belt, which is found between Mars and Jupiter.”

    Battle’s adviser and study co-author Vishnu Reddy, a planetary sciences professor, discovered shock darkening on main belt asteroids in 2013 and 2014. Reddy co-leads the Space Domain Awareness lab at the Lunar and Planetary Laboratory with engineering professor Roberto Furfaro. Battle has worked in the lab since 2019.

    3
    The RAPTORS system atop the Kuiper Space Sciences Building that was used to collect data for this study. Vishnu Reddy.

    “Impacts are very common in asteroids and any solid body in the solar system because we see impact craters on these objects from spacecraft images. But impact melt and shock-darkening effects on meteorites derived from these bodies are rare. Finding a near-Earth asteroid dominated by this process has implications for impact hazard assessment,” Reddy said. “Adam’s work has shown that ordinary chondrite asteroids can appear as carbonaceous in our classification tools if they are affected by shock darkening. These two materials have different physical strengths, which is important when trying to deflect a hazardous asteroid.”

    For this study, Battle, Reddy and their team used the RAPTORS system, a telescope atop the Kuiper Space Sciences building on campus, to collect data on 1998 OR2’s surface composition and determined that it looked like an ordinary chondrite asteroid. Chondrite asteroids contain the minerals olivine and pyroxene and are lighter in appearance.

    But when the team ran the data through a classification tool, it suggested the asteroid was instead a carbonaceous asteroid, a type of asteroid that is characteristically dark and relatively featureless.

    “The mismatch was one of the early things that got the project going to investigate potential causes for the discrepancy,” Battle said. “The asteroid is not a mixture of ordinary chondrite and carbonaceous asteroids, but rather it is definitely an ordinary chondrite, based on its minerology, which has been altered – likely through the shock darkening process – to look like a carbonaceous asteroid to the classification tool.”

    Shock darkening was hypothesized in the late 1980s but didn’t gain traction and went unstudied until 2013 when the fireball over Russia produced meteorites with shock-darkened characteristics.

    Scientists, including Reddy, started getting more interested in shock darkening, and Reddy soon discovered shock-darkened asteroids in the main asteroid belt. On Earth, 2%, or roughly 1,400 of about 60,000 ordinary chondrite meteorites have undergone some degree of shock or impact process, Battle said.

    Researchers were able to rule out a lot of other potential reasons 1998 OR2 appeared to be a carbonaceous asteroid rather than an ordinary chondrite. One possible cause for the discrepancy could be space weathering, in which exposure to the space environment causes changes to the asteroid surface, but if that were the case, the asteroid would appear to be slightly redder in color than it is. Shock darkening is a process that can suppress the appearance of olivine and pyroxene while also darkening the asteroid’s surface to look like a carbonaceous asteroid.

    Science paper:
    Planetary Science Journal
    See the science paper for instructive images.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Lunar and Planetary Laboratory is a research center for planetary science located in Tucson, Arizona. It is also a graduate school, constituting the Department of Planetary Sciences at the University of Arizona. The Lunar and Planetary Laboratory is one of the world’s largest programs dedicated exclusively to planetary science in a university setting. The Lunar and Planetary Lab collection is held at the University of Arizona Special Collections Library.

    The Lunar and Planetary Laboratory was founded in 1960 by astronomer Gerard Kuiper. Kuiper had long been a pioneer in observing the Solar System, especially the Moon, at a time when this was unfashionable among astronomers. Among his contributions are the discovery of Miranda and Nereid, the detection of carbon dioxide on Mars and of methane on Titan, and the prediction of the Kuiper Belt.

    Kuiper came to Tucson looking for greater independence than he had enjoyed at The University of Chicago, the chance to build a community dedicated to solar system studies, and also to be closer to southern Arizona’s many potential sites for world-class observatories, such as Kitt Peak National Observatory (founded in 1958)[below]. LPL was established under the auspices of the University of Arizona, with Kuiper serving as director until his death.

    The Lunar and Planetary Laboratory’s endeavors are truly interdisciplinary. The accumulated knowledge and techniques of astronomy, physics, chemistry, geology, geophysics, geochemistry, atmospheric science, and engineering are all brought to bear upon the single goal of studying planetary systems. Many students come to The Lunar and Planetary Laboratory having studied only one or two of these subjects in detail, so a broad-based curriculum is essential.

    In 1973, the university established a graduate Department of Planetary Sciences, operating continuously with The Lunar and Planetary Laboratory. This provided an administrative framework for The Lunar and Planetary Laboratory to admit graduate students and take a greater role in teaching. The Lunar and Planetary Laboratory’s chief officer is simultaneously “head” of the department and “director” of the laboratory.

    As of 2019, The University of Arizona enrolled 45,918 students in 19 separate colleges/schools, including The University of Arizona College of Medicine in Tucson and Phoenix and the James E. Rogers College of Law, and is affiliated with two academic medical centers (Banner – University Medical Center Tucson and Banner – University Medical Center Phoenix). The University of Arizona is one of three universities governed by the Arizona Board of Regents. The university is part of the Association of American Universities and is the only member from Arizona, and also part of the Universities Research Association . The university is classified among “R1: Doctoral Universities – Very High Research Activity”.

    Known as the Arizona Wildcats (often shortened to “Cats”), The University of Arizona’s intercollegiate athletic teams are members of the Pac-12 Conference of the NCAA. The University of Arizona athletes have won national titles in several sports, most notably men’s basketball, baseball, and softball. The official colors of the university and its athletic teams are cardinal red and navy blue.

    After the passage of the Morrill Land-Grant Act of 1862, the push for a university in Arizona grew. The Arizona Territory’s “Thieving Thirteenth” Legislature approved The University of Arizona in 1885 and selected the city of Tucson to receive the appropriation to build the university. Tucson hoped to receive the appropriation for the territory’s mental hospital, which carried a $100,000 allocation instead of the $25,000 allotted to the territory’s only university Arizona State University was also chartered in 1885, but it was created as Arizona’s normal school, and not a university). Flooding on the Salt River delayed Tucson’s legislators, and by the time they reached Prescott, back-room deals allocating the most desirable territorial institutions had been made. Tucson was largely disappointed with receiving what was viewed as an inferior prize.

    With no parties willing to provide land for the new institution, the citizens of Tucson prepared to return the money to the Territorial Legislature until two gamblers and a saloon keeper decided to donate the land to build the school. Construction of Old Main, the first building on campus, began on October 27, 1887, and classes met for the first time in 1891 with 32 students in Old Main, which is still in use today. Because there were no high schools in Arizona Territory, the university maintained separate preparatory classes for the first 23 years of operation.

    Research

    The University of Arizona is classified among “R1: Doctoral Universities – Very high research activity”. UArizona is the fourth most awarded public university by National Aeronautics and Space Administration for research. The University of Arizona was awarded over $325 million for its Lunar and Planetary Laboratory (LPL) to lead NASA’s 2007–08 mission to Mars to explore the Martian Arctic, and $800 million for its OSIRIS-REx mission, the first in U.S. history to sample an asteroid.

    National Aeronautics Space Agency OSIRIS-REx Spacecraft.

    The LPL’s work in the Cassini spacecraft orbit around Saturn is larger than any other university globally.

    National Aeronautics and Space Administration/European Space Agency [La Agencia Espacial Europea][Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ASI Italian Space Agency [Agenzia Spaziale Italiana](IT) Cassini Spacecraft.

    The University of Arizona laboratory designed and operated the atmospheric radiation investigations and imaging on the probe. The University of Arizona operates the HiRISE camera, a part of the Mars Reconnaissance Orbiter.

    U Arizona NASA Mars Reconnaisance HiRISE Camera.

    NASA Mars Reconnaissance Orbiter.

    While using the HiRISE camera in 2011, University of Arizona alumnus Lujendra Ojha and his team discovered proof of liquid water on the surface of Mars—a discovery confirmed by NASA in 2015. The University of Arizona receives more NASA grants annually than the next nine top NASA/JPL-Caltech-funded universities combined. As of March 2016, The University of Arizona’s Lunar and Planetary Laboratory is actively involved in ten spacecraft missions: Cassini VIMS; Grail; the HiRISE camera orbiting Mars; the Juno mission orbiting Jupiter; Lunar Reconnaissance Orbiter (LRO); Maven, which will explore Mars’ upper atmosphere and interactions with the sun; Solar Probe Plus, a historic mission into the Sun’s atmosphere for the first time; Rosetta’s VIRTIS; WISE; and OSIRIS-REx, the first U.S. sample-return mission to a near-earth asteroid, which launched on September 8, 2016.

    3
    NASA – GRAIL Flying in Formation (Artist’s Concept). Credit: NASA.
    National Aeronautics Space Agency Juno at Jupiter.

    NASA/Lunar Reconnaissance Orbiter.

    NASA/Mars MAVEN

    NASA Parker Solar Probe Plus named to honor Pioneering Physicist Eugene Parker. The Johns Hopkins University Applied Physics Lab.
    National Aeronautics and Space Administration Wise/NEOWISE Telescope.

    The University of Arizona students have been selected as Truman, Rhodes, Goldwater, and Fulbright Scholars. According to The Chronicle of Higher Education, UArizona is among the top 25 producers of Fulbright awards in the U.S.

    The University of Arizona is a member of the Association of Universities for Research in Astronomy , a consortium of institutions pursuing research in astronomy. The association operates observatories and telescopes, notably Kitt Peak National Observatory just outside Tucson.

    National Science Foundation NOIRLab National Optical Astronomy Observatory Kitt Peak National Observatory on Kitt Peak of the Quinlan Mountains in the Arizona-Sonoran Desert on the Tohono O’odham Nation, 88 kilometers (55 mi) west-southwest of Tucson, Arizona, Altitude 2,096 m (6,877 ft). annotated.

    Led by Roger Angel, researchers in the Steward Observatory Mirror Lab at The University of Arizona are working in concert to build the world’s most advanced telescope. Known as the Giant Magellan Telescope (CL), it will produce images 10 times sharper than those from the Earth-orbiting Hubble Telescope.

    GMT Giant Magellan Telescope(CL) 21 meters, to be at the Carnegie Institution for Science’s NOIRLab NOAO Las Campanas Observatory(CL), some 115 km (71 mi) north-northeast of La Serena, Chile, over 2,500 m (8,200 ft) high.

    The telescope is set to be completed in 2021. GMT will ultimately cost $1 billion. Researchers from at least nine institutions are working to secure the funding for the project. The telescope will include seven 18-ton mirrors capable of providing clear images of volcanoes and riverbeds on Mars and mountains on the moon at a rate 40 times faster than the world’s current large telescopes. The mirrors of the Giant Magellan Telescope will be built at The University of Arizona and transported to a permanent mountaintop site in the Chilean Andes where the telescope will be constructed.

    Reaching Mars in March 2006, the Mars Reconnaissance Orbiter contained the HiRISE camera, with Principal Investigator Alfred McEwen as the lead on the project. This National Aeronautics and Space Agency mission to Mars carrying the UArizona-designed camera is capturing the highest-resolution images of the planet ever seen. The journey of the orbiter was 300 million miles. In August 2007, The University of Arizona, under the charge of Scientist Peter Smith, led the Phoenix Mars Mission, the first mission completely controlled by a university. Reaching the planet’s surface in May 2008, the mission’s purpose was to improve knowledge of the Martian Arctic. The Arizona Radio Observatory , a part of The University of Arizona Department of Astronomy Steward Observatory , operates the Submillimeter Telescope on Mount Graham.

    University of Arizona Radio Observatory at NOAO Kitt Peak National Observatory, AZ USA, U Arizona Department of Astronomy and Steward Observatory at altitude 2,096 m (6,877 ft).

    Kitt Peak National Observatory in the Arizona-Sonoran Desert 88 kilometers 55 mi west-southwest of Tucson, Arizona in the Quinlan Mountains of the Tohono O’odham Nation, altitude 2,096 m (6,877 ft)

    The National Science Foundation funded the iPlant Collaborative in 2008 with a $50 million grant. In 2013, iPlant Collaborative received a $50 million renewal grant. Rebranded in late 2015 as “CyVerse”, the collaborative cloud-based data management platform is moving beyond life sciences to provide cloud-computing access across all scientific disciplines.

    In June 2011, the university announced it would assume full ownership of the Biosphere 2 scientific research facility in Oracle, Arizona, north of Tucson, effective July 1. Biosphere 2 was constructed by private developers (funded mainly by Texas businessman and philanthropist Ed Bass) with its first closed system experiment commencing in 1991. The university had been the official management partner of the facility for research purposes since 2007.

    U Arizona mirror lab-Where else in the world can you find an astronomical observatory mirror lab under a football stadium?

    University of Arizona’s Biosphere 2, located in the Sonoran desert. An entire ecosystem under a glass dome? Visit our campus, just once, and you’ll quickly understand why The University of Arizona is a university unlike any other.

    University of Arizona Landscape Evolution Observatory at Biosphere 2.

     
  • richardmitnick 12:07 pm on September 22, 2022 Permalink | Reply
    Tags: "How a forest's smell could help scientists sniff out drought stress", "VOCs": volatile organic compounds, , , , , The University of Arizona   

    From The University of Arizona: “How a forest’s smell could help scientists sniff out drought stress” 

    From The University of Arizona

    9.21.22
    Rosemary Brandt
    College of Agriculture and Life Sciences
    rjbrandt@email.arizona.edu
    520-358-9729

    A new paper from researchers behind an unprecedented drought experiment at the University of Arizona’s Biosphere 2 [below] underscores the importance of molecular compounds often associated with fragrance in identifying when an ecosystem is in distress.

    1
    An unparalleled experiment underway at Biosphere 2 forced the “hottest tropical rainforest in the world” through a controlled drought and recovery experiment to paint a clearer picture of how global climate change will affect Earth’s ecosystems. Credit: Rosemary Brandt.

    Ever wonder what gives a forest its signature pine-fresh scent? The answer is the molecular compound pinene, a type of monoterpene naturally released by plants. Each year, plants pump roughly 100 million tons of monoterpenes into the atmosphere, where they play a significant role in the formation of clouds.

    A study published in Nature [below] this month explores how and under what conditions plants emit these volatile organic compounds, or VOCs, into the atmosphere. The results may help scientists sniff out when an ecosystem is in distress and better understand how Earth may try to adapt in the face of a hotter, drier future.

    Fig. 1: Inside the Biosphere 2 Tropical Rain Forest.
    2
    a, Schematic of the Biosphere 2 Tropical Rain Forest biome. b, Photograph taken inside the biome (photo J. Byron).

    Fig. 2: Long-term trends are different between monoterpene enantiomers, especially during daylight hours.
    3
    Monoterpene and isoprene data are divided into five stages, indicated by the bands: pre-drought (PD), early drought (ED), severe drought (SD), deep-water rewet (DRW) and rain rewet (RRW). The timing of the 13CO2 pulses is indicated by the dotted black lines. a, Daytime isoprene and total monoterpene volume mixing ratios (VMR). The shaded region around the lines represents the absolute measurement uncertainty. b, Average daytime VMR for (−)-α-pinene and (+)-α-pinene and other monoterpenes. c, Average night-time VMR for (−)-α-pinene and (+)-α-pinene and other monoterpenes. For b and c, the shaded region around the lines represents the calculated measurement uncertainty. d, Soil moisture (SM) and relative humidity (RH). Note the different scales for enantiomers. e, Pie charts showing the daytime composition of the enantiomeric monoterpenes during each stage. Other monoterpenes includes (−)-camphene, (+)-camphene, (−)-limonene, (+)-limonene and γ-terpinene.

    More instructive images are available in the science paper.

    Forcing an artificial rainforest through drought

    Co-authored by University of Arizona researchers Laura Meredith and Joost van Haren, the study is one of many to come from a controlled drought experiment conducted at the university’s Biosphere 2, which was originally built to create self-sustaining ecosystems.

    “There’s no other place in the world where you can encapsulate a rainforest, subject it to a drought and then bring it out of that drought on a schedule that you dictate,” said Biosphere 2 Deputy Director and Chief of Operations John Adams at the project’s start. “This gives scientists a really unique opportunity to have everything well-poised so they can monitor and collect data that oftentimes is very difficult or impossible to get in the field.”

    For three months, the research team put the 30-acre “rainforest under glass” through moderate and then severe drought stress. The experiment, called Water, Atmosphere and Life Dynamics – or WALD, which is German for “forest” – set out to capture every bit of data possible throughout the drought and rewet process.

    With more than 2 miles of Teflon tubing, 133 sensors and 423 data collection points throughout the forest, the team gathered measurements on everything from microbiome and deep-water soil processes to carbon pooling and VOC emissions.

    4
    Jason Deleeuw, Biosphere 2 terrestrial biome manager, climbs the space frame above the rain forest floor to collect leaves and samplers placed overnight to link leaf climate, microbiome and volatile organic compound emissions. Credit: Laura Meredith.

    Get a whiff of those “VOCs”

    Many volatile organic compounds have a unique scent, explained Meredith, who helped lead the B2 WALD project for UArizona and is a co-author on the most recent study. For instance, forests smell of pinene and isoprene, while the chemical compound geosmin gives soil its earthy undertone and contributes to the distinct smell of rain in the air.

    “There are many different types of volatile organic compounds that plants release into the atmosphere,” said Meredith, an assistant professor in the School of Natural Resources and the Environment in the UArizona College of Agriculture and Life Sciences and a member of the BIO5 Institute. “If we can pinpoint their unique signatures and the biological processes behind them, we could fly an aircraft over the Amazon rainforest, for instance, and essentially measure and sniff out what’s happening on the ground.”

    Meredith has made a career out of studying the potential of VOCs and was recently recognized by the American Geophysical Union with the Thomas Hilker Award, given annually to an early career scientist driving unusually creative work in the field of biogeosciences.

    “My background is in atmospheric chemistry and I got really interested in how soil microbes influence the atmosphere,” Meredith said. “So, I bridged that into microbiology, ecology, microbial and soil science to study ecosystems and global change on a large scale.”

    During the B2 WALD project, Meredith served as director of the rainforest at Biosphere 2 and brought together 90 scientists from five different countries to monitor the resiliency and vulnerability of plants and microbes. The scientific expertise of the project spanned all aspects of environmental stress, including hydrology, vegetation, soil and atmospheric science.

    5
    Joost van Haren, assistant professor of research at Biosphere 2 and professor of practice in the Honors College, measures rainfall as part of B2 WALD drought recovery experiment. Credit: Rosemary Brandt.

    In conversation with clouds

    Throughout the controlled drought experiment, researchers measured hourly emissions of several monoterpenes, including pinene, camphene, limonene, terpinene and isoprene to better understand how and when plants release VOCs.

    Researchers found plants not only released more of these volatile organic compounds under stress but also shifted their emissions to later in the day. And there may be a good reason for that, according to atmospheric scientist and study co-author Jonathan Williams.

    “We suspect that the later release of monoterpenes increases the likelihood that clouds will form over the forest,” said Williams, project lead for the Max Planck Institute for Chemistry in Mainz, Germany.

    “The warmer it gets during the day, the more the vertical mixing of the air increases, allowing the reactive volatiles to reach higher layers of air where they have a greater chance to become aerosol particles and eventually cloud condensation nuclei,” Williams explained.

    In other words, when an ecosystem is in drought, plants may use volatile organic compounds to drive the formation of clouds and bring much-needed rain.

    The study underscores just how involved volatile organic compounds are in communication, defense and signaling between soil microbes, plants and the atmosphere, Meredith said.

    Tapping the potential of VOCs

    Meredith will continue her exploration of VOCs with a recent grant from the Department of Energy. Along with ecosystem genomics expert Malak Tfaily, an associate professor and environmental scientist in the College of Agriculture and Life Sciences, Meredith will explore carbon sequestration through soil, microbe and plant interactions.

    “After exploring the impact of VOCs on the atmosphere, we will now turn our attention to how these carbon-carrying molecules influence soil and its capacity to sequester and store carbon,” Meredith said. “Do plants and microbes pump VOCs into the ground, like they do in the atmosphere, and what processes help ensure the carbon stays below ground?”

    Science paper:
    Nature

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    As of 2019, The University of Arizona enrolled 45,918 students in 19 separate colleges/schools, including The University of Arizona College of Medicine in Tucson and Phoenix and the James E. Rogers College of Law, and is affiliated with two academic medical centers (Banner – University Medical Center Tucson and Banner – University Medical Center Phoenix). The University of Arizona is one of three universities governed by the Arizona Board of Regents. The university is part of the Association of American Universities and is the only member from Arizona, and also part of the Universities Research Association . The university is classified among “R1: Doctoral Universities – Very High Research Activity”.

    Known as the Arizona Wildcats (often shortened to “Cats”), The University of Arizona’s intercollegiate athletic teams are members of the Pac-12 Conference of the NCAA. The University of Arizona athletes have won national titles in several sports, most notably men’s basketball, baseball, and softball. The official colors of the university and its athletic teams are cardinal red and navy blue.

    After the passage of the Morrill Land-Grant Act of 1862, the push for a university in Arizona grew. The Arizona Territory’s “Thieving Thirteenth” Legislature approved The University of Arizona in 1885 and selected the city of Tucson to receive the appropriation to build the university. Tucson hoped to receive the appropriation for the territory’s mental hospital, which carried a $100,000 allocation instead of the $25,000 allotted to the territory’s only university Arizona State University was also chartered in 1885, but it was created as Arizona’s normal school, and not a university). Flooding on the Salt River delayed Tucson’s legislators, and by the time they reached Prescott, back-room deals allocating the most desirable territorial institutions had been made. Tucson was largely disappointed with receiving what was viewed as an inferior prize.

    With no parties willing to provide land for the new institution, the citizens of Tucson prepared to return the money to the Territorial Legislature until two gamblers and a saloon keeper decided to donate the land to build the school. Construction of Old Main, the first building on campus, began on October 27, 1887, and classes met for the first time in 1891 with 32 students in Old Main, which is still in use today. Because there were no high schools in Arizona Territory, the university maintained separate preparatory classes for the first 23 years of operation.

    Research

    The University of Arizona is classified among “R1: Doctoral Universities – Very high research activity”. UArizona is the fourth most awarded public university by National Aeronautics and Space Administration for research. The University of Arizona was awarded over $325 million for its Lunar and Planetary Laboratory (LPL) to lead NASA’s 2007–08 mission to Mars to explore the Martian Arctic, and $800 million for its OSIRIS-REx mission, the first in U.S. history to sample an asteroid.

    National Aeronautics Space Agency OSIRIS-REx Spacecraft.

    The LPL’s work in the Cassini spacecraft orbit around Saturn is larger than any other university globally.

    National Aeronautics and Space Administration/European Space Agency [La Agencia Espacial Europea][Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ASI Italian Space Agency [Agenzia Spaziale Italiana](IT) Cassini Spacecraft.

    The University of Arizona laboratory designed and operated the atmospheric radiation investigations and imaging on the probe. The University of Arizona operates the HiRISE camera, a part of the Mars Reconnaissance Orbiter.

    U Arizona NASA Mars Reconnaisance HiRISE Camera.

    NASA Mars Reconnaissance Orbiter.

    While using the HiRISE camera in 2011, University of Arizona alumnus Lujendra Ojha and his team discovered proof of liquid water on the surface of Mars—a discovery confirmed by NASA in 2015. The University of Arizona receives more NASA grants annually than the next nine top NASA/JPL-Caltech-funded universities combined. As of March 2016, The University of Arizona’s Lunar and Planetary Laboratory is actively involved in ten spacecraft missions: Cassini VIMS; Grail; the HiRISE camera orbiting Mars; the Juno mission orbiting Jupiter; Lunar Reconnaissance Orbiter (LRO); Maven, which will explore Mars’ upper atmosphere and interactions with the sun; Solar Probe Plus, a historic mission into the Sun’s atmosphere for the first time; Rosetta’s VIRTIS; WISE; and OSIRIS-REx, the first U.S. sample-return mission to a near-earth asteroid, which launched on September 8, 2016.

    3
    NASA – GRAIL Flying in Formation (Artist’s Concept). Credit: NASA.
    National Aeronautics Space Agency Juno at Jupiter.

    NASA/Lunar Reconnaissance Orbiter.

    NASA/Mars MAVEN

    NASA Parker Solar Probe Plus named to honor Pioneering Physicist Eugene Parker. The Johns Hopkins University Applied Physics Lab.
    National Aeronautics and Space Administration Wise/NEOWISE Telescope.

    The University of Arizona students have been selected as Truman, Rhodes, Goldwater, and Fulbright Scholars. According to The Chronicle of Higher Education, UArizona is among the top 25 producers of Fulbright awards in the U.S.

    The University of Arizona is a member of the Association of Universities for Research in Astronomy , a consortium of institutions pursuing research in astronomy. The association operates observatories and telescopes, notably Kitt Peak National Observatory just outside Tucson.

    National Science Foundation NOIRLab National Optical Astronomy Observatory Kitt Peak National Observatory on Kitt Peak of the Quinlan Mountains in the Arizona-Sonoran Desert on the Tohono O’odham Nation, 88 kilometers (55 mi) west-southwest of Tucson, Arizona, Altitude 2,096 m (6,877 ft). annotated.

    Led by Roger Angel, researchers in the Steward Observatory Mirror Lab at The University of Arizona are working in concert to build the world’s most advanced telescope. Known as the Giant Magellan Telescope (CL), it will produce images 10 times sharper than those from the Earth-orbiting Hubble Telescope.

    GMT Giant Magellan Telescope(CL) 21 meters, to be at the Carnegie Institution for Science’s NOIRLab NOAO Las Campanas Observatory(CL), some 115 km (71 mi) north-northeast of La Serena, Chile, over 2,500 m (8,200 ft) high.

    The telescope is set to be completed in 2021. GMT will ultimately cost $1 billion. Researchers from at least nine institutions are working to secure the funding for the project. The telescope will include seven 18-ton mirrors capable of providing clear images of volcanoes and riverbeds on Mars and mountains on the moon at a rate 40 times faster than the world’s current large telescopes. The mirrors of the Giant Magellan Telescope will be built at The University of Arizona and transported to a permanent mountaintop site in the Chilean Andes where the telescope will be constructed.

    Reaching Mars in March 2006, the Mars Reconnaissance Orbiter contained the HiRISE camera, with Principal Investigator Alfred McEwen as the lead on the project. This National Aeronautics and Space Agency mission to Mars carrying the UArizona-designed camera is capturing the highest-resolution images of the planet ever seen. The journey of the orbiter was 300 million miles. In August 2007, The University of Arizona, under the charge of Scientist Peter Smith, led the Phoenix Mars Mission, the first mission completely controlled by a university. Reaching the planet’s surface in May 2008, the mission’s purpose was to improve knowledge of the Martian Arctic. The Arizona Radio Observatory , a part of The University of Arizona Department of Astronomy Steward Observatory , operates the Submillimeter Telescope on Mount Graham.

    University of Arizona Radio Observatory at NOAO Kitt Peak National Observatory, AZ USA, U Arizona Department of Astronomy and Steward Observatory at altitude 2,096 m (6,877 ft).

    Kitt Peak National Observatory in the Arizona-Sonoran Desert 88 kilometers 55 mi west-southwest of Tucson, Arizona in the Quinlan Mountains of the Tohono O’odham Nation, altitude 2,096 m (6,877 ft)

    The National Science Foundation funded the iPlant Collaborative in 2008 with a $50 million grant. In 2013, iPlant Collaborative received a $50 million renewal grant. Rebranded in late 2015 as “CyVerse”, the collaborative cloud-based data management platform is moving beyond life sciences to provide cloud-computing access across all scientific disciplines.

    In June 2011, the university announced it would assume full ownership of the Biosphere 2 scientific research facility in Oracle, Arizona, north of Tucson, effective July 1. Biosphere 2 was constructed by private developers (funded mainly by Texas businessman and philanthropist Ed Bass) with its first closed system experiment commencing in 1991. The university had been the official management partner of the facility for research purposes since 2007.

    U Arizona mirror lab-Where else in the world can you find an astronomical observatory mirror lab under a football stadium?

    University of Arizona’s Biosphere 2, located in the Sonoran desert. An entire ecosystem under a glass dome? Visit our campus, just once, and you’ll quickly understand why The University of Arizona is a university unlike any other.

    University of Arizona Landscape Evolution Observatory at Biosphere 2.

     
  • richardmitnick 11:27 am on August 11, 2022 Permalink | Reply
    Tags: "A discoverer of worlds in Arizona's backyard", , , , , , Studying the physics of supermassive black holes; the makeup of the interstellar medium and the lives and deaths of stars., The Large Binocular Telescope, The University of Arizona   

    From The University of Arizona: “A discoverer of worlds in Arizona’s backyard” 

    From The University of Arizona

    8.10.22
    Daniel Stolte

    Arizona is home to one of the world’s most advanced cosmic discovery machines: the Large Binocular Telescope. Sporting two 27-foot mirrors made at the University of Arizona, its unique design allows astronomers to make observations that would not be possible even with advanced space telescopes.

    Tucked away in the southeastern corner of Arizona, perched at nearly 11,000 feet on Mount Graham, the tallest of the state’s “sky island” mountains, sits a marvel of engineering like none other in the world. The aptly named Large Binocular Telescope is the world’s largest optical telescope, and the only one of its kind. It resembles a pair of binoculars, as it boasts two round mirrors, each spanning 8.4 meters, or just over 27 feet. Managed by the University of Arizona, the LBT is a discovery machine that has allowed astronomers to glimpse cosmic phenomena close to home – such as lava lakes on one of Jupiter’s moons – and all the way to the farthest reaches of the universe.

    The LBT surpasses even NASA’s new flagship space telescope, the James Webb Space Telescope, in its resolving power – an astronomers’ term to describe sharpness of vision – and serves as a test bed for the most advanced and ambitious technology that will fuel the next generation of Extremely Large Telescopes.

    Joseph Shields, who recently took the helm as director of the Large Binocular Telescope Observatory, talked to University of Arizona News about the telescope’s importance in past and future discoveries, and its critical role in paving the way for the future of astronomy. Before joining The University of Arizona, Shields chaired the Department of Physics and Astronomy at Ohio University, where he also served as vice president for research and creative activity and dean of the Graduate College. During a NASA Hubble Fellowship at University of Arizona, Shields embarked on a career studying the physics of supermassive black holes; the makeup of the interstellar medium and the lives and deaths of stars.

    Q: What makes the LBT special?

    A: The LBT is arguably the most powerful optical telescope in the world at the current time. A telescope’s ability to measure objects in the universe is determined by its size. The more light-collecting area a telescope has, the better it is at detecting faint cosmic sources. In the case of the LBT, the combined collecting area of its two mirrors is equivalent to a single mirror with a diameter of 11.8 meters, larger than any other single optical telescope in existence today.

    A telescope’s size is also important for determining its ability to distinguish fine detail and resolve objects that are close together on the sky, as in the case of a planet orbiting a distant star. For the LBT, the relevant dimension that determines this resolving power is the distance between the outer edges of its two mirrors, which is 23 meters, or 75 feet. While a few other observatories can combine the light from separate telescopes to achieve greater resolving power, the LBT is unique in achieving this with mirrors attached to the same mount.

    An interesting comparison can be made with the James Webb Space Telescope. JWST has understandably wowed astronomers and the public with its images, and, like Hubble, benefits from being in space, unaffected by Earth’s atmosphere. But while producing wide-field images revealing remarkable detail of faint sources, JWST still has the resolving power of a 6-meter telescope, far less than the LBT’s 23-meter baseline. Because of this, the LBT retains a unique capability for resolving fine details in bright sources, such as nearby young stars surrounded by disks of gas and dust where planets are forming.

    Q: Can you tell us about the location of the LBT and why it was selected?

    A: The Large Binocular Telescope is located on Mount Graham, approximately 70 miles northeast of Tucson near the town of Safford. The site was chosen because of its dark sky and climate and atmospheric conditions favorable for producing sharp images. The observing conditions benefit from the site’s altitude of 10,500 feet, which is among the highest for observatories in North America. The LBT is part of the Mount Graham International Observatory, which also hosts the Arizona Radio Observatory Submillimeter Telescope and Vatican Advanced Technology Telescope.

    Vatican Advanced Technology Telescope, U Arizona Steward Observatory, Altitude, 792 meters (2,598 ft)

    Q: How long has LBT been there and who uses it?

    A: Construction of the telescope began in 1997, and the first observations were acquired in 2005 with one of the telescope’s two 8.4-meter-diameter mirrors. Observations with both mirrors began in 2007. The LBT Observatory is funded by an international consortium of research institutions and universities in Germany, Italy and the United States, including the University of Arizona. Observations are conducted by staff and students at the partner institutions. The observatory is staffed by U of A employees, with personnel based in Tucson and Safford. We typically have at least three staff members on site, including a telescope operator who points the telescope at whatever the source of interest may be. The scientists can conduct observations either on site, from their institutions and even from home.

    Q: What are some of the telescope’s most notable discoveries?

    A: A remarkable demonstration of the LBT’s unique capabilities for high-resolution studies was a study of Io, the innermost of the four moons of Jupiter discovered by famous Italian astronomer Galileo Galilei.

    2
    In this image of Jupiter’s moon Io taken by the LBT, a lake of molten lava shines brightly on the left, while fainter spots indicate other active volcanic areas on the small world, which is just slightly bigger than Earth’s moon. LBTO.

    Io is known to be volcanically active, and observations made with the LBT revealed temperature variations across a lava lake on Io, tracing the heating and flow of molten rock on the moon’s surface. It’s the only example where this level of volcanic detail has been directly observed on a world other than our own.

    A second important finding relates to the local environments of stars like the sun, measured by combining the light from the LBT’s mirrors in a manner that cancels out the light from the star, revealing surrounding disks of gas similar to the interplanetary dust in our solar system. The LBT played an important role in a large NASA-funded project, where it was tasked to find out how much dust encircles other sun-like stars and whether it would interfere with detecting planets. Fortunately, it turns out that most stars do not have disks of very bright dust that would interfere with studying exoplanets.

    Another very interesting study has used the telescope to investigate the deaths of stars and the formation of black holes. A star considerably more massive than our sun will eventually exhaust the fuel in its core, which can then collapse to form a black hole. The resulting release of gravitational energy typically produces a phenomenal explosion of the outer parts of the star that we witness as a supernova. An intriguing idea suggests that the most massive stars may undergo core collapse to form a black hole without the visible fireworks. It would be a stealthy way to form black holes. A survey with the LBT has turned up candidates for such “failed supernovae” that provide clues to how often they may occur.

    Q: What contributions can we expect from LBT in the future?

    A: The LBT has been, and continues to be, a leader in innovation enabling astronomical discovery. Lessons learned and technologies developed at the LBT are now benefitting a new generation of Extremely Large Telescopes, or ELTs, under construction [above]. These new facilities, with equivalent aperture diameters of 25 to 39 meters – 82 to 128 feet – will begin operation in the late 2020s. The Giant Magellan Telescope [above], which, like the LBT, will use 8.4-meter mirrors developed at the University of Arizona’s Richard F. Caris Mirror Lab, is part of the new generation. There is a direct connection between the technical solutions embodied in this new crop of observatories and innovation pioneered at the LBT, so we say that the Large Binocular Telescope is in fact the first of the ELTs. The cost of instruments for the larger ELTs is jaw-dropping, and the LBT will remain competitive as a facility where new instrumentation and technical innovations can be piloted to drive a broad range of scientific discovery.

    Q: What has you most excited about your new role as LBT director?

    A: Definitely the unique capabilities of this telescope and its ability to do science that we couldn’t do at any other facility. Through most of this decade, the LBT will remain singular in its combination of light collecting and resolving power. Our partner institutions are developing a new generation of instruments optimized for high angular resolution studies that will contribute across many areas of science, and in the study of extrasolar planets in particular. In my own research, I study the impact of supermassive black holes on the surroundings in their host galaxies. The LBT’s exceptional angular resolution allows us to discern details at very small scales, within the clouds of gas that surround these supermassive black holes. We want to understand these extreme environments, where we know material is being swallowed and huge amounts of energy are radiated as a result, but much work is still needed to understand these processes.

    Q: How can people learn more about this facility?

    A: Tours of the Mount Graham International Observatory are offered in cooperation with Eastern Arizona College’s Discovery Park Campus but have been on hiatus due to the pandemic. We hope to be able to restart tours within the next year.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    As of 2019, the The University of Arizona enrolled 45,918 students in 19 separate colleges/schools, including The University of Arizona College of Medicine in Tucson and Phoenix and the James E. Rogers College of Law, and is affiliated with two academic medical centers (Banner – University Medical Center Tucson and Banner – University Medical Center Phoenix). The University of Arizona is one of three universities governed by the Arizona Board of Regents. The university is part of the Association of American Universities and is the only member from Arizona, and also part of the Universities Research Association . The university is classified among “R1: Doctoral Universities – Very High Research Activity”.

    Known as the Arizona Wildcats (often shortened to “Cats”), The University of Arizona’s intercollegiate athletic teams are members of the Pac-12 Conference of the NCAA. The University of Arizona athletes have won national titles in several sports, most notably men’s basketball, baseball, and softball. The official colors of the university and its athletic teams are cardinal red and navy blue.

    After the passage of the Morrill Land-Grant Act of 1862, the push for a university in Arizona grew. The Arizona Territory’s “Thieving Thirteenth” Legislature approved The University of Arizona in 1885 and selected the city of Tucson to receive the appropriation to build the university. Tucson hoped to receive the appropriation for the territory’s mental hospital, which carried a $100,000 allocation instead of the $25,000 allotted to the territory’s only university Arizona State University was also chartered in 1885, but it was created as Arizona’s normal school, and not a university). Flooding on the Salt River delayed Tucson’s legislators, and by the time they reached Prescott, back-room deals allocating the most desirable territorial institutions had been made. Tucson was largely disappointed with receiving what was viewed as an inferior prize.

    With no parties willing to provide land for the new institution, the citizens of Tucson prepared to return the money to the Territorial Legislature until two gamblers and a saloon keeper decided to donate the land to build the school. Construction of Old Main, the first building on campus, began on October 27, 1887, and classes met for the first time in 1891 with 32 students in Old Main, which is still in use today. Because there were no high schools in Arizona Territory, the university maintained separate preparatory classes for the first 23 years of operation.

    Research

    The University of Arizona is classified among “R1: Doctoral Universities – Very high research activity”. UArizona is the fourth most awarded public university by National Aeronautics and Space Administration for research. The University of Arizona was awarded over $325 million for its Lunar and Planetary Laboratory (LPL) to lead NASA’s 2007–08 mission to Mars to explore the Martian Arctic, and $800 million for its OSIRIS-REx mission, the first in U.S. history to sample an asteroid.

    National Aeronautics Space Agency OSIRIS-REx Spacecraft.

    The LPL’s work in the Cassini spacecraft orbit around Saturn is larger than any other university globally.

    National Aeronautics and Space Administration/European Space Agency [La Agencia Espacial Europea][Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ASI Italian Space Agency [Agenzia Spaziale Italiana](IT) Cassini Spacecraft.

    The University of Arizona laboratory designed and operated the atmospheric radiation investigations and imaging on the probe. The University of Arizona operates the HiRISE camera, a part of the Mars Reconnaissance Orbiter.

    U Arizona NASA Mars Reconnaisance HiRISE Camera.

    NASA Mars Reconnaissance Orbiter.

    While using the HiRISE camera in 2011, University of Arizona alumnus Lujendra Ojha and his team discovered proof of liquid water on the surface of Mars—a discovery confirmed by NASA in 2015. The University of Arizona receives more NASA grants annually than the next nine top NASA/JPL-Caltech-funded universities combined. As of March 2016, The University of Arizona’s Lunar and Planetary Laboratory is actively involved in ten spacecraft missions: Cassini VIMS; Grail; the HiRISE camera orbiting Mars; the Juno mission orbiting Jupiter; Lunar Reconnaissance Orbiter (LRO); Maven, which will explore Mars’ upper atmosphere and interactions with the sun; Solar Probe Plus, a historic mission into the Sun’s atmosphere for the first time; Rosetta’s VIRTIS; WISE; and OSIRIS-REx, the first U.S. sample-return mission to a near-earth asteroid, which launched on September 8, 2016.

    3
    NASA – GRAIL Flying in Formation (Artist’s Concept). Credit: NASA.
    National Aeronautics Space Agency Juno at Jupiter.

    NASA/Lunar Reconnaissance Orbiter.

    NASA/Mars MAVEN

    NASA Parker Solar Probe Plus named to honor Pioneering Physicist Eugene Parker. The Johns Hopkins University Applied Physics Lab.
    National Aeronautics and Space Administration Wise/NEOWISE Telescope.

    The University of Arizona students have been selected as Truman, Rhodes, Goldwater, and Fulbright Scholars. According to The Chronicle of Higher Education, UArizona is among the top 25 producers of Fulbright awards in the U.S.

    The University of Arizona is a member of the Association of Universities for Research in Astronomy , a consortium of institutions pursuing research in astronomy. The association operates observatories and telescopes, notably Kitt Peak National Observatory just outside Tucson.

    National Science Foundation NOIRLab National Optical Astronomy Observatory Kitt Peak National Observatory on Kitt Peak of the Quinlan Mountains in the Arizona-Sonoran Desert on the Tohono O’odham Nation, 88 kilometers (55 mi) west-southwest of Tucson, Arizona, Altitude 2,096 m (6,877 ft). annotated.

    Led by Roger Angel, researchers in the Steward Observatory Mirror Lab at The University of Arizona are working in concert to build the world’s most advanced telescope. Known as the Giant Magellan Telescope (CL), it will produce images 10 times sharper than those from the Earth-orbiting Hubble Telescope.

    GMT Giant Magellan Telescope(CL) 21 meters, to be at the Carnegie Institution for Science’s NOIRLab NOAO Las Campanas Observatory(CL), some 115 km (71 mi) north-northeast of La Serena, Chile, over 2,500 m (8,200 ft) high.

    The telescope is set to be completed in 2021. GMT will ultimately cost $1 billion. Researchers from at least nine institutions are working to secure the funding for the project. The telescope will include seven 18-ton mirrors capable of providing clear images of volcanoes and riverbeds on Mars and mountains on the moon at a rate 40 times faster than the world’s current large telescopes. The mirrors of the Giant Magellan Telescope will be built at The University of Arizona and transported to a permanent mountaintop site in the Chilean Andes where the telescope will be constructed.

    Reaching Mars in March 2006, the Mars Reconnaissance Orbiter contained the HiRISE camera, with Principal Investigator Alfred McEwen as the lead on the project. This National Aeronautics and Space Agency mission to Mars carrying the UArizona-designed camera is capturing the highest-resolution images of the planet ever seen. The journey of the orbiter was 300 million miles. In August 2007, The University of Arizona, under the charge of Scientist Peter Smith, led the Phoenix Mars Mission, the first mission completely controlled by a university. Reaching the planet’s surface in May 2008, the mission’s purpose was to improve knowledge of the Martian Arctic. The Arizona Radio Observatory , a part of The University of Arizona Department of Astronomy Steward Observatory , operates the Submillimeter Telescope on Mount Graham.

    University of Arizona Radio Observatory at NOAO Kitt Peak National Observatory, AZ USA, U Arizona Department of Astronomy and Steward Observatory at altitude 2,096 m (6,877 ft).

    Kitt Peak National Observatory in the Arizona-Sonoran Desert 88 kilometers 55 mi west-southwest of Tucson, Arizona in the Quinlan Mountains of the Tohono O’odham Nation, altitude 2,096 m (6,877 ft)

    The National Science Foundation funded the iPlant Collaborative in 2008 with a $50 million grant. In 2013, iPlant Collaborative received a $50 million renewal grant. Rebranded in late 2015 as “CyVerse”, the collaborative cloud-based data management platform is moving beyond life sciences to provide cloud-computing access across all scientific disciplines.

    In June 2011, the university announced it would assume full ownership of the Biosphere 2 scientific research facility in Oracle, Arizona, north of Tucson, effective July 1. Biosphere 2 was constructed by private developers (funded mainly by Texas businessman and philanthropist Ed Bass) with its first closed system experiment commencing in 1991. The university had been the official management partner of the facility for research purposes since 2007.

    U Arizona mirror lab-Where else in the world can you find an astronomical observatory mirror lab under a football stadium?

    University of Arizona’s Biosphere 2, located in the Sonoran desert. An entire ecosystem under a glass dome? Visit our campus, just once, and you’ll quickly understand why The University of Arizona is a university unlike any other.

    University of Arizona Landscape Evolution Observatory at Biosphere 2.

     
  • richardmitnick 8:23 am on July 27, 2022 Permalink | Reply
    Tags: "We May Finally Understand How a Strange Rare Mineral on Mars Came to Exist", In addition Curiosity found feldspar and opaline silica which on Earth can be found in volcanic contexts., On Mars tridymite could have come from a single explosive volcanic eruption around 3.0 to 3.7 billion years ago., , The discovery of tridymite in a mudstone in Gale Crater is one of the most surprising observations that the Curiosity rover has made in 10 years of exploring Mars., The University of Arizona, Tridymite forms at temperatures above 870 degrees Celsius (1600 degrees Fahrenheit) and transforms into a phase called cristobalite at around 1470 degrees Celsius., Tridymite-a form of quartz-only seems to form extremely seldom and under high temperatures such as those you might find in magma.   

    From The University of Arizona Via “Science Alert (AU)” : “We May Finally Understand How a Strange Rare Mineral on Mars Came to Exist” 

    From The University of Arizona

    Via

    ScienceAlert

    “Science Alert (AU)”

    27 JULY 2022
    MICHELLE STARR

    1
    A tridymite crystal from Wannenköpfe quarry in Germany. (Fred Kruijen/Wikimedia Commons, CC BY-SA 3.0)

    In 2016, the Curiosity rover came across something really peculiar in Gale Crater on Mars.

    On the slope of Mount Sharp, where Curiosity labored, were large quantities of a rare mineral; rare, at least, here on Earth. Tridymite, a form of quartz, only seems to form extremely seldom, and under high temperatures, such as those you might find in magma.

    Although Mars shows extensive evidence of past basaltic volcanic activity in some regions, the once putatively water-filled Gale Crater is not one of those regions, leading scientists to puzzle about how the mineral came to be there.

    Now a team led by planetary scientist Valerie Payré of the University of Arizona have figured out the mystery: that tridymite could have come from a single explosive volcanic eruption around 3.0 to 3.7 billion years ago.

    “The discovery of tridymite in a mudstone in Gale Crater is one of the most surprising observations that the Curiosity rover has made in 10 years of exploring Mars,” said Mars geologist Kirsten Siebach of Rice University.

    “Tridymite is usually associated with quartz-forming, explosive, evolved volcanic systems on Earth, but we found it in the bottom of an ancient lake on Mars, where most of the volcanoes are very primitive.”

    Because we can’t actually get to Mars, the scientists had two tools for figuring out the mystery: tridymite deposits found here on Earth, and the mineral samples collected from Gale Crater and Mount Sharp – the peak at the crater’s center – by Curiosity, which sends data on its finds back to Earth.

    So that’s where Payré, then at Rice University, and her colleagues turned.

    First, Earth. Every documented tridymite deposit and the conditions under which it formed were carefully examined by the research team.

    Then, they sifted through the data collected by Curiosity on the composition of the long-ago dried-up sedimentary lake bed in the Gale Crater.

    Tridymite forms at temperatures above 870 degrees Celsius (1,600 degrees Fahrenheit) and transforms into a phase called cristobalite at around 1,470 degrees Celsius. Both these forms were detected in a single layer on the slope of Mount Sharp.

    In addition Curiosity found feldspar and opaline silica which on Earth can be found in volcanic contexts.

    Putting these pieces together leads to a fascinating scenario involving a magmatic chamber beneath the Gale Crater billions of years ago. This chamber, the team surmised, would have sat under the lake for some time, more than is usual.

    During this time, cooling would result in a process called fractional crystallization, removing and segregating minerals to produce an excess of silica.

    When the chamber eventually erupted, it did so in a huge explosion that spewed ash containing the silica – now in the form of tridymite – into the air to rain back down into the lake in the Gale Crater and its surrounding tributaries.

    These waters would have weathered and sorted the ash to produce the chemical composition of the layer as observed by Curiosity, the team said.

    “It’s actually a straightforward evolution of other volcanic rocks we found in the crater,” Siebach explained.

    “We argue that because we only saw this mineral once, and it was highly concentrated in a single layer, the volcano probably erupted at the same time the lake was there. Although the specific sample we analyzed was not exclusively volcanic ash, it was ash that had been weathered and sorted by water.”

    Because this silicic eruption is an evolved type that would have been different from the basaltic volcanism for which evidence abounds on Mars, the team’s analysis suggests that the red planet may have had a much more complex volcanic history than we know.

    Future missions, the team said, should look for evidence of other instances of this evolved volcanism to help constrain when and in what contexts it occurred on Mars.

    “Mars,” they wrote in their paper, “is not only a basaltic world.”

    Science paper:
    Planetary Science Letters.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    As of 2019, the The University of Arizona enrolled 45,918 students in 19 separate colleges/schools, including The University of Arizona College of Medicine in Tucson and Phoenix and the James E. Rogers College of Law, and is affiliated with two academic medical centers (Banner – University Medical Center Tucson and Banner – University Medical Center Phoenix). The University of Arizona is one of three universities governed by the Arizona Board of Regents. The university is part of the Association of American Universities and is the only member from Arizona, and also part of the Universities Research Association . The university is classified among “R1: Doctoral Universities – Very High Research Activity”.

    Known as the Arizona Wildcats (often shortened to “Cats”), The University of Arizona’s intercollegiate athletic teams are members of the Pac-12 Conference of the NCAA. The University of Arizona athletes have won national titles in several sports, most notably men’s basketball, baseball, and softball. The official colors of the university and its athletic teams are cardinal red and navy blue.

    After the passage of the Morrill Land-Grant Act of 1862, the push for a university in Arizona grew. The Arizona Territory’s “Thieving Thirteenth” Legislature approved The University of Arizona in 1885 and selected the city of Tucson to receive the appropriation to build the university. Tucson hoped to receive the appropriation for the territory’s mental hospital, which carried a $100,000 allocation instead of the $25,000 allotted to the territory’s only university Arizona State University was also chartered in 1885, but it was created as Arizona’s normal school, and not a university). Flooding on the Salt River delayed Tucson’s legislators, and by the time they reached Prescott, back-room deals allocating the most desirable territorial institutions had been made. Tucson was largely disappointed with receiving what was viewed as an inferior prize.

    With no parties willing to provide land for the new institution, the citizens of Tucson prepared to return the money to the Territorial Legislature until two gamblers and a saloon keeper decided to donate the land to build the school. Construction of Old Main, the first building on campus, began on October 27, 1887, and classes met for the first time in 1891 with 32 students in Old Main, which is still in use today. Because there were no high schools in Arizona Territory, the university maintained separate preparatory classes for the first 23 years of operation.

    Research

    The University of Arizona is classified among “R1: Doctoral Universities – Very high research activity”. UArizona is the fourth most awarded public university by National Aeronautics and Space Administration for research. The University of Arizona was awarded over $325 million for its Lunar and Planetary Laboratory (LPL) to lead NASA’s 2007–08 mission to Mars to explore the Martian Arctic, and $800 million for its OSIRIS-REx mission, the first in U.S. history to sample an asteroid.

    National Aeronautics Space Agency OSIRIS-REx Spacecraft.

    The LPL’s work in the Cassini spacecraft orbit around Saturn is larger than any other university globally.

    National Aeronautics and Space Administration/European Space Agency [La Agencia Espacial Europea][Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ASI Italian Space Agency [Agenzia Spaziale Italiana](IT) Cassini Spacecraft.

    The University of Arizona laboratory designed and operated the atmospheric radiation investigations and imaging on the probe. The University of Arizona operates the HiRISE camera, a part of the Mars Reconnaissance Orbiter.

    U Arizona NASA Mars Reconnaisance HiRISE Camera.

    NASA Mars Reconnaissance Orbiter.

    While using the HiRISE camera in 2011, University of Arizona alumnus Lujendra Ojha and his team discovered proof of liquid water on the surface of Mars—a discovery confirmed by NASA in 2015. The University of Arizona receives more NASA grants annually than the next nine top NASA/JPL-Caltech-funded universities combined. As of March 2016, The University of Arizona’s Lunar and Planetary Laboratory is actively involved in ten spacecraft missions: Cassini VIMS; Grail; the HiRISE camera orbiting Mars; the Juno mission orbiting Jupiter; Lunar Reconnaissance Orbiter (LRO); Maven, which will explore Mars’ upper atmosphere and interactions with the sun; Solar Probe Plus, a historic mission into the Sun’s atmosphere for the first time; Rosetta’s VIRTIS; WISE; and OSIRIS-REx, the first U.S. sample-return mission to a near-earth asteroid, which launched on September 8, 2016.

    3
    NASA – GRAIL Flying in Formation (Artist’s Concept). Credit: NASA.
    National Aeronautics Space Agency Juno at Jupiter.

    NASA/Lunar Reconnaissance Orbiter.

    NASA/Mars MAVEN

    NASA Parker Solar Probe Plus named to honor Pioneering Physicist Eugene Parker. The Johns Hopkins University Applied Physics Lab.
    National Aeronautics and Space Administration Wise/NEOWISE Telescope.

    The University of Arizona students have been selected as Truman, Rhodes, Goldwater, and Fulbright Scholars. According to The Chronicle of Higher Education, UArizona is among the top 25 producers of Fulbright awards in the U.S.

    The University of Arizona is a member of the Association of Universities for Research in Astronomy , a consortium of institutions pursuing research in astronomy. The association operates observatories and telescopes, notably Kitt Peak National Observatory just outside Tucson.

    National Science Foundation NOIRLab National Optical Astronomy Observatory Kitt Peak National Observatory on Kitt Peak of the Quinlan Mountains in the Arizona-Sonoran Desert on the Tohono O’odham Nation, 88 kilometers (55 mi) west-southwest of Tucson, Arizona, Altitude 2,096 m (6,877 ft). annotated.

    Led by Roger Angel, researchers in the Steward Observatory Mirror Lab at The University of Arizona are working in concert to build the world’s most advanced telescope. Known as the Giant Magellan Telescope (CL), it will produce images 10 times sharper than those from the Earth-orbiting Hubble Telescope.

    GMT Giant Magellan Telescope(CL) 21 meters, to be at the Carnegie Institution for Science’s NOIRLab NOAO Las Campanas Observatory(CL), some 115 km (71 mi) north-northeast of La Serena, Chile, over 2,500 m (8,200 ft) high.

    The telescope is set to be completed in 2021. GMT will ultimately cost $1 billion. Researchers from at least nine institutions are working to secure the funding for the project. The telescope will include seven 18-ton mirrors capable of providing clear images of volcanoes and riverbeds on Mars and mountains on the moon at a rate 40 times faster than the world’s current large telescopes. The mirrors of the Giant Magellan Telescope will be built at The University of Arizona and transported to a permanent mountaintop site in the Chilean Andes where the telescope will be constructed.

    Reaching Mars in March 2006, the Mars Reconnaissance Orbiter contained the HiRISE camera, with Principal Investigator Alfred McEwen as the lead on the project. This National Aeronautics and Space Agency mission to Mars carrying the UArizona-designed camera is capturing the highest-resolution images of the planet ever seen. The journey of the orbiter was 300 million miles. In August 2007, The University of Arizona, under the charge of Scientist Peter Smith, led the Phoenix Mars Mission, the first mission completely controlled by a university. Reaching the planet’s surface in May 2008, the mission’s purpose was to improve knowledge of the Martian Arctic. The Arizona Radio Observatory , a part of The University of Arizona Department of Astronomy Steward Observatory , operates the Submillimeter Telescope on Mount Graham.

    University of Arizona Radio Observatory at NOAO Kitt Peak National Observatory, AZ USA, U Arizona Department of Astronomy and Steward Observatory at altitude 2,096 m (6,877 ft).

    Kitt Peak National Observatory in the Arizona-Sonoran Desert 88 kilometers 55 mi west-southwest of Tucson, Arizona in the Quinlan Mountains of the Tohono O’odham Nation, altitude 2,096 m (6,877 ft)

    The National Science Foundation funded the iPlant Collaborative in 2008 with a $50 million grant. In 2013, iPlant Collaborative received a $50 million renewal grant. Rebranded in late 2015 as “CyVerse”, the collaborative cloud-based data management platform is moving beyond life sciences to provide cloud-computing access across all scientific disciplines.

    In June 2011, the university announced it would assume full ownership of the Biosphere 2 scientific research facility in Oracle, Arizona, north of Tucson, effective July 1. Biosphere 2 was constructed by private developers (funded mainly by Texas businessman and philanthropist Ed Bass) with its first closed system experiment commencing in 1991. The university had been the official management partner of the facility for research purposes since 2007.

    U Arizona mirror lab-Where else in the world can you find an astronomical observatory mirror lab under a football stadium?

    University of Arizona’s Biosphere 2, located in the Sonoran desert. An entire ecosystem under a glass dome? Visit our campus, just once, and you’ll quickly understand why The University of Arizona is a university unlike any other.

    University of Arizona Landscape Evolution Observatory at Biosphere 2.

     
  • richardmitnick 4:21 pm on June 23, 2022 Permalink | Reply
    Tags: "New study solves long-standing mystery of what may have triggered ice age", About 100000 years ago when mammoths roamed the Earth the Northern Hemisphere climate plummeted into a deep freeze that allowed massive ice sheets to form., , As the ocean gateways in the Canadian Arctic Archipelago remained open the Northern Hemisphere cooled sufficiently to allow ice sheets to build up in Northern Canada and Siberia but not in Scandinavia, , , , , Over a period of about 10000 years local mountain glaciers grew and formed large ice sheets covering much of today's Canada Siberia and northern Europe., The researchers further simulated a previously unexplored scenario in which marine ice sheets obstructed the waterways in the Canadian Arctic Archipelago., The researchers identified the ocean gateways in the Canadian Arctic Archipelago as a critical linchpin determining whether or not ice sheets could grow in Scandinavia., The University of Arizona, These scenarios may even help explain more short-lived cold periods such as the Younger Dryas cold reversal (12900 to 11700 years ago) that punctuated the general warming at the end of the last ice ag, Unlike the cold Canadian Arctic Archipelago where ice readily forms Scandinavia should have remained largely ice-free due to the North Atlantic Current which brings warm water to the coasts of northwe, Where did the ice sheets that rang in the last ice age more than 100000 years ago come from and how could they grow so quickly?   

    From The University of Arizona: “New study solves long-standing mystery of what may have triggered ice age” 

    From The University of Arizona

    6.23.22

    Media contact
    Daniel Stolte
    Science Writer, University Communications
    stolte@arizona.edu
    520-626-4402

    Researcher contacts
    Marcus Lofverstrom
    Department of Geosciences
    lofverstrom@email.arizona.edu

    Diane Thompson
    Department of Geosciences
    thompsod@arizona.edu

    Sophisticated simulations of climate during the onset of the last glacial period – some 100,000 years ago – may help explain why a massive ice sheet formed in Scandinavia despite its comparatively mild climate.

    1
    At the beginning of the last ice, local mountain glaciers grew and formed large ice sheets, like the one seen here in Greenland, that covered much of today’s Canada, Siberia, and Northern Europe. Credit: Annie Spratt/Unsplash.

    A new study led by University of Arizona researchers may have solved two mysteries that have long puzzled paleo-climate experts: Where did the ice sheets that rang in the last ice age more than 100000 years ago come from and how could they grow so quickly?

    Understanding what drives Earth’s glacial–interglacial cycles – the periodic advance and retreat of ice sheets in the Northern Hemisphere – is no easy feat, and researchers have devoted substantial effort to explaining the expansion and shrinking of large ice masses over thousands of years. The new study, published in the journal Nature Geoscience, proposes an explanation for the rapid expansion of the ice sheets that covered much of the Northern Hemisphere during the most recent ice age, and the findings could also apply to other glacial periods throughout Earth’s history.

    About 100000 years ago when mammoths roamed the Earth the Northern Hemisphere climate plummeted into a deep freeze that allowed massive ice sheets to form. Over a period of about 10000 years local mountain glaciers grew and formed large ice sheets covering much of today’s Canada Siberia and northern Europe.

    While it has been widely accepted that periodic “wobbling” in the Earth’s orbit around the sun triggered cooling in the Northern Hemisphere summer that caused the onset of widespread glaciation, scientists have struggled to explain the extensive ice sheets covering much of Scandinavia and northern Europe, where temperatures are much more mild.

    Unlike the cold Canadian Arctic Archipelago where ice readily forms Scandinavia should have remained largely ice-free due to the North Atlantic Current which brings warm water to the coasts of northwestern Europe. Although the two regions are located along similar latitudes, the Scandinavian summer temperatures are well above freezing, while the temperatures in large parts of the Canadian Arctic remain below freezing through the summer, according to the researchers. Because of this discrepancy, climate models have struggled to account for the extensive glaciers that advanced in northern Europe and marked the beginning of the last ice age, said the study’s lead author, Marcus Lofverstrom.

    “The problem is we don’t know where those ice sheets (in Scandinavia) came from and what caused them to expand in such a short amount of time,” said Lofverstrom, an assistant professor of geosciences and head of the UArizona Earth System Dynamics Lab.

    To find answers, Lofverstrom helped develop an extremely complex Earth-system model, known as the Community Earth System Model, which allowed his team to realistically recreate the conditions that existed at the beginning of the most recent glacial period. Notably, he expanded the ice-sheet model domain from Greenland to encompass most of the Northern Hemisphere at high spatial detail. Using this updated model configuration, the researchers identified the ocean gateways in the Canadian Arctic Archipelago as a critical linchpin controlling the North Atlantic climate and ultimately determining whether or not ice sheets could grow in Scandinavia.

    The simulations revealed that as long as the ocean gateways in the Canadian Arctic Archipelago remain open Earth’s orbital configuration cooled the Northern Hemisphere sufficiently to allow ice sheets to build up in Northern Canada and Siberia, but not in Scandinavia.

    In a second experiment the researchers simulated a previously unexplored scenario in which marine ice sheets obstructed the waterways in the Canadian Arctic Archipelago. In that experiment, the comparatively fresh Arctic and North Pacific water – typically routed through the Canadian Arctic Archipelago – was diverted east of Greenland, where deep water masses typically form. This diversion led to a freshening and weakening of the North Atlantic deep circulation, sea ice expansion, and cooler conditions in Scandinavia.

    “Using both climate model simulations and marine sediment analysis, we show that ice forming in northern Canada can obstruct ocean gateways and divert water transport from the Arctic into the North Atlantic,” Lofverstrom said, “and that in turn leads to a weakened ocean circulation and cold conditions off the coast of Scandinavia, which is sufficient to start growing ice in that region.”

    “These findings are supported by marine sediment records from the North Atlantic, which show evidence of glaciers in northern Canada several thousand years before the European side,” said Diane Thompson, assistant professor in the UArizona Department of Geosciences. “The sediment records also show compelling evidence of a weakened deep ocean circulation before the glaciers form in Scandinavia, similar to our modeling results.”

    Together, the experiments suggest that the formation of marine ice in northern Canada may be a necessary precursor to glaciation in Scandinavia, the authors write.

    Pushing climate models beyond their traditional application of predicting future climates provides an opportunity to identify previously unknown interactions in the Earth system, such as the complex and sometimes counterintuitive interplay between ice sheets and climate, Lofverstrom said.

    “It is possible that the mechanisms we identified here apply to every glacial period, not just the most recent one,” he said. “It may even help explain more short-lived cold periods such as the Younger Dryas cold reversal (12,900 to 11,700 years ago) that punctuated the general warming at the end of the last ice age.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    As of 2019, the The University of Arizona enrolled 45,918 students in 19 separate colleges/schools, including The University of Arizona College of Medicine in Tucson and Phoenix and the James E. Rogers College of Law, and is affiliated with two academic medical centers (Banner – University Medical Center Tucson and Banner – University Medical Center Phoenix). The University of Arizona is one of three universities governed by the Arizona Board of Regents. The university is part of the Association of American Universities and is the only member from Arizona, and also part of the Universities Research Association . The university is classified among “R1: Doctoral Universities – Very High Research Activity”.

    Known as the Arizona Wildcats (often shortened to “Cats”), The University of Arizona’s intercollegiate athletic teams are members of the Pac-12 Conference of the NCAA. The University of Arizona athletes have won national titles in several sports, most notably men’s basketball, baseball, and softball. The official colors of the university and its athletic teams are cardinal red and navy blue.

    After the passage of the Morrill Land-Grant Act of 1862, the push for a university in Arizona grew. The Arizona Territory’s “Thieving Thirteenth” Legislature approved The University of Arizona in 1885 and selected the city of Tucson to receive the appropriation to build the university. Tucson hoped to receive the appropriation for the territory’s mental hospital, which carried a $100,000 allocation instead of the $25,000 allotted to the territory’s only university Arizona State University was also chartered in 1885, but it was created as Arizona’s normal school, and not a university). Flooding on the Salt River delayed Tucson’s legislators, and by the time they reached Prescott, back-room deals allocating the most desirable territorial institutions had been made. Tucson was largely disappointed with receiving what was viewed as an inferior prize.

    With no parties willing to provide land for the new institution, the citizens of Tucson prepared to return the money to the Territorial Legislature until two gamblers and a saloon keeper decided to donate the land to build the school. Construction of Old Main, the first building on campus, began on October 27, 1887, and classes met for the first time in 1891 with 32 students in Old Main, which is still in use today. Because there were no high schools in Arizona Territory, the university maintained separate preparatory classes for the first 23 years of operation.

    Research

    The University of Arizona is classified among “R1: Doctoral Universities – Very high research activity”. UArizona is the fourth most awarded public university by National Aeronautics and Space Administration for research. The University of Arizona was awarded over $325 million for its Lunar and Planetary Laboratory (LPL) to lead NASA’s 2007–08 mission to Mars to explore the Martian Arctic, and $800 million for its OSIRIS-REx mission, the first in U.S. history to sample an asteroid.

    National Aeronautics Space Agency OSIRIS-REx Spacecraft.

    The LPL’s work in the Cassini spacecraft orbit around Saturn is larger than any other university globally.

    National Aeronautics and Space Administration/European Space Agency [La Agencia Espacial Europea][Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ASI Italian Space Agency [Agenzia Spaziale Italiana](IT) Cassini Spacecraft.

    The University of Arizona laboratory designed and operated the atmospheric radiation investigations and imaging on the probe. The University of Arizona operates the HiRISE camera, a part of the Mars Reconnaissance Orbiter.

    U Arizona NASA Mars Reconnaisance HiRISE Camera.

    NASA Mars Reconnaissance Orbiter.

    While using the HiRISE camera in 2011, University of Arizona alumnus Lujendra Ojha and his team discovered proof of liquid water on the surface of Mars—a discovery confirmed by NASA in 2015. The University of Arizona receives more NASA grants annually than the next nine top NASA/JPL-Caltech-funded universities combined. As of March 2016, The University of Arizona’s Lunar and Planetary Laboratory is actively involved in ten spacecraft missions: Cassini VIMS; Grail; the HiRISE camera orbiting Mars; the Juno mission orbiting Jupiter; Lunar Reconnaissance Orbiter (LRO); Maven, which will explore Mars’ upper atmosphere and interactions with the sun; Solar Probe Plus, a historic mission into the Sun’s atmosphere for the first time; Rosetta’s VIRTIS; WISE; and OSIRIS-REx, the first U.S. sample-return mission to a near-earth asteroid, which launched on September 8, 2016.

    3
    NASA – GRAIL Flying in Formation (Artist’s Concept). Credit: NASA.
    National Aeronautics Space Agency Juno at Jupiter.

    NASA/Lunar Reconnaissance Orbiter.

    NASA/Mars MAVEN

    NASA Parker Solar Probe Plus named to honor Pioneering Physicist Eugene Parker. The Johns Hopkins University Applied Physics Lab.
    National Aeronautics and Space Administration Wise/NEOWISE Telescope.

    The University of Arizona students have been selected as Truman, Rhodes, Goldwater, and Fulbright Scholars. According to The Chronicle of Higher Education, UArizona is among the top 25 producers of Fulbright awards in the U.S.

    The University of Arizona is a member of the Association of Universities for Research in Astronomy , a consortium of institutions pursuing research in astronomy. The association operates observatories and telescopes, notably Kitt Peak National Observatory just outside Tucson.

    National Science Foundation NOIRLab National Optical Astronomy Observatory Kitt Peak National Observatory on Kitt Peak of the Quinlan Mountains in the Arizona-Sonoran Desert on the Tohono O’odham Nation, 88 kilometers (55 mi) west-southwest of Tucson, Arizona, Altitude 2,096 m (6,877 ft). annotated.

    Led by Roger Angel, researchers in the Steward Observatory Mirror Lab at The University of Arizona are working in concert to build the world’s most advanced telescope. Known as the Giant Magellan Telescope (CL), it will produce images 10 times sharper than those from the Earth-orbiting Hubble Telescope.

    GMT Giant Magellan Telescope(CL) 21 meters, to be at the Carnegie Institution for Science’s NOIRLab NOAO Las Campanas Observatory(CL), some 115 km (71 mi) north-northeast of La Serena, Chile, over 2,500 m (8,200 ft) high.

    The telescope is set to be completed in 2021. GMT will ultimately cost $1 billion. Researchers from at least nine institutions are working to secure the funding for the project. The telescope will include seven 18-ton mirrors capable of providing clear images of volcanoes and riverbeds on Mars and mountains on the moon at a rate 40 times faster than the world’s current large telescopes. The mirrors of the Giant Magellan Telescope will be built at The University of Arizona and transported to a permanent mountaintop site in the Chilean Andes where the telescope will be constructed.

    Reaching Mars in March 2006, the Mars Reconnaissance Orbiter contained the HiRISE camera, with Principal Investigator Alfred McEwen as the lead on the project. This National Aeronautics and Space Agency mission to Mars carrying the UArizona-designed camera is capturing the highest-resolution images of the planet ever seen. The journey of the orbiter was 300 million miles. In August 2007, The University of Arizona, under the charge of Scientist Peter Smith, led the Phoenix Mars Mission, the first mission completely controlled by a university. Reaching the planet’s surface in May 2008, the mission’s purpose was to improve knowledge of the Martian Arctic. The Arizona Radio Observatory , a part of The University of Arizona Department of Astronomy Steward Observatory , operates the Submillimeter Telescope on Mount Graham.

    University of Arizona Radio Observatory at NOAO Kitt Peak National Observatory, AZ USA, U Arizona Department of Astronomy and Steward Observatory at altitude 2,096 m (6,877 ft).

    Kitt Peak National Observatory in the Arizona-Sonoran Desert 88 kilometers 55 mi west-southwest of Tucson, Arizona in the Quinlan Mountains of the Tohono O’odham Nation, altitude 2,096 m (6,877 ft)

    The National Science Foundation funded the iPlant Collaborative in 2008 with a $50 million grant. In 2013, iPlant Collaborative received a $50 million renewal grant. Rebranded in late 2015 as “CyVerse”, the collaborative cloud-based data management platform is moving beyond life sciences to provide cloud-computing access across all scientific disciplines.

    In June 2011, the university announced it would assume full ownership of the Biosphere 2 scientific research facility in Oracle, Arizona, north of Tucson, effective July 1. Biosphere 2 was constructed by private developers (funded mainly by Texas businessman and philanthropist Ed Bass) with its first closed system experiment commencing in 1991. The university had been the official management partner of the facility for research purposes since 2007.

    U Arizona mirror lab-Where else in the world can you find an astronomical observatory mirror lab under a football stadium?

    University of Arizona’s Biosphere 2, located in the Sonoran desert. An entire ecosystem under a glass dome? Visit our campus, just once, and you’ll quickly understand why The University of Arizona is a university unlike any other.

    University of Arizona Landscape Evolution Observatory at Biosphere 2.

     
  • richardmitnick 4:48 pm on June 15, 2022 Permalink | Reply
    Tags: "Mysterious 'blue blobs' reveal a new kind of star system", , , , , , Most of the stars in each of the five systems are very blue and very young and contain very little atomic hydrogen gas., , The fact that the new stellar systems are abundant in metals hints at how they might have formed., The University of Arizona, These stellar systems formed from gas that was stripped from a big galaxy because how metals are built up is by many repeated episodes of star formation and you only really get that in a big galaxy.   

    From The University of Arizona: “Mysterious ‘blue blobs’ reveal a new kind of star system” 

    From The University of Arizona

    6.15.22

    Media contact
    Mikayla Mace Kelley
    Science Writer, University Communications
    mikaylamace@arizona.edu
    520-621-1878

    Researcher contacts
    Michael Jones
    Steward Observatory
    jonesmg@email.arizona.edu
    520-621-2288

    David Sand
    Department of Astronomy
    dsand@as.arizona.edu
    520-621-2288

    The stellar structures are thought to be created when galaxies collide with hot gas in a process that could be likened to doing a belly flop in a swimming pool.

    1
    UArizona astronomers have identified a new class of star system. The collection of mostly young blue stars are seen here using the Hubble Space Telescope Advanced Camera for Surveys. Credit: Michael Jones.

    University of Arizona astronomers have identified five examples of a new class of stellar system. They’re not quite galaxies and only exist in isolation.

    The new stellar systems contain only young, blue stars, which are distributed in an irregular pattern and seem to exist in surprising isolation from any potential parent galaxy.

    The stellar systems – which astronomers say appear through a telescope as “blue blobs” and are about the size of tiny dwarf galaxies – are located within the relatively nearby Virgo galaxy cluster. The five systems are separated from any potential parent galaxies by over 300,000 light years in some cases, making it challenging to identify their origins.

    The astronomers found the new systems after another research group, led by the Netherlands Institute for Radio Astronomy’s Elizabeth Adams, compiled a catalog of nearby gas clouds, providing a list of potential sites of new galaxies. Once that catalog was published, several research groups, including one led by UArizona associate astronomy professor David Sand, started looking for stars that could be associated with those gas clouds.

    The gas clouds were thought to be associated with our own galaxy, and most of them probably are, but when the first collection of stars, called SECCO1, was discovered, astronomers realized that it was not near the Milky Way at all, but rather in the Virgo cluster, which is much farther away but still very nearby in the scale of the universe.

    SECCO1 was one of the very unusual “blue blobs,” said Michael Jones, a postdoctoral fellow in the UArizona Steward Observatory and lead author of a study [The Astrophysical Journal] that describes the new stellar systems. Jones presented the findings, which Sand co-authored, during the 240th American Astronomical Society meeting in Pasadena, California, Wednesday.

    “It’s a lesson in the unexpected,” Jones said. “When you’re looking for things, you’re not necessarily going to find the thing you’re looking for, but you might find something else very interesting.”

    The team obtained their observations from the Hubble Space Telescope, the Very Large Array telescope in New Mexico and the Very Large Telescope in Chile.

    Study co-author Michele Bellazzini, with the Istituto Nazionale di Astrofisica in Italy, led the analysis of the data from Very Large Telescope and has submitted a companion paper focusing on that data.

    Together, the team learned that most of the stars in each system are very blue and very young and that they contain very little atomic hydrogen gas. This is significant because star formation begins with atomic hydrogen gas, which eventually evolves into dense clouds of molecular hydrogen gas before forming into stars.

    “We observed that most of the systems lack atomic gas, but that doesn’t mean there isn’t molecular gas,” Jones said. “In fact, there must be some molecular gas because they are still forming stars. The existence of mostly young stars and little gas signals that these systems must have lost their gas recently.”

    The combination of blue stars and lack of gas was unexpected, as was a lack of older stars in the systems. Most galaxies have older stars, which astronomers refer to as being “red and dead.”

    “Stars that are born red are lower mass and therefore live longer than blue stars, which burn fast and die young, so old red stars are usually the last ones left living,” Jones said. “And they’re dead because they don’t have any more gas with which to form new stars. These blue stars are like an oasis in the desert, basically.”

    The fact that the new stellar systems are abundant in metals hints at how they might have formed.

    “To astronomers, metals are any element heavier than helium,” Jones said. “This tells us that these stellar systems formed from gas that was stripped from a big galaxy, because how metals are built up is by many repeated episodes of star formation, and you only really get that in a big galaxy.”

    There are two main ways gas can be stripped from a galaxy. The first is tidal stripping, which occurs when two big galaxies pass by each other and gravitationally tear away gas and stars.

    The other is what’s known as ram pressure stripping.

    “This is like if you belly flop into a swimming pool,” Jones said. “When a galaxy belly flops into a cluster that is full of hot gas, then its gas gets forced out behind it. That’s the mechanism that we think we’re seeing here to create these objects.”

    The team prefers the ram pressure stripping explanation because in order for the blue blobs to have become as isolated as they are, they must have been moving very quickly, and the speed of tidal stripping is low compared to ram pressure stripping.

    Astronomers expect that one day these systems will eventually split off into individual clusters of stars and spread out across the larger galaxy cluster.

    What researchers have learned feeds into the larger “story of recycling of gas and stars in the universe,” Sand said. “We think that this belly flopping process changes a lot of spiral galaxies into elliptical galaxies on some level, so learning more about the general process teaches us more about galaxy formation.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    As of 2019, the The University of Arizona enrolled 45,918 students in 19 separate colleges/schools, including The University of Arizona College of Medicine in Tucson and Phoenix and the James E. Rogers College of Law, and is affiliated with two academic medical centers (Banner – University Medical Center Tucson and Banner – University Medical Center Phoenix). The University of Arizona is one of three universities governed by the Arizona Board of Regents. The university is part of the Association of American Universities and is the only member from Arizona, and also part of the Universities Research Association . The university is classified among “R1: Doctoral Universities – Very High Research Activity”.

    Known as the Arizona Wildcats (often shortened to “Cats”), The University of Arizona’s intercollegiate athletic teams are members of the Pac-12 Conference of the NCAA. The University of Arizona athletes have won national titles in several sports, most notably men’s basketball, baseball, and softball. The official colors of the university and its athletic teams are cardinal red and navy blue.

    After the passage of the Morrill Land-Grant Act of 1862, the push for a university in Arizona grew. The Arizona Territory’s “Thieving Thirteenth” Legislature approved The University of Arizona in 1885 and selected the city of Tucson to receive the appropriation to build the university. Tucson hoped to receive the appropriation for the territory’s mental hospital, which carried a $100,000 allocation instead of the $25,000 allotted to the territory’s only university Arizona State University was also chartered in 1885, but it was created as Arizona’s normal school, and not a university). Flooding on the Salt River delayed Tucson’s legislators, and by the time they reached Prescott, back-room deals allocating the most desirable territorial institutions had been made. Tucson was largely disappointed with receiving what was viewed as an inferior prize.

    With no parties willing to provide land for the new institution, the citizens of Tucson prepared to return the money to the Territorial Legislature until two gamblers and a saloon keeper decided to donate the land to build the school. Construction of Old Main, the first building on campus, began on October 27, 1887, and classes met for the first time in 1891 with 32 students in Old Main, which is still in use today. Because there were no high schools in Arizona Territory, the university maintained separate preparatory classes for the first 23 years of operation.

    Research

    The University of Arizona is classified among “R1: Doctoral Universities – Very high research activity”. UArizona is the fourth most awarded public university by National Aeronautics and Space Administration for research. The University of Arizona was awarded over $325 million for its Lunar and Planetary Laboratory (LPL) to lead NASA’s 2007–08 mission to Mars to explore the Martian Arctic, and $800 million for its OSIRIS-REx mission, the first in U.S. history to sample an asteroid.

    National Aeronautics Space Agency OSIRIS-REx Spacecraft.

    The LPL’s work in the Cassini spacecraft orbit around Saturn is larger than any other university globally.

    National Aeronautics and Space Administration/European Space Agency [La Agencia Espacial Europea][Agence spatiale européenne][Europäische Weltraumorganisation](EU)/ASI Italian Space Agency [Agenzia Spaziale Italiana](IT) Cassini Spacecraft.

    The University of Arizona laboratory designed and operated the atmospheric radiation investigations and imaging on the probe. The University of Arizona operates the HiRISE camera, a part of the Mars Reconnaissance Orbiter.

    U Arizona NASA Mars Reconnaisance HiRISE Camera.

    NASA Mars Reconnaissance Orbiter.

    While using the HiRISE camera in 2011, University of Arizona alumnus Lujendra Ojha and his team discovered proof of liquid water on the surface of Mars—a discovery confirmed by NASA in 2015. The University of Arizona receives more NASA grants annually than the next nine top NASA/JPL-Caltech-funded universities combined. As of March 2016, The University of Arizona’s Lunar and Planetary Laboratory is actively involved in ten spacecraft missions: Cassini VIMS; Grail; the HiRISE camera orbiting Mars; the Juno mission orbiting Jupiter; Lunar Reconnaissance Orbiter (LRO); Maven, which will explore Mars’ upper atmosphere and interactions with the sun; Solar Probe Plus, a historic mission into the Sun’s atmosphere for the first time; Rosetta’s VIRTIS; WISE; and OSIRIS-REx, the first U.S. sample-return mission to a near-earth asteroid, which launched on September 8, 2016.

    3
    NASA – GRAIL Flying in Formation (Artist’s Concept). Credit: NASA.
    National Aeronautics Space Agency Juno at Jupiter.

    NASA/Lunar Reconnaissance Orbiter.

    NASA/Mars MAVEN

    NASA Parker Solar Probe Plus named to honor Pioneering Physicist Eugene Parker. The Johns Hopkins University Applied Physics Lab.
    National Aeronautics and Space Administration Wise/NEOWISE Telescope.

    The University of Arizona students have been selected as Truman, Rhodes, Goldwater, and Fulbright Scholars. According to The Chronicle of Higher Education, UArizona is among the top 25 producers of Fulbright awards in the U.S.

    The University of Arizona is a member of the Association of Universities for Research in Astronomy , a consortium of institutions pursuing research in astronomy. The association operates observatories and telescopes, notably Kitt Peak National Observatory just outside Tucson.

    National Science Foundation NOIRLab National Optical Astronomy Observatory Kitt Peak National Observatory on Kitt Peak of the Quinlan Mountains in the Arizona-Sonoran Desert on the Tohono O’odham Nation, 88 kilometers (55 mi) west-southwest of Tucson, Arizona, Altitude 2,096 m (6,877 ft). annotated.

    Led by Roger Angel, researchers in the Steward Observatory Mirror Lab at The University of Arizona are working in concert to build the world’s most advanced telescope. Known as the Giant Magellan Telescope (CL), it will produce images 10 times sharper than those from the Earth-orbiting Hubble Telescope.

    GMT Giant Magellan Telescope(CL) 21 meters, to be at the Carnegie Institution for Science’s NOIRLab NOAO Las Campanas Observatory(CL), some 115 km (71 mi) north-northeast of La Serena, Chile, over 2,500 m (8,200 ft) high.

    The telescope is set to be completed in 2021. GMT will ultimately cost $1 billion. Researchers from at least nine institutions are working to secure the funding for the project. The telescope will include seven 18-ton mirrors capable of providing clear images of volcanoes and riverbeds on Mars and mountains on the moon at a rate 40 times faster than the world’s current large telescopes. The mirrors of the Giant Magellan Telescope will be built at The University of Arizona and transported to a permanent mountaintop site in the Chilean Andes where the telescope will be constructed.

    Reaching Mars in March 2006, the Mars Reconnaissance Orbiter contained the HiRISE camera, with Principal Investigator Alfred McEwen as the lead on the project. This National Aeronautics and Space Agency mission to Mars carrying the UArizona-designed camera is capturing the highest-resolution images of the planet ever seen. The journey of the orbiter was 300 million miles. In August 2007, The University of Arizona, under the charge of Scientist Peter Smith, led the Phoenix Mars Mission, the first mission completely controlled by a university. Reaching the planet’s surface in May 2008, the mission’s purpose was to improve knowledge of the Martian Arctic. The Arizona Radio Observatory , a part of The University of Arizona Department of Astronomy Steward Observatory , operates the Submillimeter Telescope on Mount Graham.

    University of Arizona Radio Observatory at NOAO Kitt Peak National Observatory, AZ USA, U Arizona Department of Astronomy and Steward Observatory at altitude 2,096 m (6,877 ft).

    Kitt Peak National Observatory in the Arizona-Sonoran Desert 88 kilometers 55 mi west-southwest of Tucson, Arizona in the Quinlan Mountains of the Tohono O’odham Nation, altitude 2,096 m (6,877 ft)

    The National Science Foundation funded the iPlant Collaborative in 2008 with a $50 million grant. In 2013, iPlant Collaborative received a $50 million renewal grant. Rebranded in late 2015 as “CyVerse”, the collaborative cloud-based data management platform is moving beyond life sciences to provide cloud-computing access across all scientific disciplines.

    In June 2011, the university announced it would assume full ownership of the Biosphere 2 scientific research facility in Oracle, Arizona, north of Tucson, effective July 1. Biosphere 2 was constructed by private developers (funded mainly by Texas businessman and philanthropist Ed Bass) with its first closed system experiment commencing in 1991. The university had been the official management partner of the facility for research purposes since 2007.

    U Arizona mirror lab-Where else in the world can you find an astronomical observatory mirror lab under a football stadium?

    University of Arizona’s Biosphere 2, located in the Sonoran desert. An entire ecosystem under a glass dome? Visit our campus, just once, and you’ll quickly understand why The University of Arizona is a university unlike any other.

    University of Arizona Landscape Evolution Observatory at Biosphere 2.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: