Tagged: The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH) Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:48 pm on June 29, 2022 Permalink | Reply
    Tags: "Startup brings RNA sequencing into the age of big data", "Transcriptome": A snapshot of all the messenger RNA in a cell at a given moment in time, , BRB-seq was developed by EPFL’s Laboratory of Systems Biology and Genetics (LSBG) to support its own research., Bulk RNA Barcoding and sequencing (BRB-seq), EPFL spin-off Alithea Genomics has developed a system that allows scientists to easily tag bulk RNA samples with molecular barcodes so they can be processed by the hundreds in one single tube., Next-generation sequencing has long been used to analyze DNA but is trickier to apply to RNA., Preparation of a genomic library, RNA sequencing is becoming a key part of the process of developing new drugs and discovering biomarkers which indicate the presence of certain diseases., The application of big-data principles to RNA sequencing will be vital to achieving rapid progress in transcriptomics., The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH), The way is paved to wider-ranging and more reproducible experiments.   

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH): “Startup brings RNA sequencing into the age of big data” 

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)

    6.29.22
    Cécilia Carron

    1
    EPFL spin-off Alithea Genomics has developed a system that allows scientists to easily tag bulk RNA samples with molecular barcodes so they can be processed by the hundreds in one single tube. The technology promises to dramatically shorten and streamline sample preparation for RNA sequencing, which will enable new applications for this technology, such as biomarker discovery and drug development.

    RNA sequencing is becoming a key part of the process of developing new drugs and discovering biomarkers which indicate the presence of certain diseases. Armed with a snapshot of RNA strands – the messengers that carry DNA information – scientists can gradually decode intracellular “language”, detect anomalies and learn how to repair them. In order to extract insightful statistics, train artificial intelligence systems to identify abnormalities, and fast-track R&D, a new approach is needed – one that enables the generation of “big RNA data”, so that the functional state of thousands of samples can be profiled and compared simultaneously, at a fraction of the time and cost.

    That’s where the technology developed by EPFL spin-off Alithea Genomics comes in. It “tags” RNA strands from hundreds of samples, allowing them to be analyzed in one single tube, instead of hundreds of tubes! This process is 25 times cheaper than conventional methods and reduces the time needed to sequence hundreds of samples from several days to just a few hours. The startup, which currently employs seven people and raised CHF 1 million in May this year, is preparing to launch new products and upscale manufacturing.

    Using barcodes to cut RNA sequencing times

    Next-generation sequencing has long been used to analyze DNA but is trickier to apply to RNA. This method involves combining samples from multiple sources and sequencing them in a single pass, saving both time and money. One of the key steps in this high-speed process is the preparation of a genomic library. At this stage, barcodes – short, predetermined sequences of DNA – are added to identify fragments belonging to the same group. Then, once the fragments have been analyzed, they can be reassigned to the correct sample using a special software program. This system works in much the same way as an airport baggage sorting system, which directs items of luggage to the right aircraft.

    Scientists are accustomed to preparing these kinds of libraries for DNA samples, using standard kits selected according to the cell type and sequencing system in question. But with RNA, although the steps of the process are generally similar, the samples are typically analyzed one-by-one in order to overcome specific difficulties and inherent biases. However, the process developed by Alithea Genomics, called Bulk RNA Barcoding and sequencing (BRB-seq) which was described in a 2021 paper in Genome Biology, enables scientists to quickly and easily prepare and barcode RNA samples for the simultaneous sequencing of up-to 384 samples in a single test tube. In addition to cutting costs and shortening analysis times, Alithea’s process significantly reduces the amount of plastic and chemical compounds required.

    Once a sample has been sequenced using conventional machines, the data are run through a proprietary cloud software program that assigns the strands to the correct genome. “Our software is currently available online and it is free-to-access for all BRB-seq users,” says Riccardo Dainese, CEO of Alithea Genomics.
    ===
    Industries interested in Fast-tracking research with messenger RNA

    BRB-seq was developed by EPFL’s Laboratory of Systems Biology and Genetics (LSBG) to support its own research, after the group was unable to source existing technology that met its needs. The method, which is now being marketed by Alithea, has already been used to successfully analyze adipocyte messenger RNA as part of a study on the expression of mitochondrial genes in fruit flies, with the goal of assessing the efficacy of targeted cancer therapies and gaining new insights into the circadian rhythm. Other research groups, including top pharma companies, have since expressed an interest in the method. “It is very exciting to see that our technology is starting to open doors for the widespread application of RNA sequencing beyond fundamental research and towards industrial applications”, says Dainese.

    Because Alithea’s system lets scientists analyze many more samples at a given cost, it paves the way to wider-ranging and more reproducible experiments. More generally, the application of big-data principles to RNA sequencing will be vital to achieving rapid progress in transcriptomics, a field that focuses on the study of the transcriptome – a snapshot of all the messenger RNA in a cell at a given moment in time. Unlike an organism’s genome (i.e., the DNA contained in the nucleus of a cell), which is generally stable and specific to that organism, the transcriptome varies with time, the type of tissue and cell, and various environmental factors. Vast datasets will allow scientists to extract useful statistics and insights into the RNA present under specific circumstances, furthering our understanding of how cells function. Ultimately, such biomarkers could be used to diagnose diseases and develop new drugs.

    The CHF 1 million that Alithea raised in May will be used to help market its technology, extend its kit to cover new applications, and customize its analysis software.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    EPFL campus

    The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

    The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

    EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is The Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich] (CH). Associated with several specialized research institutes, the two universities form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles Polytechniques Fédérales] (CH) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École Polytechnique Fédérale de Lausanne](CH), and four associated research institutes form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École Spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices were located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganized and acquired the status of a university in 1890, the technical faculty changed its name to École d’Ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich (CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

    In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.

    Organization

    EPFL is organized into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

    School of Basic Sciences
    Institute of Mathematics
    Institute of Chemical Sciences and Engineering
    Institute of Physics
    European Centre of Atomic and Molecular Computations
    Bernoulli Center
    Biomedical Imaging Research Center
    Interdisciplinary Center for Electron Microscopy
    MPG-EPFL Centre for Molecular Nanosciences and Technology
    Swiss Plasma Center
    Laboratory of Astrophysics

    School of Engineering

    Institute of Electrical Engineering
    Institute of Mechanical Engineering
    Institute of Materials
    Institute of Microengineering
    Institute of Bioengineering

    School of Architecture, Civil and Environmental Engineering

    Institute of Architecture
    Civil Engineering Institute
    Institute of Urban and Regional Sciences
    Environmental Engineering Institute

    School of Computer and Communication Sciences

    Algorithms & Theoretical Computer Science
    Artificial Intelligence & Machine Learning
    Computational Biology
    Computer Architecture & Integrated Systems
    Data Management & Information Retrieval
    Graphics & Vision
    Human-Computer Interaction
    Information & Communication Theory
    Networking
    Programming Languages & Formal Methods
    Security & Cryptography
    Signal & Image Processing
    Systems

    School of Life Sciences

    Bachelor-Master Teaching Section in Life Sciences and Technologies
    Brain Mind Institute
    Institute of Bioengineering
    Swiss Institute for Experimental Cancer Research
    Global Health Institute
    Ten Technology Platforms & Core Facilities (PTECH)
    Center for Phenogenomics
    NCCR Synaptic Bases of Mental Diseases

    College of Management of Technology

    Swiss Finance Institute at EPFL
    Section of Management of Technology and Entrepreneurship
    Institute of Technology and Public Policy
    Institute of Management of Technology and Entrepreneurship
    Section of Financial Engineering

    College of Humanities

    Human and social sciences teaching program

    EPFL Middle East

    Section of Energy Management and Sustainability

    In addition to the eight schools there are seven closely related institutions

    Swiss Cancer Centre
    Center for Biomedical Imaging (CIBM)
    Centre for Advanced Modelling Science (CADMOS)
    École Cantonale d’art de Lausanne (ECAL)
    Campus Biotech
    Wyss Center for Bio- and Neuro-engineering
    Swiss National Supercomputing Centre

     
  • richardmitnick 8:40 am on June 20, 2022 Permalink | Reply
    Tags: "Ecotope", "EPFL Innovation Park to expand with a focus on co-creation", Ecotope is intended to be an ecosystem in its own right., Ecotope is intended to serve as a hotbed of innovation and to support EPFL’s strategy of addressing key societal challenges., Ecotope will also help EPFL and the Lake Geneva area more broadly anchor its leadership position in innovation and new business creation., Some 30 years after Innovation Park opened its doors plans are under way to double its capacity., The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)   

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH): “EPFL Innovation Park to expand with a focus on co-creation” 

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)

    6.20.22
    Gaël Hürlimann

    1
    EPFL Innovation Park is turning 30 this year and poised to expand with a new site, called “Ecotope”, where startups, researchers and outside companies will be able to pool their resources in order to explore groundbreaking ideas. The Canton of Vaud is its main partner.

    “Ecotope will be a major plus for our canton,” says Philippe Leuba, the head of Vaud’s Department of the Economy, Innovation and Sports. “It will spur innovation – and thus job creation – make EPFL a more competitive school and bolster our economy in general.” Some 30 years after Innovation Park opened its doors plans are under way to double its capacity. “But it’s not just about adding surface area,” says Ursula Oesterle, EPFL’s Vice President for Innovation and the person behind the initiative. “Today, businesses interested in innovation – whether startups or established companies – need a place where they can meet on a daily basis to share ideas. That’s the kind of vibrant, stimulating environment we intend to create with Ecotope.

    Meeting an urgent need…

    The 30 or so spin-offs that come out of our labs every year are now struggling to find business premises, and the space allocated to large companies for pursuing innovative ideas is full. Innovation Park is already home to over 150 startups and 30 large companies employing over 2,600 people. In view of the need for more space, along with the Park’s appeal, the EPFL Innovation Park Foundation has teamed up with EPFL, the Canton of Vaud and the City of Ecublens to double the Park’s surface area, currently 55,000 m^², within the next ten years.

    …while laying a foundation for the future

    But the objectives behind Ecotope run deeper. After listening to researchers, startups and other businesses describe the challenges they face, Oesterle and her team wanted to provide more than just additional office space. “We heard a lot of entrepreneurs talk about their companies in terms of its mission, impact and role in society,” she says. “Beyond the expected financial returns, more and more entrepreneurs, small business owners and corporate executives are looking harder at how their enterprises can help build a better future – especially in the current climate of challenges and uncertainty.”

    Ecotope is intended to be an ecosystem in its own right, where policymakers, researchers, investors, executives, entrepreneurs, students and citizens can come together for open dialogue and debate. The project specifications given to the architects for the project were therefore demanding. Not only must the new site fit in seamlessly with its natural surroundings, it should also provide occupants with a peaceful work environment along with common spaces and “village square” areas for brainstorming and ideation. It should also encourage people from different backgrounds to pool their strengths in the search for innovative solutions. Much of the new project is about promoting this kind of interaction as well as informal conversation.

    In the first phase of construction work for the new site, slated to begin in 2023, some 25,000 m² of offices, labs and collaborative spaces will be built by an architecture firm that was selected in early June through an RFP. Ecotope will be located just one kilometer away from Innovation Park, which is a key part of the project. A clean transportation system will also be put in place, with the support of the City of Ecublens, so that people can move easily between the two R&D hubs.

    Addressing strategic priorities

    Ecotope is intended to serve as a hotbed of innovation and to support EPFL’s strategy of addressing key societal challenges – like sustainability, the environment, aging, artificial intelligence and healthcare – through a cross-disciplinary approach. The scope of these challenges is so vast that solutions can only be found by drawing on many different fields.

    These challenges are also top priorities for public officials. “EPFL’s strategic focus areas, and the industries in which the startups coming out of them operate, are completely in line with our own priorities,” says Leuba. “With Ecotope, our canton has a unique opportunity to create a forum where businesses, engineers, scientists and society at large can unite their efforts in developing responses to the main economic and societal hurdles before us.”

    EPFL President Martin Vetterli believes Innovation Park is central to those efforts. “Our School was a pioneer 30 years ago when we brought university researchers and businesses physically together in a single location and forged close ties with the Swiss economy and society,” he says. “We began supporting startups very early on, and this has turned out to be a winning strategy. Personally, when I’m called on to advise young researchers, I encourage them to pursue careers in industry just as much as in academia. We can make a difference in both areas. Ecotope marks an essential step forward along this path, and will help ensure EPFL remains a key player in the local economy and an important driver of our dynamic region.”

    Contributing to the success of the Lake Geneva area

    Ecotope will also help EPFL and the Lake Geneva area more broadly anchor its leadership position in innovation and new business creation. The new site will uphold the area’s long-standing tradition of close collaboration among partner organizations, such as the University of Lausanne, the Lausanne University of Art and Design (ECAL), the School of Business and Engineering (HEIG), the Institute for Management Development (IMD), La Source, and the Ecole hôtelière de Lausanne (EHL). This approach has proven its worth: between 2013 and 2021, for example, Lake Geneva businesses raised some CHF 3.6 billion in venture capital, or 30% of the Swiss total (the Zurich area accounted for 36%). And the number of startups spun off from EPFL jumped from 5 in 2005 to 33 last year. These young firms raised a total CHF 25 million in funding in 2005 and CHF 779 million in 2021.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    EPFL campus

    The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

    The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

    EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is The Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich] (CH). Associated with several specialized research institutes, the two universities form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles Polytechniques Fédérales] (CH) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École Polytechnique Fédérale de Lausanne](CH), and four associated research institutes form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École Spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices were located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganized and acquired the status of a university in 1890, the technical faculty changed its name to École d’Ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich (CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

    In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.

    Organization

    EPFL is organized into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

    School of Basic Sciences
    Institute of Mathematics
    Institute of Chemical Sciences and Engineering
    Institute of Physics
    European Centre of Atomic and Molecular Computations
    Bernoulli Center
    Biomedical Imaging Research Center
    Interdisciplinary Center for Electron Microscopy
    MPG-EPFL Centre for Molecular Nanosciences and Technology
    Swiss Plasma Center
    Laboratory of Astrophysics

    School of Engineering

    Institute of Electrical Engineering
    Institute of Mechanical Engineering
    Institute of Materials
    Institute of Microengineering
    Institute of Bioengineering

    School of Architecture, Civil and Environmental Engineering

    Institute of Architecture
    Civil Engineering Institute
    Institute of Urban and Regional Sciences
    Environmental Engineering Institute

    School of Computer and Communication Sciences

    Algorithms & Theoretical Computer Science
    Artificial Intelligence & Machine Learning
    Computational Biology
    Computer Architecture & Integrated Systems
    Data Management & Information Retrieval
    Graphics & Vision
    Human-Computer Interaction
    Information & Communication Theory
    Networking
    Programming Languages & Formal Methods
    Security & Cryptography
    Signal & Image Processing
    Systems

    School of Life Sciences

    Bachelor-Master Teaching Section in Life Sciences and Technologies
    Brain Mind Institute
    Institute of Bioengineering
    Swiss Institute for Experimental Cancer Research
    Global Health Institute
    Ten Technology Platforms & Core Facilities (PTECH)
    Center for Phenogenomics
    NCCR Synaptic Bases of Mental Diseases

    College of Management of Technology

    Swiss Finance Institute at EPFL
    Section of Management of Technology and Entrepreneurship
    Institute of Technology and Public Policy
    Institute of Management of Technology and Entrepreneurship
    Section of Financial Engineering

    College of Humanities

    Human and social sciences teaching program

    EPFL Middle East

    Section of Energy Management and Sustainability

    In addition to the eight schools there are seven closely related institutions

    Swiss Cancer Centre
    Center for Biomedical Imaging (CIBM)
    Centre for Advanced Modelling Science (CADMOS)
    École Cantonale d’art de Lausanne (ECAL)
    Campus Biotech
    Wyss Center for Bio- and Neuro-engineering
    Swiss National Supercomputing Centre

     
  • richardmitnick 1:32 pm on June 10, 2022 Permalink | Reply
    Tags: "EPFL scientists take modeling to new heights", , , EPFL’s Platform of Hydraulic Constructions (PL-LCH), The PL-LCH team is working on Snowy 2.0-a major hydropower project in Canberra in Australia-two reservoirs south of Canberra – Tantangara and Talbingo., The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)   

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH): “EPFL scientists take modeling to new heights” 

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)

    6.10.22
    Florent Hiard
    Sandy Evangelista

    EPFL’s Platform of Hydraulic Constructions has been commissioned to model a future hydropower plant in Australia. As part of its work, the team has built an outsize replica on campus.


    Snowy 2.0

    In the modeling world, 1:25 is an extremely useful scale factor. It’s what lets you display your favorite toy cars or tin soldiers in your living-room window. And importantly, it’s how engineers at EPFL’s Platform of Hydraulic Constructions (PL-LCH) scale down life-size structures to models that can fit inside a building on the Lausanne campus.

    If you wanted to view their latest model from above, however, you’d need a ladder. That’s because the PL-LCH team is working on Snowy 2.0, a major hydropower project in Australia in which two reservoirs south of Canberra – Tantangara and Talbingo – are connected via a 27-kilometer-long tunnel complete with turbines and a pumping station. The power plant itself, located inside the tunnel, will provide 2,000 megawatts of generating capacity and 350,000 megawatt-hours of storage capacity. “That’s 17 times the storage capacity of the Nant de Drance hydropower plant in Valais,” says Azin Amini, who heads technology transfer at PL-LCH.

    1
    2009 Graeme Bartlett/Wikimedia commons – Tantangara Reservoir in Canberra Australia.

    The model, housed inside the PL-LCH’s building on campus, replicates the tunnel heads at the two reservoirs and the surrounding topography. Measuring around four by six meters each and standing side by side, they’re connected by pipes that simulate the flow of liquid between the two bodies of water. According to Mona Seyfeddine, a civil engineer at PL-LCH, the team uses the structure to study the flow regimes and other water movements that occur when the reservoirs are filled and when the pumping system is activated.

    2
    2022 EPFL/Alain Herzog (CC-BY SA 4.0) / Models of the two reservoirs of Tantangara and Talbingo.

    With 3D modeling becoming increasingly common, is there really any justification for building a concrete replica on this scale? For Amini, this is a false dichotomy, because the two techniques complement one another. “We’ve opted for a hybrid approach that combines digital and physical modeling,” she explains. “Digital models are faster and, in most cases, cheaper to develop. In this case, the digital model is helpful in the early stages of a project, allowing us to assess the general behavior of the structure and prove the concept before we go ahead and build the physical replica.” Amini adds that the physical version is essential given the complexity of the water flow regimes, enabling the team to fine-tune and finalize the design while optimizing the digital model.

    3
    2022 EPFL/Alain Herzog (CC-BY SA 4.0) / Hybrid work of the laboratory on numerical and physical models.

    In reality, this replica is just the start of the EPFL lab’s involvement in Australia’s Snowy 2.0 project – the team will be modeling other parts of the structure in the coming months. Amini notes: “The fact that we were chosen to work on this project shows that our expertise is recognized around the world.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    EPFL campus

    The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

    The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

    EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is The Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich] (CH). Associated with several specialized research institutes, the two universities form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles Polytechniques Fédérales] (CH) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École Polytechnique Fédérale de Lausanne](CH), and four associated research institutes form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École Spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices were located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganized and acquired the status of a university in 1890, the technical faculty changed its name to École d’Ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich (CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

    In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.

    Organization

    EPFL is organized into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

    School of Basic Sciences
    Institute of Mathematics
    Institute of Chemical Sciences and Engineering
    Institute of Physics
    European Centre of Atomic and Molecular Computations
    Bernoulli Center
    Biomedical Imaging Research Center
    Interdisciplinary Center for Electron Microscopy
    MPG-EPFL Centre for Molecular Nanosciences and Technology
    Swiss Plasma Center
    Laboratory of Astrophysics

    School of Engineering

    Institute of Electrical Engineering
    Institute of Mechanical Engineering
    Institute of Materials
    Institute of Microengineering
    Institute of Bioengineering

    School of Architecture, Civil and Environmental Engineering

    Institute of Architecture
    Civil Engineering Institute
    Institute of Urban and Regional Sciences
    Environmental Engineering Institute

    School of Computer and Communication Sciences

    Algorithms & Theoretical Computer Science
    Artificial Intelligence & Machine Learning
    Computational Biology
    Computer Architecture & Integrated Systems
    Data Management & Information Retrieval
    Graphics & Vision
    Human-Computer Interaction
    Information & Communication Theory
    Networking
    Programming Languages & Formal Methods
    Security & Cryptography
    Signal & Image Processing
    Systems

    School of Life Sciences

    Bachelor-Master Teaching Section in Life Sciences and Technologies
    Brain Mind Institute
    Institute of Bioengineering
    Swiss Institute for Experimental Cancer Research
    Global Health Institute
    Ten Technology Platforms & Core Facilities (PTECH)
    Center for Phenogenomics
    NCCR Synaptic Bases of Mental Diseases

    College of Management of Technology

    Swiss Finance Institute at EPFL
    Section of Management of Technology and Entrepreneurship
    Institute of Technology and Public Policy
    Institute of Management of Technology and Entrepreneurship
    Section of Financial Engineering

    College of Humanities

    Human and social sciences teaching program

    EPFL Middle East

    Section of Energy Management and Sustainability

    In addition to the eight schools there are seven closely related institutions

    Swiss Cancer Centre
    Center for Biomedical Imaging (CIBM)
    Centre for Advanced Modelling Science (CADMOS)
    École Cantonale d’art de Lausanne (ECAL)
    Campus Biotech
    Wyss Center for Bio- and Neuro-engineering
    Swiss National Supercomputing Centre

     
  • richardmitnick 10:53 am on May 25, 2022 Permalink | Reply
    Tags: "Radio astronomy to foster Swiss research and industry", , , , Radio astronomy has led to the discovery of quasars; masers; pulsars; radio galaxies and the more recent fast radio bursts., The cosmic background radiation-regarded as evidence for the Big Bang theory-was also discovered through radio astronomy observations in 1965., The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)   

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH): “Radio astronomy to foster Swiss research and industry” 

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)

    5.25.22

    By becoming a member of the SKA Observatory (SKAO), the largest and most ambitious radio astronomy collaboration in the world, Switzerland intends to foster Swiss research and industry while contributing to an international initiative that promises to revolutionize our understanding of the Universe.


    The Square Kilometre Array (SKA) telescope arrays promise to revolutionize our understanding of the Universe and the laws of fundamental physics by studying light from celestial objects in the radio frequency range, and Switzerland has just committed 33.6 million CHF to the project for the period 2021-2030 towards construction and early operation of the telescope.

    “The accession of Switzerland to SKAO was an important milestone for Switzerland, as well as for SKAO, as Switzerland was the first non-signatory country of the Convention establishing SKAO to become member. Great challenges lie ahead of us, but I trust we will be able to overcome them.” Martina Hirayama, State Secretary for Education, Research and Innovation.

    Radio astronomy is now a well-established field of astronomy and has led to the discovery of new celestial objects, and more generally new classes of objects such as quasars, masers, pulsars, radio galaxies and the more recent fast radio bursts. The cosmic background radiation, regarded as evidence for the Big Bang theory, was also discovered through radio astronomy observations in 1965.

    Initially, hundreds of dishes will be built in South Africa as part of the SKA-mid telescope, while over 130 thousand low-frequency antennas will be erected in Australia as part of the SKA-low telescope. Ultimately these radio arrays will be expanded to reach over one square kilometre of collecting area for detecting radio frequencies, increasing their sensitivity and resolution even further. Construction activities of the SKA telescopes started in mid-2021.

    Expected to be fully operational towards the end of this decade, the powerful radio observatory will collect tremendous amounts of data that will need to be synchronized, automated, stored, processed and distributed to partners around the globe. Switzerland intends to leverage industry and technical partners, providing expertise in the development of advanced receivers for dish antennas, but also in precision timing, automation, signal processing and Big Data.

    In exchange, Switzerland will gain access to the vast amounts of data (~650 PBytes/year) generated by the SKA telescopes for fundamental research as outlined in a 2020 whitepaper by the Swiss astrophysics community, including areas such as cosmology, dark energy and astrobiology to name a few. The participation of Switzerland in the construction and operation of SKAO also generates plentiful opportunities for Swiss high-tech companies to position themselves within this unique market. Based on initial projections, the Swiss Industry Liaison Office estimates that at least one fifth of the Swiss contribution will be allocated by SKAO to Swiss entities.

    Switzerland also plans to further contribute to the development of the European SKA Regional Centre (SRC) for transforming these data outputs into science products leading to an improved understanding of the Universe and of astrophysical processes. The Swiss branch of the SRC will also be the data interface for Swiss scientists.

    Swiss involvement is organized through a strong consortium of research institutions*, called SKACH, in part funded by the State Secretariat for Education, Research, and Innovation (SERI). In the last five years, EPFL spearheaded Swiss involvement at the national level, and going forward this consortium will be led by a board that includes EPFL and a strong contingent of eight other institutions.

    At the House of Switzerland in Davos, key players involved in getting Switzerland on board of the SKAO came together to discuss Switzerland’s participation in the Observatory, and what it means for Switzerland and for SKAO. The event was broadcast remotely.

    SKACH

    The SKA Switzerland (SKACH) Consortium includes: Centro Svizzero di Calcolo Scientifico (CSCS, Ecole Polytechnique Fédérale de Lausanne (EPFL), Eidgenössische Technische Hochschule Zürich (ETHZ), Fachhochschule Nordwestschweiz (FHNW), Haute École spécialisée de Suisse Occidentale (HES-SO), Universität Basel (UniBAS), Université de Genève (UniGE), Universität Zürich (UZH), Zürcher Hochschule für Angewandte Wissenschaften (ZHAW).

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    EPFL campus

    The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

    The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

    EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is The Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich] (CH). Associated with several specialized research institutes, the two universities form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles Polytechniques Fédérales] (CH) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École Polytechnique Fédérale de Lausanne](CH), and four associated research institutes form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École Spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices were located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganized and acquired the status of a university in 1890, the technical faculty changed its name to École d’Ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich (CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

    In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.

    Organization

    EPFL is organized into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

    School of Basic Sciences
    Institute of Mathematics
    Institute of Chemical Sciences and Engineering
    Institute of Physics
    European Centre of Atomic and Molecular Computations
    Bernoulli Center
    Biomedical Imaging Research Center
    Interdisciplinary Center for Electron Microscopy
    MPG-EPFL Centre for Molecular Nanosciences and Technology
    Swiss Plasma Center
    Laboratory of Astrophysics

    School of Engineering

    Institute of Electrical Engineering
    Institute of Mechanical Engineering
    Institute of Materials
    Institute of Microengineering
    Institute of Bioengineering

    School of Architecture, Civil and Environmental Engineering

    Institute of Architecture
    Civil Engineering Institute
    Institute of Urban and Regional Sciences
    Environmental Engineering Institute

    School of Computer and Communication Sciences

    Algorithms & Theoretical Computer Science
    Artificial Intelligence & Machine Learning
    Computational Biology
    Computer Architecture & Integrated Systems
    Data Management & Information Retrieval
    Graphics & Vision
    Human-Computer Interaction
    Information & Communication Theory
    Networking
    Programming Languages & Formal Methods
    Security & Cryptography
    Signal & Image Processing
    Systems

    School of Life Sciences

    Bachelor-Master Teaching Section in Life Sciences and Technologies
    Brain Mind Institute
    Institute of Bioengineering
    Swiss Institute for Experimental Cancer Research
    Global Health Institute
    Ten Technology Platforms & Core Facilities (PTECH)
    Center for Phenogenomics
    NCCR Synaptic Bases of Mental Diseases

    College of Management of Technology

    Swiss Finance Institute at EPFL
    Section of Management of Technology and Entrepreneurship
    Institute of Technology and Public Policy
    Institute of Management of Technology and Entrepreneurship
    Section of Financial Engineering

    College of Humanities

    Human and social sciences teaching program

    EPFL Middle East

    Section of Energy Management and Sustainability

    In addition to the eight schools there are seven closely related institutions

    Swiss Cancer Centre
    Center for Biomedical Imaging (CIBM)
    Centre for Advanced Modelling Science (CADMOS)
    École Cantonale d’art de Lausanne (ECAL)
    Campus Biotech
    Wyss Center for Bio- and Neuro-engineering
    Swiss National Supercomputing Centre

     
  • richardmitnick 5:26 pm on May 20, 2022 Permalink | Reply
    Tags: "The missing piece to faster and cheaper and more accurate 3D mapping", , , Switzerland is currently mapping its entire landscape using airborne laser scanners – the first time since 2000., The Geodetic Engineering Laboratory (Topo) within EPFL's School of Architecture; Civil and Environmental Engineering (ENAC)., The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH), The work could be done five times faster based upon the work of Jan Skaloud Davide Cucci and Aurélien Brun., Three-dimensional (3D) mapping is a very useful tool.   

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH) : “The missing piece to faster and cheaper and more accurate 3D mapping” 

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)

    5.20.22
    Célia Zwahlen

    1
    Engineers at EPFL and The University of Geneva[Université de Genève](CH) believe they hold the key to automated drone mapping. By combining artificial intelligence with a new algorithm, their method promises to considerably reduce the time and resources needed to accurately scan complex landscapes.

    Three-dimensional (3D) mapping is a very useful tool, such as for monitoring construction sites, tracking the effects of climate change on ecosystems and verifying the safety of roads and bridges. However, the technology currently used to automate the mapping process is limited, making it a long and costly endeavor.

    “Switzerland is currently mapping its entire landscape using airborne laser scanners – the first time since 2000. But the process will take four to five years since the scanners have to fly at an altitude below one kilometer if they are to collect data with sufficient detail and accuracy,” says Jan Skaloud, a senior scientist at the Geodetic Engineering Laboratory (Topo) within EPFL’s School of Architecture, Civil and Environmental Engineering (ENAC). “With our method, surveyors can send laser scanners as high as five kilometers and still maintain accuracy. Our lasers are more sensitive and can beam light over a much wider area, making the process five times faster.”

    The method is described in a paper published in ISPRS Journal of Photogrammetry and Remote Sensing by Davide Cucci, a senior research associate at the Research Center for Statistics of the Geneva School of Economics and Management of the University of Geneva, who works with Topo regularly, Jan Skaloud, and Aurélien Brun, lead author, a recent Master’s graduate from EPFL and winner of an award from the Western Switzerland Association of Surveyor Engineers (IGSO).

    Missing the point

    LiDAR laser scanners beam millions of pulses of light on surfaces to create high-resolution digital twins – computer-based replicas of objects or landscapes – that can be used in architecture, road systems and manufacturing, for example. Lasers are particularly effective at collecting spatial data since they don’t depend on ambient light, can collect accurate data at large distances and can essentially “see through” vegetation. But lasers’ accuracy is often lost when they’re mounted on drones or other moving vehicles, especially in areas with numerous obstacles like dense cities, underground infrastructure sites, and places where GPS signals are interrupted. This results in gaps and misalignments in the datapoints used to generate 3D maps (also known as laser-point clouds), and can lead to double vision of scanned objects. These errors must be corrected manually before a map can be used.


    ln Leysin, a LiDAR mounted on a drone maps the landscape, 28 March 2022. © Topo/EPFL

    “For now, there’s no way to generate perfectly aligned 3D maps without a manual data-correction step,” says Cucci. “A lot of semi-automatic methods are being explored to overcome this problem, but ours has the advantage of resolving the issue directly at the scanner level, where measurements are taken, eliminating the need to subsequently make corrections. It’s also fully software-driven, meaning it can be implemented quickly and seamlessly by end users.”

    On the road to automation

    The Topo method leverages recent advancements in artificial intelligence to detect when a given object has been scanned several times from different angles. The method involves selecting correspondences and inserting them into what’s called a Dynamic Network, in order to correct gaps and misalignments in the laser-point cloud.

    “We’re bringing more automation to 3D mapping technology, which will go a long way towards improving its efficiency and productivity and allow for a much wider range of applications,” says Skaloud.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    EPFL campus

    The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

    The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

    EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is The Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich] (CH). Associated with several specialized research institutes, the two universities form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles Polytechniques Fédérales] (CH) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École Polytechnique Fédérale de Lausanne](CH), and four associated research institutes form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École Spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices were located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganized and acquired the status of a university in 1890, the technical faculty changed its name to École d’Ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich (CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

    In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.

    Organization

    EPFL is organized into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

    School of Basic Sciences
    Institute of Mathematics
    Institute of Chemical Sciences and Engineering
    Institute of Physics
    European Centre of Atomic and Molecular Computations
    Bernoulli Center
    Biomedical Imaging Research Center
    Interdisciplinary Center for Electron Microscopy
    MPG-EPFL Centre for Molecular Nanosciences and Technology
    Swiss Plasma Center
    Laboratory of Astrophysics

    School of Engineering

    Institute of Electrical Engineering
    Institute of Mechanical Engineering
    Institute of Materials
    Institute of Microengineering
    Institute of Bioengineering

    School of Architecture, Civil and Environmental Engineering

    Institute of Architecture
    Civil Engineering Institute
    Institute of Urban and Regional Sciences
    Environmental Engineering Institute

    School of Computer and Communication Sciences

    Algorithms & Theoretical Computer Science
    Artificial Intelligence & Machine Learning
    Computational Biology
    Computer Architecture & Integrated Systems
    Data Management & Information Retrieval
    Graphics & Vision
    Human-Computer Interaction
    Information & Communication Theory
    Networking
    Programming Languages & Formal Methods
    Security & Cryptography
    Signal & Image Processing
    Systems

    School of Life Sciences

    Bachelor-Master Teaching Section in Life Sciences and Technologies
    Brain Mind Institute
    Institute of Bioengineering
    Swiss Institute for Experimental Cancer Research
    Global Health Institute
    Ten Technology Platforms & Core Facilities (PTECH)
    Center for Phenogenomics
    NCCR Synaptic Bases of Mental Diseases

    College of Management of Technology

    Swiss Finance Institute at EPFL
    Section of Management of Technology and Entrepreneurship
    Institute of Technology and Public Policy
    Institute of Management of Technology and Entrepreneurship
    Section of Financial Engineering

    College of Humanities

    Human and social sciences teaching program

    EPFL Middle East

    Section of Energy Management and Sustainability

    In addition to the eight schools there are seven closely related institutions

    Swiss Cancer Centre
    Center for Biomedical Imaging (CIBM)
    Centre for Advanced Modelling Science (CADMOS)
    École Cantonale d’art de Lausanne (ECAL)
    Campus Biotech
    Wyss Center for Bio- and Neuro-engineering
    Swiss National Supercomputing Centre

     
  • richardmitnick 10:12 am on May 17, 2022 Permalink | Reply
    Tags: "A new law unchains fusion energy", Greenwald limit, The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH), The update shows that we can actually safely use more hydrogen fuel in fusion reactors and therefore obtain more energy than previously thought.   

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH): “A new law unchains fusion energy” 

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)

    5.17.22
    Nik Papageorgiou

    Physicists at EPFL, within a large European collaboration, have revised one of the fundamental laws that has been foundational to plasma and fusion research for over three decades, even governing the design of megaprojects like ITER.

    The update shows that we can actually safely use more hydrogen fuel in fusion reactors, and therefore obtain more energy than previously thought.

    Fusion is one of the most promising sources of future energy. It involves two atomic nuclei combining into one, thereby releasing enormous amounts of energy. In fact, we experience fusion every day: the Sun’s warmth comes from hydrogen nuclei fusing into heavier helium atoms.

    There is currently an international fusion research megaproject called ITER, which aims to replicate the fusion processes of the Sun to create energy on the Earth. Its aim is the creation of high temperature plasma that provides the right environment for fusion to occur, producing energy.

    Plasmas — an ionized state of matter similar to a gas – are made up of positively charge nuclei and negatively charged electrons, and are almost a million times less dense than the air we breathe. Plasmas are created by subjecting “the fusion fuel” – hydrogen atoms – to extremely high temperatures (10 times that of the core of the Sun), forcing electrons to separate from their atomic nuclei. The process takes place inside a donut-shaped (“toroidal”) structure called a “tokamak”.

    “In order to create plasma for fusion, you have to consider three things: high temperature, high density of hydrogen fuel, and good confinement,” says Paolo Ricci at the Swiss Plasma Center, one of the world’s leading research institutes in fusion located at EPFL.

    Working within a large European collaboration, Ricci’s team has now released a study updating a foundational principle of plasma generation – and showing that the upcoming ITER tokamak can actually operate with twice the amount of hydrogen and therefore generate more fusion energy than previously thought.

    “One of the limitations in making plasma inside a tokamak is the amount of hydrogen fuel you can inject into it,” says Ricci. “Since the early days of fusion, we’ve known that if you try to increase the fuel density, at some point there would be what we call a ‘disruption’ – basically you totally lose the confinement, and plasma goes wherever. So in the eighties, people were trying to come up with some kind of law that could predict the maximum density of hydrogen that you can put inside a tokamak.”

    An answer came in 1988, when fusion scientist Martin Greenwald published a famous law that correlates fuel density to the tokamak’s minor radius (the radius of the donut’s inner circle) and the current that flows in the plasma inside the tokamak. Ever since then, the “Greenwald limit” has been a foundational principle of fusion research; in fact, ITER’s tokamak-building strategy is based on it.

    “Greenwald derived the law empirically, that is completely from experimental data – not a tested theory, or what we’d call ‘first principles’,” explains Ricci. “Still, the limit worked pretty well for research. And, in some cases, like DEMO (ITER’s successor), this equation constitutes a big limit to their operation because it says that you cannot increase fuel density above a certain level.”

    Working with fellow tokamak teams, the Swiss Plasma Center, designed an experiment where it was possible to use highly sophisticated technology to precisely control the amount of fuel injected into a tokamak. The massive experiments were carried out at the world’s largest tokamaks, the Joint European Torus (JET) in the UK [above], as well as the ASDEX Upgrade in Germany (Max Plank Institute) and EPFL’s own TCV tokamak.

    This large experimental effort was made possible by the EUROfusion Consortium, the European organization that coordinates fusion research in Europe and to which EPFL now participates through the MPG Institute for Plasma Physics [MPG Institut für Plasmaphysik](DE).

    At the same time, Maurizio Giacomin, a PhD student in Ricci’s group, began to analyze the physics processes that limit the density in tokamaks, in order to derive a first-principles law that can correlate fuel density and tokamak size. Part of that though, involved using advanced simulation of the plasma carried out with a computer model.

    “The simulations exploit some of the largest computers in the world, such as those made available by CSCS, the Swiss National Supercomputing Center and by EUROfusion,” says Ricci. “And what we found, through our simulations, was that as you add more fuel into the plasma, parts of it move from the outer cold layer of the tokamak, the boundary, back into its core, because the plasma becomes more turbulent. Then, unlike an electrical copper wire, which becomes more resistant when heated, plasmas become more resistant when they cool down. So, the more fuel you put into it at the same temperature, the more parts of it cool down – and the more difficult is for current to flow in the plasma, possibly leading to a disruption.”

    This was challenging to simulate. “Turbulence in a fluid is actually the most important open issue in classical physics,” says Ricci. “But turbulence in a plasma is even more complicated because you also have electromagnetic fields.”

    In the end, Ricci and his colleagues were able to crack the code, and put “pen to paper” to derive a new equation for fuel limit in a tokamak, which aligns very well with experiments. Published in Physical Review Letters, it does justice to Greenwald’s limit, by being close to it, but updates it significant ways.

    The new equation posits that the Greenwald limit can be raised almost two-fold in terms of fuel in ITER; that means that tokamaks like ITER can actually use almost twice the amount of fuel to produce plasmas without worries of disruptions. “This is important because it shows that the density that you can achieve in a tokamak increases with the power you need to run it,” says Ricci. “Actually, DEMO will operate at a much higher power than present tokamaks and ITER, which means that you can add more fuel density without limiting the output, in contrast to the Greenwald law. And that is very good news.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    EPFL campus

    The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

    The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

    EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is The Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich] (CH). Associated with several specialized research institutes, the two universities form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles Polytechniques Fédérales] (CH) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École Polytechnique Fédérale de Lausanne](CH), and four associated research institutes form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École Spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices were located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganized and acquired the status of a university in 1890, the technical faculty changed its name to École d’Ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich (CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

    In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.

    Organization

    EPFL is organized into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

    School of Basic Sciences
    Institute of Mathematics
    Institute of Chemical Sciences and Engineering
    Institute of Physics
    European Centre of Atomic and Molecular Computations
    Bernoulli Center
    Biomedical Imaging Research Center
    Interdisciplinary Center for Electron Microscopy
    MPG-EPFL Centre for Molecular Nanosciences and Technology
    Swiss Plasma Center
    Laboratory of Astrophysics

    School of Engineering

    Institute of Electrical Engineering
    Institute of Mechanical Engineering
    Institute of Materials
    Institute of Microengineering
    Institute of Bioengineering

    School of Architecture, Civil and Environmental Engineering

    Institute of Architecture
    Civil Engineering Institute
    Institute of Urban and Regional Sciences
    Environmental Engineering Institute

    School of Computer and Communication Sciences

    Algorithms & Theoretical Computer Science
    Artificial Intelligence & Machine Learning
    Computational Biology
    Computer Architecture & Integrated Systems
    Data Management & Information Retrieval
    Graphics & Vision
    Human-Computer Interaction
    Information & Communication Theory
    Networking
    Programming Languages & Formal Methods
    Security & Cryptography
    Signal & Image Processing
    Systems

    School of Life Sciences

    Bachelor-Master Teaching Section in Life Sciences and Technologies
    Brain Mind Institute
    Institute of Bioengineering
    Swiss Institute for Experimental Cancer Research
    Global Health Institute
    Ten Technology Platforms & Core Facilities (PTECH)
    Center for Phenogenomics
    NCCR Synaptic Bases of Mental Diseases

    College of Management of Technology

    Swiss Finance Institute at EPFL
    Section of Management of Technology and Entrepreneurship
    Institute of Technology and Public Policy
    Institute of Management of Technology and Entrepreneurship
    Section of Financial Engineering

    College of Humanities

    Human and social sciences teaching program

    EPFL Middle East

    Section of Energy Management and Sustainability

    In addition to the eight schools there are seven closely related institutions

    Swiss Cancer Centre
    Center for Biomedical Imaging (CIBM)
    Centre for Advanced Modelling Science (CADMOS)
    École Cantonale d’art de Lausanne (ECAL)
    Campus Biotech
    Wyss Center for Bio- and Neuro-engineering
    Swiss National Supercomputing Centre

     
  • richardmitnick 8:25 am on May 5, 2022 Permalink | Reply
    Tags: "Single photon emitter takes a step closer to quantum tech", , , Scientists at EPFL have now designed one of these “single photon emitters” that can work at room temperature and are based on quantum dots grown on cost-effective silicon substrates., The quantum dots are made of gallium nitride and aluminum nitride (GaN/AlN) and feature single-photon purity of 95% at cryogenic temperatures., The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH), To get closer to quantum technology we need to develop non-classical light sources that can emit a single photon at a time and do so on demand.   

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH) : “Single photon emitter takes a step closer to quantum tech” 

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)

    5.5.22
    Raphaël Butté
    Nik Papageorgiou

    1
    To get closer to quantum technology we need to develop non-classical light sources that can emit a single photon at a time and do so on demand. Scientists at EPFL have now designed one of these “single photon emitters” that can work at room temperature and are based on quantum dots grown on cost-effective silicon substrates.

    Developing non-classical light sources that can emit, on-demand, exactly one photon at a time is one of the main requirements of quantum technologies. But although the first demonstration of such a “single photon emitter”, or SPE, dates back to the 1970s, their low reliability and efficiency has been stood in the way of any meaningfully practical use.

    Conventional light sources like incandescent light bulbs or LEDs emit bunches of photons at a time. In other words, their probability to emit a single photon at a time is very low. Laser sources can emit streams of single photons, but not on-demand, which means that, sometimes, there will be no photons whatsoever emitted when we want them to.

    So the main advantage of SPEs is that they can do both: emit a single photon and do so on-demand – or, in more technical terms, their single-photon purity, which they can maintain at an ultrafast timeframe. Thus, for a light source to qualify as an SPE, it must feature a single-photon purity above 50%; of course, the closer to 100%, the closer we will be to an ideal SPE.

    Researchers at EPFL, led by Professor Nicolas Grandjean, have now developed “bright and pure” SPEs based on wide-bandgap semiconductor quantum dots grown on cost-effective silicon substrates.

    The quantum dots are made of gallium nitride and aluminum nitride (GaN/AlN) and feature single-photon purity of 95% at cryogenic temperatures, while also maintaining excellent good resilience at higher temperatures, with a purity of 83% at room temperature.

    The SPE also shows photon emission rates up to 1 MHz while maintaining a single-photon purity over 50%. “Such brightness up to room temperature is possible because of the unique electronic properties of the GaN/AlN quantum dots, which preserves the single-photon purity due to the limited spectral overlap with competing neighboring electronic excitation,” says Stachurski, the PhD student who investigated these quantum systems.

    2
    Single-photon emission by a self-assembled GaN/AlN quantum dot. Credit: J. Stachurski/EPFL.

    “A very appealing feature of GaN/AlN quantum dots is that they belong to the III-nitride semiconductor family, namely that behind the solid‐state lighting revolution (blue and white LEDs) whose importance was recognized by the Nobel prize in Physics in 2014,” state the researchers. “It is nowadays the second semiconductor family in terms of consumer market right after silicon that dominates the microelectronic industry. As such, III-nitrides benefit from a solid and mature technological platform, which makes them of high potential interest for the development of quantum applications.”

    An important future step will be to see if this platform can emit one photon and only one per laser pulse, which is an essential prerequisite to determine its efficiency.

    “Since our electronic excitations exhibit room temperature lifetimes as short as 2 to 3 billionth of a second, single photon rates of several tens of MHz could be within reach,” state the authors. “Combined with resonant laser excitation, which is known to significantly improve single-photon purity, our quantum-dot platform could be of interest for implementing room-temperature quantum key distribution based on a true SPE, as opposed to current commercial systems that run with attenuated laser sources.”

    Science paper:
    Light: Science & Application

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    EPFL campus

    The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

    The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

    EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is The Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich] (CH). Associated with several specialized research institutes, the two universities form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles Polytechniques Fédérales] (CH) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École Polytechnique Fédérale de Lausanne](CH), and four associated research institutes form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École Spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices were located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganized and acquired the status of a university in 1890, the technical faculty changed its name to École d’Ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich (CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

    In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.

    Organization

    EPFL is organized into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

    School of Basic Sciences
    Institute of Mathematics
    Institute of Chemical Sciences and Engineering
    Institute of Physics
    European Centre of Atomic and Molecular Computations
    Bernoulli Center
    Biomedical Imaging Research Center
    Interdisciplinary Center for Electron Microscopy
    MPG-EPFL Centre for Molecular Nanosciences and Technology
    Swiss Plasma Center
    Laboratory of Astrophysics

    School of Engineering

    Institute of Electrical Engineering
    Institute of Mechanical Engineering
    Institute of Materials
    Institute of Microengineering
    Institute of Bioengineering

    School of Architecture, Civil and Environmental Engineering

    Institute of Architecture
    Civil Engineering Institute
    Institute of Urban and Regional Sciences
    Environmental Engineering Institute

    School of Computer and Communication Sciences

    Algorithms & Theoretical Computer Science
    Artificial Intelligence & Machine Learning
    Computational Biology
    Computer Architecture & Integrated Systems
    Data Management & Information Retrieval
    Graphics & Vision
    Human-Computer Interaction
    Information & Communication Theory
    Networking
    Programming Languages & Formal Methods
    Security & Cryptography
    Signal & Image Processing
    Systems

    School of Life Sciences

    Bachelor-Master Teaching Section in Life Sciences and Technologies
    Brain Mind Institute
    Institute of Bioengineering
    Swiss Institute for Experimental Cancer Research
    Global Health Institute
    Ten Technology Platforms & Core Facilities (PTECH)
    Center for Phenogenomics
    NCCR Synaptic Bases of Mental Diseases

    College of Management of Technology

    Swiss Finance Institute at EPFL
    Section of Management of Technology and Entrepreneurship
    Institute of Technology and Public Policy
    Institute of Management of Technology and Entrepreneurship
    Section of Financial Engineering

    College of Humanities

    Human and social sciences teaching program

    EPFL Middle East

    Section of Energy Management and Sustainability

    In addition to the eight schools there are seven closely related institutions

    Swiss Cancer Centre
    Center for Biomedical Imaging (CIBM)
    Centre for Advanced Modelling Science (CADMOS)
    École Cantonale d’art de Lausanne (ECAL)
    Campus Biotech
    Wyss Center for Bio- and Neuro-engineering
    Swiss National Supercomputing Centre

     
  • richardmitnick 10:47 am on April 29, 2022 Permalink | Reply
    Tags: "Improving the efficiency of tandem solar cells", , , Halide perovskites have recently shown to be the best suited for boosting the efficiency of silicon without adding substantial fabrication costs., Modules incorporating these solar cells will have maximum yields of around 23–25%., Solar cells made of silicon are used widely but have limited power-conversion yields., The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH), These limitations can be overcome by combining silicon with a complementary solar cell that absorbs the blue-green part of the solar spectrum and employs it more efficiently in a “tandem.”   

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH): “Improving the efficiency of tandem solar cells” 

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)

    4.29.22
    Christian Wolff

    1
    EPFL scientists in Neuchâtel have developed a tandem solar cell that can deliver a certified efficiency of 29.2%. This achievement was made possible by combining a perovskite solar cell with a textured silicon solar cell.

    Solar cells made of silicon are used widely but have limited power-conversion yields. These yields will likely top out at around 27% in the foreseeable future, owing to fundamental thermodynamic limitations. Modules incorporating these solar cells will have maximum yields of around 23–25%.

    However, these limitations can be overcome by combining silicon with a complementary solar cell that absorbs the blue-green part of the solar spectrum and employs it more efficiently, forming what’s called a “tandem.” Among the different materials that can be used for the tandem, halide perovskites have recently shown to be the best suited for boosting the efficiency of silicon without adding substantial fabrication costs.

    One obstacle was finding a way to evenly coat the silicon surface – which is intentionally rough, or textured – with a thin film of halide perovskites. A textured surface is used in order to minimize light reflection. This kind of system can already be found in all commercially available crystalline silicon cells.

    Scientists at EPFL’s Photovoltaics and Thin Film Electronics Laboratory (PV-lab), led by Christophe Ballif, developed a method in 2018 to grow perovskite layers on textured silicon in a uniform manner. Their proof-of-concept devices were shown to achieve an efficiency of 25.2%. Now the researchers have enhanced the perovskite crystallization process and developed highly transparent window layers, resulting in tandem solar cells with an efficiency of 29.2% on a surface of 1 cm2. This yield was certified independently by the Fraunhofer Institute for Solar Energy Systems (Fraunhofer ISE) in Germany, and sets a new world record for a fully textured perovskite-silicon device.

    This is only an intermediate step, however. The research team already sees a clear path to achieving yields of beyond 30% by taking advantage of the high current provided by the silicon texture. “Several years of R&D are still needed to bring such technology and manufacturing processes to market,” says Ballif. “A big challenge will be developing solar cells that can remain stable on our rooftops for more than 25 years. But the higher efficiency we demonstrated without changing the front texture will be very attractive for the photovoltaics industry.” The discovery shows high promise to cut the power generation cost per kWh, by producing more energy on the same area.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    EPFL campus

    The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

    The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

    EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is The Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich] (CH). Associated with several specialized research institutes, the two universities form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles Polytechniques Fédérales] (CH) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École Polytechnique Fédérale de Lausanne](CH), and four associated research institutes form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École Spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices were located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganized and acquired the status of a university in 1890, the technical faculty changed its name to École d’Ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich (CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

    In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.

    Organization

    EPFL is organized into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

    School of Basic Sciences
    Institute of Mathematics
    Institute of Chemical Sciences and Engineering
    Institute of Physics
    European Centre of Atomic and Molecular Computations
    Bernoulli Center
    Biomedical Imaging Research Center
    Interdisciplinary Center for Electron Microscopy
    MPG-EPFL Centre for Molecular Nanosciences and Technology
    Swiss Plasma Center
    Laboratory of Astrophysics

    School of Engineering

    Institute of Electrical Engineering
    Institute of Mechanical Engineering
    Institute of Materials
    Institute of Microengineering
    Institute of Bioengineering

    School of Architecture, Civil and Environmental Engineering

    Institute of Architecture
    Civil Engineering Institute
    Institute of Urban and Regional Sciences
    Environmental Engineering Institute

    School of Computer and Communication Sciences

    Algorithms & Theoretical Computer Science
    Artificial Intelligence & Machine Learning
    Computational Biology
    Computer Architecture & Integrated Systems
    Data Management & Information Retrieval
    Graphics & Vision
    Human-Computer Interaction
    Information & Communication Theory
    Networking
    Programming Languages & Formal Methods
    Security & Cryptography
    Signal & Image Processing
    Systems

    School of Life Sciences

    Bachelor-Master Teaching Section in Life Sciences and Technologies
    Brain Mind Institute
    Institute of Bioengineering
    Swiss Institute for Experimental Cancer Research
    Global Health Institute
    Ten Technology Platforms & Core Facilities (PTECH)
    Center for Phenogenomics
    NCCR Synaptic Bases of Mental Diseases

    College of Management of Technology

    Swiss Finance Institute at EPFL
    Section of Management of Technology and Entrepreneurship
    Institute of Technology and Public Policy
    Institute of Management of Technology and Entrepreneurship
    Section of Financial Engineering

    College of Humanities

    Human and social sciences teaching program

    EPFL Middle East

    Section of Energy Management and Sustainability

    In addition to the eight schools there are seven closely related institutions

    Swiss Cancer Centre
    Center for Biomedical Imaging (CIBM)
    Centre for Advanced Modelling Science (CADMOS)
    École Cantonale d’art de Lausanne (ECAL)
    Campus Biotech
    Wyss Center for Bio- and Neuro-engineering
    Swiss National Supercomputing Centre

     
  • richardmitnick 12:33 pm on April 27, 2022 Permalink | Reply
    Tags: "Climate warming alters glacier-fed stream ecosystems worldwide", , The ecosystems of glacier-fed streams are now being transformed by climate change at unprecedented pace., The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH), Vanishing Glaciers Project   

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH): “Climate warming alters glacier-fed stream ecosystems worldwide” 

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)

    4.27.22

    1
    According to two recent studies carried out as part of the Vanishing Glaciers Project, the ecosystems of glacier-fed streams are undergoing profound change around the world. That could have major repercussions on the food chain and the natural carbon cycle.

    The ecosystems of glacier-fed streams have survived nutrient-poor and harsh environmental conditions over the course of thousands of years, yet they are now being transformed by climate change at unprecedented pace. That’s the conclusion of two studies published by scientists at EPFL’s River Ecosystems Laboratory (RIVER), which is part of EPFL’s School of Architecture, Civil and Environmental Engineering (ENAC). The studies were carried out in collaboration with the Luxembourg Centre for Systems Biomedicine (LCSB) of the University of Luxembourg and King Abdullah University of Science and Technology. The first study highlights the diversity and adaptive strategies of the microbiome in glacier-fed streams, while the second reveals that the decomposition of organic matter in glacier-fed streams is accelerating and the microbiome structure is changing as glaciers shrink. As organic matter is decomposed at a higher rate, glacier-fed streams may become more important to the natural carbon cycle.

    2
    Stream at the foot of the Shkhelda glacier, in the Caucasus, photographed by the RIVER Laboratory team who took biofilm samples.© Matteo Tolosano/ EPFL.

    From green oasis to forests

    Climate change is making the spring and fall seasons in glacier-fed streams last longer. According to the first study, published in Nature Communications, this shift has major repercussions on the ecosystem’s microbiome, which until now has been akin to a “green oasis” during short periods in spring and fall. In the future, the microbiome could turn into something more like a “forest.” “These seasons are important ecological ‘windows of opportunity’ in glacier-fed streams with less harsh environmental conditions. This allows primary producers to proliferate, and they form the energy basis of the microbial food chain,” says Prof. Tom Battin, the head of RIVER and the corresponding author for both publications.

    In addition to this discovery, the study sheds new light on what has previously been a black box: the microbiome inside these ecosystems. The scientists now have a better understanding of how the different microorganisms compete or help each other survive in such a nutrient-poor environment with alternating periods of freezing, melting and strong UV radiation.

    3
    The RIVER laboratory team at work on Antisana, a 5758-meter high stratovolcano located in the Andes Mountains, Ecuador. © Matteo Tolosano/ EPFL.

    Slimy megacities

    The scientists also unraveled potential metabolic interactions between algae and bacteria, and showed that biofilms can recycle feed streams internally. This appears to be an important adaptation to survive in an ecosystem that’s poor in energy. “Scientists in our field tend to call biofilms ‘slimy megacities,’ since they are home to millions of microbial residents encapsulated in slime and attached to rocks,” says Battin. “We were able to observe how the different species work together to survive.” Other crucial discoveries made by the RIVER team were an unexpectedly rich virome and genomic features that could explain how bacteria are able to shield themselves against glacial temperatures.

    4
    Camp of the RIVER Laboratory team at the foot of Ama Dablam, which culminates at 6812 meters, in Nepal, in the Everest region. © Matteo Tolosano/ EPFL.

    Accelerating the carbon cycle

    In the second study, appearing in Global Change Biology, the scientists found that organic matter across 101 glacier-fed streams worldwide is decomposed more rapidly as glaciers shrink. Concomitantly, they were able to relate this ecosystem process to distinct components of the microbiome. “We can expect the food chain in glacier-fed streams to become greener in the future as primary production becomes more important,” says Battin. “With this change, some microbial species may disappear, others will thrive, and there will be a shift along the entire food chain.” The bottom line of this study is that, as glaciers shrink, their streams may become more important natural sources of CO2 in the atmosphere.

    5
    Greenland. © Myke Styllas / EPFL.

    Last stop: Alaska

    This research was made possible by the Vanishing Glaciers Project – a four-year project based at EPFL and funded by The NOMIS Foundation. Under this project, scientists at RIVER began sampling glacier-fed streams around the world in 2018 with the aim of deciphering the biodiversity in these vanishing ecosystems. “Our unique effort, which combines intense expeditions with genomic analyses, made us the first to systematically study the microbiome of these ecosystems, which are now changing as the glaciers melt,” says Battin.

    The Vanishing Glaciers expedition will soon draw to an end, making its last stop this summer in Alaska. The scientists have analyzed only 20% of the data they’ve collected so far from over 150 glacier-fed streams worldwide. Future analyses will investigate precisely how the microbiome is being altered – and what the broader ramifications are.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    EPFL campus

    The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

    The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

    EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is The Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich] (CH). Associated with several specialized research institutes, the two universities form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles Polytechniques Fédérales] (CH) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École Polytechnique Fédérale de Lausanne](CH), and four associated research institutes form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École Spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices were located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganized and acquired the status of a university in 1890, the technical faculty changed its name to École d’Ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich (CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

    In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.

    Organization

    EPFL is organized into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

    School of Basic Sciences
    Institute of Mathematics
    Institute of Chemical Sciences and Engineering
    Institute of Physics
    European Centre of Atomic and Molecular Computations
    Bernoulli Center
    Biomedical Imaging Research Center
    Interdisciplinary Center for Electron Microscopy
    MPG-EPFL Centre for Molecular Nanosciences and Technology
    Swiss Plasma Center
    Laboratory of Astrophysics

    School of Engineering

    Institute of Electrical Engineering
    Institute of Mechanical Engineering
    Institute of Materials
    Institute of Microengineering
    Institute of Bioengineering

    School of Architecture, Civil and Environmental Engineering

    Institute of Architecture
    Civil Engineering Institute
    Institute of Urban and Regional Sciences
    Environmental Engineering Institute

    School of Computer and Communication Sciences

    Algorithms & Theoretical Computer Science
    Artificial Intelligence & Machine Learning
    Computational Biology
    Computer Architecture & Integrated Systems
    Data Management & Information Retrieval
    Graphics & Vision
    Human-Computer Interaction
    Information & Communication Theory
    Networking
    Programming Languages & Formal Methods
    Security & Cryptography
    Signal & Image Processing
    Systems

    School of Life Sciences

    Bachelor-Master Teaching Section in Life Sciences and Technologies
    Brain Mind Institute
    Institute of Bioengineering
    Swiss Institute for Experimental Cancer Research
    Global Health Institute
    Ten Technology Platforms & Core Facilities (PTECH)
    Center for Phenogenomics
    NCCR Synaptic Bases of Mental Diseases

    College of Management of Technology

    Swiss Finance Institute at EPFL
    Section of Management of Technology and Entrepreneurship
    Institute of Technology and Public Policy
    Institute of Management of Technology and Entrepreneurship
    Section of Financial Engineering

    College of Humanities

    Human and social sciences teaching program

    EPFL Middle East

    Section of Energy Management and Sustainability

    In addition to the eight schools there are seven closely related institutions

    Swiss Cancer Centre
    Center for Biomedical Imaging (CIBM)
    Centre for Advanced Modelling Science (CADMOS)
    École Cantonale d’art de Lausanne (ECAL)
    Campus Biotech
    Wyss Center for Bio- and Neuro-engineering
    Swiss National Supercomputing Centre

     
  • richardmitnick 8:19 am on April 19, 2022 Permalink | Reply
    Tags: , , The "Summer in the Lab"-bridging research and education""Summer in the Lab-bridging research and education", The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)   

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH): “Summer in the Lab-bridging research and education” 

    From The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)

    4.4.22

    1
    How can EPFL students get a practical and deep understanding of their field of studies? How can we strengthen synergies between education and research? The Summer in the Lab internship program represents the School’s first official framework to address these challenges beyond the academic calendar.

    With the aim to develop the research culture at EPFL, the Vice Presidency for Academic Affairs (VPA) launched this year a program called Summer in the Lab. Implemented and managed by the School’s Education Outreach Department (SPE), this project encourages practical learning from the beginning of the Bachelor’s.

    The Summer in the Lab program is designed for EPFL students who wish to explore or confirm their interest for research. The objective of these two-months immersions over the summer within one of the EPFL laboratories, is to offer interns the experience of a stimulating research environment. In addition, they can put their polytechnical knowledge into practice and so reinforce their career prospects in Switzerland and internationally. According to Kathryn Hess Bellwald, Associate Vice President for Student Affairs and Outreach, participants can gain a much more in-depth vision of their studies in order to make informed decisions for their future academic and professional path.

    EPFL students have welcomed this new internship program with great enthusiasm and interest. For Marion Boissat, co-president of the School’s association AGEPoly, the remunerated Summer in the Lab internships fit perfectly into the academic calendar and could have a great success because it allows students not only to gain more hands-on experience but also to step out of their comfort zone.

    In response to the suggestions of the student and alumni community to get a more multidisciplinary approach throughout their studies, the organizers also added workshops in science communication and leadership to the agenda.With these complementary courses, the Summer in the Lab program provides a rich and balanced training of scientific and transversal skills.

    End of September, this year’s cohort will present their research at a closing symposium. This opportunity will also allow them to apply their newly acquired presentation and communication skills. Kathryn Hess Bellwald explains: “It is nowadays essential for future scientists, researchers or pragmatic managers to have the ability to present their projects, to work and to communicate in teams.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    EPFL campus

    The Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

    The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

    EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is The Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich] (CH). Associated with several specialized research institutes, the two universities form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles Polytechniques Fédérales] (CH) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École Polytechnique Fédérale de Lausanne](CH), and four associated research institutes form The Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École Spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices were located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganized and acquired the status of a university in 1890, the technical faculty changed its name to École d’Ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich (CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

    In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.

    Organization

    EPFL is organized into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

    School of Basic Sciences
    Institute of Mathematics
    Institute of Chemical Sciences and Engineering
    Institute of Physics
    European Centre of Atomic and Molecular Computations
    Bernoulli Center
    Biomedical Imaging Research Center
    Interdisciplinary Center for Electron Microscopy
    MPG-EPFL Centre for Molecular Nanosciences and Technology
    Swiss Plasma Center
    Laboratory of Astrophysics

    School of Engineering

    Institute of Electrical Engineering
    Institute of Mechanical Engineering
    Institute of Materials
    Institute of Microengineering
    Institute of Bioengineering

    School of Architecture, Civil and Environmental Engineering

    Institute of Architecture
    Civil Engineering Institute
    Institute of Urban and Regional Sciences
    Environmental Engineering Institute

    School of Computer and Communication Sciences

    Algorithms & Theoretical Computer Science
    Artificial Intelligence & Machine Learning
    Computational Biology
    Computer Architecture & Integrated Systems
    Data Management & Information Retrieval
    Graphics & Vision
    Human-Computer Interaction
    Information & Communication Theory
    Networking
    Programming Languages & Formal Methods
    Security & Cryptography
    Signal & Image Processing
    Systems

    School of Life Sciences

    Bachelor-Master Teaching Section in Life Sciences and Technologies
    Brain Mind Institute
    Institute of Bioengineering
    Swiss Institute for Experimental Cancer Research
    Global Health Institute
    Ten Technology Platforms & Core Facilities (PTECH)
    Center for Phenogenomics
    NCCR Synaptic Bases of Mental Diseases

    College of Management of Technology

    Swiss Finance Institute at EPFL
    Section of Management of Technology and Entrepreneurship
    Institute of Technology and Public Policy
    Institute of Management of Technology and Entrepreneurship
    Section of Financial Engineering

    College of Humanities

    Human and social sciences teaching program

    EPFL Middle East

    Section of Energy Management and Sustainability

    In addition to the eight schools there are seven closely related institutions

    Swiss Cancer Centre
    Center for Biomedical Imaging (CIBM)
    Centre for Advanced Modelling Science (CADMOS)
    École Cantonale d’art de Lausanne (ECAL)
    Campus Biotech
    Wyss Center for Bio- and Neuro-engineering
    Swiss National Supercomputing Centre

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: