Tagged: The Scripps Institution of Oceanography Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:53 am on March 21, 2023 Permalink | Reply
    Tags: "New Study Provides First Comprehensive Look at Oxygen Loss on Coral Reefs", A new study is providing an unprecedented examination of oxygen loss on coral reefs around the globe under ocean warming., As ocean temperature increases the seawater can hold less oxygen while the biological demand for oxygen will increase exacerbating nighttime hypoxia., As the researchers expected oxygen was lowest in the early morning at all locations and highest in the mid-afternoon as a result of nighttime respiration and daytime photosynthesis respectively., At night when there is no sunlight there is no oxygen production and everything on the reef is respiring—breathing in oxygen and breathing out carbon dioxide., , During the day when primary producers on the reef have sunlight they photosynthesize and produce oxygen., Historically hypoxia has been defined by a very specific concentration cutoff of oxygen in the water—less than two milligrams of oxygen per liter., More research is needed to better understand the biological impacts on tropical corals and coral reefs., More than 84 percent of the reefs in this study experienced “weak to moderate” hypoxia and 13 percent experienced “severe” hypoxia at some point during the data collection period., Pezner and colleagues used autonomous sensor data to explore oxygen variability and hypoxia exposure at 32 diverse reef sites across 12 locations., Scripps Oceanography scientists and collaborators provide first-of-its-kind assessment of hypoxia-low oxygen levels- across 32 coral reef sites around the world., The analysis was led by Ariel Pezner while she was a PhD student at Scripps Oceanography., The authors found that low oxygen levels are already happening in some reef habitats now and are expected to get worse if ocean temperatures continue to warm due to climate change., The overall decline of oxygen content across the world’s oceans and coastal waters has been well documented but hypoxia on coral reefs has been relatively underexplored., The SCOOBY lab and partners collected most of the data in an effort to characterize seawater chemistry and reef metabolism in different coral reef environments., The Scripps Institution of Oceanography,   

    From The Scripps Institution of Oceanography At The University of California-San Diego : “New Study Provides First Comprehensive Look at Oxygen Loss on Coral Reefs” 

    From The Scripps Institution of Oceanography

    At

    The University of California-San Diego

    3.16.23
    Brittany Hook
    bhook@ucsd.edu

    Scripps Oceanography scientists and collaborators provide first-of-its-kind assessment of hypoxia-low oxygen levels- across 32 coral reef sites around the world.

    1
    Coral reefs at a study site off Taiping Island, South China Sea. Photo: Yi Bei Liang.

    A new study is providing an unprecedented examination of oxygen loss on coral reefs around the globe under ocean warming. Led by researchers at UC San Diego’s Scripps Institution of Oceanography and a large team of national and international colleagues, the study captures the current state of hypoxia—or low oxygen levels—at 32 different sites, and reveals that hypoxia is already pervasive on many reefs.

    The overall decline of oxygen content across the world’s oceans and coastal waters—a process known as ocean deoxygenation—has been well documented, but hypoxia on coral reefs has been relatively underexplored. Oxygen loss in the ocean is predicted to threaten marine ecosystems globally, though more research is needed to better understand the biological impacts on tropical corals and coral reefs.

    The study, published March 16 in the journal Nature Climate Change [below], is the first to document oxygen conditions on coral reef ecosystems at this scale.

    2
    Members of Scripps Oceanography’s SCOOBY Lab check on an instrument at Dongsha Atoll in 2018. Pictured left to right: Ariel Pezner, Travis Courtney, and Samuel Kekuewa. Research at this site was done in collaboration with National Sun Yat-sen University and National Taiwan Ocean University. Photo: Andreas Andersson.

    “This study is unique because our lab worked with a number of collaborators to compile this global oxygen dataset especially focused on coral reefs—no one has really done that on a global scale before with this number of datasets,” said marine scientist Ariel Pezner, now a postdoctoral fellow at the Smithsonian Marine Station in Florida. “We were surprised to find that a lot of coral reefs are already experiencing what we would define as hypoxia today under current conditions.”

    The authors found that low oxygen levels are already happening in some reef habitats now, and are expected to get worse if ocean temperatures continue to warm due to climate change. They also used models of four different climate change scenarios to show that projected ocean warming and deoxygenation will substantially increase the duration, intensity, and severity of hypoxia on coral reefs by the year 2100.

    The analysis was led by Pezner while she was a PhD student at Scripps Oceanography, where she worked in the Scripps Coastal and Open Ocean BiogeochemistrY Research (SCOOBY) lab alongside biogeochemist Andreas Andersson.

    Pezner and colleagues used autonomous sensor data to explore oxygen variability and hypoxia exposure at 32 diverse reef sites across 12 locations in waters off Japan, Hawaii, Panama, Palmyra, Taiwan, and elsewhere. Many of the datasets were collected using SeapHOx sensors, instruments originally developed by the lab of Scripps Oceanography researcher Todd Martz. These and other autonomous sensors were deployed in different coral reef habitats, where they measured temperature, salinity, pH, and oxygen levels every 30 minutes.

    The SCOOBY lab and partners collected most of the data in an effort to characterize seawater chemistry and reef metabolism in different coral reef environments. The international partners were instrumental in facilitating research logistics and access to many study sites. Several contributors also shared data from their own studies. At Scripps Oceanography, the Martz Lab, Smith Lab, and Tresguerres Lab all made significant contributions to the study.

    Historically, hypoxia has been defined by a very specific concentration cutoff of oxygen in the water—less than two milligrams of oxygen per liter—a threshold that was determined in the 1950s. The researchers note that one universal threshold may not be applicable for all environments or all reefs or all ecosystems, and they explored the possibility of four different hypoxia thresholds: weak (5 mg/L), mild (4 mg/L), moderate (3 mg/L), and severe hypoxia (2 mg/L).

    Based on these thresholds, they found that more than 84 percent of the reefs in this study experienced “weak to moderate” hypoxia and 13 percent experienced “severe” hypoxia at some point during the data collection period.


    New Study Examines Oxygen Loss on Coral Reefs.
    A new study led by Scripps Oceanography scientists, alumni, and colleagues is providing an unprecedented examination of oxygen loss on coral reefs around the globe under ocean warming.

    As the researchers expected, oxygen was lowest in the early morning at all locations and highest in the mid-afternoon as a result of nighttime respiration and daytime photosynthesis, respectively. During the day when primary producers on the reef have sunlight, they photosynthesize and produce oxygen, said Pezner. But at night, when there is no sunlight, there is no oxygen production and everything on the reef is respiring—breathing in oxygen and breathing out carbon dioxide—resulting in a less oxygenated environment, and sometimes a dip into hypoxia.

    This is a normal process, said Andersson, the study’s senior author, but as ocean temperature increases, the seawater can hold less oxygen while the biological demand for oxygen will increase, exacerbating this nighttime hypoxia.

    “Imagine that you’re a person who is used to sea-level conditions, and then every night you have to go to sleep somewhere in the Rocky Mountains, where the air has less oxygen. This is similar to what these corals are experiencing at nighttime and in the early morning when they experience hypoxia,” said Andersson. “And in the future, if the duration and intensity of these hypoxic events gets worse, then it might be like sleeping on Mount Everest every night.”

    The researchers found that as global temperatures continue to rise and marine heat waves become more frequent and severe, low oxygen conditions on coral reefs are likely to become more common. Using projections adopted from climate models, the team calculated that by the year 2100, the total number of hypoxic observations on these reefs will increase under all warming scenarios, ranging from an increase of 13 to 42 percent under one scenario to 97 to 287 percent under a more extreme scenario relative to now.

    4
    A SeapHOx instrument deployed by the team on a coral reef off Okinawa, Japan. Sensors on the instrument measured temperature, salinity, pH, and oxygen levels every 30 minutes. Research at this site was done in collaboration with the Okinawa Institute of Science and Technology. Photo: Max Rintoul.

    The researchers said that continued and additional oxygen measurements on coral reefs over different seasons and longer time scales will be “imperative” for establishing baseline conditions, tracking potential hypoxic events, and better predicting future impacts on reef ecology, health, and function.

    “Baseline oxygen conditions varied widely among our reef habitats, suggesting that a singular definition of ‘hypoxia’ may not be reasonable for all environments,” said Pezner. “Determining which thresholds are relevant will be important moving forward in making predictions about how reefs might change under warming and oxygen loss.”

    This research was funded mainly by the National Science Foundation, and Pezner’s graduate studies were supported by the National Science Foundation Graduate Research Fellowship and a Philanthropic Educational Organization (P.E.O.) International Scholar Award.

    This study involved a total of 22 authors representing 14 different research organizations and universities including UC San Diego; University of Puerto Rico at Mayagüez; NOAA Pacific Islands Fisheries Science Center; National Taiwan Ocean University; Georgia Southern University; University of Montana; Smithsonian Tropical Research Institute; National Sun Yat-sen University; Okinawa Institute of Science and Technology; Sea Education Association; Monterey Bay Aquarium Research Institute; National Taiwan University; and the U.S. Geological Survey.

    Nature Climate Change

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    A department of The University of California-San Diego, The Scripps Institution of Oceanography is one of the oldest, largest, and most important centers for ocean, earth and atmospheric science research, education, and public service in the world.

    Research at Scripps encompasses physical, chemical, biological, geological, and geophysical studies of the oceans, Earth, and planets. Scripps undergraduate and graduate programs provide transformative educational and research opportunities in ocean, earth, and atmospheric sciences, as well as degrees in climate science and policy and marine biodiversity and conservation.

    Scripps Institution of Oceanography was founded in 1903 as the Marine Biological Association of San Diego, an independent biological research laboratory. It was proposed and incorporated by a committee of the San Diego Chamber of Commerce, led by local activist and amateur malacologist Fred Baker, together with two colleagues. He recruited University of California Zoology professor William Emerson Ritter to head up the proposed marine biology institution, and obtained financial support from local philanthropists E. W. Scripps and his sister Ellen Browning Scripps. They fully funded the institution for its first decade. It began institutional life in the boathouse of the Hotel del Coronado located on San Diego Bay. It re-located in 1905 to the La Jolla area on the head above La Jolla Cove, and finally in 1907 to its present location.

    In 1912 Scripps became incorporated into The University of California and was renamed the “Scripps Institution for Biological Research.” Since 1916, measurements have been taken daily at its pier. The name was changed to Scripps Institution of Oceanography in October 1925. During the 1960s, led by Scripps Institution of Oceanography director Roger Revelle, it formed the nucleus for the creation of The University of California-San Diego on a bluff overlooking Scripps Institution.

    The Old Scripps Building, designed by Irving Gill, was declared a National Historic Landmark in 1982. Architect Barton Myers designed the current Scripps Building for the Institution of Oceanography in 1998.
    Research programs
    The institution’s research programs encompass biological, physical, chemical, geological, and geophysical studies of the oceans and land. Scripps also studies the interaction of the oceans with both the atmospheric climate and environmental concerns on terra firma. Related to this research, Scripps offers undergraduate and graduate degrees.

    Today, the Scripps staff of 1,300 includes approximately 235 faculty, 180 other scientists and some 350 graduate students, with an annual budget of more than $281 million. The institution operates a fleet of four oceanographic research vessels.


    R/V Robert Gordon Sproul


    R/V Roger Revelle


    R/V Sally Ride


    C/R/V Bob and Betty Beyster

    The Integrated Research Themes encompassing the work done by Scripps researchers are Biodiversity and Conservation, California Environment, Earth and Planetary Chemistry, Earth Through Space and Time, Energy and the Environment, Environment and Human Health, Global Change, Global Environmental Monitoring, Hazards, Ice and Climate, Instruments and Innovation, Interfaces, Marine Life, Modeling Theory and Computing, Sound and Light and the Sea, and Waves and Circulation.

    Organizational structure
    Scripps Oceanography is divided into three research sections, each with its own subdivisions:
    • Biology

    • Earth

    • Oceans & Atmosphere

    The University of California-San Diego is a public land-grant research university in San Diego, California. Established in 1960 near the pre-existing Scripps Institution of Oceanography, The University of California-San Diego is the southernmost of the ten campuses of the University of California, and offers over 200 undergraduate and graduate degree programs, enrolling 33,343 undergraduate and 9,533 graduate students. The University of California-San Diego occupies 2,178 acres (881 ha) near the coast of the Pacific Ocean, with the main campus resting on approximately 1,152 acres (466 ha). The University of California-San Diego is ranked among the best universities in the world by major college and university rankings.

    The University of California-San Diego consists of twelve undergraduate, graduate and professional schools as well as seven undergraduate residential colleges. It received over 140,000 applications for undergraduate admissions in Fall 2021, making it the second most applied-to university in the United States. The University of California-San Diego San Diego Health, the region’s only academic health system, provides patient care, conducts medical research and educates future health care professionals at The University of California-San Diego Medical Center, Hillcrest, Jacobs Medical Center, Moores Cancer Center, Sulpizio Cardiovascular Center, Shiley Eye Institute, Institute for Genomic Medicine, Koman Family Outpatient Pavilion and various express care and urgent care clinics throughout San Diego.

    The University of California-San Diego operates 19 organized research units as well as eight School of Medicine research units, six research centers at Scripps Institution of Oceanography and two multi-campus initiatives. The University of California-San Diego is also closely affiliated with several regional research centers, such as The Salk Institute, the Sanford Burnham Prebys Medical Discovery Institute, the Sanford Consortium for Regenerative Medicine, and The Scripps Research Institute. It is classified among “R1: Doctoral Universities – Very high research activity”. According to The National Science Foundation, The University of California-San Diego spent $1.354 billion on research and development in fiscal year 2019, ranking it 6th in the nation.

    The University of California-San Diego is considered one of the country’s “Public Ivies”. The University of California-San Diego faculty, researchers, and alumni have won 27 Nobel Prizes as well as three Fields Medals, eight National Medals of Science, eight MacArthur Fellowships, and three Pulitzer Prizes. Additionally, of the current faculty, 29 have been elected to The National Academy of Engineering, 70 to The National Academy of Sciences, 45 to the Institute of Medicine and 110 to The American Academy of Arts and Sciences.

    History

    When the Regents of the University of California originally authorized The University of California-San Diego campus in 1956, it was planned to be a graduate and research institution, providing instruction in the sciences, mathematics, and engineering. Local citizens supported the idea, voting the same year to transfer to the university 59 acres (24 ha) of mesa land on the coast near the preexisting Scripps Institution of Oceanography. The Regents requested an additional gift of 550 acres (220 ha) of undeveloped mesa land northeast of Scripps, as well as 500 acres (200 ha) on the former site of Camp Matthews from the federal government, but Roger Revelle, then director of Scripps Institution and main advocate for establishing the new campus, jeopardized the site selection by exposing the La Jolla community’s exclusive real estate business practices, which were antagonistic to minority racial and religious groups. This outraged local conservatives, as well as Regent Edwin W. Pauley.

    University of California President Clark Kerr satisfied San Diego city donors by changing the proposed name from University of California, La Jolla, to University of California-San Diego. The city voted in agreement to its part in 1958, and the University of California approved construction of the new campus in 1960. Because of the clash with Pauley, Revelle was not made chancellor. Herbert York, first director of The DOE’s Lawrence Livermore National Laboratory, was designated instead. York planned the main campus according to the “Oxbridge” model, relying on many of Revelle’s ideas.

    According to Kerr, “San Diego always asked for the best,” though this created much friction throughout the University of California system, including with Kerr himself, because The University of California-San Diego often seemed to be “asking for too much and too fast.” Kerr attributed The University of California-San Diego’s “special personality” to Scripps, which for over five decades had been the most isolated University of California unit in every sense: geographically, financially, and institutionally. It was a great shock to the Scripps community to learn that Scripps was now expected to become the nucleus of a new University of California campus and would now be the object of far more attention from both the university administration in Berkeley and the state government in Sacramento.

    The University of California-San Diego was the first general campus of the University of California to be designed “from the top down” in terms of research emphasis. Local leaders disagreed on whether the new school should be a technical research institute or a more broadly based school that included undergraduates as well. John Jay Hopkins of General Dynamics Corporation pledged one million dollars for the former while the City Council offered free land for the latter. The original authorization for The University of California-San Diego campus given by the University of California Regents in 1956 approved a “graduate program in science and technology” that included undergraduate programs, a compromise that won both the support of General Dynamics and the city voters’ approval.

    Nobel laureate Harold Urey, a physicist from the University of Chicago, and Hans Suess, who had published the first paper on the greenhouse effect with Revelle in the previous year, were early recruits to the faculty in 1958. Maria Goeppert-Mayer, later the second female Nobel laureate in physics, was appointed professor of physics in 1960. The graduate division of the school opened in 1960 with 20 faculty in residence, with instruction offered in the fields of physics, biology, chemistry, and earth science. Before the main campus completed construction, classes were held in the Scripps Institution of Oceanography.

    By 1963, new facilities on the mesa had been finished for the School of Science and Engineering, and new buildings were under construction for Social Sciences and Humanities. Ten additional faculty in those disciplines were hired, and the whole site was designated the First College, later renamed after Roger Revelle, of the new campus. York resigned as chancellor that year and was replaced by John Semple Galbraith. The undergraduate program accepted its first class of 181 freshman at Revelle College in 1964. Second College was founded in 1964, on the land deeded by the federal government, and named after environmentalist John Muir two years later. The University of California-San Diego School of Medicine also accepted its first students in 1966.

    Political theorist Herbert Marcuse joined the faculty in 1965. A champion of the New Left, he reportedly was the first protester to occupy the administration building in a demonstration organized by his student, political activist Angela Davis. The American Legion offered to buy out the remainder of Marcuse’s contract for $20,000; the Regents censured Chancellor William J. McGill for defending Marcuse on the basis of academic freedom, but further action was averted after local leaders expressed support for Marcuse. Further student unrest was felt at the university, as the United States increased its involvement in the Vietnam War during the mid-1960s, when a student raised a Viet Minh flag over the campus. Protests escalated as the war continued and were only exacerbated after the National Guard fired on student protesters at Kent State University in 1970. Over 200 students occupied Urey Hall, with one student setting himself on fire in protest of the war.

    Early research activity and faculty quality, notably in the sciences, was integral to shaping the focus and culture of the university. Even before The University of California-San Diego had its own campus, faculty recruits had already made significant research breakthroughs, such as the Keeling Curve, a graph that plots rapidly increasing carbon dioxide levels in the atmosphere and was the first significant evidence for global climate change; the Kohn–Sham equations, used to investigate particular atoms and molecules in quantum chemistry; and the Miller–Urey experiment, which gave birth to the field of prebiotic chemistry.

    Engineering, particularly computer science, became an important part of the university’s academics as it matured. University researchers helped develop The University of California-San Diego Pascal, an early machine-independent programming language that later heavily influenced Java; the National Science Foundation Network, a precursor to the Internet; and the Network News Transfer Protocol during the late 1970s to 1980s. In economics, the methods for analyzing economic time series with time-varying volatility (ARCH), and with common trends (co-integration) were developed. The University of California-San Diego maintained its research intense character after its founding, racking up 25 Nobel Laureates affiliated within 50 years of history; a rate of five per decade.

    Under Richard C. Atkinson’s leadership as chancellor from 1980 to 1995, The University of California-San Diego strengthened its ties with the city of San Diego by encouraging technology transfer with developing companies, transforming San Diego into a world leader in technology-based industries. He oversaw a rapid expansion of the School of Engineering, later renamed after Qualcomm founder Irwin M. Jacobs, with the construction of the San Diego Supercomputer Center and establishment of the computer science, electrical engineering, and bioengineering departments. Private donations increased from $15 million to nearly $50 million annually, faculty expanded by nearly 50%, and enrollment doubled to about 18,000 students during his administration. By the end of his chancellorship, the quality of The University of California-San Diego graduate programs was ranked 10th in the nation by The National Research Council.

    The University of California-San Diego continued to undergo further expansion during the first decade of the new millennium with the establishment and construction of two new professional schools — the Skaggs School of Pharmacy and Rady School of Management—and the California Institute for Telecommunications and Information Technology, a research institute run jointly with University of California-Irvine. The University of California-San Diego also reached two financial milestones during this time, becoming the first university in the western region to raise over $1 billion in its eight-year fundraising campaign in 2007 and also obtaining an additional $1 billion through research contracts and grants in a single fiscal year for the first time in 2010. Despite this, due to the California budget crisis, the university loaned $40 million against its own assets in 2009 to offset a significant reduction in state educational appropriations. The salary of Pradeep Khosla, who became chancellor in 2012, has been the subject of controversy amidst continued budget cuts and tuition increases.

    On November 27, 2017, The University of California-San Diego announced it would leave its longtime athletic home of the California Collegiate Athletic Association, an NCAA Division II league, to begin a transition to Division I in 2020. At that time, it would join the Big West Conference, already home to four other UC campuses (Davis, Irvine, Riverside, Santa Barbara). The transition period would run through the 2023–24 school year. The university prepared to transition to NCAA Division I competition on July 1, 2020.

    Research

    Applied Physics and Mathematics

    The Nature Index lists The University of California-San Diego as 6th in the United States for research output by article count in 2019. In 2017, The University of California-San Diego spent $1.13 billion on research, the 7th highest expenditure among academic institutions in the U.S. The university operates several organized research units, including the Center for Astrophysics and Space Sciences (CASS), the Center for Drug Discovery Innovation, and the Institute for Neural Computation. The University of California-San Diego also maintains close ties to the nearby Scripps Research Institute and Salk Institute for Biological Studies. In 1977, The University of California-San Diego developed and released the University of California-San Diego Pascal programming language. The university was designated as one of the original national Alzheimer’s disease research centers in 1984 by the National Institute on Aging. In 2018, The University of California-San Diego received $10.5 million from The DOE’s National Nuclear Security Administration to establish the Center for Matters under Extreme Pressure (CMEC).

    The University of California-San Diego founded The San Diego Supercomputer Center in 1985, which provides high performance computing for research in various scientific disciplines. In 2000, The University of California-San Diego partnered with The University of California-Irvine to create the Qualcomm Institute, which integrates research in photonics, nanotechnology, and wireless telecommunication to develop solutions to problems in energy, health, and the environment.

    The University of California-San Diego also operates the Scripps Institution of Oceanography, one of the largest centers of research in earth science in the world, which predates the university itself. Together, SDSC and SIO, along with funding partner universities California Institute of Technology, San Diego State University, and The University of California-Santa Barbara, manage the High Performance Wireless Research and Education Network.

     
  • richardmitnick 2:02 pm on March 14, 2023 Permalink | Reply
    Tags: "Researchers Extract First Layered Lake-Sediment Sample from Subglacial Antarctica", , , , , The Scripps Institution of Oceanography,   

    From The Scripps Institution of Oceanography At The University of California-San Diego : “Researchers Extract First Layered Lake-Sediment Sample from Subglacial Antarctica” 

    From The Scripps Institution of Oceanography

    At

    The University of California-San Diego

    3.9.23
    Brittany Hook
    bhook@ucsd.edu

    1
    A team of researchers with the NSF-funded project Subglacial Antarctic Lakes Scientific Access (SALSA) captured the sediment sample on a field expedition in December 2018, cleanly boring a hole through over 3,500 feet of ice over Mercer Subglacial Lake. Photo: Matthew Siegfried.

    Since the discovery 50 years ago of subglacial lakes in Antarctica—some of the least accessible geological features on Earth—scientists have attempted to extract lake bed sediment to learn about the formation, movement, and past conditions of the ice sheet. Now, a team of researchers with the National Science Foundation-funded project Subglacial Antarctic Lakes Scientific Access (SALSA) has successfully done so, recovering the first layered sediments from beneath the modern Antarctic ice sheet.

    The researchers’ findings from analysis of the sediment sample, published March 9 in Geology [below], give important insight into the larger dynamics of the Antarctic ice sheet and its history, including when the ice sheet was smaller than its current size. Their work adds to the sedimentary record of knowledge of Antarctica and also holds implications for understanding how Antarctica may contribute to global sea level change.

    The study was led by authors at the Colorado School of Mines, with a large team of co-authors from more than 20 other scientific research organizations, including UC San Diego’s Scripps Institution of Oceanography, which was instrumental in leading the SALSA project.

    2
    Members of the SALSA team in the field, with their campsite shown on the left. Photo: Billy Collins.

    Previous studies of modern subglacial lakes were limited to the timescale of the modern ice sheet due to the challenge of sampling an environment locked beneath thousands of feet of ice. The sediment sample extracted by the SALSA team will allow researchers to better understand subglacial activity across almost two centuries, instead of merely two decades.

    “There are places on Earth that we still haven’t explored,” said Matthew Siegfried, assistant professor of geophysics at Colorado School of Mines and a lead author of the paper. “We have now one sample trying to understand an environment that is one-and-a-half times the size of the continental United States. It’s like pulling up a rock in New Orleans and understanding how the Mississippi River and its entire basin has acted for the past 1,000 years.”

    Siegfried began working on the SALSA project while a postdoctoral researcher at Scripps Oceanography, where he studied with glaciologist Helen Amanda Fricker, a co-author of the new study, and helped write the original proposal. Fricker said that the recent recovery of subglacial lake-sediment builds upon previous discoveries made possible by NASA’s ICESat satellite, which once orbited more than 370 miles above the surface of the earth, measuring surface elevation of large ice sheets.

    Active lakes under ice streams in Antarctica, like the one sampled by the SALSA Project, were not known about until 2006 when ICESat laser altimetry detected meter-scale changes in the ice surface which were caused by the transfer of water from one lake to another.

    “The satellite data pointed us to where we needed to go, then we were able to write a proposal to go and drill into two of those lakes and learn more about the system,” said Fricker. “When we first discovered active subglacial lakes in 2006, two big questions were ‘How long have they been there?’ and ‘How often do they drain?’ It’s so exciting to me that this serendipitous discovery has set off this entire research program. The recovery of a layered sediment from the bottom of one of these lakes 12 years later moves us closer to answering both of these questions.”

    Ryan Venturelli, assistant professor of geology and geological engineering at Colorado School of Mines and a lead author on the paper, also described the importance of the ICESat data.

    “Thanks to satellites that have helped us spy on Antarctica from space since 2003, we have a deep understanding of subglacial lake activity in the modern record, but the sediments we collected as part of SALSA give us an idea of how persistent these features are on a much longer timescale—hundreds of years. It’s our first insight into the life cycle of an active subglacial lake, and that is really exciting,” said Venturelli.

    The saga of the SALSA team’s quest to explore subglacial lakes is chronicled in The Lake at the Bottom of the World, a feature-length documentary film released across multiple streaming platforms on Feb. 28 by the team in partnership with Metamorph Films. The NSF-funded film gives viewers a close look at how the scientists conducted their work amid harsh Antarctic conditions.

    ‘Like grabbing a package of soup’

    Researchers captured the sediment sample on a field expedition in December 2018. They cleanly bored a hole through over 3,500 feet of ice over Mercer Subglacial Lake by filling a modified fire hose with sterilized water at nearly 200°F and aiming it into the ice.

    3
    Researchers captured the sediment sample in 2018 by cleanly boring a hole through over 3,500 feet of ice over Mercer Subglacial Lake. Here, a UV collar lights up the borehole. Photo: Kathy Kasic

    They carefully collected sediment cores through a borehole that was constantly freezing back in using a device modified from its typical use in “normal” lakes to fit in a narrow ice borehole.

    While researchers knew that even the mere extraction of the sediment from the lake would be a success, the fact that a sample arrived at the lab intact proved even more gratifying.

    “We didn’t expect to find this mushy, fragile sediment under the ice sheet,” Siegfried said. “It was basically like grabbing a package of soup, bringing it up 1,100 meters to the surface of the ice, shipping it to America, getting it into a CT scanner in Oregon, and somehow maintaining tiny laminations in the sample.”

    Previous sediment samples from beneath the modern West Antarctic Ice Sheet have only consisted of a jumbled mixture of marine muds and rocks left behind when glaciers move over the Earth and do not contain a layered history of the region or ice sheet.

    “In a 2001 paper published after a decade of subglacial drilling efforts in Antarctica, glaciologist Barclay Kamb somewhat unenthusiastically summarizes that everywhere the project sampled sediments, they found the same uninteresting, sticky, gray mixture,” said Venturelli. “We found that, too. But above that same sticky, gray stuff, we found something different for the first time.”

    Understanding subglacial movement

    CT imagery of the sample showed a pattern of contrasts that indicated the subglacial lake was filling and draining with water before the scientists’ observational record. This finding offers insight into how long water has been moving under this part of Antarctica—movement that has implications for how the ice sheet moves and contributes to sea level rise. The life cycle of subglacial lakes derived from these contrasts also will enable researchers to better identify how carbon, nutrients and dissolved gasses are transported through the subglacial system to the global ocean.

    “We use sediments from normal (subaerial) lakes all the time to build records of regional changes in climate. Subglacial lakes are different, because they are sealed by an overlying ice sheet that shields them from changing seasons and changing climate. Any variation in the subglacial sediment record is driven by changes to the overlying ice sheet and associated water system,” Venturelli said.

    The study was supported by the National Science Foundation (grants 0636970, 0838885, 1327315, 1543347, 1543405, 1543441, 1543537, 1832109, 1832170, and 1836328) and NASA (grants 80NSSC20K1734 and 80NSSC21K0912), with radar support and instrumentation provided by the Australian Antarctic Division and the Australian Antarctic Program Partnership.

    Geology

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    A department of The University of California-San Diego, The Scripps Institution of Oceanography is one of the oldest, largest, and most important centers for ocean, earth and atmospheric science research, education, and public service in the world.

    Research at Scripps encompasses physical, chemical, biological, geological, and geophysical studies of the oceans, Earth, and planets. Scripps undergraduate and graduate programs provide transformative educational and research opportunities in ocean, earth, and atmospheric sciences, as well as degrees in climate science and policy and marine biodiversity and conservation.

    Scripps Institution of Oceanography was founded in 1903 as the Marine Biological Association of San Diego, an independent biological research laboratory. It was proposed and incorporated by a committee of the San Diego Chamber of Commerce, led by local activist and amateur malacologist Fred Baker, together with two colleagues. He recruited University of California Zoology professor William Emerson Ritter to head up the proposed marine biology institution, and obtained financial support from local philanthropists E. W. Scripps and his sister Ellen Browning Scripps. They fully funded the institution for its first decade. It began institutional life in the boathouse of the Hotel del Coronado located on San Diego Bay. It re-located in 1905 to the La Jolla area on the head above La Jolla Cove, and finally in 1907 to its present location.

    In 1912 Scripps became incorporated into The University of California and was renamed the “Scripps Institution for Biological Research.” Since 1916, measurements have been taken daily at its pier. The name was changed to Scripps Institution of Oceanography in October 1925. During the 1960s, led by Scripps Institution of Oceanography director Roger Revelle, it formed the nucleus for the creation of The University of California-San Diego on a bluff overlooking Scripps Institution.

    The Old Scripps Building, designed by Irving Gill, was declared a National Historic Landmark in 1982. Architect Barton Myers designed the current Scripps Building for the Institution of Oceanography in 1998.
    Research programs
    The institution’s research programs encompass biological, physical, chemical, geological, and geophysical studies of the oceans and land. Scripps also studies the interaction of the oceans with both the atmospheric climate and environmental concerns on terra firma. Related to this research, Scripps offers undergraduate and graduate degrees.

    Today, the Scripps staff of 1,300 includes approximately 235 faculty, 180 other scientists and some 350 graduate students, with an annual budget of more than $281 million. The institution operates a fleet of four oceanographic research vessels.


    R/V Robert Gordon Sproul


    R/V Roger Revelle


    R/V Sally Ride


    C/R/V Bob and Betty Beyster

    The Integrated Research Themes encompassing the work done by Scripps researchers are Biodiversity and Conservation, California Environment, Earth and Planetary Chemistry, Earth Through Space and Time, Energy and the Environment, Environment and Human Health, Global Change, Global Environmental Monitoring, Hazards, Ice and Climate, Instruments and Innovation, Interfaces, Marine Life, Modeling Theory and Computing, Sound and Light and the Sea, and Waves and Circulation.

    Organizational structure
    Scripps Oceanography is divided into three research sections, each with its own subdivisions:
    • Biology

    • Earth

    • Oceans & Atmosphere

    The University of California-San Diego is a public land-grant research university in San Diego, California. Established in 1960 near the pre-existing Scripps Institution of Oceanography, The University of California-San Diego is the southernmost of the ten campuses of the University of California, and offers over 200 undergraduate and graduate degree programs, enrolling 33,343 undergraduate and 9,533 graduate students. The University of California-San Diego occupies 2,178 acres (881 ha) near the coast of the Pacific Ocean, with the main campus resting on approximately 1,152 acres (466 ha). The University of California-San Diego is ranked among the best universities in the world by major college and university rankings.

    The University of California-San Diego consists of twelve undergraduate, graduate and professional schools as well as seven undergraduate residential colleges. It received over 140,000 applications for undergraduate admissions in Fall 2021, making it the second most applied-to university in the United States. The University of California-San Diego San Diego Health, the region’s only academic health system, provides patient care, conducts medical research and educates future health care professionals at The University of California-San Diego Medical Center, Hillcrest, Jacobs Medical Center, Moores Cancer Center, Sulpizio Cardiovascular Center, Shiley Eye Institute, Institute for Genomic Medicine, Koman Family Outpatient Pavilion and various express care and urgent care clinics throughout San Diego.

    The University of California-San Diego operates 19 organized research units as well as eight School of Medicine research units, six research centers at Scripps Institution of Oceanography and two multi-campus initiatives. The University of California-San Diego is also closely affiliated with several regional research centers, such as The Salk Institute, the Sanford Burnham Prebys Medical Discovery Institute, the Sanford Consortium for Regenerative Medicine, and The Scripps Research Institute. It is classified among “R1: Doctoral Universities – Very high research activity”. According to The National Science Foundation, The University of California-San Diego spent $1.354 billion on research and development in fiscal year 2019, ranking it 6th in the nation.

    The University of California-San Diego is considered one of the country’s “Public Ivies”. The University of California-San Diego faculty, researchers, and alumni have won 27 Nobel Prizes as well as three Fields Medals, eight National Medals of Science, eight MacArthur Fellowships, and three Pulitzer Prizes. Additionally, of the current faculty, 29 have been elected to The National Academy of Engineering, 70 to The National Academy of Sciences, 45 to the Institute of Medicine and 110 to The American Academy of Arts and Sciences.

    History

    When the Regents of the University of California originally authorized The University of California-San Diego campus in 1956, it was planned to be a graduate and research institution, providing instruction in the sciences, mathematics, and engineering. Local citizens supported the idea, voting the same year to transfer to the university 59 acres (24 ha) of mesa land on the coast near the preexisting Scripps Institution of Oceanography. The Regents requested an additional gift of 550 acres (220 ha) of undeveloped mesa land northeast of Scripps, as well as 500 acres (200 ha) on the former site of Camp Matthews from the federal government, but Roger Revelle, then director of Scripps Institution and main advocate for establishing the new campus, jeopardized the site selection by exposing the La Jolla community’s exclusive real estate business practices, which were antagonistic to minority racial and religious groups. This outraged local conservatives, as well as Regent Edwin W. Pauley.

    University of California President Clark Kerr satisfied San Diego city donors by changing the proposed name from University of California, La Jolla, to University of California-San Diego. The city voted in agreement to its part in 1958, and the University of California approved construction of the new campus in 1960. Because of the clash with Pauley, Revelle was not made chancellor. Herbert York, first director of The DOE’s Lawrence Livermore National Laboratory, was designated instead. York planned the main campus according to the “Oxbridge” model, relying on many of Revelle’s ideas.

    According to Kerr, “San Diego always asked for the best,” though this created much friction throughout the University of California system, including with Kerr himself, because The University of California-San Diego often seemed to be “asking for too much and too fast.” Kerr attributed The University of California-San Diego’s “special personality” to Scripps, which for over five decades had been the most isolated University of California unit in every sense: geographically, financially, and institutionally. It was a great shock to the Scripps community to learn that Scripps was now expected to become the nucleus of a new University of California campus and would now be the object of far more attention from both the university administration in Berkeley and the state government in Sacramento.

    The University of California-San Diego was the first general campus of the University of California to be designed “from the top down” in terms of research emphasis. Local leaders disagreed on whether the new school should be a technical research institute or a more broadly based school that included undergraduates as well. John Jay Hopkins of General Dynamics Corporation pledged one million dollars for the former while the City Council offered free land for the latter. The original authorization for The University of California-San Diego campus given by the University of California Regents in 1956 approved a “graduate program in science and technology” that included undergraduate programs, a compromise that won both the support of General Dynamics and the city voters’ approval.

    Nobel laureate Harold Urey, a physicist from the University of Chicago, and Hans Suess, who had published the first paper on the greenhouse effect with Revelle in the previous year, were early recruits to the faculty in 1958. Maria Goeppert-Mayer, later the second female Nobel laureate in physics, was appointed professor of physics in 1960. The graduate division of the school opened in 1960 with 20 faculty in residence, with instruction offered in the fields of physics, biology, chemistry, and earth science. Before the main campus completed construction, classes were held in the Scripps Institution of Oceanography.

    By 1963, new facilities on the mesa had been finished for the School of Science and Engineering, and new buildings were under construction for Social Sciences and Humanities. Ten additional faculty in those disciplines were hired, and the whole site was designated the First College, later renamed after Roger Revelle, of the new campus. York resigned as chancellor that year and was replaced by John Semple Galbraith. The undergraduate program accepted its first class of 181 freshman at Revelle College in 1964. Second College was founded in 1964, on the land deeded by the federal government, and named after environmentalist John Muir two years later. The University of California-San Diego School of Medicine also accepted its first students in 1966.

    Political theorist Herbert Marcuse joined the faculty in 1965. A champion of the New Left, he reportedly was the first protester to occupy the administration building in a demonstration organized by his student, political activist Angela Davis. The American Legion offered to buy out the remainder of Marcuse’s contract for $20,000; the Regents censured Chancellor William J. McGill for defending Marcuse on the basis of academic freedom, but further action was averted after local leaders expressed support for Marcuse. Further student unrest was felt at the university, as the United States increased its involvement in the Vietnam War during the mid-1960s, when a student raised a Viet Minh flag over the campus. Protests escalated as the war continued and were only exacerbated after the National Guard fired on student protesters at Kent State University in 1970. Over 200 students occupied Urey Hall, with one student setting himself on fire in protest of the war.

    Early research activity and faculty quality, notably in the sciences, was integral to shaping the focus and culture of the university. Even before The University of California-San Diego had its own campus, faculty recruits had already made significant research breakthroughs, such as the Keeling Curve, a graph that plots rapidly increasing carbon dioxide levels in the atmosphere and was the first significant evidence for global climate change; the Kohn–Sham equations, used to investigate particular atoms and molecules in quantum chemistry; and the Miller–Urey experiment, which gave birth to the field of prebiotic chemistry.

    Engineering, particularly computer science, became an important part of the university’s academics as it matured. University researchers helped develop The University of California-San Diego Pascal, an early machine-independent programming language that later heavily influenced Java; the National Science Foundation Network, a precursor to the Internet; and the Network News Transfer Protocol during the late 1970s to 1980s. In economics, the methods for analyzing economic time series with time-varying volatility (ARCH), and with common trends (co-integration) were developed. The University of California-San Diego maintained its research intense character after its founding, racking up 25 Nobel Laureates affiliated within 50 years of history; a rate of five per decade.

    Under Richard C. Atkinson’s leadership as chancellor from 1980 to 1995, The University of California-San Diego strengthened its ties with the city of San Diego by encouraging technology transfer with developing companies, transforming San Diego into a world leader in technology-based industries. He oversaw a rapid expansion of the School of Engineering, later renamed after Qualcomm founder Irwin M. Jacobs, with the construction of the San Diego Supercomputer Center and establishment of the computer science, electrical engineering, and bioengineering departments. Private donations increased from $15 million to nearly $50 million annually, faculty expanded by nearly 50%, and enrollment doubled to about 18,000 students during his administration. By the end of his chancellorship, the quality of The University of California-San Diego graduate programs was ranked 10th in the nation by The National Research Council.

    The University of California-San Diego continued to undergo further expansion during the first decade of the new millennium with the establishment and construction of two new professional schools — the Skaggs School of Pharmacy and Rady School of Management—and the California Institute for Telecommunications and Information Technology, a research institute run jointly with University of California-Irvine. The University of California-San Diego also reached two financial milestones during this time, becoming the first university in the western region to raise over $1 billion in its eight-year fundraising campaign in 2007 and also obtaining an additional $1 billion through research contracts and grants in a single fiscal year for the first time in 2010. Despite this, due to the California budget crisis, the university loaned $40 million against its own assets in 2009 to offset a significant reduction in state educational appropriations. The salary of Pradeep Khosla, who became chancellor in 2012, has been the subject of controversy amidst continued budget cuts and tuition increases.

    On November 27, 2017, The University of California-San Diego announced it would leave its longtime athletic home of the California Collegiate Athletic Association, an NCAA Division II league, to begin a transition to Division I in 2020. At that time, it would join the Big West Conference, already home to four other UC campuses (Davis, Irvine, Riverside, Santa Barbara). The transition period would run through the 2023–24 school year. The university prepared to transition to NCAA Division I competition on July 1, 2020.

    Research

    Applied Physics and Mathematics

    The Nature Index lists The University of California-San Diego as 6th in the United States for research output by article count in 2019. In 2017, The University of California-San Diego spent $1.13 billion on research, the 7th highest expenditure among academic institutions in the U.S. The university operates several organized research units, including the Center for Astrophysics and Space Sciences (CASS), the Center for Drug Discovery Innovation, and the Institute for Neural Computation. The University of California-San Diego also maintains close ties to the nearby Scripps Research Institute and Salk Institute for Biological Studies. In 1977, The University of California-San Diego developed and released the University of California-San Diego Pascal programming language. The university was designated as one of the original national Alzheimer’s disease research centers in 1984 by the National Institute on Aging. In 2018, The University of California-San Diego received $10.5 million from The DOE’s National Nuclear Security Administration to establish the Center for Matters under Extreme Pressure (CMEC).

    The University of California-San Diego founded The San Diego Supercomputer Center in 1985, which provides high performance computing for research in various scientific disciplines. In 2000, The University of California-San Diego partnered with The University of California-Irvine to create the Qualcomm Institute, which integrates research in photonics, nanotechnology, and wireless telecommunication to develop solutions to problems in energy, health, and the environment.

    The University of California-San Diego also operates the Scripps Institution of Oceanography, one of the largest centers of research in earth science in the world, which predates the university itself. Together, SDSC and SIO, along with funding partner universities California Institute of Technology, San Diego State University, and The University of California-Santa Barbara, manage the High Performance Wireless Research and Education Network.

     
  • richardmitnick 11:20 am on March 2, 2023 Permalink | Reply
    Tags: "Coastal Water Pollution Transfers to the Air in Sea Spray Aerosol and Reaches People on Land", , , , , The Scripps Institution of Oceanography,   

    From The Scripps Institution of Oceanography At The University of California-San Diego : “Coastal Water Pollution Transfers to the Air in Sea Spray Aerosol and Reaches People on Land” 

    From The Scripps Institution of Oceanography

    at

    The University of California-San Diego

    3.2.23
    Robert Monroe
    scrippsnews@ucsd.edu

    1
    Polluted waters off Imperial Beach. Photo: WILDCOAST

    New research led by Scripps Institution of Oceanography at UC San Diego has confirmed that coastal water pollution transfers to the atmosphere in sea spray aerosol, which can reach people beyond just beachgoers, surfers, and swimmers.

    Rainfall in the US-Mexico border region causes complications for wastewater treatment and results in untreated sewage being diverted into the Tijuana River and flowing into the ocean in south Imperial Beach. This input of contaminated water has caused chronic coastal water pollution in Imperial Beach for decades. New research shows that sewage-polluted coastal waters transfer to the atmosphere in sea spray aerosol formed by breaking waves and bursting bubbles. Sea spray aerosol contains bacteria, viruses, and chemical compounds from the seawater.

    The researchers report their findings March 2 in the journal Environmental Science & Technology [below]. The study appears in the midst of a winter in which an estimated 13 billion gallons of sewage-polluted waters have entered the ocean via the Tijuana River since Dec. 28, 2022, according to lead researcher Kim Prather, a Distinguished Chair in Atmospheric Chemistry, and Distinguished Professor at Scripps Oceanography and UC San Diego’s Department of Chemistry and Biochemistry. She also serves as the founding director of the NSF Center for Aerosol Impacts on Chemistry of the Environment (CAICE).

    “We’ve shown that up to three-quarters of the bacteria that you breathe in at Imperial Beach are coming from aerosolization of raw sewage in the surf zone,” said Prather. “Coastal water pollution has been traditionally considered just a waterborne problem. People worry about swimming and surfing in it but not about breathing it in, even though the aerosols can travel long distances and expose many more people than those just at the beach or in the water.”

    2
    Aerosol filter sampling downwind of polluted coastal waters in Imperial Beach. Photo: Matthew Pendergraft.

    The team sampled coastal aerosols at Imperial Beach and water from the Tijuana River between January and May 2019. Then they used DNA sequencing and mass spectrometry to link bacteria and chemical compounds in coastal aerosol back to the sewage-polluted Tijuana River flowing into coastal waters. Aerosols from the ocean were found to contain bacteria and chemicals originating from the Tijuana River. Now the team is conducting follow-up research attempting to detect viruses and other airborne pathogens.

    Prather and colleagues caution that the work does not mean people are getting sick from sewage in sea spray aerosol. Most bacteria and viruses are harmless and the presence of bacteria in sea spray aerosol does not automatically mean that microbes – pathogenic or otherwise – become airborne. Infectivity, exposure levels, and other factors that determine risk need further investigation, the authors said.

    This study involved a collaboration among three different research groups – led by Prather in collaboration with UC San Diego School of Medicine and Jacobs School of Engineering researcher Rob Knight, and Pieter Dorrestein of the UC San Diego Skaggs School of Pharmacy and Pharmaceutical Science, both affiliated with the Department of Pediatrics – to study the potential links between bacteria and chemicals in sea spray aerosol with sewage in the Tijuana River.

    “This research demonstrates that coastal communities are exposed to coastal water pollution even without entering polluted waters,” said lead author Matthew Pendergraft, a recent graduate from Scripps Oceanography who obtained his PhD under the guidance of Prather. “More research is necessary to determine the level of risk posed to the public by aerosolized coastal water pollution. These findings provide further justification for prioritizing cleaning up coastal waters.”

    Additional funding to further investigate the conditions that lead to aerosolization of pollutants and pathogens, how far they travel, and potential public health ramifications has been secured by Congressman Scott Peters (CA-50) in the Fiscal Year (FY) 2023 Omnibus spending bill.

    Besides Prather, Pendergraft, Knight and Dorrestein, the research team included Daniel Petras and Clare Morris from Scripps Oceanography; Pedro Beldá-Ferre, MacKenzie Bryant, Tara Schwartz, Gail Ackermann, and Greg Humphrey from the UC San Diego School of Medicine; Brock Mitts from UC San Diego’s Department of Chemistry and Biochemistry; Allegra Aron from the UC San Diego Skaggs School of Pharmacy and Pharmaceutical Science; and independent researcher Ethan Kaandorp. The study was funded by UC San Diego’s Understanding and Protecting the Planet (UPP) initiative and the German Research Foundation.

    Environmental Science & Technology

    3
    Figure 1. Site map and sampling locations. Displayed are the locations of aerosol and water sampling at IB, CA, USA (bottom) and 35 km away at SIO in La Jolla, CA, USA (top). Marker formatting is consistent in all figures. The dashed line denotes the Mexico–USA border. Sites of water sampling are denoted with a “w”, and sites of aerosol sampling are denoted with an “a”. Produced using MATLAB version 9.10.0.1602886 (R2021a). (37) Map imagery reprinted with permission from Earthstar Geographics. Copyright 2022 Earthstar Geographics/Terracolor.

    4
    Figure 2. RPCA and aerosol source apportionment from the bacteria community and chemical composition. (A,B) shows RPCA (Aitchison distances) of non-targeted mass spectrometry (A) and 16S data (B). (C,D) presents ST2 results─the fractional contributions of different sources to each aerosol sample─for non-targeted mass spectrometry (C) and 16S data (D). Each bar represents one aerosol sample and is composed of the fractional contribution of molecules (C) or bacteria (D) from TJRw (blue), IBPw (orange), SIOPw (brown), and Unknown (gray) as determined by ST2. Bars align vertically between (C) and (D) and are for the same aerosol sample.

    For further illustrations see the science paper.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    A department of The University of California-San Diego, The Scripps Institution of Oceanography is one of the oldest, largest, and most important centers for ocean, earth and atmospheric science research, education, and public service in the world.

    Research at Scripps encompasses physical, chemical, biological, geological, and geophysical studies of the oceans, Earth, and planets. Scripps undergraduate and graduate programs provide transformative educational and research opportunities in ocean, earth, and atmospheric sciences, as well as degrees in climate science and policy and marine biodiversity and conservation.

    Scripps Institution of Oceanography was founded in 1903 as the Marine Biological Association of San Diego, an independent biological research laboratory. It was proposed and incorporated by a committee of the San Diego Chamber of Commerce, led by local activist and amateur malacologist Fred Baker, together with two colleagues. He recruited University of California Zoology professor William Emerson Ritter to head up the proposed marine biology institution, and obtained financial support from local philanthropists E. W. Scripps and his sister Ellen Browning Scripps. They fully funded the institution for its first decade. It began institutional life in the boathouse of the Hotel del Coronado located on San Diego Bay. It re-located in 1905 to the La Jolla area on the head above La Jolla Cove, and finally in 1907 to its present location.

    In 1912 Scripps became incorporated into The University of California and was renamed the “Scripps Institution for Biological Research.” Since 1916, measurements have been taken daily at its pier. The name was changed to Scripps Institution of Oceanography in October 1925. During the 1960s, led by Scripps Institution of Oceanography director Roger Revelle, it formed the nucleus for the creation of The University of California-San Diego on a bluff overlooking Scripps Institution.

    The Old Scripps Building, designed by Irving Gill, was declared a National Historic Landmark in 1982. Architect Barton Myers designed the current Scripps Building for the Institution of Oceanography in 1998.
    Research programs
    The institution’s research programs encompass biological, physical, chemical, geological, and geophysical studies of the oceans and land. Scripps also studies the interaction of the oceans with both the atmospheric climate and environmental concerns on terra firma. Related to this research, Scripps offers undergraduate and graduate degrees.

    Today, the Scripps staff of 1,300 includes approximately 235 faculty, 180 other scientists and some 350 graduate students, with an annual budget of more than $281 million. The institution operates a fleet of four oceanographic research vessels.


    R/V Robert Gordon Sproul


    R/V Roger Revelle


    R/V Sally Ride


    C/R/V Bob and Betty Beyster

    The Integrated Research Themes encompassing the work done by Scripps researchers are Biodiversity and Conservation, California Environment, Earth and Planetary Chemistry, Earth Through Space and Time, Energy and the Environment, Environment and Human Health, Global Change, Global Environmental Monitoring, Hazards, Ice and Climate, Instruments and Innovation, Interfaces, Marine Life, Modeling Theory and Computing, Sound and Light and the Sea, and Waves and Circulation.

    Organizational structure
    Scripps Oceanography is divided into three research sections, each with its own subdivisions:
    • Biology

    • Earth

    • Oceans & Atmosphere

    The University of California-San Diego is a public land-grant research university in San Diego, California. Established in 1960 near the pre-existing Scripps Institution of Oceanography, The University of California-San Diego is the southernmost of the ten campuses of the University of California, and offers over 200 undergraduate and graduate degree programs, enrolling 33,343 undergraduate and 9,533 graduate students. The University of California-San Diego occupies 2,178 acres (881 ha) near the coast of the Pacific Ocean, with the main campus resting on approximately 1,152 acres (466 ha). The University of California-San Diego is ranked among the best universities in the world by major college and university rankings.

    The University of California-San Diego consists of twelve undergraduate, graduate and professional schools as well as seven undergraduate residential colleges. It received over 140,000 applications for undergraduate admissions in Fall 2021, making it the second most applied-to university in the United States. The University of California-San Diego San Diego Health, the region’s only academic health system, provides patient care, conducts medical research and educates future health care professionals at The University of California-San Diego Medical Center, Hillcrest, Jacobs Medical Center, Moores Cancer Center, Sulpizio Cardiovascular Center, Shiley Eye Institute, Institute for Genomic Medicine, Koman Family Outpatient Pavilion and various express care and urgent care clinics throughout San Diego.

    The University of California-San Diego operates 19 organized research units as well as eight School of Medicine research units, six research centers at Scripps Institution of Oceanography and two multi-campus initiatives. The University of California-San Diego is also closely affiliated with several regional research centers, such as The Salk Institute, the Sanford Burnham Prebys Medical Discovery Institute, the Sanford Consortium for Regenerative Medicine, and The Scripps Research Institute. It is classified among “R1: Doctoral Universities – Very high research activity”. According to The National Science Foundation, The University of California-San Diego spent $1.354 billion on research and development in fiscal year 2019, ranking it 6th in the nation.

    The University of California-San Diego is considered one of the country’s “Public Ivies”. The University of California-San Diego faculty, researchers, and alumni have won 27 Nobel Prizes as well as three Fields Medals, eight National Medals of Science, eight MacArthur Fellowships, and three Pulitzer Prizes. Additionally, of the current faculty, 29 have been elected to The National Academy of Engineering, 70 to The National Academy of Sciences, 45 to the Institute of Medicine and 110 to The American Academy of Arts and Sciences.

    History

    When the Regents of the University of California originally authorized The University of California-San Diego campus in 1956, it was planned to be a graduate and research institution, providing instruction in the sciences, mathematics, and engineering. Local citizens supported the idea, voting the same year to transfer to the university 59 acres (24 ha) of mesa land on the coast near the preexisting Scripps Institution of Oceanography. The Regents requested an additional gift of 550 acres (220 ha) of undeveloped mesa land northeast of Scripps, as well as 500 acres (200 ha) on the former site of Camp Matthews from the federal government, but Roger Revelle, then director of Scripps Institution and main advocate for establishing the new campus, jeopardized the site selection by exposing the La Jolla community’s exclusive real estate business practices, which were antagonistic to minority racial and religious groups. This outraged local conservatives, as well as Regent Edwin W. Pauley.

    University of California President Clark Kerr satisfied San Diego city donors by changing the proposed name from University of California, La Jolla, to University of California-San Diego. The city voted in agreement to its part in 1958, and the University of California approved construction of the new campus in 1960. Because of the clash with Pauley, Revelle was not made chancellor. Herbert York, first director of The DOE’s Lawrence Livermore National Laboratory, was designated instead. York planned the main campus according to the “Oxbridge” model, relying on many of Revelle’s ideas.

    According to Kerr, “San Diego always asked for the best,” though this created much friction throughout the University of California system, including with Kerr himself, because The University of California-San Diego often seemed to be “asking for too much and too fast.” Kerr attributed The University of California-San Diego’s “special personality” to Scripps, which for over five decades had been the most isolated University of California unit in every sense: geographically, financially, and institutionally. It was a great shock to the Scripps community to learn that Scripps was now expected to become the nucleus of a new University of California campus and would now be the object of far more attention from both the university administration in Berkeley and the state government in Sacramento.

    The University of California-San Diego was the first general campus of the University of California to be designed “from the top down” in terms of research emphasis. Local leaders disagreed on whether the new school should be a technical research institute or a more broadly based school that included undergraduates as well. John Jay Hopkins of General Dynamics Corporation pledged one million dollars for the former while the City Council offered free land for the latter. The original authorization for The University of California-San Diego campus given by the University of California Regents in 1956 approved a “graduate program in science and technology” that included undergraduate programs, a compromise that won both the support of General Dynamics and the city voters’ approval.

    Nobel laureate Harold Urey, a physicist from the University of Chicago, and Hans Suess, who had published the first paper on the greenhouse effect with Revelle in the previous year, were early recruits to the faculty in 1958. Maria Goeppert-Mayer, later the second female Nobel laureate in physics, was appointed professor of physics in 1960. The graduate division of the school opened in 1960 with 20 faculty in residence, with instruction offered in the fields of physics, biology, chemistry, and earth science. Before the main campus completed construction, classes were held in the Scripps Institution of Oceanography.

    By 1963, new facilities on the mesa had been finished for the School of Science and Engineering, and new buildings were under construction for Social Sciences and Humanities. Ten additional faculty in those disciplines were hired, and the whole site was designated the First College, later renamed after Roger Revelle, of the new campus. York resigned as chancellor that year and was replaced by John Semple Galbraith. The undergraduate program accepted its first class of 181 freshman at Revelle College in 1964. Second College was founded in 1964, on the land deeded by the federal government, and named after environmentalist John Muir two years later. The University of California-San Diego School of Medicine also accepted its first students in 1966.

    Political theorist Herbert Marcuse joined the faculty in 1965. A champion of the New Left, he reportedly was the first protester to occupy the administration building in a demonstration organized by his student, political activist Angela Davis. The American Legion offered to buy out the remainder of Marcuse’s contract for $20,000; the Regents censured Chancellor William J. McGill for defending Marcuse on the basis of academic freedom, but further action was averted after local leaders expressed support for Marcuse. Further student unrest was felt at the university, as the United States increased its involvement in the Vietnam War during the mid-1960s, when a student raised a Viet Minh flag over the campus. Protests escalated as the war continued and were only exacerbated after the National Guard fired on student protesters at Kent State University in 1970. Over 200 students occupied Urey Hall, with one student setting himself on fire in protest of the war.

    Early research activity and faculty quality, notably in the sciences, was integral to shaping the focus and culture of the university. Even before The University of California-San Diego had its own campus, faculty recruits had already made significant research breakthroughs, such as the Keeling Curve, a graph that plots rapidly increasing carbon dioxide levels in the atmosphere and was the first significant evidence for global climate change; the Kohn–Sham equations, used to investigate particular atoms and molecules in quantum chemistry; and the Miller–Urey experiment, which gave birth to the field of prebiotic chemistry.

    Engineering, particularly computer science, became an important part of the university’s academics as it matured. University researchers helped develop The University of California-San Diego Pascal, an early machine-independent programming language that later heavily influenced Java; the National Science Foundation Network, a precursor to the Internet; and the Network News Transfer Protocol during the late 1970s to 1980s. In economics, the methods for analyzing economic time series with time-varying volatility (ARCH), and with common trends (co-integration) were developed. The University of California-San Diego maintained its research intense character after its founding, racking up 25 Nobel Laureates affiliated within 50 years of history; a rate of five per decade.

    Under Richard C. Atkinson’s leadership as chancellor from 1980 to 1995, The University of California-San Diego strengthened its ties with the city of San Diego by encouraging technology transfer with developing companies, transforming San Diego into a world leader in technology-based industries. He oversaw a rapid expansion of the School of Engineering, later renamed after Qualcomm founder Irwin M. Jacobs, with the construction of the San Diego Supercomputer Center and establishment of the computer science, electrical engineering, and bioengineering departments. Private donations increased from $15 million to nearly $50 million annually, faculty expanded by nearly 50%, and enrollment doubled to about 18,000 students during his administration. By the end of his chancellorship, the quality of The University of California-San Diego graduate programs was ranked 10th in the nation by The National Research Council.

    The University of California-San Diego continued to undergo further expansion during the first decade of the new millennium with the establishment and construction of two new professional schools — the Skaggs School of Pharmacy and Rady School of Management—and the California Institute for Telecommunications and Information Technology, a research institute run jointly with University of California-Irvine. The University of California-San Diego also reached two financial milestones during this time, becoming the first university in the western region to raise over $1 billion in its eight-year fundraising campaign in 2007 and also obtaining an additional $1 billion through research contracts and grants in a single fiscal year for the first time in 2010. Despite this, due to the California budget crisis, the university loaned $40 million against its own assets in 2009 to offset a significant reduction in state educational appropriations. The salary of Pradeep Khosla, who became chancellor in 2012, has been the subject of controversy amidst continued budget cuts and tuition increases.

    On November 27, 2017, The University of California-San Diego announced it would leave its longtime athletic home of the California Collegiate Athletic Association, an NCAA Division II league, to begin a transition to Division I in 2020. At that time, it would join the Big West Conference, already home to four other UC campuses (Davis, Irvine, Riverside, Santa Barbara). The transition period would run through the 2023–24 school year. The university prepared to transition to NCAA Division I competition on July 1, 2020.

    Research

    Applied Physics and Mathematics

    The Nature Index lists The University of California-San Diego as 6th in the United States for research output by article count in 2019. In 2017, The University of California-San Diego spent $1.13 billion on research, the 7th highest expenditure among academic institutions in the U.S. The university operates several organized research units, including the Center for Astrophysics and Space Sciences (CASS), the Center for Drug Discovery Innovation, and the Institute for Neural Computation. The University of California-San Diego also maintains close ties to the nearby Scripps Research Institute and Salk Institute for Biological Studies. In 1977, The University of California-San Diego developed and released the University of California-San Diego Pascal programming language. The university was designated as one of the original national Alzheimer’s disease research centers in 1984 by the National Institute on Aging. In 2018, The University of California-San Diego received $10.5 million from The DOE’s National Nuclear Security Administration to establish the Center for Matters under Extreme Pressure (CMEC).

    The University of California-San Diego founded The San Diego Supercomputer Center in 1985, which provides high performance computing for research in various scientific disciplines. In 2000, The University of California-San Diego partnered with The University of California-Irvine to create the Qualcomm Institute, which integrates research in photonics, nanotechnology, and wireless telecommunication to develop solutions to problems in energy, health, and the environment.

    The University of California-San Diego also operates the Scripps Institution of Oceanography, one of the largest centers of research in earth science in the world, which predates the university itself. Together, SDSC and SIO, along with funding partner universities California Institute of Technology, San Diego State University, and The University of California-Santa Barbara, manage the High Performance Wireless Research and Education Network.

     
  • richardmitnick 12:35 pm on November 17, 2022 Permalink | Reply
    Tags: "Study of Ocean Currents Reveals Intensification of Tropical Cyclones Around the World", , , , Inferring cyclone intensity, , Researchers use Scripps-developed ocean drifter data to spot 30-year trend., The Scripps Institution of Oceanography,   

    From The Scripps Institution of Oceanography At The University of California-San Diego : “Study of Ocean Currents Reveals Intensification of Tropical Cyclones Around the World” 

    From The Scripps Institution of Oceanography

    at

    The University of California-San Diego

    11.17.22
    Robert Monroe
    scrippsnews@ucsd.edu

    Researchers use Scripps-developed ocean drifter data to spot 30-year trend.

    1
    May 2018 drifter buoy deployment. Photo: Ben Kates/Scripps Oceanography.

    Climate scientists at Scripps Institution of Oceanography at UC San Diego and colleagues used ocean current data gathered over several decades to create a new way to infer cyclone intensity.

    With that method, they observe that the intensity of tropical cyclones—known as hurricanes in the North Atlantic and central-eastern North Pacific— increased from 1991 to 2020. Key to the finding were the instruments developed at Scripps in NOAA’s Global Drifter Program that can record near-surface ocean conditions even through the most intense cyclones to understand how the top layers of the ocean move during storms.

    Scientists have expected cyclones to intensify as a consequence of global warming, but, in many places in the world, collecting accurate field observations of them and predictions of their strength have been difficult. While Hurricane Hunter flight data significantly reduce uncertainty about North Atlantic storms, such observations are not uniformly available in tropical regions globally.

    Co-author Shang-Ping Xie, a climate scientist at Scripps, said the study represents the first reliable documentation of increasing global cyclone intensity.

    “High seas in hurricanes make it impossible to measure wind speed near the surface,” Xie said, “but it’s possible to infer the wind speed from ocean currents below the surface. This proves crucial for estimates of historical change in cyclone intensity.”

    Cyclones are defined by sustained wind speeds, which satellite observations can measure with only limited accuracy. The instruments used in the Global Drifter Program, first developed by Scripps scientists in the 1980s, observe the motion of water and temperature in the top 15 meters (49 feet) of the ocean. The researchers took note of current speed and direction when cyclones formed in the tropics. From that, they created maps of current speeds relative to the eyes of the storms for every year during the study period.

    The team then estimated what wind speeds must have been from the current speeds. They concluded that wind speeds have increased by 15-21 percent. The team focused on tropical storms and Category 1 hurricane and typhoons, limited by the number of drifter data. Over the Northwest Pacific Ocean where sufficient data exist, they reported that Category 2-5 typhoons strengthened by 10-15 percent during 1991-2020.

    The study appears Nov. 17 in the journal Nature [below].

    Guihua Wang from Fudan University in China, a former visiting scholar at Scripps Oceanography, led the research. Other researchers from Fudan and the University of North Carolina, Chapel Hill contributed to the study.

    Science paper:
    Nature

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    A department of The University of California-San Diego, The Scripps Institution of Oceanography is one of the oldest, largest, and most important centers for ocean, earth and atmospheric science research, education, and public service in the world.

    Research at Scripps encompasses physical, chemical, biological, geological, and geophysical studies of the oceans, Earth, and planets. Scripps undergraduate and graduate programs provide transformative educational and research opportunities in ocean, earth, and atmospheric sciences, as well as degrees in climate science and policy and marine biodiversity and conservation.

    Scripps Institution of Oceanography was founded in 1903 as the Marine Biological Association of San Diego, an independent biological research laboratory. It was proposed and incorporated by a committee of the San Diego Chamber of Commerce, led by local activist and amateur malacologist Fred Baker, together with two colleagues. He recruited University of California Zoology professor William Emerson Ritter to head up the proposed marine biology institution, and obtained financial support from local philanthropists E. W. Scripps and his sister Ellen Browning Scripps. They fully funded the institution for its first decade. It began institutional life in the boathouse of the Hotel del Coronado located on San Diego Bay. It re-located in 1905 to the La Jolla area on the head above La Jolla Cove, and finally in 1907 to its present location.

    In 1912 Scripps became incorporated into The University of California and was renamed the “Scripps Institution for Biological Research.” Since 1916, measurements have been taken daily at its pier. The name was changed to Scripps Institution of Oceanography in October 1925. During the 1960s, led by Scripps Institution of Oceanography director Roger Revelle, it formed the nucleus for the creation of The University of California-San Diego on a bluff overlooking Scripps Institution.

    The Old Scripps Building, designed by Irving Gill, was declared a National Historic Landmark in 1982. Architect Barton Myers designed the current Scripps Building for the Institution of Oceanography in 1998.
    Research programs
    The institution’s research programs encompass biological, physical, chemical, geological, and geophysical studies of the oceans and land. Scripps also studies the interaction of the oceans with both the atmospheric climate and environmental concerns on terra firma. Related to this research, Scripps offers undergraduate and graduate degrees.

    Today, the Scripps staff of 1,300 includes approximately 235 faculty, 180 other scientists and some 350 graduate students, with an annual budget of more than $281 million. The institution operates a fleet of four oceanographic research vessels.


    R/V Robert Gordon Sproul


    R/V Roger Revelle


    R/V Sally Ride


    C/R/V Bob and Betty Beyster

    The Integrated Research Themes encompassing the work done by Scripps researchers are Biodiversity and Conservation, California Environment, Earth and Planetary Chemistry, Earth Through Space and Time, Energy and the Environment, Environment and Human Health, Global Change, Global Environmental Monitoring, Hazards, Ice and Climate, Instruments and Innovation, Interfaces, Marine Life, Modeling Theory and Computing, Sound and Light and the Sea, and Waves and Circulation.

    Organizational structure
    Scripps Oceanography is divided into three research sections, each with its own subdivisions:
    • Biology

    • Earth

    • Oceans & Atmosphere

    The University of California-San Diego is a public land-grant research university in San Diego, California. Established in 1960 near the pre-existing Scripps Institution of Oceanography, The University of California-San Diego is the southernmost of the ten campuses of the University of California, and offers over 200 undergraduate and graduate degree programs, enrolling 33,343 undergraduate and 9,533 graduate students. The University of California-San Diego occupies 2,178 acres (881 ha) near the coast of the Pacific Ocean, with the main campus resting on approximately 1,152 acres (466 ha). The University of California-San Diego is ranked among the best universities in the world by major college and university rankings.

    The University of California-San Diego consists of twelve undergraduate, graduate and professional schools as well as seven undergraduate residential colleges. It received over 140,000 applications for undergraduate admissions in Fall 2021, making it the second most applied-to university in the United States. The University of California-San Diego San Diego Health, the region’s only academic health system, provides patient care, conducts medical research and educates future health care professionals at The University of California-San Diego Medical Center, Hillcrest, Jacobs Medical Center, Moores Cancer Center, Sulpizio Cardiovascular Center, Shiley Eye Institute, Institute for Genomic Medicine, Koman Family Outpatient Pavilion and various express care and urgent care clinics throughout San Diego.

    The University of California-San Diego operates 19 organized research units as well as eight School of Medicine research units, six research centers at Scripps Institution of Oceanography and two multi-campus initiatives. The University of California-San Diego is also closely affiliated with several regional research centers, such as The Salk Institute, the Sanford Burnham Prebys Medical Discovery Institute, the Sanford Consortium for Regenerative Medicine, and The Scripps Research Institute. It is classified among “R1: Doctoral Universities – Very high research activity”. According to The National Science Foundation, The University of California-San Diego spent $1.354 billion on research and development in fiscal year 2019, ranking it 6th in the nation.

    The University of California-San Diego is considered one of the country’s “Public Ivies”. The University of California-San Diego faculty, researchers, and alumni have won 27 Nobel Prizes as well as three Fields Medals, eight National Medals of Science, eight MacArthur Fellowships, and three Pulitzer Prizes. Additionally, of the current faculty, 29 have been elected to The National Academy of Engineering, 70 to The National Academy of Sciences, 45 to the Institute of Medicine and 110 to The American Academy of Arts and Sciences.

    History

    When the Regents of the University of California originally authorized The University of California-San Diego campus in 1956, it was planned to be a graduate and research institution, providing instruction in the sciences, mathematics, and engineering. Local citizens supported the idea, voting the same year to transfer to the university 59 acres (24 ha) of mesa land on the coast near the preexisting Scripps Institution of Oceanography. The Regents requested an additional gift of 550 acres (220 ha) of undeveloped mesa land northeast of Scripps, as well as 500 acres (200 ha) on the former site of Camp Matthews from the federal government, but Roger Revelle, then director of Scripps Institution and main advocate for establishing the new campus, jeopardized the site selection by exposing the La Jolla community’s exclusive real estate business practices, which were antagonistic to minority racial and religious groups. This outraged local conservatives, as well as Regent Edwin W. Pauley.

    University of California President Clark Kerr satisfied San Diego city donors by changing the proposed name from University of California, La Jolla, to University of California-San Diego. The city voted in agreement to its part in 1958, and the University of California approved construction of the new campus in 1960. Because of the clash with Pauley, Revelle was not made chancellor. Herbert York, first director of The DOE’s Lawrence Livermore National Laboratory, was designated instead. York planned the main campus according to the “Oxbridge” model, relying on many of Revelle’s ideas.

    According to Kerr, “San Diego always asked for the best,” though this created much friction throughout the University of California system, including with Kerr himself, because The University of California-San Diego often seemed to be “asking for too much and too fast.” Kerr attributed The University of California-San Diego’s “special personality” to Scripps, which for over five decades had been the most isolated University of California unit in every sense: geographically, financially, and institutionally. It was a great shock to the Scripps community to learn that Scripps was now expected to become the nucleus of a new University of California campus and would now be the object of far more attention from both the university administration in Berkeley and the state government in Sacramento.

    The University of California-San Diego was the first general campus of the University of California to be designed “from the top down” in terms of research emphasis. Local leaders disagreed on whether the new school should be a technical research institute or a more broadly based school that included undergraduates as well. John Jay Hopkins of General Dynamics Corporation pledged one million dollars for the former while the City Council offered free land for the latter. The original authorization for The University of California-San Diego campus given by the University of California Regents in 1956 approved a “graduate program in science and technology” that included undergraduate programs, a compromise that won both the support of General Dynamics and the city voters’ approval.

    Nobel laureate Harold Urey, a physicist from the University of Chicago, and Hans Suess, who had published the first paper on the greenhouse effect with Revelle in the previous year, were early recruits to the faculty in 1958. Maria Goeppert-Mayer, later the second female Nobel laureate in physics, was appointed professor of physics in 1960. The graduate division of the school opened in 1960 with 20 faculty in residence, with instruction offered in the fields of physics, biology, chemistry, and earth science. Before the main campus completed construction, classes were held in the Scripps Institution of Oceanography.

    By 1963, new facilities on the mesa had been finished for the School of Science and Engineering, and new buildings were under construction for Social Sciences and Humanities. Ten additional faculty in those disciplines were hired, and the whole site was designated the First College, later renamed after Roger Revelle, of the new campus. York resigned as chancellor that year and was replaced by John Semple Galbraith. The undergraduate program accepted its first class of 181 freshman at Revelle College in 1964. Second College was founded in 1964, on the land deeded by the federal government, and named after environmentalist John Muir two years later. The University of California-San Diego School of Medicine also accepted its first students in 1966.

    Political theorist Herbert Marcuse joined the faculty in 1965. A champion of the New Left, he reportedly was the first protester to occupy the administration building in a demonstration organized by his student, political activist Angela Davis. The American Legion offered to buy out the remainder of Marcuse’s contract for $20,000; the Regents censured Chancellor William J. McGill for defending Marcuse on the basis of academic freedom, but further action was averted after local leaders expressed support for Marcuse. Further student unrest was felt at the university, as the United States increased its involvement in the Vietnam War during the mid-1960s, when a student raised a Viet Minh flag over the campus. Protests escalated as the war continued and were only exacerbated after the National Guard fired on student protesters at Kent State University in 1970. Over 200 students occupied Urey Hall, with one student setting himself on fire in protest of the war.

    Early research activity and faculty quality, notably in the sciences, was integral to shaping the focus and culture of the university. Even before The University of California-San Diego had its own campus, faculty recruits had already made significant research breakthroughs, such as the Keeling Curve, a graph that plots rapidly increasing carbon dioxide levels in the atmosphere and was the first significant evidence for global climate change; the Kohn–Sham equations, used to investigate particular atoms and molecules in quantum chemistry; and the Miller–Urey experiment, which gave birth to the field of prebiotic chemistry.

    Engineering, particularly computer science, became an important part of the university’s academics as it matured. University researchers helped develop The University of California-San Diego Pascal, an early machine-independent programming language that later heavily influenced Java; the National Science Foundation Network, a precursor to the Internet; and the Network News Transfer Protocol during the late 1970s to 1980s. In economics, the methods for analyzing economic time series with time-varying volatility (ARCH), and with common trends (co-integration) were developed. The University of California-San Diego maintained its research intense character after its founding, racking up 25 Nobel Laureates affiliated within 50 years of history; a rate of five per decade.

    Under Richard C. Atkinson’s leadership as chancellor from 1980 to 1995, The University of California-San Diego strengthened its ties with the city of San Diego by encouraging technology transfer with developing companies, transforming San Diego into a world leader in technology-based industries. He oversaw a rapid expansion of the School of Engineering, later renamed after Qualcomm founder Irwin M. Jacobs, with the construction of the San Diego Supercomputer Center and establishment of the computer science, electrical engineering, and bioengineering departments. Private donations increased from $15 million to nearly $50 million annually, faculty expanded by nearly 50%, and enrollment doubled to about 18,000 students during his administration. By the end of his chancellorship, the quality of The University of California-San Diego graduate programs was ranked 10th in the nation by The National Research Council.

    The University of California-San Diego continued to undergo further expansion during the first decade of the new millennium with the establishment and construction of two new professional schools — the Skaggs School of Pharmacy and Rady School of Management—and the California Institute for Telecommunications and Information Technology, a research institute run jointly with University of California-Irvine. The University of California-San Diego also reached two financial milestones during this time, becoming the first university in the western region to raise over $1 billion in its eight-year fundraising campaign in 2007 and also obtaining an additional $1 billion through research contracts and grants in a single fiscal year for the first time in 2010. Despite this, due to the California budget crisis, the university loaned $40 million against its own assets in 2009 to offset a significant reduction in state educational appropriations. The salary of Pradeep Khosla, who became chancellor in 2012, has been the subject of controversy amidst continued budget cuts and tuition increases.

    On November 27, 2017, The University of California-San Diego announced it would leave its longtime athletic home of the California Collegiate Athletic Association, an NCAA Division II league, to begin a transition to Division I in 2020. At that time, it would join the Big West Conference, already home to four other UC campuses (Davis, Irvine, Riverside, Santa Barbara). The transition period would run through the 2023–24 school year. The university prepared to transition to NCAA Division I competition on July 1, 2020.

    Research

    Applied Physics and Mathematics

    The Nature Index lists The University of California-San Diego as 6th in the United States for research output by article count in 2019. In 2017, The University of California-San Diego spent $1.13 billion on research, the 7th highest expenditure among academic institutions in the U.S. The university operates several organized research units, including the Center for Astrophysics and Space Sciences (CASS), the Center for Drug Discovery Innovation, and the Institute for Neural Computation. The University of California-San Diego also maintains close ties to the nearby Scripps Research Institute and Salk Institute for Biological Studies. In 1977, The University of California-San Diego developed and released the University of California-San Diego Pascal programming language. The university was designated as one of the original national Alzheimer’s disease research centers in 1984 by the National Institute on Aging. In 2018, The University of California-San Diego received $10.5 million from The DOE’s National Nuclear Security Administration to establish the Center for Matters under Extreme Pressure (CMEC).

    The University of California-San Diego founded The San Diego Supercomputer Center in 1985, which provides high performance computing for research in various scientific disciplines. In 2000, The University of California-San Diego partnered with The University of California-Irvine to create the Qualcomm Institute, which integrates research in photonics, nanotechnology, and wireless telecommunication to develop solutions to problems in energy, health, and the environment.

    The University of California-San Diego also operates the Scripps Institution of Oceanography, one of the largest centers of research in earth science in the world, which predates the university itself. Together, SDSC and SIO, along with funding partner universities California Institute of Technology, San Diego State University, and The University of California-Santa Barbara, manage the High Performance Wireless Research and Education Network.

     
  • richardmitnick 2:14 pm on August 25, 2022 Permalink | Reply
    Tags: "Climate Change Projected to Increase Atmospheric River Flood Damages in the United States", , The Scripps Institution of Oceanography   

    From The Scripps Institution of Oceanography : “Climate Change Projected to Increase Atmospheric River Flood Damages in the United States” 

    From The Scripps Institution of Oceanography

    at

    The University of California-San Diego

    8.25.22
    Robert Monroe

    1
    Tropical Storm Imelda causes closure of Interstate 10 in Houston, Texas due to high water. Photo credit: iStock / Sean Hannon.

    A research team at Scripps Institution of Oceanography at UC San Diego has found that flood damages triggered by atmospheric river storms may triple from $1 billion a year to over $3 billion a year by the end of the century unless action is taken to reduce global greenhouse gas emissions.

    The damages could be limited to $2 billion a year if intermediate reductions in emissions are achieved, the researchers said.

    As global temperatures rise, such weather extremes are becoming increasingly frequent, intense, and damaging, said study lead author Tom Corringham, a climate economist at Scripps Oceanography’s Center for Western Weather and Water Extremes (CW3E). This summer has seen extreme flooding in Kentucky, Yellowstone, Death Valley, Zion, and most recently Dallas and the southern United States with disastrous consequences.

    2

    “The threat of a megaflood in the western United States is very real,” said Corringham. “As atmospheric rivers become more intense, flood damages are on track to triple by the end of the century, but it’s not too late to limit the risk. Reductions in greenhouse gas emissions could significantly reduce projected damages.”

    The study results appeared Aug. 12 in the journal Scientific Reports [below].

    In 2019, CW3E researchers found that ARs generate more than $1 billion in average annual flood damages in the western 11 states. The new study projects flood damage to the end of the century, but researchers say the impacts will be felt sooner. The researchers project that, if no action is taken, expected AR-related flood damages will increase by 10 percent each decade until the 2050s, rising more steeply as the century progresses.

    “We know that ARs are already boosted by the changing climate and, as warming continues, we expect a shrinking wet season but increasing rainfall from more potent ARs,” said study co-author Alexander Gershunov, a climate scientist at Scripps Oceanography. “This spells more reliance on floodwater for water resource generation during increasing drought conditions.”

    The researchers identified counties in the western U.S. that are most at risk of increased flood damages, including Sonoma, Yuba, and Sacramento counties in California, Washoe County in Nevada, and Lewis County in Washington. Other areas at risk include Los Angeles, Seattle and the western Puget Sound area, and the border of Oregon and California.

    The projections, based on 16 global climate models linked to flood insurance records, and adjusted for inflation, assume that flood exposure and vulnerability will remain constant at current levels. The increase in damages is due to the intensification of ARs as a warmer atmosphere holds and moves more water vapor, particularly in near-saturated ARs. Increased development in floodplains could further increase damages, while investments in flood protection could reduce expected damages.

    The new findings emphasize the need to invest in flood protection, including green infrastructure such as floodplain restoration, flood-managed aquifer recharge (Flood-MAR), and tools such as Forecast Informed Reservoir Operations (FIRO) in which improved AR predictions can grant reservoir managers greater flexibility in reducing flood risk, improving water supply reliability, and maintaining environmental benefits.

    3

    Co-authors include Scripps CW3E members James McCarthy, Tamara Shulgina, Alexander Gershunov, Daniel Cayan, and Marty Ralph. The research was supported by the U.S. Bureau of Reclamation, the U.S. Army Corps of Engineers, the California Department of Water Resources, the California Nevada Climate Applications Program (CNAP), the Southwest Climate Adaptation Science Center (SW CASC), and the Multi-Campus Research Programs and Initiatives through the University of California Office of the President.

    Science paper:
    Scientific Reports

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    A department of The University of California-San Diego, Scripps Institution of Oceanography is one of the oldest, largest, and most important centers for ocean, earth and atmospheric science research, education, and public service in the world.

    Research at Scripps encompasses physical, chemical, biological, geological, and geophysical studies of the oceans, Earth, and planets. Scripps undergraduate and graduate programs provide transformative educational and research opportunities in ocean, earth, and atmospheric sciences, as well as degrees in climate science and policy and marine biodiversity and conservation.

    The University of California-San Diego, is a public research university located in the La Jolla area of San Diego, California, in the United States. The university occupies 2,141 acres (866 ha) near the coast of the Pacific Ocean with the main campus resting on approximately 1,152 acres (466 ha). Established in 1960 near the pre-existing Scripps Institution of Oceanography, The University of California-San Diego is the seventh oldest of the 10 University of California campuses and offers over 200 undergraduate and graduate degree programs, enrolling about 22,700 undergraduate and 6,300 graduate students. The University of California-San Diego is one of America’s “Public Ivy” universities, which recognizes top public research universities in the United States. The University of California-San Diego was ranked 8th among public universities and 37th among all universities in the United States, and rated the 18th Top World University by U.S. News & World Report ‘s 2015 rankings.

    When the Regents of the University of California originally authorized the San Diego campus in 1956, it was planned to be a graduate and research institution, providing instruction in the sciences, mathematics, and engineering. Local citizens supported the idea, voting the same year to transfer to the university 59 acres (24 ha) of mesa land on the coast near the preexisting Scripps Institution of Oceanography. The Regents requested an additional gift of 550 acres (220 ha) of undeveloped mesa land northeast of Scripps, as well as 500 acres (200 ha) on the former site of Camp Matthews from the federal government, but Roger Revelle, then director of Scripps Institution and main advocate for establishing the new campus, jeopardized the site selection by exposing the La Jolla community’s exclusive real estate business practices, which were antagonistic to minority racial and religious groups. This outraged local conservatives, as well as Regent Edwin W. Pauley. Revelle also got involved in a bitter debate with Jonas Salk over where Salk’s proposed institute would be located relative to the new campus.

    The University of California President Clark Kerr satisfied San Diego city donors by changing the proposed name from University of California, La Jolla, to University of California-San Diego. The city voted to agree to its part of the deal in 1958, and the The University of California Board of Regents approved construction of the new campus in 1960. Because Revelle’s tactless approaches to the clashes with Pauley and Salk had damaged his reputation with the Board of Regents, Kerr realized he could not nominate Revelle as the campus’s first chancellor. Revelle’s nomination would have become “an angry and drawn-out affair” and greatly detracted from the campus’s future development. Herbert York, first director of The DOE’s Lawrence Livermore National Laboratory, was selected instead. York planned the main campus according to the “Oxbridge” model, relying on many of Revelle’s ideas.

    According to Kerr, “San Diego always asked for the best,” though this created much friction throughout the The University of California system, including with Kerr himself, because The University of California-San Diego often seemed to be “asking for too much and too fast.” Kerr attributed The University of California-San Diego’s “special personality” to Scripps, which for over five decades had been the most isolated University of California unit in every sense: geographically, financially, and institutionally. It was a great shock to the Scripps community to learn that Scripps was now expected to become the nucleus of a new University of California campus and would now be the object of far more attention from both the university administration in Berkeley and the state government in Sacramento.

    The University of California-San Diego was the first general campus of the University of California to be designed “from the top down” in terms of research emphasis. Local leaders disagreed on whether the new school should be a technical research institute or a more broadly based school that included undergraduates as well. John Jay Hopkins of General Dynamics Corporation pledged one million dollars for the former while the City Council offered free land for the latter. The original authorization for the San Diego campus given by the University of California Regents in 1956 approved a “graduate program in science and technology” that included undergraduate programs, a compromise that won both the support of General Dynamics and the city voters’ approval.

    Nobel laureate Harold Urey, a physicist from The University of Chicago, and Hans Suess, who had published the first paper on the greenhouse effect with Revelle in the previous year, were early recruits to the faculty in 1958. Maria Goeppert-Mayer, later the second female Nobel laureate in physics, was appointed professor of physics in 1960. The graduate division of the school opened in 1960 with 20 faculty in residence, with instruction offered in the fields of physics, biology, chemistry, and earth science. Before the main campus completed construction, classes were held in the Scripps Institution of Oceanography.

    By 1963, new facilities on the mesa had been finished for the School of Science and Engineering, and new buildings were under construction for Social Sciences and Humanities. Ten additional faculty in those disciplines were hired, and the whole site was designated the First College of the new campus (it was later renamed after Roger Revelle). York resigned as chancellor that year and was replaced by John Semple Galbraith. The undergraduate program accepted its first class of 181 freshman at Revelle College in 1964. Second College was founded in 1964, on the land deeded by the federal government, and named after environmentalist John Muir two years later. The School of Medicine also accepted its first students in 1966.

    Political theorist Herbert Marcuse joined the faculty in 1965. A champion of the New Left, he reportedly was the first protester to occupy the administration building in a demonstration organized by his student, political activist Angela Davis. The American Legion offered to buy out the remainder of Marcuse’s contract for $20,000; the Regents censured Chancellor William J. McGill for defending Marcuse on the basis of academic freedom, but further action was averted after local leaders expressed support for Marcuse. Further student unrest was felt at the university, as the United States increased its involvement in the Vietnam War during the mid-1960s, when a student raised a Viet Minh flag over the campus. Protests escalated as the war continued and were only exacerbated after the National Guard fired on student protesters at Kent State University in 1970. Over 200 students occupied Urey Hall, with one student setting himself on fire in protest of the war.

    Early research activity and faculty quality, notably in the sciences, was integral to shaping the focus and culture of the university. Even before The University of California-San Diego had its own campus, faculty recruits had already made significant research breakthroughs, such as the Keeling Curve, a graph that plots rapidly increasing carbon dioxide levels in the atmosphere and was the first significant evidence for global climate change; the Kohn–Sham equations, used to investigate particular atoms and molecules in quantum chemistry; and the Miller–Urey experiment, which gave birth to the field of prebiotic chemistry.

    Engineering, particularly computer science, became an important part of the university’s academics as it matured. University researchers helped develop The University of California-San Diego Pascal, an early machine-independent programming language that later heavily influenced Java; the National Science Foundation Network, a precursor to the Internet; and the Network News Transfer Protocol during the late 1970s to 1980s.

    Under Richard C. Atkinson’s leadership as chancellor from 1980 to 1995, the university strengthened its ties with the city of San Diego by encouraging technology transfer with developing companies, transforming San Diego into a world leader in technology-based industries. He oversaw a rapid expansion of the School of Engineering, later renamed after Qualcomm founder Irwin M. Jacobs, with the construction of the San Diego Supercomputer Center and establishment of the computer science, electrical engineering, and bioengineering departments. Private donations increased from $15 million to nearly $50 million annually, faculty expanded by nearly 50%, and enrollment doubled to about 18,000 students during his administration. By the end of his chancellorship, the quality of The University of California-San Diego graduate programs was ranked 10th in the nation by the National Research Council.

    The university continued to undergo further expansion during the first decade of the new millennium with the establishment and construction of two new professional schools — the Skaggs School of Pharmacy and Rady School of Management—and the California Institute for Telecommunications and Information Technology, a research institute run jointly with The University of California-Irvine. The University of California-San Diego also reached two financial milestones during this time, becoming the first university in the western region to raise over $1 billion in its eight-year fundraising campaign in 2007 and also obtaining an additional $1 billion through research contracts and grants in a single fiscal year for the first time in 2010. Despite this, due to the California budget crisis, the university loaned $40 million against its own assets in 2009 to offset a significant reduction in state educational appropriations. The salary of Pradeep Khosla, who became chancellor in 2012, has been the subject of controversy amidst continued budget cuts and tuition increases. In 2012, campus launched a 10-year, $2 billion fundraising campaign, which the campus completed 3 years early in 2019, making it the youngest university in the United States to have completed a $2 billion fundraiser.

    On November 27, 2017, the university announced it would leave its longtime athletic home of the California Collegiate Athletic Association, an NCAA Division II league, to begin a transition to Division I in 2020. It joined the Big West Conference, already home to four other University of California campuses (Davis, Irvine, Riverside, Santa Barbara). The university transitioned to NCAA Division I competition on July 1, 2020. The transition period will run through the 2023–24 school year.

    Standing at the center of the university is the iconic Geisel Library, named after Dr. Seuss following a $20 million donation from his wife Audrey. Library Walk, a heavily traveled pathway leading from the library to Gilman Drive, lies adjacent or close to Price Center, Center Hall, International Center, and various student services buildings, including the Student Services Center and the Career Services building. The layout of the main campus centers on Geisel Library, which is roughly surrounded by the seven residential colleges of Revelle, Muir, Marshall, Warren, Roosevelt, Sixth, Seventh, and the School of Medicine. The seven colleges maintain separate housing facilities for their students and each college’s buildings are differentiated by distinct architectural styles. As residential colleges were added while the university expanded, buildings in newer colleges were designed with styles that were starkly different from that of the original campus. The disparate architectural styles led Travel + Leisure, in its October 2013 issue, to name the university as one of the ugliest campuses in America, likening it to “a cupboard full of kitchen appliances whose function you can’t quite fathom.”

    In addition to its academic and housing facilities, the campus features eucalyptus groves, the Birch Aquarium and museum, and several major research centers. The Scripps Institution owns a sea port and several open ocean vessels for marine research. Several large shake facilities, including the world record holding Large High Performance Outdoor Shake Table, used for earthquake simulations, are also maintained by the university.

    The university has actively sought to reduce carbon emissions and energy usage on campus, earning a “gold” sustainability performance rating in the Sustainability Tracking Assessment and Rating System (STARS) survey. It was also praised in The Princeton Review’s Guide to 322 Green Colleges: 2013 Edition for its strong commitment to sustainability in its academic offerings, campus infrastructure, activities and career preparation.

    Academics and administration

    The University of California-San Diego is a large, primarily residential, public research university accredited by the Western Association of Schools and Colleges that offers a four-year Bachelor of Arts and Bachelor of Science degree to undergraduate students. The full-time undergraduate program comprises the majority of enrollments at the university. The university offers 125 bachelor’s degree programs organized into five disciplinary divisions: arts and humanities, biological sciences, engineering, mathematics and physical sciences, and social sciences. Students are also free to design special majors or engage in dual majors. 38% of undergraduates major in the social sciences, followed by 25% in biological sciences, 18% in engineering, 8% in sciences and math, 4% in humanities, and 3% in the arts.

    The University of California-San Diego’s comprehensive graduate program is composed of several divisions and professional schools, including the Scripps Institution of Oceanography, School of Medicine, Institute of Engineering in Medicine, School of Global Policy and Strategy, Jacobs School of Engineering, Rady School of Management, and Skaggs School of Pharmacy. The university offers 35 masters programs, 47 doctoral programs, five professional programs, and nine joint doctoral programs with San Diego State University and other University of California campuses. The University of California-San Diego has highly ranked graduate programs in biological sciences and medicine, economics, social and behavioral sciences, physics, and computer engineering.

    The university also offers a continuing and public education program through The University of California-San Diego Extension. Approximately 50,000 enrollees per year are educated in this branch of the university, which offers over 100 professional and specialized certificate programs. Courses are offered at Extension facilities, located both on the main campus and off-campus, and also online. The University of California-San Diego Extension offers programs in Arts & Humanities, Business & Leadership, Data Analysis & Mathematics, Digital Arts, Education, Engineering, Environment & Sustainability, International Programs, Languages, Law, Occupational Safety & Health, Pre-College, Sciences, Technology, and Writing, as well as public programs such as the The University of California-San Diego Osher Lifelong Learning Institute and the Helen Edison Lecture Series. The University of California-San Diego Extension also plans to open a 66,000-square-foot hub at the corner of Park Boulevard and Market Street in East Village referred to as the Innovative Cultural and Education Hub. The project is slated to be completed in 2020 and plans to “advance the burgeoning tech ecosystem downtown, contribute to the city’s lively arts and culture scene, and connect in multiple ways with diverse neighborhoods such as Barrio Logan, the Diamond District, and Golden Hill.”

    Research

    The Nature Index lists The University of California-San Diego as 6th in the United States for research output by article count in 2019. In 2017, The University of California-San Diego spent $1.13 billion on research, the 7th highest expenditure among academic institutions in the U.S. The university operates several organized research units, including the Center for Astrophysics and Space Sciences (CASS), the Center for Drug Discovery Innovation, and the Institute for Neural Computation.[100] The University of California-San Diego also maintains close ties to the nearby Scripps Research Institute and The Salk Institute for Biological Studies. In 1977, The University of California-San Diego developed and released the The University of California-San Diego Pascal programming language. The university was designated as one of the original national Alzheimer’s disease research centers in 1984 by the National Institute on Aging. In 2018, The University of California-San Diego received $10.5 million from the National Nuclear Security Administration to establish the Center for Matters under Extreme Pressure (CMEC).

    The university founded The San Diego Supercomputer Center in 1985, which provides high-performance computing for research in various scientific disciplines. In 2000, The University of California-San Diego partnered with The University of California-Irvine to create The Qualcomm Institute, which integrates research in photonics, nanotechnology, and wireless telecommunication to develop solutions to problems in energy, health, and the environment.

    The University of California-San Diego also operates the Scripps Institution of Oceanography (SIO), one of the largest centers of research in earth science in the world, which predates the university itself. Together, SDSC and SIO, along with funding partner universities Caltech, The San Diego State University, and The University of California-Santa Barbara, manage the High Performance Wireless Research and Education Network.

    National rankings

    The University of California-San Diego is ranked 5th as Best Public University by Academic Ranking of World Universities and 16th in the U.S.Center for World University Rankings respectively. Washington Monthly ranked the university 12th in its 2021 National University ranking, based on its contribution to the public good as measured by social mobility, research, and promoting public service. The University of California-San Diego ranked fifth in the nation in terms of research and development expenditures in 2018, with $1.265 billion spent. Kiplinger in 2014 ranked The University of California-San Diego 14th out of the top 100 best-value public colleges and universities in the nation, and 3rd in California. The University of California-San Diego was ranked tied for 35th among national universities in the United States and tied for 8th among public universities by U.S. News & World Report’s 2021 rankings. ScienceWatch ranks The University of California-San Diego 7th of federally funded U.S. universities, based on the citation impact of their published research in major fields of science and the social sciences and 12th globally by volume of citations.

    Global rankings

    Recognized as a Public Ivy, The University of California-San Diego is a highly regarded research institution, ranked 11th in the world by the Nature Index, 14th in the world by the Scrimago Institutions Rankings, 14th in the world by the Lens Metric, 14th best university in the world according to TBS Rankings, 16th in U.S. News & World Report’s 2017 global university rankings, 15th in the world by the Academic Ranking of World Universities, 16th best university in the world by the Centre for Science and Technology Studies of Leiden University Ranking, 18th in the world by the Center for World University Rankings, 18th in the world by University Ranking by Academic Performance, and 5th best public university in the world by the Times Higher Education World University Rankings.

    The University of California-San Diego is ranked 15th by the Academic Ranking of World Universities, and is ranked 17th “Best University in the World” by the Center for World University Rankings for 2016. U.S. News & World Report named The University of California-San Diego the 15th best university in the world for 2017 for research, global and regional reputation, international collaboration, and several highly cited papers. In 2017, The University of California-San Diego was ranked 30th in the world by the Times Higher Education World University Rankings. The University of California-San Diego was also ranked 38th overall in the world, and 11th in biological sciences, 16th in life sciences, and medicine, 19th in economics and econometrics, 31st in mathematics, and 44th in computer science and information systems by QS World University Rankings. In 2015, the Centre for Science and Technology Studies at Leiden University named The University of California-San Diego 16th in the world for scientific impact.

    Graduate school rankings

    The University of California-San Diego School of Medicine is ranked tied for 18th for research and 12th for primary care in the 2018 U.S. News & World Report rankings. The Rady School of Management at The University of California-San Diego is ranked 17th in the world for faculty research and 8th for alumni entrepreneurship in the 2014 Financial Times’ Global MBA. In 2014 the Rady School ranked 1st in the nation in intellectual capital by Bloomberg Businessweek, which measured faculty research published in the top 20 business journals from 2009 to 2013. The University of California-San Diego was named 8th in the nation among doctoral institutions for the number of students who study abroad for a full academic year, according to the Institute of International Education Open Doors report. Three doctoral programs at The University of California-San Diego—biological sciences, bioengineering, and Scripps Institution of Oceanography—are 1st in the nation in the National Research Council’s Data-Based Assessment of Research-Doctorate Programs report.

     
  • richardmitnick 12:24 pm on August 11, 2022 Permalink | Reply
    Tags: "More Evidence that California Weather Is Trending Toward Extremes", , The Scripps Institution of Oceanography,   

    From The Scripps Institution of Oceanography At The University of California-San Diego : “More Evidence that California Weather Is Trending Toward Extremes” 

    From The Scripps Institution of Oceanography

    At

    The University of California-San Diego

    8.11.22
    Robert Monroe

    1
    Chaparral Fire in 2021.Photo credit: JeffHall / Cal Fire.

    A team led by Kristen Guirguis, a climate researcher at Scripps Institution of Oceanography at UC San Diego, found evidence that the risk of hazardous weather is increasing in the Southwest.

    The researchers investigated the daily relationships among four major modes of weather affecting California. How they interact governs the formation of weather events such as atmospheric rivers capable of bringing torrential rains and Santa Ana winds that can spread devastating wildfires.

    “This study suggests that weather patterns are changing in a way that enhances hot, dry Santa Ana winds, while reducing precipitation frequency in the Southwest,” said Guirguis. “These changes in atmospheric circulation are raising the risk of wildfires during California winters.”

    The study was published in the journal Climate Dynamics [below] July 17, 2022.

    The basis of the research was an examination of the dominant atmospheric circulation patterns over the North Pacific Ocean, known as Baja-Pacific, Alaskan-Pacific, Canadian-Pacific, and Offshore-California modes. What distinguishes them from each other are the relative positions of ridges and troughs in the atmosphere.

    2
    Dillard Road is flooded near the Hwy 99 off ramp, located south of Elk Grove, California. Photo credit: Florence Low / California Department of Water Resources.

    The research team identified 16 recurring weather patterns that are created daily as these modes interact with each other. One product of the work was a summary of California weather patterns from 1949 to 2017. The patterns associated with the formation of dry gusty Santa Ana winds that often stoke Southern California fires are becoming more frequent. Patterns associated with what might be considered “normal” rainfall are decreasing in the Southwest thus promoting drought, but patterns associated with extreme precipitation and strong atmospheric river episodes have remained steady over the study period. The researchers noted that while the patterns associated with heavy precipitation and strong atmospheric rivers have not changed in frequency, a warmer atmosphere [Earth’s Future (below)] is capable of holding more water so these storms are becoming more damaging.

    The results suggest an increasing probability of compounding environmental hazards during California winters, said the research team. Though winter atmospheric rivers are the antithesis of hot, dry Santa Ana wind conditions, sequences of wildfires followed by strong atmospheric rivers often compound the damage from fires when they trigger flash floods and destructive debris flows from burn scars.

    3
    Photo of the Thomas Fire taken from a Santa Barbara beach. Photo credit: Carsten Schertzer / iStock.

    “This spells challenges for wildfire and water resource management and provides observational support to our previous results [ScientificReports (below)] projecting that California will increasingly have to depend on potentially hazardous atmospheric rivers and floodwater for water resource generation in a warming climate,” said study co-author Alexander Gershunov, a Scripps Oceanography climate scientist.

    Study authors say this work is helping to inform an experimental subseasonal-to-seasonal (S2S) forecast product being developed at Scripps Oceanography’s Center for Western Weather and Water Extremes (CW3E) that predicts extreme weather in California including atmospheric river landfalls, Santa Ana winds, drought, and heat waves.

    The U.S. Department of the Interior via the Bureau of Reclamation and the Southwest Climate Adaptation Science Center, the California Department of Water Resources, and the Regional Integrated Sciences and Assessments (RISA) California—Nevada Climate Applications Program and the International Research Applications Program of the National Oceanic and Atmospheric Administration funded the study. Additional funding was provided by the University of California Office of the President MRPI grant.

    5
    High water levels on the Tuolumne River close River Road in the city of Modesto, California, part of Stanislaus County. Photo credit: Dale Kolke / California Department of Water Resources.

    Study co-authors include Benjamin Hatchett of the Desert Research Institute in Nevada; Tamara Shulgina, Michael DeFlorio, Rosana Aguilera, achel Clemesha, Tom Corringham, Luca Delle Monache, and Marty Ralph of CW3E at Scripps Oceanography; Aneesh Subramanian and David Reynolds of the University of Colorado Boulder; Janin Guzman-Morales of the University of California Santa Barbara; and Alex Tardy and Ivory Small of the National Weather Service.

    Science papers:
    Climate Dynamics
    Earth’s Future
    ScientificReports

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    A department of The University of California-San Diego, The Scripps Institution of Oceanography is one of the oldest, largest, and most important centers for ocean, earth and atmospheric science research, education, and public service in the world.

    Research at Scripps encompasses physical, chemical, biological, geological, and geophysical studies of the oceans, Earth, and planets. Scripps undergraduate and graduate programs provide transformative educational and research opportunities in ocean, earth, and atmospheric sciences, as well as degrees in climate science and policy and marine biodiversity and conservation.

    The University of California-San Diego is a public research university located in the La Jolla area of San Diego, California, in the United States. The university occupies 2,141 acres (866 ha) near the coast of the Pacific Ocean with the main campus resting on approximately 1,152 acres (466 ha). Established in 1960 near the pre-existing Scripps Institution of Oceanography, The University of California-San Diego is the seventh oldest of the 10 University of California campuses and offers over 200 undergraduate and graduate degree programs, enrolling about 22,700 undergraduate and 6,300 graduate students. The University of California-San Diego is one of America’s Public Ivy universities, which recognizes top public research universities in the United States. The University of California-San Diego was ranked 8th among public universities and 37th among all universities in the United States, and rated the 18th Top World University by U.S. News & World Report’s 2015 rankings.

     
  • richardmitnick 4:40 pm on June 21, 2022 Permalink | Reply
    Tags: "The University of California-San Diego and Scripps Institution of Oceanography Researchers Part of $25M Project To Build Artificial Coral Reefs for Coastal Protection", 3D print coral-inspired microscale structures, , , , , , The Scripps Institution of Oceanography,   

    From The University of California-San Diego and Scripps Institution of Oceanography : “The University of California-San Diego and Scripps Institution of Oceanography Researchers Part of $25M Project To Build Artificial Coral Reefs for Coastal Protection” 

    From The University of California-San Diego

    and

    Scripps Institution of Oceanography

    Liezel Labios
    858-246-1124
    llabios@ucsd.edu

    Robert Monroe
    858-534-3624
    scrippsnews@ucsd.edu

    Images by Daniel Wangpraseurt.

    A team of researchers involving the University of California San Diego has received a $25 million award from the U.S. Department of Defense’s Defense Advanced Research Projects Agency (DARPA) to build artificial coral reefs to protect coastal areas in Hawai’i against flooding, erosion and storm damage.

    The artificial reefs will be designed to work with local ecology to create a living, growing and self-healing system. The reefs will provide a natural defense that can keep pace with sea-level rise over time and slow down waves, dissipating their energy before they reach land. A big benefit of artificial reefs is that they can be rapidly deployed to provide immediate protection while promoting the growth of reef-supporting organisms. Natural reefs take decades to mature, but the artificial versions can reach full functionality in a matter of months to years.

    The project is an academic-industry partnership led by the University of Hawai’i, with other partners including UC San Diego, Florida Atlantic University and Makai Ocean Engineering.

    1
    Coral larvae crawling over a bioactive coating to look for a settlement habitat. Such a bioactive material can be rapidly fabricated via 3D printing.

    The UC San Diego team is working on two methods for attracting both corals and beneficial reef fish to the artificial structures. First, researchers at the UC San Diego Department of NanoEngineering will 3D print biomaterials that will be coated onto the artificial reefs. The biomaterials will be designed with special microstructures to enhance coral recruitment, the process in which tiny drifting coral larvae attach and establish themselves on a reef. The microstructures also aim to inhibit algal and bacterial fouling on the artificial reefs.

    Scientists at UC San Diego’s Scripps Institution of Oceanography will also test “acoustic enrichment,” a process where sounds from other healthy reef environments are broadcast to attract both algae-eating fish and coral larvae to the structures. Scripps Oceanography scientists will also conduct passive acoustic monitoring of the reef structure to help monitor what and how many organisms settle on the structure over time.

    Daniel Wangpraseurt, an assistant project scientist at the UC San Diego Jacobs School of Engineering, will lead the effort with co-investigators Shaochen Chen, professor and chair of nanoengineering at the UC San Diego Jacobs School of Engineering, and Aaron Thode, a research scientist at Scripps Oceanography. The UC San Diego effort will be funded with $4 million of the DARPA award.

    “This is an exciting opportunity for radical innovation, with the potential to be a game changer for the engineering of artificial coral reefs,” said Wangpraseurt. “Our team will develop new biomaterials that will kick-start the living reef by applying state-of-the-art medical tissue engineering approaches.”

    2
    3D printed skeletal microarchitecture that can be used as inspiration for new reef-like materials.

    To create the biomaterials, the UC San Diego team will use a rapid, 3D bioprinting technology developed in Chen’s lab. The technology can reproduce detailed microscale structures in mere seconds, mimicking the complex designs and functions of living tissues. Wangpraseurt and Chen have collaborated in recent years to 3D print coral-inspired microscale structures that are capable of growing dense populations of microscopic algae. The new DARPA-funded project takes their work to the next level, expanding their efforts to help create hybrid biological and engineered reef-mimicking structures for coastal defenses suited to a changing environment.

    “We are now scaling up our rapid bioprinting platform, which will be critical to manufacture biomaterials for large scale coral reef engineering,” said Chen.

    Thode, who recently participated in another recent DARPA-funded project on coral reef acoustics, will be adapting underwater sound playback technology initially developed to attract sperm whales away from fishing vessels to prevent the 70-foot animals from taking fish from their haul.

    “In addition to developing methods to encourage rapid ecosystem development on artificial reefs, I’m hoping in the future this research could also help accelerate efforts to recover degraded or dying natural reefs,” said Thode.

    3D printed corals provide more fertile ground for algae growth
    3
    Left: Close-up of coral reef microstructures consisting of a coral skeleton (white) and coral tissue (orange-yellow). Right: SEM image of 3D printed coral skeleton. Images courtesy of Nature Communications.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    A department of UC San Diego, Scripps Institution of Oceanography is one of the oldest, largest, and most important centers for ocean, earth and atmospheric science research, education, and public service in the world.

    Research at Scripps encompasses physical, chemical, biological, geological, and geophysical studies of the oceans, Earth, and planets. Scripps undergraduate and graduate programs provide transformative educational and research opportunities in ocean, earth, and atmospheric sciences, as well as degrees in climate science and policy and marine biodiversity and conservation.

    The University of California- San Diego, is a public research university located in the La Jolla area of San Diego, California, in the United States. The university occupies 2,141 acres (866 ha) near the coast of the Pacific Ocean with the main campus resting on approximately 1,152 acres (466 ha). Established in 1960 near the pre-existing Scripps Institution of Oceanography, University of California-San Diego is the seventh oldest of the 10 University of California campuses and offers over 200 undergraduate and graduate degree programs, enrolling about 22,700 undergraduate and 6,300 graduate students. The University of California-San Diego is one of America’s “Public Ivy” universities, which recognizes top public research universities in the United States. The University of California-San Diego was ranked 8th among public universities and 37th among all universities in the United States, and rated the 18th Top World University by U.S. News & World Report’s 2015 rankings.

    The University of California-San Diego is organized into seven undergraduate residential colleges (Revelle; John Muir; Thurgood Marshall; Earl Warren; Eleanor Roosevelt; Sixth; and Seventh), four academic divisions (Arts and Humanities; Biological Sciences; Physical Sciences; and Social Sciences), and seven graduate and professional schools (Jacobs School of Engineering; Rady School of Management; Scripps Institution of Oceanography; School of Global Policy and Strategy; School of Medicine; Skaggs School of Pharmacy and Pharmaceutical Sciences; and the newly established Wertheim School of Public Health and Human Longevity Science). University of California-San Diego Health, the region’s only academic health system, provides patient care; conducts medical research; and educates future health care professionals at the University of California-San Diego Medical Center, Hillcrest; Jacobs Medical Center; Moores Cancer Center; Sulpizio Cardiovascular Center; Shiley Eye Institute; Institute for Genomic Medicine; Koman Family Outpatient Pavilion and various express care and urgent care clinics throughout San Diego.

    The university operates 19 organized research units (ORUs), including the Center for Energy Research; Qualcomm Institute (a branch of the California Institute for Telecommunications and Information Technology); San Diego Supercomputer Center; and the Kavli Institute for Brain and Mind, as well as eight School of Medicine research units, six research centers at Scripps Institution of Oceanography and two multi-campus initiatives, including the Institute on Global Conflict and Cooperation. The University of California-San Diego is also closely affiliated with several regional research centers, such as the Salk Institute; the Sanford Burnham Prebys Medical Discovery Institute; the Sanford Consortium for Regenerative Medicine; and the Scripps Research Institute. It is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation, UC San Diego spent $1.265 billion on research and development in fiscal year 2018, ranking it 7th in the nation.

    The University of California-San Diego is considered one of the country’s “Public Ivies”. As of February 2021, The University of California-San Diego faculty, researchers and alumni have won 27 Nobel Prizes and three Fields Medals, eight National Medals of Science, eight MacArthur Fellowships, and three Pulitzer Prizes. Additionally, of the current faculty, 29 have been elected to the National Academy of Engineering, 70 to the National Academy of Sciences, 45 to the National Academy of Medicine and 110 to the American Academy of Arts and Sciences.

    History

    When the Regents of the University of California originally authorized the San Diego campus in 1956, it was planned to be a graduate and research institution, providing instruction in the sciences, mathematics, and engineering. Local citizens supported the idea, voting the same year to transfer to the university 59 acres (24 ha) of mesa land on the coast near the preexisting Scripps Institution of Oceanography. The Regents requested an additional gift of 550 acres (220 ha) of undeveloped mesa land northeast of Scripps, as well as 500 acres (200 ha) on the former site of Camp Matthews from the federal government, but Roger Revelle, then director of Scripps Institution and main advocate for establishing the new campus, jeopardized the site selection by exposing the La Jolla community’s exclusive real estate business practices, which were antagonistic to minority racial and religious groups. This outraged local conservatives, as well as Regent Edwin W. Pauley.

    University of California President Clark Kerr satisfied San Diego city donors by changing the proposed name from University of California, La Jolla, to University of California-San Diego. The city voted in agreement to its part in 1958, and the University of California approved construction of the new campus in 1960. Because of the clash with Pauley, Revelle was not made chancellor. Herbert York, first director of DOE’s Lawrence Livermore National Laboratory, was designated instead. York planned the main campus according to the “Oxbridge” model, relying on many of Revelle’s ideas.

    According to Kerr, “San Diego always asked for the best,” though this created much friction throughout the University of California system, including with Kerr himself, because University of California-San Diego often seemed to be “asking for too much and too fast.” Kerr attributed University of California-San Diego’s “special personality” to Scripps, which for over five decades had been the most isolated University of California unit in every sense: geographically, financially, and institutionally. It was a great shock to the Scripps community to learn that Scripps was now expected to become the nucleus of a new University of California campus and would now be the object of far more attention from both the university administration in Berkeley and the state government in Sacramento.

    The University of California-San Diego was the first general campus of the University of California to be designed “from the top down” in terms of research emphasis. Local leaders disagreed on whether the new school should be a technical research institute or a more broadly based school that included undergraduates as well. John Jay Hopkins of General Dynamics Corporation pledged one million dollars for the former while the City Council offered free land for the latter. The original authorization for the University of California-San Diego campus given by the University of California Regents in 1956 approved a “graduate program in science and technology” that included undergraduate programs, a compromise that won both the support of General Dynamics and the city voters’ approval.

    Nobel laureate Harold Urey, a physicist from the University of Chicago, and Hans Suess, who had published the first paper on the greenhouse effect with Revelle in the previous year, were early recruits to the faculty in 1958. Maria Goeppert-Mayer, later the second female Nobel laureate in physics, was appointed professor of physics in 1960. The graduate division of the school opened in 1960 with 20 faculty in residence, with instruction offered in the fields of physics, biology, chemistry, and earth science. Before the main campus completed construction, classes were held in the Scripps Institution of Oceanography.

    By 1963, new facilities on the mesa had been finished for the School of Science and Engineering, and new buildings were under construction for Social Sciences and Humanities. Ten additional faculty in those disciplines were hired, and the whole site was designated the First College, later renamed after Roger Revelle, of the new campus. York resigned as chancellor that year and was replaced by John Semple Galbraith. The undergraduate program accepted its first class of 181 freshman at Revelle College in 1964. Second College was founded in 1964, on the land deeded by the federal government, and named after environmentalist John Muir two years later. The University of California-San Diego School of Medicine also accepted its first students in 1966.

    Political theorist Herbert Marcuse joined the faculty in 1965. A champion of the New Left, he reportedly was the first protester to occupy the administration building in a demonstration organized by his student, political activist Angela Davis. The American Legion offered to buy out the remainder of Marcuse’s contract for $20,000; the Regents censured Chancellor William J. McGill for defending Marcuse on the basis of academic freedom, but further action was averted after local leaders expressed support for Marcuse. Further student unrest was felt at the university, as the United States increased its involvement in the Vietnam War during the mid-1960s, when a student raised a Viet Minh flag over the campus. Protests escalated as the war continued and were only exacerbated after the National Guard fired on student protesters at Kent State University in 1970. Over 200 students occupied Urey Hall, with one student setting himself on fire in protest of the war.

    Early research activity and faculty quality, notably in the sciences, was integral to shaping the focus and culture of the university. Even before The University of California-San Diego had its own campus, faculty recruits had already made significant research breakthroughs, such as the Keeling Curve, a graph that plots rapidly increasing carbon dioxide levels in the atmosphere and was the first significant evidence for global climate change; the Kohn–Sham equations, used to investigate particular atoms and molecules in quantum chemistry; and the Miller–Urey experiment, which gave birth to the field of prebiotic chemistry.

    Engineering, particularly computer science, became an important part of the university’s academics as it matured. University researchers helped develop University of California-San Diego Pascal, an early machine-independent programming language that later heavily influenced Java; the National Science Foundation Network, a precursor to the Internet; and the Network News Transfer Protocol during the late 1970s to 1980s. In economics, the methods for analyzing economic time series with time-varying volatility (ARCH), and with common trends (cointegration) were developed. The University of California-San Diego maintained its research intense character after its founding, racking up 25 Nobel Laureates affiliated within 50 years of history; a rate of five per decade.

    Under Richard C. Atkinson’s leadership as chancellor from 1980 to 1995, the university strengthened its ties with the city of San Diego by encouraging technology transfer with developing companies, transforming San Diego into a world leader in technology-based industries. He oversaw a rapid expansion of the School of Engineering, later renamed after Qualcomm founder Irwin M. Jacobs, with the construction of the San Diego Supercomputer Center and establishment of the computer science, electrical engineering, and bioengineering departments. Private donations increased from $15 million to nearly $50 million annually, faculty expanded by nearly 50%, and enrollment doubled to about 18,000 students during his administration. By the end of his chancellorship, the quality of The University of California-San Diego graduate programs was ranked 10th in the nation by the National Research Council.

    The university continued to undergo further expansion during the first decade of the new millennium with the establishment and construction of two new professional schools — the Skaggs School of Pharmacy and Rady School of Management—and the California Institute for Telecommunications and Information Technology, a research institute run jointly with University of California Irvine. The University of California-San Diego also reached two financial milestones during this time, becoming the first university in the western region to raise over $1 billion in its eight-year fundraising campaign in 2007 and also obtaining an additional $1 billion through research contracts and grants in a single fiscal year for the first time in 2010. Despite this, due to the California budget crisis, the university loaned $40 million against its own assets in 2009 to offset a significant reduction in state educational appropriations. The salary of Pradeep Khosla, who became chancellor in 2012, has been the subject of controversy amidst continued budget cuts and tuition increases.

    On November 27, 2017, the university announced it would leave its longtime athletic home of the California Collegiate Athletic Association, an NCAA Division II league, to begin a transition to Division I in 2020. At that time, it will join the Big West Conference, already home to four other UC campuses (Davis, Irvine, Riverside, Santa Barbara). The transition period will run through the 2023–24 school year. The university prepares to transition to NCAA Division I competition on July 1, 2020.

    Research

    Applied Physics and Mathematics

    The Nature Index lists The University of California-San Diego as 6th in the United States for research output by article count in 2019. In 2017, The University of California-San Diego spent $1.13 billion on research, the 7th highest expenditure among academic institutions in the U.S. The university operates several organized research units, including the Center for Astrophysics and Space Sciences (CASS), the Center for Drug Discovery Innovation, and the Institute for Neural Computation. The University of California-San Diego also maintains close ties to the nearby Scripps Research Institute and Salk Institute for Biological Studies. In 1977, The University of California-San Diego developed and released the University of California-San Diego Pascal programming language. The university was designated as one of the original national Alzheimer’s disease research centers in 1984 by the National Institute on Aging. In 2018, The University of California-San Diego received $10.5 million from the DOE National Nuclear Security Administration to establish the Center for Matters under Extreme Pressure (CMEC).

    The university founded the San Diego Supercomputer Center (SDSC) in 1985, which provides high performance computing for research in various scientific disciplines. In 2000, The University of California-San Diego partnered with The University of California-Irvine to create the Qualcomm Institute – University of California-San Diego, which integrates research in photonics, nanotechnology, and wireless telecommunication to develop solutions to problems in energy, health, and the environment.

    The University of California-San Diego also operates the Scripps Institution of Oceanography, one of the largest centers of research in earth science in the world, which predates the university itself. Together, SDSC and SIO, along with funding partner universities California Institute of Technology, San Diego State University, and The University of California-Santa Barbara, manage the High Performance Wireless Research and Education Network.

     
  • richardmitnick 8:34 am on May 10, 2022 Permalink | Reply
    Tags: , "Research confirms atmospheric helium levels are rising", , The atmospheric abundance of the 4-helium (4He) isotope is rising because 4He is released during the burning and extraction of fossil fuels., The Scripps Institution of Oceanography,   

    From The University of California-San Diego via phys.org: “Research confirms atmospheric helium levels are rising” 

    From The University of California-San Diego

    via

    phys.org

    May 9, 2022

    1
    Study lead author Benni Birner of The Scripps Institution of Oceanography at UC San Diego. Credit: Erik Jepsen/UC San Diego.

    Scientists at Scripps Institution of Oceanography at UC San Diego used an unprecedented technique to detect that levels of helium are rising in the atmosphere, resolving an issue that has lingered among atmospheric chemists for decades.

    The atmospheric abundance of the 4-helium (4He) isotope is rising because 4He is released during the burning and extraction of fossil fuels. The researchers report that it is increasing at a very small but, for the first time, clearly measurable rate. The 4He isotope itself does not add to the greenhouse effect that is making the planet warmer, but measures of it could serve as indirect markers of fossil-fuel use.

    The study appears today in the journal Nature Geoscience.

    “The main motivation was to resolve a longstanding controversy in the science community about atmospheric helium concentrations,” said study lead author Benni Birner, a former graduate student and now postdoctoral researcher at Scripps Institution of Oceanography at UC San Diego.

    The isotope 4He is produced by radioactive decay in the Earth’s crust and accumulates in the same reservoirs as fossil fuels, in particular those of natural gas. During the extraction and combustion of fossil fuels, 4He is coincidentally released, which creates another means to evaluate the scale of industrial activity.

    The study’s breakthrough is in the technique the Scripps Oceanography team used to measure how much helium is in the atmosphere. Birner and Scripps geoscientists Jeff Severinghaus, Bill Paplawsky, and Ralph Keeling created a precise method to compare the 4He isotope to levels of the common atmospheric gas nitrogen. Because nitrogen levels in the atmosphere are constant, an increase in He/N2 is indicative of the rate of 4He buildup in the atmosphere.

    Study co-author and Scripps Oceanography geochemist Ralph Keeling, overseer of the famed carbon dioxide measurement known as the Keeling Curve, describes the study as a “masterpiece of fundamental geochemistry.” Though helium is relatively easy for scientists to detect in air samples, present at levels of five parts per million of air, no one had done the work to measure it carefully enough to observe an atmospheric increase, he said.

    The study also provides a foundation for scientists to better understand the valuable 3-helium (3He) isotope, which has uses for nuclear fusion, cryogenics, and other applications. Proposals to acquire the scarce gas from the moon are an indication of the lengths to which manufacturers will go to harvest it.

    According to previous work by other researchers, the 4He isotope exists in the atmosphere in what appears to be an unvarying ratio with 3He. The atmospheric rise of 4He isotope measured at Scripps therefore implies that the 3He isotope must be rising at a comparable rate as 4He. The research by Birner’s team raises several questions about the accuracy of scientists’ previous assumptions about how 3He is produced and in what quantity.

    “We don’t know for sure, but I wonder if there is more 3He coming out of the Earth than we previously thought, which could perhaps be harvested and fuel our nuclear fusion reactors in the future,” Birner said.

    “The study lays in starker relief a controversy surrounding the rare helium isotope 3He,” said Keeling. “The implications are far from clear, but it begs additional work.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.


    Stem Education Coalition

    The University of California- San Diego, is a public research university located in the La Jolla area of San Diego, California, in the United States. The university occupies 2,141 acres (866 ha) near the coast of the Pacific Ocean with the main campus resting on approximately 1,152 acres (466 ha). Established in 1960 near the pre-existing Scripps Institution of Oceanography, University of California, San Diego is the seventh oldest of the 10 University of California campuses and offers over 200 undergraduate and graduate degree programs, enrolling about 22,700 undergraduate and 6,300 graduate students. The University of California-San Diego is one of America’s “Public Ivy” universities, which recognizes top public research universities in the United States. The University of California-San Diego was ranked 8th among public universities and 37th among all universities in the United States, and rated the 18th Top World University by U.S. News & World Report’s 2015 rankings.

    The University of California-San Diego is organized into seven undergraduate residential colleges (Revelle; John Muir; Thurgood Marshall; Earl Warren; Eleanor Roosevelt; Sixth; and Seventh), four academic divisions (Arts and Humanities; Biological Sciences; Physical Sciences; and Social Sciences), and seven graduate and professional schools (Jacobs School of Engineering; Rady School of Management; Scripps Institution of Oceanography; School of Global Policy and Strategy; School of Medicine; Skaggs School of Pharmacy and Pharmaceutical Sciences; and the newly established Wertheim School of Public Health and Human Longevity Science). University of California-San Diego Health, the region’s only academic health system, provides patient care; conducts medical research; and educates future health care professionals at the University of California-San Diego Medical Center, Hillcrest; Jacobs Medical Center; Moores Cancer Center; Sulpizio Cardiovascular Center; Shiley Eye Institute; Institute for Genomic Medicine; Koman Family Outpatient Pavilion and various express care and urgent care clinics throughout San Diego.

    The university operates 19 organized research units (ORUs), including the Center for Energy Research; Qualcomm Institute (a branch of the California Institute for Telecommunications and Information Technology); San Diego Supercomputer Center; and the Kavli Institute for Brain and Mind, as well as eight School of Medicine research units, six research centers at Scripps Institution of Oceanography and two multi-campus initiatives, including the Institute on Global Conflict and Cooperation. The University of California-San Diego is also closely affiliated with several regional research centers, such as the Salk Institute; the Sanford Burnham Prebys Medical Discovery Institute; the Sanford Consortium for Regenerative Medicine; and the Scripps Research Institute. It is classified among “R1: Doctoral Universities – Very high research activity”. According to the National Science Foundation, UC San Diego spent $1.265 billion on research and development in fiscal year 2018, ranking it 7th in the nation.

    The University of California-San Diego is considered one of the country’s “Public Ivies”. As of February 2021, The University of California-San Diego faculty, researchers and alumni have won 27 Nobel Prizes and three Fields Medals, eight National Medals of Science, eight MacArthur Fellowships, and three Pulitzer Prizes. Additionally, of the current faculty, 29 have been elected to the National Academy of Engineering, 70 to the National Academy of Sciences, 45 to the National Academy of Medicine and 110 to the American Academy of Arts and Sciences.

    History

    When the Regents of the University of California originally authorized the San Diego campus in 1956, it was planned to be a graduate and research institution, providing instruction in the sciences, mathematics, and engineering. Local citizens supported the idea, voting the same year to transfer to the university 59 acres (24 ha) of mesa land on the coast near the preexisting Scripps Institution of Oceanography. The Regents requested an additional gift of 550 acres (220 ha) of undeveloped mesa land northeast of Scripps, as well as 500 acres (200 ha) on the former site of Camp Matthews from the federal government, but Roger Revelle, then director of Scripps Institution and main advocate for establishing the new campus, jeopardized the site selection by exposing the La Jolla community’s exclusive real estate business practices, which were antagonistic to minority racial and religious groups. This outraged local conservatives, as well as Regent Edwin W. Pauley.

    University of California President Clark Kerr satisfied San Diego city donors by changing the proposed name from University of California, La Jolla, to University of California-San Diego. The city voted in agreement to its part in 1958, and the University of California approved construction of the new campus in 1960. Because of the clash with Pauley, Revelle was not made chancellor. Herbert York, first director of DOE’s Lawrence Livermore National Laboratory, was designated instead. York planned the main campus according to the “Oxbridge” model, relying on many of Revelle’s ideas.

    According to Kerr, “San Diego always asked for the best,” though this created much friction throughout the University of California system, including with Kerr himself, because University of California-San Diego often seemed to be “asking for too much and too fast.” Kerr attributed University of California-San Diego’s “special personality” to Scripps, which for over five decades had been the most isolated University of California unit in every sense: geographically, financially, and institutionally. It was a great shock to the Scripps community to learn that Scripps was now expected to become the nucleus of a new University of California campus and would now be the object of far more attention from both the university administration in Berkeley and the state government in Sacramento.

    The University of California-San Diego was the first general campus of the University of California to be designed “from the top down” in terms of research emphasis. Local leaders disagreed on whether the new school should be a technical research institute or a more broadly based school that included undergraduates as well. John Jay Hopkins of General Dynamics Corporation pledged one million dollars for the former while the City Council offered free land for the latter. The original authorization for the University of California-San Diego campus given by the University of California Regents in 1956 approved a “graduate program in science and technology” that included undergraduate programs, a compromise that won both the support of General Dynamics and the city voters’ approval.

    Nobel laureate Harold Urey, a physicist from the University of Chicago, and Hans Suess, who had published the first paper on the greenhouse effect with Revelle in the previous year, were early recruits to the faculty in 1958. Maria Goeppert-Mayer, later the second female Nobel laureate in physics, was appointed professor of physics in 1960. The graduate division of the school opened in 1960 with 20 faculty in residence, with instruction offered in the fields of physics, biology, chemistry, and earth science. Before the main campus completed construction, classes were held in the Scripps Institution of Oceanography.

    By 1963, new facilities on the mesa had been finished for the School of Science and Engineering, and new buildings were under construction for Social Sciences and Humanities. Ten additional faculty in those disciplines were hired, and the whole site was designated the First College, later renamed after Roger Revelle, of the new campus. York resigned as chancellor that year and was replaced by John Semple Galbraith. The undergraduate program accepted its first class of 181 freshman at Revelle College in 1964. Second College was founded in 1964, on the land deeded by the federal government, and named after environmentalist John Muir two years later. The University of California-San Diego School of Medicine also accepted its first students in 1966.

    Political theorist Herbert Marcuse joined the faculty in 1965. A champion of the New Left, he reportedly was the first protester to occupy the administration building in a demonstration organized by his student, political activist Angela Davis. The American Legion offered to buy out the remainder of Marcuse’s contract for $20,000; the Regents censured Chancellor William J. McGill for defending Marcuse on the basis of academic freedom, but further action was averted after local leaders expressed support for Marcuse. Further student unrest was felt at the university, as the United States increased its involvement in the Vietnam War during the mid-1960s, when a student raised a Viet Minh flag over the campus. Protests escalated as the war continued and were only exacerbated after the National Guard fired on student protesters at Kent State University in 1970. Over 200 students occupied Urey Hall, with one student setting himself on fire in protest of the war.

    Early research activity and faculty quality, notably in the sciences, was integral to shaping the focus and culture of the university. Even before The University of California-San Diego had its own campus, faculty recruits had already made significant research breakthroughs, such as the Keeling Curve, a graph that plots rapidly increasing carbon dioxide levels in the atmosphere and was the first significant evidence for global climate change; the Kohn–Sham equations, used to investigate particular atoms and molecules in quantum chemistry; and the Miller–Urey experiment, which gave birth to the field of prebiotic chemistry.

    Engineering, particularly computer science, became an important part of the university’s academics as it matured. University researchers helped develop University of California-San Diego Pascal, an early machine-independent programming language that later heavily influenced Java; the National Science Foundation Network, a precursor to the Internet; and the Network News Transfer Protocol during the late 1970s to 1980s. In economics, the methods for analyzing economic time series with time-varying volatility (ARCH), and with common trends (cointegration) were developed. The University of California-San Diego maintained its research intense character after its founding, racking up 25 Nobel Laureates affiliated within 50 years of history; a rate of five per decade.

    Under Richard C. Atkinson’s leadership as chancellor from 1980 to 1995, the university strengthened its ties with the city of San Diego by encouraging technology transfer with developing companies, transforming San Diego into a world leader in technology-based industries. He oversaw a rapid expansion of the School of Engineering, later renamed after Qualcomm founder Irwin M. Jacobs, with the construction of the San Diego Supercomputer Center and establishment of the computer science, electrical engineering, and bioengineering departments. Private donations increased from $15 million to nearly $50 million annually, faculty expanded by nearly 50%, and enrollment doubled to about 18,000 students during his administration. By the end of his chancellorship, the quality of The University of California-San Diego graduate programs was ranked 10th in the nation by the National Research Council.

    The university continued to undergo further expansion during the first decade of the new millennium with the establishment and construction of two new professional schools — the Skaggs School of Pharmacy and Rady School of Management—and the California Institute for Telecommunications and Information Technology, a research institute run jointly with University of California Irvine. The University of California-San Diego also reached two financial milestones during this time, becoming the first university in the western region to raise over $1 billion in its eight-year fundraising campaign in 2007 and also obtaining an additional $1 billion through research contracts and grants in a single fiscal year for the first time in 2010. Despite this, due to the California budget crisis, the university loaned $40 million against its own assets in 2009 to offset a significant reduction in state educational appropriations. The salary of Pradeep Khosla, who became chancellor in 2012, has been the subject of controversy amidst continued budget cuts and tuition increases.

    On November 27, 2017, the university announced it would leave its longtime athletic home of the California Collegiate Athletic Association, an NCAA Division II league, to begin a transition to Division I in 2020. At that time, it will join the Big West Conference, already home to four other UC campuses (Davis, Irvine, Riverside, Santa Barbara). The transition period will run through the 2023–24 school year. The university prepares to transition to NCAA Division I competition on July 1, 2020.

    Research

    Applied Physics and Mathematics

    The Nature Index lists The University of California-San Diego as 6th in the United States for research output by article count in 2019. In 2017, The University of California-San Diego spent $1.13 billion on research, the 7th highest expenditure among academic institutions in the U.S. The university operates several organized research units, including the Center for Astrophysics and Space Sciences (CASS), the Center for Drug Discovery Innovation, and the Institute for Neural Computation. The University of California-San Diego also maintains close ties to the nearby Scripps Research Institute and Salk Institute for Biological Studies. In 1977, The University of California-San Diego developed and released the University of California-San Diego Pascal programming language. The university was designated as one of the original national Alzheimer’s disease research centers in 1984 by the National Institute on Aging. In 2018, The University of California-San Diego received $10.5 million from the DOE National Nuclear Security Administration to establish the Center for Matters under Extreme Pressure (CMEC).

    The university founded the San Diego Supercomputer Center (SDSC) in 1985, which provides high performance computing for research in various scientific disciplines. In 2000, The University of California-San Diego partnered with The University of California-Irvine to create the Qualcomm Institute – University of California-San Diego, which integrates research in photonics, nanotechnology, and wireless telecommunication to develop solutions to problems in energy, health, and the environment.

    The University of California-San Diego also operates the Scripps Institution of Oceanography, one of the largest centers of research in earth science in the world, which predates the university itself. Together, SDSC and SIO, along with funding partner universities California Institute of Technology, San Diego State University, and The University of California-Santa Barbara, manage the High Performance Wireless Research and Education Network.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: