From The Pennsylvania State University: “New model provides improved air-quality predictions in fire-prone areas”
From The Pennsylvania State University
3.14.23
An August 2020 satellite image from the National Oceanic and Atmospheric Administration (NOAA) captured an image of wildfire smoke covering a portion of the west coast. Credit: National Oceanic and Atmospheric Administration. All Rights Reserved.
Globally, wildfires are becoming more frequent and destructive, generating a significant amount of smoke that can be transported thousands of miles, driving the need for more accurate air pollution forecasts. A team of Penn State researchers developed a deep learning model that provides improved predictions of air quality in wildfire-prone areas and can differentiate between wildfires and non-wildfires.
“As climate change continues to cause ecological changes and challenges, it is likely that wildfire activities will continue to rise,” said Manzhu Yu, assistant professor of geography at Penn State and lead investigator on the project. “Because of this, it is an urgent research priority to accurately predict the concentration of air pollutants induced by wildfire smoke, especially in wildfire-prone areas.”
Wildfire smoke contains a combination of particulate matter and many gaseous pollutants. Fine particulate matter, referred to as PM2.5, has been associated with significant risks to human health and is regulated by the U.S. EPA.
“The fine particulate matter in wildfire smoke can adversely impact human health when the levels are high,” said Yu. “Air quality predictions for fire-prone areas can significantly help emergency managers and public health officials mitigate potentially adverse environmental and public health impacts from air pollution events.”
According to Yu, the team’s new model would be able to warn people sooner about hazardous air quality. The team reported their findings in the journal Science of the Total Environment [below].
Accurate prediction of air quality, especially for pollutants derived from wildfires, is challenging since it is highly related to the characteristics of the wildfire, such as atmospheric conditions, topography, fuel and moisture, according to the researchers.
“The advantage of this model is that it is able to produce better predictions that can capture the abrupt changes of PM2.5 when wildfire occur, while not underestimating the amount of PM2.5 that is present, which other models tend to underestimate,” said Yu. “Likewise, the model does not overestimate PM2.5 when there is no fire.”
The research team used data from U.S. Environmental Protection Agency air quality stations in the greater Los Angeles area. Credit: Manzhu Yu. All Rights Reserved.
The model the team developed is an iteration of an existing deep learning model called “Transformer,” which is a sequence-to-sequence model originally proposed for language translation and has been successfully used for time series forecasting. The new model, called ST-Transformer, uses a novel framework that can determine trends associated with wildfires.
Using data from U.S. EPA air quality stations in the greater Los Angeles area, the model was trained to conduct time series forecasting on PM2.5 concentrations. Because air quality stations are sparsely located across large areas and collect data throughout the day, ST-Transformer must consider time and space variables as well as variable-wise dependencies, which are variables that impact each other.
“To train the ST-Transformer model, we included spatial, temporal and variable-wise dependencies of wildfire, smoke and air pollutants,” Yu said. “We also switched Transformer’s full attention mechanism to sparse attention, which can be trained to prioritize and capture the most relevant information. This allows the model to focus on only wildfire-related PM2.5.”
The traditional way to perform this kind of model work for time series forecasting is to train models separately for no-smoke or baseline scenarios as well as smoke scenarios. Then baseline models can be used to predict air pollution for days without wildfire smoke, and the smoke model to predict for days with wildfire smoke, according to the team. But Yu and her team merged these inputs into one model.
“That’s where sparse attention comes into play because with sparse attention, you know which inputs will better provide an accurate forecast,” she said. “Sparse attention also provides better estimations of PM2.5, reducing overestimations during baseline times and underestimations when there is a fire.”
Yu said ST-Transformer could also be used to improve predictions in other fields, such as water quality, precipitation and solar radiation.
“ST-Transformer could be helpful to predict water quality issues where you have stations in the water, but you cannot control where you can place them,” Yu said. “For example, the nitrogen or phosphorus in runoff that can cause algal blooms are like wildfires because they are fluid and dynamically changing all the time. Your sensors may or may not capture that.”
Other Penn State researchers on the project are Christopher Blaszczak-Boxe, former associate research professor of geosciences and now at Howard University, and Arif Masrur, former graduate student in geography who earned his doctorate in 2021 and is now a senior solutions engineer at Esri.
Research was supported by the College of Earth and Mineral Sciences’ Wilson Faculty Fellowship.
Science of the Total Environment
See the full article here .
Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”
five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.
Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct.
The The Pennsylvania State University is a public state-related land-grant research university with campuses and facilities throughout Pennsylvania. Founded in 1855 as the Farmers’ High School of Pennsylvania, Penn State became the state’s only land-grant university in 1863. Today, Penn State is a major research university which conducts teaching, research, and public service. Its instructional mission includes undergraduate, graduate, professional and continuing education offered through resident instruction and online delivery. In addition to its land-grant designation, it also participates in the sea-grant, space-grant, and sun-grant research consortia; it is one of only four such universities (along with Cornell University, Oregon State University, and University of Hawaiʻi at Mānoa). Its University Park campus, which is the largest and serves as the administrative hub, lies within the Borough of State College and College Township. It has two law schools: Penn State Law, on the school’s University Park campus, and Dickinson Law, in Carlisle. The College of Medicine is in Hershey. Penn State is one university that is geographically distributed throughout Pennsylvania. There are 19 commonwealth campuses and 5 special mission campuses located across the state. The University Park campus has been labeled one of the “Public Ivies,” a publicly funded university considered as providing a quality of education comparable to those of the Ivy League.
The Pennsylvania State University is a member of The Association of American Universities an organization of American research universities devoted to maintaining a strong system of academic research and education.
Annual enrollment at the University Park campus totals more than 46,800 graduate and undergraduate students, making it one of the largest universities in the United States. It has the world’s largest dues-paying alumni association. The university offers more than 160 majors among all its campuses.
Annually, the university hosts the Penn State IFC/Panhellenic Dance Marathon (THON), which is the world’s largest student-run philanthropy. This event is held at the Bryce Jordan Center on the University Park campus. The university’s athletics teams compete in Division I of the NCAA and are collectively known as the Penn State Nittany Lions, competing in the Big Ten Conference for most sports. Penn State students, alumni, faculty and coaches have received a total of 54 Olympic medals.
Early years
The school was sponsored by the Pennsylvania State Agricultural Society and founded as a degree-granting institution on February 22, 1855, by Pennsylvania’s state legislature as the Farmers’ High School of Pennsylvania. The use of “college” or “university” was avoided because of local prejudice against such institutions as being impractical in their courses of study. Centre County, Pennsylvania, became the home of the new school when James Irvin of Bellefonte, Pennsylvania, donated 200 acres (0.8 km2) of land – the first of 10,101 acres (41 km^2) the school would eventually acquire. In 1862, the school’s name was changed to the Agricultural College of Pennsylvania, and with the passage of the Morrill Land-Grant Acts, Pennsylvania selected the school in 1863 to be the state’s sole land-grant college. The school’s name changed to the Pennsylvania State College in 1874; enrollment fell to 64 undergraduates the following year as the school tried to balance purely agricultural studies with a more classic education.
George W. Atherton became president of the school in 1882, and broadened the curriculum. Shortly after he introduced engineering studies, Penn State became one of the ten largest engineering schools in the nation. Atherton also expanded the liberal arts and agriculture programs, for which the school began receiving regular appropriations from the state in 1887. A major road in State College has been named in Atherton’s honor. Additionally, Penn State’s Atherton Hall, a well-furnished and centrally located residence hall, is named not after George Atherton himself, but after his wife, Frances Washburn Atherton. His grave is in front of Schwab Auditorium near Old Main, marked by an engraved marble block in front of his statue.
Early 20th century
In the years that followed, Penn State grew significantly, becoming the state’s largest grantor of baccalaureate degrees and reaching an enrollment of 5,000 in 1936. Around that time, a system of commonwealth campuses was started by President Ralph Dorn Hetzel to provide an alternative for Depression-era students who were economically unable to leave home to attend college.
In 1953, President Milton S. Eisenhower, brother of then-U.S. President Dwight D. Eisenhower, sought and won permission to elevate the school to university status as The Pennsylvania State University. Under his successor Eric A. Walker (1956–1970), the university acquired hundreds of acres of surrounding land, and enrollment nearly tripled. In addition, in 1967, the Penn State Milton S. Hershey Medical Center, a college of medicine and hospital, was established in Hershey with a $50 million gift from the Hershey Trust Company.
Modern era
In the 1970s, the university became a state-related institution. As such, it now belongs to the Commonwealth System of Higher Education. In 1975, the lyrics in Penn State’s alma mater song were revised to be gender-neutral in honor of International Women’s Year; the revised lyrics were taken from the posthumously-published autobiography of the writer of the original lyrics, Fred Lewis Pattee, and Professor Patricia Farrell acted as a spokesperson for those who wanted the change.
In 1989, the Pennsylvania College of Technology in Williamsport joined ranks with the university, and in 2000, so did the Dickinson School of Law. The university is now the largest in Pennsylvania. To offset the lack of funding due to the limited growth in state appropriations to Penn State, the university has concentrated its efforts on philanthropy.
Research
Penn State is classified among “R1: Doctoral Universities – Very high research activity”. Over 10,000 students are enrolled in the university’s graduate school (including the law and medical schools), and over 70,000 degrees have been awarded since the school was founded in 1922.
Penn State’s research and development expenditure has been on the rise in recent years. For fiscal year 2013, according to institutional rankings of total research expenditures for science and engineering released by the National Science Foundation , Penn State stood second in the nation, behind only Johns Hopkins University and tied with the Massachusetts Institute of Technology , in the number of fields in which it is ranked in the top ten. Overall, Penn State ranked 17th nationally in total research expenditures across the board. In 12 individual fields, however, the university achieved rankings in the top ten nationally. The fields and sub-fields in which Penn State ranked in the top ten are materials (1st), psychology (2nd), mechanical engineering (3rd), sociology (3rd), electrical engineering (4th), total engineering (5th), aerospace engineering (8th), computer science (8th), agricultural sciences (8th), civil engineering (9th), atmospheric sciences (9th), and earth sciences (9th). Moreover, in eleven of these fields, the university has repeated top-ten status every year since at least 2008. For fiscal year 2011, the National Science Foundation reported that Penn State had spent $794.846 million on R&D and ranked 15th among U.S. universities and colleges in R&D spending.
For the 2008–2009 fiscal year, Penn State was ranked ninth among U.S. universities by the National Science Foundation, with $753 million in research and development spending for science and engineering. During the 2015–2016 fiscal year, Penn State received $836 million in research expenditures.
The Applied Research Lab (ARL), located near the University Park campus, has been a research partner with the Department of Defense since 1945 and conducts research primarily in support of the United States Navy. It is the largest component of Penn State’s research efforts statewide, with over 1,000 researchers and other staff members.
The Materials Research Institute was created to coordinate the highly diverse and growing materials activities across Penn State’s University Park campus. With more than 200 faculty in 15 departments, 4 colleges, and 2 Department of Defense research laboratories, MRI was designed to break down the academic walls that traditionally divide disciplines and enable faculty to collaborate across departmental and even college boundaries. MRI has become a model for this interdisciplinary approach to research, both within and outside the university. Dr. Richard E. Tressler was an international leader in the development of high-temperature materials. He pioneered high-temperature fiber testing and use, advanced instrumentation and test methodologies for thermostructural materials, and design and performance verification of ceramics and composites in high-temperature aerospace, industrial, and energy applications. He was founding director of the Center for Advanced Materials (CAM), which supported many faculty and students from the College of Earth and Mineral Science, the Eberly College of Science, the College of Engineering, the Materials Research Laboratory and the Applied Research Laboratories at Penn State on high-temperature materials. His vision for Interdisciplinary research played a key role in creating the Materials Research Institute, and the establishment of Penn State as an acknowledged leader among major universities in materials education and research.
The university was one of the founding members of the Worldwide Universities Network (WUN), a partnership that includes 17 research-led universities in the United States, Asia, and Europe. The network provides funding, facilitates collaboration between universities, and coordinates exchanges of faculty members and graduate students among institutions. Former Penn State president Graham Spanier is a former vice-chair of the WUN.
The Pennsylvania State University Libraries were ranked 14th among research libraries in North America in the 2003–2004 survey released by The Chronicle of Higher Education. The university’s library system began with a 1,500-book library in Old Main. In 2009, its holdings had grown to 5.2 million volumes, in addition to 500,000 maps, five million microforms, and 180,000 films and videos.
The university’s College of Information Sciences and Technology is the home of CiteSeerX, an open-access repository and search engine for scholarly publications. The university is also the host to the Radiation Science & Engineering Center, which houses the oldest operating university research reactor. Additionally, University Park houses the Graduate Program in Acoustics, the only freestanding acoustics program in the United States. The university also houses the Center for Medieval Studies, a program that was founded to research and study the European Middle Ages, and the Center for the Study of Higher Education (CSHE), one of the first centers established to research postsecondary education.
Reply