Tagged: The Niels Bohr Institute [Niels Bohr Institutet] (DK) Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:20 pm on June 9, 2022 Permalink | Reply
    Tags: "Black holes helped quenching star formation in the early Universe", A question is why some galaxies stay quiescent., A team of astronomers including the University of Copenhagen showed that black holes helped turn off star formation., , , , If this scenario is true the galaxy should show a weak excess signal in X-ray and radio waves., In the early Universe the most vigorous galaxies formed hundreds or even thousands of stars a year., One possibility is that a quiescent galaxy contains a supermassive black holes in its center swallowing nearby matter and radiating excess energy away., Roughly once a year a new star is born in our galaxy The Milky Way., The Niels Bohr Institute [Niels Bohr Institutet] (DK)   

    From The Niels Bohr Institute [Niels Bohr Institutet] (DK): “Black holes helped quenching star formation in the early Universe” 

    Niels Bohr Institute bloc

    From The Niels Bohr Institute [Niels Bohr Institutet] (DK)

    at

    University of Copenhagen [Københavns Universitet] [UCPH] (DK)

    2 June 2022

    John Weaver
    Postdoc
    The Cosmic Dawn Center
    Niels Bohr Institute
    University of Copenhagen
    Mobil: +45 35 33 64 09
    E-mail: john.weaver@nbi.ku.dk

    Peter Laursen
    Academic Research Staff
    The Cosmic Dawn Center
    Niels Bohr Institute
    University of Copenhagen
    Mobil: +45 30 26 59 69
    E-mail: pela@nbi.ku.dk

    Galaxies-While some galaxies form stars at a continuous rate, others die out and lead a more passive life. What made these galaxies stop forming stars at an early age is not well established, not the least because they are so distant and faint that they evade being observed. But looking at the combined light from thousands of galaxies, a team of astronomers including the University of Copenhagen showed that black holes helped turn off star formation.

    Roughly once a year a new star is born in our galaxy The Milky Way.

    Some galaxies form stars faster, and in the early Universe the most vigorous galaxies formed hundreds or even thousands of stars a year. However, others are somehow driven to the other extreme and completely stop forming new stars. Slowly their population of stars burn out, leaving only the small, reddish stars behind.

    In particular in the early Universe, the reason for this so-called quenching is not well-established, although we know that it must have to do with the fuel for stars — cold gas — being depleted. But whether the gas is blown out of the galaxy, is heated to too high temperatures, or something else is going on, is uncertain.

    Another question is why the galaxies stay quiescent: In the early Universe, the intergalactic space was full of gas which eventually should gravitate toward the galaxies, reviving star formation.

    1
    Hundreds of galaxies are seen in this region of the sky, called COSMOS. The most distant ones are seen as small, red specks, enlarged along the edge of the image. By “adding” all these galaxies a unified signal emerges, which has led scientists on the trail of the cause of the galaxies’ death (credit: NAOJ).

    Black holes light up by swallowing gas

    One possibility is that a quiescent galaxy contains a supermassive black holes in its center swallowing nearby matter and radiating excess energy away. This type of “active galactic nucleus” would be a low-luminosity version of the more energetic quasars. The emitted energy would nevertheless still be sufficient to heat the rest of the galaxy’ gas, preventing the formation of new stars.

    If this scenario is true the galaxy should show a weak excess signal in X-ray and radio waves.

    An international team of astronomers, led by postdoc Kei Ito at the SOKENDAI university in Japan, decided to test the hypothesis by digging through a catalog of galaxies observed in a particular region of the sky, dubbed the “COSMOS field”.

    However, Ito and his collaborators faced an inherent problem in this approach:

    Because of the time it takes light time to reach us, exploring early galaxies means observing distant galaxies, billions of light years away. But distant galaxies are faint, and hence the signal, should it be there, is undetectable in any individual galaxy of the COSMOS catalog.

    A stack of galaxies

    To overcome this obstacle, the team decided to “stack” the images of the galaxies — that is, to add the light from all galaxies, looking at the combined signal from all galaxies at the same time.

    “Although we lose the information about the state of any individual galaxy, we can now see their »average« properties. And the result is clear: A typical quenched galaxy 10–12 billion years ago hosted a low-luminosity, active galactic nucleus which may have played a crucial role in preventing rejuvenated star formation,” explains John Weaver, PhD student at the Cosmic Dawn Center, a research center under the Niels Bohr Institute, University of Copenhagen, and DTU Space.

    John Weaver is one of several from the Cosmic Dawn Center who took part in the study. He recently led the effort of collecting, cataloging, and analyzing the 1.7 million galaxies in the COSMOS field.

    “Now that we know the active galactic nuclei are there, we can target the galaxies individually. Future deep follow-up observations — for instance with the new James Webb Space Telescope — will provide more evidence for our proposed scenario,” concludes John Weaver.

    The study was published recently in The Astrophysical Journal.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Stem Education Coalition

    Niels Bohr Institute Campus

    The Niels Bohr Institutet (DK) is a research institute of the Københavns Universitet [UCPH] (DK). The research of the institute spans astronomy, geophysics, nanotechnology, particle physics, quantum mechanics and biophysics.

    The Institute was founded in 1921, as the Institute for Theoretical Physics of the Københavns Universitet [UCPH] (DK), by the Danish theoretical physicist Niels Bohr, who had been on the staff of the University of Copenhagen since 1914, and who had been lobbying for its creation since his appointment as professor in 1916. On the 80th anniversary of Niels Bohr’s birth – October 7, 1965 – the Institute officially became The Niels Bohr Institutet (DK). Much of its original funding came from the charitable foundation of the Carlsberg brewery, and later from the Rockefeller Foundation.

    During the 1920s, and 1930s, the Institute was the centre of the developing disciplines of atomic physics and quantum physics. Physicists from across Europe (and sometimes further abroad) often visited the Institute to confer with Bohr on new theories and discoveries. The Copenhagen interpretation of quantum mechanics is named after work done at the Institute during this time.

    On January 1, 1993 the institute was fused with the Astronomic Observatory, the Ørsted Laboratory and the Geophysical Institute. The new resulting institute retained the name Niels Bohr Institutet (DK).

    Københavns Universitet (UCPH) (DK) is the oldest university and research institution in Denmark. Founded in 1479 as a studium generale, it is the second oldest institution for higher education in Scandinavia after Uppsala University (1477). The university has 23,473 undergraduate students, 17,398 postgraduate students, 2,968 doctoral students and over 9,000 employees. The university has four campuses located in and around Copenhagen, with the headquarters located in central Copenhagen. Most courses are taught in Danish; however, many courses are also offered in English and a few in German. The university has several thousands of foreign students, about half of whom come from Nordic countries.

    The university is a member of the International Alliance of Research Universities (IARU), along with University of Cambridge (UK), Yale University , The Australian National University (AU), and University of California-Berkeley , amongst others. The 2016 Academic Ranking of World Universities ranks the University of Copenhagen as the best university in Scandinavia and 30th in the world, the 2016-2017 Times Higher Education World University Rankings as 120th in the world, and the 2016-2017 QS World University Rankings as 68th in the world. The university has had 9 alumni become Nobel laureates and has produced one Turing Award recipient.

     
  • richardmitnick 7:58 pm on May 28, 2022 Permalink | Reply
    Tags: "A quantum drum that stores quantum states for record-long times", Applications for the plugged in quantum membrane are many., Cooling the quantum drum system to reach quantum ground state., Gravity-not well understood in quantum mechanics-but crucial can now be explored., The Niels Bohr Institute [Niels Bohr Institutet] (DK), The quantum drum is now connected to a read-out unit.   

    From The Niels Bohr Institute [Niels Bohr Institutet] (DK): “A quantum drum that stores quantum states for record-long times” 

    Niels Bohr Institute bloc

    From The Niels Bohr Institute [Niels Bohr Institutet] (DK)

    at

    University of Copenhagen [Københavns Universitet] [UCPH] (DK)

    23 May 2022

    Contact
    Professor Albert Schliesser
    albert.schliesser@nbi.ku.dk

    Quantum computing: Researchers at the Niels Bohr Institute, University of Copenhagen, have improved the coherence time of a previously developed quantum membrane dramatically. The improvement will expand the usability of the membrane for a variety of different purposes. With a coherence time of one hundred milliseconds, the membrane can for example store sensitive quantum information for further processing in a quantum computer or network. The result has now been published in Nature Communications.

    1
    The device used in this work. The square structure close to the center is the superconducting circuit, and the red dot at the center corresponds to the link with the membrane’s motion. The honeycomb structure is used to isolate the motion of the membrane, which happens mostly at the red dot position, from the frame to which it is attached.

    The quantum drum is now connected to a read-out unit

    As a first step, the team of researchers has combined the membrane with a superconducting microwave circuit, which enables precise readouts from the membrane. That is, it has become “plugged in”, as required for virtually any application. With this development, the membrane can be connected to various other devices that process or transmit quantum information.

    Cooling the quantum drum system to reach quantum ground state

    Since the temperature of the environment determines the level of random forces disturbing the membrane, it is imperative to reach a sufficiently low temperature to prevent the quantum state of motion from being washed out. The researchers achieve this by means of a helium-based refrigerator. With the help of the microwave circuit, they can then control the quantum state of the membrane motion. In their recent work, the researchers could prepare the membrane in the quantum ground state, meaning that its motion is dominated by quantum fluctuations. The quantum ground state corresponds to an effective temperature of 0,00005 degrees above the absolute zero, which is −273.15 °C.

    Applications for the plugged in quantum membrane are many

    One could use a slightly modified version of this system that can feel forces from both microwave and optical signals to build a quantum transducer from microwave to optics. Quantum information can be transported at room temperature in optical fibers on kilometers without perturbations. On the other hand, the information is typically processed inside a cooling unit, capable of reaching sufficiently low temperatures for superconducting circuits like the membrane to operate. Connecting these two systems – superconducting circuits to optical fibers – could therefore enable the construction of a quantum internet: several quantum computers linked together with optical fibers. No computers have infinite space, so the possibility of distributing computational capabilities to connected quantum computers, would greatly enhance the capacity to solve complicated problems.

    Gravity – not well understood in quantum mechanics, but crucial – can now be explored

    The role of gravity in the quantum regime is a yet unanswered, fundamental question in physics. This is yet another place where the high coherence time of the membranes demonstrated here may be applied for study. One hypothesis in this area is that gravity has the potential to destroy some quantum states with time. With a device as big as the membrane, such hypotheses may be tested in the future.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Stem Education Coalition

    Niels Bohr Institute Campus

    The Niels Bohr Institutet (DK) is a research institute of the Københavns Universitet [UCPH] (DK). The research of the institute spans astronomy, geophysics, nanotechnology, particle physics, quantum mechanics and biophysics.

    The Institute was founded in 1921, as the Institute for Theoretical Physics of the Københavns Universitet [UCPH] (DK), by the Danish theoretical physicist Niels Bohr, who had been on the staff of the University of Copenhagen since 1914, and who had been lobbying for its creation since his appointment as professor in 1916. On the 80th anniversary of Niels Bohr’s birth – October 7, 1965 – the Institute officially became The Niels Bohr Institutet (DK). Much of its original funding came from the charitable foundation of the Carlsberg brewery, and later from the Rockefeller Foundation.

    During the 1920s, and 1930s, the Institute was the centre of the developing disciplines of atomic physics and quantum physics. Physicists from across Europe (and sometimes further abroad) often visited the Institute to confer with Bohr on new theories and discoveries. The Copenhagen interpretation of quantum mechanics is named after work done at the Institute during this time.

    On January 1, 1993 the institute was fused with the Astronomic Observatory, the Ørsted Laboratory and the Geophysical Institute. The new resulting institute retained the name Niels Bohr Institutet (DK).

    Københavns Universitet (UCPH) (DK) is the oldest university and research institution in Denmark. Founded in 1479 as a studium generale, it is the second oldest institution for higher education in Scandinavia after Uppsala University (1477). The university has 23,473 undergraduate students, 17,398 postgraduate students, 2,968 doctoral students and over 9,000 employees. The university has four campuses located in and around Copenhagen, with the headquarters located in central Copenhagen. Most courses are taught in Danish; however, many courses are also offered in English and a few in German. The university has several thousands of foreign students, about half of whom come from Nordic countries.

    The university is a member of the International Alliance of Research Universities (IARU), along with University of Cambridge (UK), Yale University , The Australian National University (AU), and University of California-Berkeley , amongst others. The 2016 Academic Ranking of World Universities ranks the University of Copenhagen as the best university in Scandinavia and 30th in the world, the 2016-2017 Times Higher Education World University Rankings as 120th in the world, and the 2016-2017 QS World University Rankings as 68th in the world. The university has had 9 alumni become Nobel laureates and has produced one Turing Award recipient.

     
  • richardmitnick 4:54 pm on May 28, 2022 Permalink | Reply
    Tags: "New discovery about distant galaxies- Stars are heavier than we thought", Analyzed light from 140.000 galaxies, , , Massive galaxies die first, Stars in distant galaxies are typically more massive than those in our "local neighborhood"., The least massive galaxies continue to form stars while the more massive galaxies stop birthing new stars., The Niels Bohr Institute [Niels Bohr Institutet] (DK)   

    From The Niels Bohr Institute [Niels Bohr Institutet] (DK): “New discovery about distant galaxies- Stars are heavier than we thought” 

    Niels Bohr Institute bloc

    From The Niels Bohr Institute [Niels Bohr Institutet] (DK)

    at

    University of Copenhagen [Københavns Universitet] [UCPH] (DK)

    25 May 2022

    Contact:

    Albert Sneppen
    Graduate Student
    Niels Bohr Institute
    University of Copenhagen
    Mobile: +45 28 97 64 34
    Mail: asneppen@gmail.com

    Charles Steinhardt
    Associate Professor
    Niels Bohr Institute
    University of Copenhagen
    Phone: +45 35 33 50 10
    Mail: Steinhardt@nbi.ku.dk

    Michael Skov Jensen
    Journalist
    The Faculty of Science
    University of Copenhagen
    Mobile: +45 93 56 58 97
    Mail: msj@science.ku.dk

    Astrophysics A team of University of Copenhagen astrophysicists has arrived at a major result regarding star populations beyond the Milky Way. The result could change our understanding of a wide range of astronomical phenomena, including the formation of black holes, supernovae and why galaxies die.

    1
    Andromeda galaxy. The Andromeda galaxy, our Milky Way’s closest neighbor, is the most distant object in the sky that you can see with your unaided eye. Photo: Getty.

    For as long as humans have studied the heavens, how stars look in distant galaxies has been a mystery. In a study published today in The Astrophysical Journal, a team of researchers at the University of Copenhagen’s Niels Bohr Institute is doing away with previous understandings of stars beyond our own galaxy.

    Since 1955, it has been assumed that the composition of stars in the universe’s other galaxies is similar to that of the hundreds of billions of stars within our own – a mixture of massive, medium mass and low mass stars. But with the help of observations from 140,000 galaxies across the universe and a wide range of advanced models, the team has tested whether the same distribution of stars apparent in the Milky Way applies elsewhere. The answer is no. Stars in distant galaxies are typically more massive than those in our “local neighborhood”. The finding has a major impact on what we think we know about the universe.

    “The mass of stars tells us astronomers a lot. If you change mass, you also change the number of supernovae and black holes that arise out of massive stars. As such, our result means that we’ll have to revise many of the things we once presumed, because distant galaxies look quite different from our own,” says Albert Sneppen, a graduate student at the Niels Bohr Institute and first author of the study.

    Analyzed light from 140.000 galaxies

    Researchers assumed that the size and weight of stars in other galaxies was similar to our own for more than fifty years, for the simple reason that they were unable to observe them through a telescope, as they could with the stars of our own galaxy.

    Distant galaxies are billions of light-years away. As a result, only light from their most powerful stars ever reaches Earth. This has been a headache for researchers around the world for years, as they could never accurately clarify how stars in other galaxies were distributed, an uncertainty that forced them to believe that they were distributed much like the stars in our Milky Way.

    “We’ve only been able to see the tip of the iceberg and known for a long time that expecting other galaxies to look like our own was not a particularly good assumption to make. However, no one has ever been able to prove that other galaxies form different populations of stars. This study has allowed us to do just that, which may open the door for a deeper understanding of galaxy formation and evolution,” says Associate Professor Charles Steinhardt, a co-author of the study.

    In the study, the researchers analyzed light from 140,000 galaxies using the COSMOS catalog, a large international database of more than one million observations of light from other galaxies. These galaxies are distributed from the nearest to farthest reaches of the universe, from which light has traveled a full twelve billion years before being observable on Earth.

    Massive galaxies die first

    According to the researchers, the new discovery will have a wide range of implications. For example, it remains unresolved why galaxies die and stop forming new stars. The new result suggests that this might be explained by a simple trend.

    “Now that we are better able to decode the mass of stars, we can see a new pattern; the least massive galaxies continue to form stars, while the more massive galaxies stop birthing new stars,. This suggests a remarkably universal trend in the death of galaxies,” concludes Albert Sneppen.

    The research was conducted at the Cosmic Dawn Center (DAWN), an international basic research center for astronomy supported by the Danish National Research Foundation. DAWN is a collaboration between the Niels Bohr Institute at the University of Copenhagen and DTU Space at the Technical University of Denmark.

    The center is dedicated to understanding when and how the first galaxies, stars and black holes formed and evolved in the early universe, through observations using the largest telescopes along with theoretical work and simulations.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Stem Education Coalition

    Niels Bohr Institute Campus

    The Niels Bohr Institutet (DK) is a research institute of the Københavns Universitet [UCPH] (DK). The research of the institute spans astronomy, geophysics, nanotechnology, particle physics, quantum mechanics and biophysics.

    The Institute was founded in 1921, as the Institute for Theoretical Physics of the Københavns Universitet [UCPH] (DK), by the Danish theoretical physicist Niels Bohr, who had been on the staff of the University of Copenhagen since 1914, and who had been lobbying for its creation since his appointment as professor in 1916. On the 80th anniversary of Niels Bohr’s birth – October 7, 1965 – the Institute officially became The Niels Bohr Institutet (DK). Much of its original funding came from the charitable foundation of the Carlsberg brewery, and later from the Rockefeller Foundation.

    During the 1920s, and 1930s, the Institute was the centre of the developing disciplines of atomic physics and quantum physics. Physicists from across Europe (and sometimes further abroad) often visited the Institute to confer with Bohr on new theories and discoveries. The Copenhagen interpretation of quantum mechanics is named after work done at the Institute during this time.

    On January 1, 1993 the institute was fused with the Astronomic Observatory, the Ørsted Laboratory and the Geophysical Institute. The new resulting institute retained the name Niels Bohr Institutet (DK).

    Københavns Universitet (UCPH) (DK) is the oldest university and research institution in Denmark. Founded in 1479 as a studium generale, it is the second oldest institution for higher education in Scandinavia after Uppsala University (1477). The university has 23,473 undergraduate students, 17,398 postgraduate students, 2,968 doctoral students and over 9,000 employees. The university has four campuses located in and around Copenhagen, with the headquarters located in central Copenhagen. Most courses are taught in Danish; however, many courses are also offered in English and a few in German. The university has several thousands of foreign students, about half of whom come from Nordic countries.

    The university is a member of the International Alliance of Research Universities (IARU), along with University of Cambridge (UK), Yale University , The Australian National University (AU), and University of California-Berkeley , amongst others. The 2016 Academic Ranking of World Universities ranks the University of Copenhagen as the best university in Scandinavia and 30th in the world, the 2016-2017 Times Higher Education World University Rankings as 120th in the world, and the 2016-2017 QS World University Rankings as 68th in the world. The university has had 9 alumni become Nobel laureates and has produced one Turing Award recipient.

     
  • richardmitnick 8:54 pm on May 23, 2022 Permalink | Reply
    Tags: "Planets of binary stars as possible homes for alien life", , , Bursts may influence the structure of the later planetary system., , , , , , , The binary star systems studied in this work-NGC 1333-IRAS2A-is surrounded by a disc consisting of gas and dust., The Niels Bohr Institute [Niels Bohr Institutet] (DK), The team has complemented the observations with computer simulations reaching both backwards and forwards in time., The two stars encircle each other and at given intervals their joint gravity will affect the surrounding gas and dust disc in a way which causes huge amounts of material to fall towards the star.   

    From The Niels Bohr Institute [Niels Bohr Institutet] (DK): “Planets of binary stars as possible homes for alien life” 

    Niels Bohr Institute bloc

    From The Niels Bohr Institute [Niels Bohr Institutet] (DK)

    at

    University of Copenhagen [Københavns Universitet] [UCPH] (DK)

    23 May 2022

    Contacts:

    Jes Kristian Jørgensen
    Professor
    Astrophysics and Planetary Science
    Niels Bohr Institute
    University of Copenhagen
    jeskj@nbi.ku.dk
    +45 35 32 41 86

    Rajika L. Kuruwita
    Postdoc
    Astrophysics and Planetary Science
    Niels Bohr Institute
    University of Copenhagen
    rajika.kuruwita@nbi.ku.dk
    +45 35 32 79 98

    Maria Hornbek
    Journalist
    Faculty of Science
    University of Copenhagen
    maho@science.ku.dk
    +45 22 95 42 83

    Nearly half of Sun-size stars are binary. According to University of Copenhagen research, planetary systems around binary stars may be very different from those around single stars. This points to new targets in the search for extraterrestrial life forms.

    Since the only known planet with life, the Earth, orbits the Sun, planetary systems around stars of similar size are obvious targets for astronomers trying to locate extraterrestrial life. Nearly every second star in that category is a binary star. A new result from research at University of Copenhagen indicate that planetary systems are formed in a very different way around binary stars than around single stars such as the Sun.

    “The result is exciting since the search for extraterrestrial life will be equipped with several new, extremely powerful instruments within the coming years. This enhances the significance of understanding how planets are formed around different types of stars. Such results may pinpoint places which would be especially interesting to probe for the existence of life,” says Professor Jes Kristian Jørgensen, Niels Bohr Institute, University of Copenhagen, heading the project.

    The results from the project, which also has participation of astronomers from Taiwan and USA, are published in the distinguished journal Nature.

    Bursts shape the planetary system

    The new discovery has been made based on observations made by the ALMA telescopes in Chile of a young binary star about 1,000 lightyears from Earth.

    The binary star system, NGC 1333-IRAS2A, is surrounded by a disc consisting of gas and dust. The observations can only provide researchers with a snapshot from a point in the evolution of the binary star system. However, the team has complemented the observations with computer simulations reaching both backwards and forwards in time.

    “The observations allow us to zoom in on the stars and study how dust and gas move towards the disc. The simulations will tell us which physics are at play, and how the stars have evolved up till the snapshot we observe, and their future evolution,” explains Postdoc Rajika L. Kuruwita, Niels Bohr Institute, second author of the Nature article.

    2
    Simulation of binary star (from the scientific article by Jørgensen, Kuruwita et al.)

    Notably, the movement of gas and dust does not follow a continuous pattern. At some points in time – typically for relatively shorts periods of ten to one hundred years every thousand years – the movement becomes very strong. The binary star becomes ten to one hundred times brighter, until it returns to its regular state.

    Presumably, the cyclic pattern can be explained by the duality of the binary star. The two stars encircle each other, and at given intervals their joint gravity will affect the surrounding gas and dust disc in a way which causes huge amounts of material to fall towards the star.

    “The falling material will trigger a significant heating. The heat will make the star much brighter than usual,” says Rajika L. Kuruwita, adding:

    “These bursts will tear the gas and dust disc apart. While the disc will build up again, the bursts may still influence the structure of the later planetary system.”

    Comets carry building blocks for life.

    The observed stellar system is still too young for planets to have formed. The team hopes to obtain more observational time at ALMA, allowing to investigate the formation of planetary systems.

    Not only planets but also comets will be in focus:

    “Comets are likely to play a key role in creating possibilities for life to evolve. Comets often have a high content of ice with presence of organic molecules. It can well be imagined that the organic molecules are preserved in comets during epochs where a planet is barren, and that later comet impacts will introduce the molecules to the planet’s surface,” says Jes Kristian Jørgensen.

    Understanding the role of the bursts is important in this context:

    “The heating caused by the bursts will trigger evaporation of dust grains and the ice surrounding them. This may alter the chemical composition of the material from which planets are formed.”

    Thus, chemistry is a part of the research scope:

    “The wavelengths covered by ALMA allow us to see quite complex organic molecules, so molecules with 9-12 atoms and containing carbon. Such molecules can be building blocks for more complex molecules which are key to life as we know it. For example, amino acids which have been found in comets.”

    Powerful tools join the search for life in space

    ALMA (Atacama Large Millimeter/submillimeter Array) is not a single instrument but 66 telescopes operating in coordination. This allows for a much better resolution than could have been obtained by a single telescope.

    Very soon the new James Webb Space Telescope (JWST) will join the search for extraterrestrial life.

    Near the end of the decade, JWST will be complemented by the ELT (European Large Telescope) and the extremely powerful SKA (Square Kilometer Array) both planned to begin observing in 2027.

    The ELT will with its 39-meter mirror be the biggest optical telescope in the world and will be poised to observe the atmospheric conditions of exoplanets (planets outside the Solar System, ed.). SKA will consist of thousands of telescopes in South Africa and in Australia working in coordination and will have longer wavelengths than ALMA.

    ”The SKA will allow for observing large organic molecules directly. The James Webb Space Telescope operates in the infrared which is especially well suited for observing molecules in ice. Finally, we continue to have ALMA which is especially well suited for observing molecules in gas form. Combining the different sources will provide a wealth of exciting results,” Jes Kristian Jørgensen concludes.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Stem Education Coalition

    Niels Bohr Institute Campus

    The Niels Bohr Institutet (DK) is a research institute of the Københavns Universitet [UCPH] (DK). The research of the institute spans astronomy, geophysics, nanotechnology, particle physics, quantum mechanics and biophysics.

    The Institute was founded in 1921, as the Institute for Theoretical Physics of the Københavns Universitet [UCPH] (DK), by the Danish theoretical physicist Niels Bohr, who had been on the staff of the University of Copenhagen since 1914, and who had been lobbying for its creation since his appointment as professor in 1916. On the 80th anniversary of Niels Bohr’s birth – October 7, 1965 – the Institute officially became The Niels Bohr Institutet (DK). Much of its original funding came from the charitable foundation of the Carlsberg brewery, and later from the Rockefeller Foundation.

    During the 1920s, and 1930s, the Institute was the centre of the developing disciplines of atomic physics and quantum physics. Physicists from across Europe (and sometimes further abroad) often visited the Institute to confer with Bohr on new theories and discoveries. The Copenhagen interpretation of quantum mechanics is named after work done at the Institute during this time.

    On January 1, 1993 the institute was fused with the Astronomic Observatory, the Ørsted Laboratory and the Geophysical Institute. The new resulting institute retained the name Niels Bohr Institutet (DK).

    Københavns Universitet (UCPH) (DK) is the oldest university and research institution in Denmark. Founded in 1479 as a studium generale, it is the second oldest institution for higher education in Scandinavia after Uppsala University (1477). The university has 23,473 undergraduate students, 17,398 postgraduate students, 2,968 doctoral students and over 9,000 employees. The university has four campuses located in and around Copenhagen, with the headquarters located in central Copenhagen. Most courses are taught in Danish; however, many courses are also offered in English and a few in German. The university has several thousands of foreign students, about half of whom come from Nordic countries.

    The university is a member of the International Alliance of Research Universities (IARU), along with University of Cambridge (UK), Yale University , The Australian National University (AU), and University of California-Berkeley , amongst others. The 2016 Academic Ranking of World Universities ranks the University of Copenhagen as the best university in Scandinavia and 30th in the world, the 2016-2017 Times Higher Education World University Rankings as 120th in the world, and the 2016-2017 QS World University Rankings as 68th in the world. The university has had 9 alumni become Nobel laureates and has produced one Turing Award recipient.

     
  • richardmitnick 7:51 pm on May 23, 2022 Permalink | Reply
    Tags: "Danish astrophysics student discovers link between global warming and locally unstable weather", Albert Sneppen got the idea that a method normally used to analyze the distribution of light on the night sky could be used to study the distribution of temperature fluctuations on the Earth's surface, , , , , Cold waves; droughts storms and precipitation also reaches new heights., Earth is probably at its warmest for over 100000 years., Global and local warming, How global warming gives rise to local weather extremes is an active though not yet fully understood field of research., It is now clear that Earth is warming globally and that this warming is predominantly human-made., Last year Canadians measured their highest temperature at almost 50 °C- five degrees warmer than the previous record!, Since the beginning of the Industrial Revolution about 250 years ago the world has become 1.1 °C warmer., The Niels Bohr Institute [Niels Bohr Institutet] (DK)   

    From The Niels Bohr Institute [Niels Bohr Institutet] (DK): “Danish astrophysics student discovers link between global warming and locally unstable weather” 

    Niels Bohr Institute bloc

    From The Niels Bohr Institute [Niels Bohr Institutet] (DK)

    at

    University of Copenhagen [Københavns Universitet] [UCPH] (DK)

    23 May 2022

    By Peter Laursen
    Cosmic Dawn Center
    E-mail: pela@nbi.ku.dk
    Phone: +45 35320519
    Mobil: +45 30265969

    Albert Sneppen
    Email: asneppen@gmail.com
    Phone: +45 2897 6434

    1
    Local temperature fluctuations on Earth in the 1880s (left), compared to today (right). White colors show the average temperature during the period 1951–1980, while blue and red show colder and warmer temperatures, respectively. Globally, the temperature has increased roughly 1 °C over this period, but locally the variations may be greater or smaller. Now, new research sheds light on the link between these variations and the unstable weather. Source: NASA’s Scientific Visualization Studio.

    With over 99 percent agreement among climate scientists, it is now clear that Earth is warming globally and that this warming is predominantly human-made.

    Temperature increases faster than ever before, and Earth is probably at its warmest for over 100000 years. Since the beginning of the Industrial Revolution about 250 years ago the world has become 1.1 °C warmer.

    Global and local warming

    Climate change in recent years has given us extreme heat records, such as last year, when Canadians measured their highest temperature at almost 50 °C; five degrees warmer than the previous record!

    But the problem is not limited to heat records: Cold waves; droughts storms and precipitation also reaches new heights.

    How global warming gives rise to local weather extremes is an active though not yet fully understood field of research. But with a new mathematical approach, master student Albert Sneppen just came one step closer to the connection between global temperature rise and the instability of local weather.

    Inspiration from early Universe

    Albert Sneppen spends his time studying astrophysics at the Cosmic Dawn Center, a basic research center under the Niels Bohr Institute and DTU Space in Copenhagen, and is used to pondering on black holes and exploding stars. One day he got the idea that a method normally used to analyze the distribution of light on the night sky could also be used to study the distribution of temperature fluctuations on the Earth’s surface.

    The method is used in particular to interpret the so-called cosmic microwave background radiation, also known as the “Big Bang afterglow”. Suddenly Albert Sneppen saw a kind of “aesthetic coincidence” between heat distribution on the Universe’s scales and the Earth’s scales.

    “For decades, the heat radiation of the early Universe has been studied in the night sky. Researchers use the so-called »angular power spectrum« which tells you how much all parts of the night sky — both locally and globally — are connected. And that is exactly what you want in climate research; a method of examining all scales of climate change at the same time,” Albert Sneppen explains.

    1
    Albert Sneppen With a new mathematical approach, Albert Sneppen has come one step closer to the connection between the global temperature rise and the instability of the local weather.

    The structure of climate

    The new mathematical perspective supports hitherto unknown structures in the climate.

    In addition to reproducing Earth’s temperatures and confirming the observed climate trends on the largest scales, it shows how local weather fluctuations are created, i.e. on small scales. It turns out that fluctuations and differences on large scales are followed by fluctuations and differences on small scales.

    ”When we humans perturb Earth’s temperature on the largest scales, it causes larger temperature differences on all scales from regions of about 2,000 km, and all the way down to 50 km,” Albert Sneppen explicates.

    2
    To the left is a map of Earth’s global temperature. This “total” temperature can also be described as a sum of temperatures on coarse (large) scales, temperatures on finer scales, even finer scales, etc. On large scales we see the well-known climate changes. Albert Sneppen’s study documents that the temperature differences become stronger on small scales (Credit: Albert Sneppen).

    In other words, climate change makes the differences in temperature grow locally — and with large temperature differences come even more extreme weather patterns.

    “The instability and volatility of the weather has generally grown since the industrial revolution, but has especially gained momentum over the last 40 years,” says Albert Sneppen. “Together with several other theoretical and observational studies, this model indicates that the weather will become even more unstable in the coming decades.”

    Albert Sneppen’s article has just been published in The European Physical Journal Plus.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Stem Education Coalition

    Niels Bohr Institute Campus

    The Niels Bohr Institutet (DK) is a research institute of the Københavns Universitet [UCPH] (DK). The research of the institute spans astronomy, geophysics, nanotechnology, particle physics, quantum mechanics and biophysics.

    The Institute was founded in 1921, as the Institute for Theoretical Physics of the Københavns Universitet [UCPH] (DK), by the Danish theoretical physicist Niels Bohr, who had been on the staff of the University of Copenhagen since 1914, and who had been lobbying for its creation since his appointment as professor in 1916. On the 80th anniversary of Niels Bohr’s birth – October 7, 1965 – the Institute officially became The Niels Bohr Institutet (DK). Much of its original funding came from the charitable foundation of the Carlsberg brewery, and later from the Rockefeller Foundation.

    During the 1920s, and 1930s, the Institute was the centre of the developing disciplines of atomic physics and quantum physics. Physicists from across Europe (and sometimes further abroad) often visited the Institute to confer with Bohr on new theories and discoveries. The Copenhagen interpretation of quantum mechanics is named after work done at the Institute during this time.

    On January 1, 1993 the institute was fused with the Astronomic Observatory, the Ørsted Laboratory and the Geophysical Institute. The new resulting institute retained the name Niels Bohr Institutet (DK).

    Københavns Universitet (UCPH) (DK) is the oldest university and research institution in Denmark. Founded in 1479 as a studium generale, it is the second oldest institution for higher education in Scandinavia after Uppsala University (1477). The university has 23,473 undergraduate students, 17,398 postgraduate students, 2,968 doctoral students and over 9,000 employees. The university has four campuses located in and around Copenhagen, with the headquarters located in central Copenhagen. Most courses are taught in Danish; however, many courses are also offered in English and a few in German. The university has several thousands of foreign students, about half of whom come from Nordic countries.

    The university is a member of the International Alliance of Research Universities (IARU), along with University of Cambridge (UK), Yale University , The Australian National University (AU), and University of California-Berkeley , amongst others. The 2016 Academic Ranking of World Universities ranks the University of Copenhagen as the best university in Scandinavia and 30th in the world, the 2016-2017 Times Higher Education World University Rankings as 120th in the world, and the 2016-2017 QS World University Rankings as 68th in the world. The university has had 9 alumni become Nobel laureates and has produced one Turing Award recipient.

     
  • richardmitnick 1:22 pm on May 15, 2022 Permalink | Reply
    Tags: "Scientists discovers new properties of magnetism that could change our computers", , , In a new discovery from the University of Copenhagen, Our electronics can no longer shrink and are on the verge of overheating., , , researchers have uncovered a fundamental property of magnetism which may be relevant for the development of of more powerful and less hot computers., The Niels Bohr Institute [Niels Bohr Institutet] (DK)   

    From The Niels Bohr Institute [Niels Bohr Institutet] (DK): “Scientists discovers new properties of magnetism that could change our computers” 

    Niels Bohr Institute bloc

    From The Niels Bohr Institute [Niels Bohr Institutet] (DK)

    at

    University of Copenhagen [Københavns Universitet] [UCPH] (DK)

    11 May 2022

    Kim Lefmann
    Professor
    Condensed Matter Physics
    Niels Bohr Institute
    University of Copenhagen
    Mail: lefmann@nbi.ku.dk
    Phone: +45 29 25 04 76

    Michael Skov Jensen
    Journalist
    Faculty of Science
    University of Copenhagen
    Mail: msj@science.ku.dk
    Phone: +45 93 56 58 97

    Physics-Our electronics can no longer shrink and are on the verge of overheating. But in a new discovery from the University of Copenhagen, researchers have uncovered a fundamental property of magnetism, which may become relevant for the development of a new generation of more powerful and less hot computers.

    1
    Photo: Getty.

    The ongoing miniaturization of components for computers which have electrons as their vehicles for information transfer has become challenged. Instead, it could be possible to use magnetism and thereby keep up the development of both cheaper and more powerful computers. This is one of the perspectives as scientists from the Niels Bohr Institute (NBI), University of Copenhagen, today publish a new discovery in the prestigious journal Nature Communications.

    “The function of a computer involves sending electric current through a microchip. While the amount is tiny, the current will not only transport information but also contribute to heating up the chip. When you have a huge number of components tightly packed, the heat becomes a problem. This is one of the reasons why we have reached the limit for how much you can shrink the components. A computer based on magnetism would avoid the problem of overheating,” says Professor Kim Lefmann, Condensed Matter Physics, NBI.

    ”Our discovery is not a direct recipe for making a computer based on magnetism. Rather we have disclosed a fundamental magnetic property which you need to control, if you want to design a such computer.”

    Quantum mechanics halt acceleration

    To grasp the discovery, one needs to know that magnetic materials are not necessarily uniformly oriented. In other words, areas with magnetic north and south poles may exist side by side. These areas are termed domains, and the border between a north and south pole domain is the domain wall. While the domain wall is not a physical object it nevertheless has several particle-like properties. Thereby, it is an example of what physicists refer to as quasi-particles, meaning virtual phenomena which resemble particles.

    “It is well established that one can move the position of the domain wall by applying a magnetic field. Initially, the wall will react similarly to a physical object which is subjected to gravity and accelerates until it impacts the surface below. However, other laws apply to the quantum world,” Kim Lefmann explains.

    “At the quantum level, particles are not only objects they are also waves. This applies to a quasi-particle such as a domain wall as well. The wave properties imply that the acceleration is slowed down as the wall interacts with atoms in the surroundings. Soon, the acceleration will stop totally, and the position of the wall will start to oscillate.”

    Swiss hypothesis provided inspiration

    A similar phenomenon is seen for electrons. Here, it is known as Bloch oscillations named after the American-Swizz physicist and Nobel laureate Felix Bloch who discovered it in 1929. In 1996 Swiss theoretical physicists suggested that a parallel to Bloch oscillations could possibly exist in magnetism. Now – a little more than a quarter of a century later – Kim Lefmann and his colleagues managed to confirm this hypothesis. The research team has studied the movement of domain walls in the magnetic material CoCl2 ∙ 2D2O.

    “We have known for a long time, that it would be possible to verify the hypothesis, but we also understood that it would require access to neutron sources. Uniquely, neutrons react to magnetic fields despite not being electrically charged. This makes them ideal for magnetic studies,” Kim Lefmann tells.

    Boost for research in magnetics

    Neutron sources are large-scale scientific instruments. Worldwide, only some twenty facilities exist and competition for beam time is fierce. Therefore, only now has the team managed to get enough data to satisfy the Nature Communications editors.

    “We have had beam time at The National Institute of Standards and Technology in USA, and ILL in France respectively. Fortunately, the conditions for magnetic research will improve greatly as the ESS (European Spallation Source, ed.) becomes operational in Lund, Sweden. Not just will our chances for beam time become better, since Denmark is a co-owner of the facility. The quality of the results will become roughly 100 times better, because the ESS will be an extremely powerful neutron source,” says Kim Lefmann.

    To clarify, he emphasizes that even though quantum mechanics is involved, a computer based on magnetism would not be a type of quantum computer:

    “In the future, quantum computers are expected to be able to tackle extremely complicated tasks. But even then, we will still need conventional computers for the more ordinary computing. This is where computers based on magnetism might become relevant alternatives as better than current computers.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Stem Education Coalition

    Niels Bohr Institute Campus

    The Niels Bohr Institutet (DK) is a research institute of the Københavns Universitet [UCPH] (DK). The research of the institute spans astronomy, geophysics, nanotechnology, particle physics, quantum mechanics and biophysics.

    The Institute was founded in 1921, as the Institute for Theoretical Physics of the Københavns Universitet [UCPH] (DK), by the Danish theoretical physicist Niels Bohr, who had been on the staff of the University of Copenhagen since 1914, and who had been lobbying for its creation since his appointment as professor in 1916. On the 80th anniversary of Niels Bohr’s birth – October 7, 1965 – the Institute officially became The Niels Bohr Institutet (DK). Much of its original funding came from the charitable foundation of the Carlsberg brewery, and later from the Rockefeller Foundation.

    During the 1920s, and 1930s, the Institute was the centre of the developing disciplines of atomic physics and quantum physics. Physicists from across Europe (and sometimes further abroad) often visited the Institute to confer with Bohr on new theories and discoveries. The Copenhagen interpretation of quantum mechanics is named after work done at the Institute during this time.

    On January 1, 1993 the institute was fused with the Astronomic Observatory, the Ørsted Laboratory and the Geophysical Institute. The new resulting institute retained the name Niels Bohr Institutet (DK).

    Københavns Universitet (UCPH) (DK) is the oldest university and research institution in Denmark. Founded in 1479 as a studium generale, it is the second oldest institution for higher education in Scandinavia after Uppsala University (1477). The university has 23,473 undergraduate students, 17,398 postgraduate students, 2,968 doctoral students and over 9,000 employees. The university has four campuses located in and around Copenhagen, with the headquarters located in central Copenhagen. Most courses are taught in Danish; however, many courses are also offered in English and a few in German. The university has several thousands of foreign students, about half of whom come from Nordic countries.

    The university is a member of the International Alliance of Research Universities (IARU), along with University of Cambridge (UK), Yale University , The Australian National University (AU), and University of California-Berkeley , amongst others. The 2016 Academic Ranking of World Universities ranks the University of Copenhagen as the best university in Scandinavia and 30th in the world, the 2016-2017 Times Higher Education World University Rankings as 120th in the world, and the 2016-2017 QS World University Rankings as 68th in the world. The university has had 9 alumni become Nobel laureates and has produced one Turing Award recipient.

     
  • richardmitnick 9:15 pm on March 16, 2022 Permalink | Reply
    Tags: "Ancient ice reveals scores of gigantic volcanic eruptions", , , , , Paleovolcanology, , The Niels Bohr Institute [Niels Bohr Institutet] (DK), ,   

    From The University of Copenhagen [Københavns Universitet](DK) and The Niels Bohr Institute [Niels Bohr Institutet] (DK): “Ancient ice reveals scores of gigantic volcanic eruptions” 

    From The University of Copenhagen [Københavns Universitet](DK)

    and

    Niels Bohr Institute bloc

    The Niels Bohr Institute [Niels Bohr Institutet] (DK)

    16 March 2022

    Anders Svensson
    Associate Professor
    Niels Bohr Institute
    University of Copenhagen
    as@nbi.ku.dk
    +45 35 32 06 16

    Maria Hornbek
    Journalist
    Faculty of Science
    University of Copenhagen
    maho@science.ku.dk
    +45 22 95 42 83

    16 March 2022

    Volcanoes

    Ice cores drilled in Antarctica and Greenland have revealed gigantic volcanic eruptions during the last ice age. Sixty-nine of these were larger than any eruption in modern history. According to the University of Copenhagen physicists behind the research, these eruptions can teach us about our planet’s sensitivity to climate change.

    For many people, the mention of a volcanic eruption conjures up doomsday scenarios that include deafening explosions, dark ash billowing into the stratosphere and gloopy lava burying everything in its path as panicked humans run for their lives. While such an eruption could theoretically happen tomorrow, we have had to make do with disaster films and books when it comes to truly massive volcanic eruptions in the modern era.

    “We haven’t experienced any of history’s largest volcanic eruptions. We can see that now. Eyjafjellajökull, which paralysed European air traffic in 2010, pales in comparison to the eruptions we identified further back in time.

    1
    Eruption at Fimmvörðuháls at dusk.
    27 March 2010. Credit: Boaworm

    Many of these were larger than any eruption over the last 2,500 years,” says Associate Professor Anders Svensson of the University of Copenhagen’s Niels Bohr Institute.

    By comparing ice cores drilled in Antarctica and Greenland, he and his fellow researchers managed to estimate the quantity and intensity of volcanic eruptions over the last 60,000 years. Estimates of volcanic eruptions more than 2,500 years ago have been associated with great uncertainty and a lack of precision, until now.

    ____________________________________________
    FACT BOX: SELECTION OF KNOWN VOLCANIC ERUPTIONS

    Volcanic eruptions are classified by their size on the so-called Volcanic Explosivity Index (VEI), which ranges from 1-8.

    Etna, Italy (1669): 3 on the VEI scale
    Eyjafjellajökul, Iceland (2010): 4 on the VEI scale
    Vesuvius, Italy (year 79): 5 on the VEI scale
    Laki, Iceland (1783): 6 on the VEI scale
    Krakatau, Indonesia (1883): 6 on the VEI scale
    Tambora, Indonesia (1815): 7 on the VEI scale
    Lake Taupo, New Zealand (26,500 years ago): 8 on the VEI scale
    Toba, Indonesia (74,000 years ago): 8 on the VEI scale
    ____________________________________________

    Sixty-nine eruptions larger than Mount Tambora

    Eighty-five of the volcanic eruptions identified by the researchers were large global eruptions. Sixty-nine of these are estimated to be larger than the 1815 eruption of Mount Tambora in Indonesia – the largest volcanic eruption in recorded human history. So much sulfuric acid was ejected into the stratosphere by the Tambora eruption that it blocked sunlight and caused global cooling in the years that followed. The eruption also caused tsunamis, drought, famine and at least 80,000 deaths.

    “To reconstruct ancient volcanic eruptions, ice cores offer a few advantages over other methods. Whenever a really large eruption occurs, sulfuric acid is ejected into the upper atmosphere, which is then distributed globally – including onto Greenland and Antarctica. We can estimate the size of an eruption by looking at the amount of sulfuric acid that has fallen,” explains Anders Svensson.

    In a previous study, the researchers managed to synchronize ice cores from Antarctica and Greenland – i.e., to date the respective core layers on the same time scale. By doing so, they were able to compare sulphur residues in ice and deduce when sulfuric acid spread to both poles after globally significant eruptions.

    2
    Anders Svensson inspecting an icecore in Greenland (credit: NEEM [North Greenland Eemian Ice Drilling])

    When will it happen again?

    “The new 60,000-year timeline of volcanic eruptions supplies us with better statistics than ever before. Now we can see that many more of these great eruptions occurred during the prehistoric Ice Age than in modern times. Because large eruptions are relatively rare, a long timeline is needed to know when they occur. That is what we now have,” says Anders Svensson.

    One may be left wondering when the next of these massive eruptions will occur. But Svensson isn’t ready to make any concrete predictions:

    “Three eruptions of the largest known category occurred during the entire period we studied, so-called VEI-8 eruptions (see fact box). So, we can expect more at some point, but we just don’t know if that will be in a hundred or a few thousand years. Tambora sized eruptions appears to erupt once or twice every thousand years, so the wait for that may be shorter.”

    How was climate affected?

    When powerful enough, volcanic eruptions can affect global climate, where there is typically a 5-10- year period of cooling. As such, there is great interest in mapping the major eruptions of the past – as they can help us look into the future.

    “Ice cores contain information about temperatures before and after the eruptions, which allows us to calculate the effect on climate. As large eruptions tell us a lot about how sensitive our planet is to changes in the climate system, they can be useful for climate predictions,” explains Anders Svensson.

    Determining Earth’s climate sensitivity is an Achilles heel of current climate models. Svensson concludes:

    “The current IPCC models do not have a firm grasp of climate sensitivity – i.e., what the effect of a doubling of CO2 in the atmosphere will be. Vulcanism can supply us with answers as to how much temperature changes when Earths atmospheric radiation budget changes, whether due to CO2 or a blanket of sulphur particles. So, when we have estimated the effects of large volcanic eruptions on climate, we will be able to use the result to improve climate models.”

    The recent study is published in the journal, Climate of the Past.

    The researchers who contributed to the study are: Jiamei Lin, Anders Svensson, Christine S. Hvidberg, Johannes Lohmann, Steffen Kristiansen, Dorthe Dahl-Jensen, Jørgen P. Steffensen, Sune O. Rasmussen, Eliza Cook, Helle Astrid Kjær and Bo M. Vinther from the Niels Bohr Institute at the University of Copenhagen; Hubertus Fischer, Thomas Stocker, Michael Sigl and Matthias Bigler of The University of Bern [Universität Bern](CH); Mirko Severi and Rita Traversi of the The University of Florence [Università degli Studi di Firenze](IT) and Robert Mulvaney of the British Antarctic Survey in the UK.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Niels Bohr Institute Campus

    The Niels Bohr Institutet (DK) is a research institute of the Københavns Universitet [UCPH] (DK). The research of the institute spans astronomy, geophysics, nanotechnology, particle physics, quantum mechanics and biophysics.

    The Institute was founded in 1921, as the Institute for Theoretical Physics of the Københavns Universitet [UCPH] (DK), by the Danish theoretical physicist Niels Bohr, who had been on the staff of the University of Copenhagen since 1914, and who had been lobbying for its creation since his appointment as professor in 1916. On the 80th anniversary of Niels Bohr’s birth – October 7, 1965 – the Institute officially became The Niels Bohr Institutet (DK). Much of its original funding came from the charitable foundation of the Carlsberg brewery, and later from the Rockefeller Foundation.

    During the 1920s, and 1930s, the Institute was the centre of the developing disciplines of atomic physics and quantum physics. Physicists from across Europe (and sometimes further abroad) often visited the Institute to confer with Bohr on new theories and discoveries. The Copenhagen interpretation of quantum mechanics is named after work done at the Institute during this time.

    On January 1, 1993 the institute was fused with the Astronomic Observatory, the Ørsted Laboratory and the Geophysical Institute. The new resulting institute retained the name Niels Bohr Institutet (DK).

    Københavns Universitet (UCPH) (DK) is the oldest university and research institution in Denmark. Founded in 1479 as a studium generale, it is the second oldest institution for higher education in Scandinavia after Uppsala University (1477). The university has 23,473 undergraduate students, 17,398 postgraduate students, 2,968 doctoral students and over 9,000 employees. The university has four campuses located in and around Copenhagen, with the headquarters located in central Copenhagen. Most courses are taught in Danish; however, many courses are also offered in English and a few in German. The university has several thousands of foreign students, about half of whom come from Nordic countries.

    The university is a member of the International Alliance of Research Universities (IARU), along with University of Cambridge (UK), Yale University , The Australian National University (AU), and University of California-Berkeley , amongst others. The 2016 Academic Ranking of World Universities ranks the University of Copenhagen as the best university in Scandinavia and 30th in the world, the 2016-2017 Times Higher Education World University Rankings as 120th in the world, and the 2016-2017 QS World University Rankings as 68th in the world. The university has had 9 alumni become Nobel laureates and has produced one Turing Award recipient.

    U Copenhagen campus

    The University of Copenhagen [Københavns Universitet] (DK)] is a public research university in Copenhagen, Denmark. Founded in 1479, the University of Copenhagen is the second-oldest university in Scandinavia, and ranks as one of the top universities in the Nordic countries and Europe.

    Its establishment sanctioned by Pope Sixtus IV, the University of Copenhagen was founded by Christian I of Denmark as a Catholic teaching institution with a predominantly theological focus. After 1537, it became a Lutheran seminary under King Christian III. Up until the 18th century, the university was primarily concerned with educating clergymen. Through various reforms in the 18th and 19th century, the University of Copenhagen was transformed into a modern, secular university, with science and the humanities replacing theology as the main subjects studied and taught.

    The University of Copenhagen consists of six different faculties, with teaching taking place in its four distinct campuses, all situated in Copenhagen. The university operates 36 different departments and 122 separate research centres in Copenhagen, as well as a number of museums and botanical gardens in and outside the Danish capital. The University of Copenhagen also owns and operates multiple research stations around Denmark, with two additional ones located in Greenland. Additionally, The Faculty of Health and Medical Sciences and the public hospitals of the Capital and Zealand Region of Denmark constitute the conglomerate Copenhagen University Hospital.

    A number of prominent scientific theories and schools of thought are namesakes of the University of Copenhagen. The famous Copenhagen Interpretation of quantum mechanics was conceived at the Niels Bohr Institute [Niels Bohr Institutet](DK), which is part of the university. The Department of Political Science birthed the Copenhagen School of Security Studies which is also named after the university. Others include the Copenhagen School of Theology and the Copenhagen School of Linguistics.

    As of October 2020, 39 Nobel laureates and 1 Turing Award laureate have been affiliated with the University of Copenhagen as students, alumni or faculty. Alumni include one president of the United Nations General Assembly and at least 24 prime ministers of Denmark. The University of Copenhagen fosters entrepreneurship, and between 5 and 6 start-ups are founded by students, alumni or faculty members each week.

    History

    The university is a member of the International Alliance of Research Universities (IARU), along with University of Cambridge (UK), Yale University (US), The Australian National University (AU), and University of California, Berkeley(US), amongst others. The 2016 Academic Ranking of World Universities ranks the University of Copenhagen as the best university in Scandinavia and 30th in the world, the 2016-2017 Times Higher Education World University Rankings as 120th in the world, and the 2016-2017 QS World University Rankings as 68th in the world. The university has had 9 alumni become Nobel laureates and has produced one Turing Award recipient.

    The University of Copenhagen was founded in 1479 and is the oldest university in Denmark. In 1474, Christian I of Denmark journeyed to Rome to visit Pope Sixtus IV, whom Christian I hoped to persuade into issuing a papal bull permitting the establishment of university in Denmark. Christian I failed to persuade the pope to issue the bull however and the king returned to Denmark the same year empty-handed. In 1475 Christian I’s wife Dorothea of Brandenburg Queen of Denmark made the same journey to Rome as her husband did a year before. Unlike Christian I Dorothea managed to persuade Pope Sixtus IV into issuing the papal bull. On the 19th of June, 1475 Pope Sixtus IV issued an official papal bull permitting the establishment of what was to become the University of Copenhagen.

    On the 4th of October, 1478 Christian I of Denmark issued a royal decree by which he officially established the University of Copenhagen. In this decree Christian I set down the rules and laws governing the university. The royal decree elected magistar Peder Albertsen as vice chancellor of the university and the task was his to employ various learned scholars at the new university and thereby establish its first four faculties: theology; law; medicine; and philosophy. The royal decree made the University of Copenhagen enjoy royal patronage from its very beginning. Furthermore, the university was explicitly established as an autonomous institution giving it a great degree of juridical freedom. As such the University of Copenhagen was to be administered without royal interference and it was not subject to the usual laws governing the Danish people.

    The University of Copenhagen was closed by the Church in 1531 to stop the spread of Protestantism and re-established in 1537 by King Christian III after the Lutheran Reformation and transformed into an evangelical-Lutheran seminary. Between 1675 and 1788 the university introduced the concept of degree examinations. An examination for theology was added in 1675 followed by law in 1736. By 1788 all faculties required an examination before they would issue a degree.

    In 1807 the British Bombardment of Copenhagen destroyed most of the university’s buildings. By 1836 however the new main building of the university was inaugurated amid extensive building that continued until the end of the century. The University Library (now a part of the Royal Library); the Zoological Museum; the Geological Museum; the Botanic Garden with greenhouses; and the Technical College were also established during this period.

    Between 1842 and 1850 the faculties at the university were restructured. Starting in 1842 the University Faculty of Medicine and the Academy of Surgeons merged to form the Faculty of Medical Science while in 1848 the Faculty of Law was reorganised and became the Faculty of Jurisprudence and Political Science. In 1850 the Faculty of Mathematics and Science was separated from the Faculty of Philosophy. In 1845 and 1862 Copenhagen co-hosted nordic student meetings with Lund University [Lunds universitet] (SE).

    The first female student was enrolled at the university in 1877. The university underwent explosive growth between 1960 and 1980. The number of students rose from around 6,000 in 1960 to about 26,000 in 1980 with a correspondingly large growth in the number of employees. Buildings built during this time period include the new Zoological Museum; the Hans Christian Ørsted and August Krogh Institutes; the campus centre on Amager Island; and the Panum Institute.

    The new university statute instituted in 1970 involved democratisation of the management of the university. It was modified in 1973 and subsequently applied to all higher education institutions in Denmark. The democratisation was later reversed with the 2003 university reforms. Further change in the structure of the university from 1990 to 1993 made a Bachelor’s degree programme mandatory in virtually all subjects.

    Also in 1993 the law departments broke off from the Faculty of Social Sciences to form a separate Faculty of Law. In 1994 the University of Copenhagen designated environmental studies; north–south relations; and biotechnology as areas of special priority according to its new long-term plan. Starting in 1996 and continuing to the present the university planned new buildings including for the University of Copenhagen Faculty of Humanities at Amager (Ørestaden) along with a Biotechnology Centre. By 1999 the student population had grown to exceed 35,000 resulting in the university appointing additional professors and other personnel.

    In 2003 the revised Danish university law removed faculty staff and students from the university decision process creating a top-down control structure that has been described as absolute monarchy since leaders are granted extensive powers while being appointed exclusively by higher levels in the organization.

    In 2005 the Center for Health and Society (Center for Sundhed og Samfund – CSS) opened in central Copenhagen housing the Faculty of Social Sciences and Institute of Public Health which until then had been located in various places throughout the city. In May 2006 the university announced further plans to leave many of its old buildings in the inner city of Copenhagen- an area that has been home to the university for more than 500 years. The purpose of this has been to gather the university’s many departments and faculties on three larger campuses in order to create a bigger more concentrated and modern student environment with better teaching facilities as well as to save money on rent and maintenance of the old buildings. The concentration of facilities on larger campuses also allows for more inter-disciplinary cooperation. For example the Departments of Political Science and Sociology are now located in the same facilities at CSS and can pool resources more easily.

    In January 2007 the University of Copenhagen merged with the Royal Veterinary and Agricultural University and the Danish University of Pharmaceutical Science. The two universities were converted into faculties under the University of Copenhagen and were renamed as the Faculty of Life Sciences and the Faculty of Pharmaceutical Sciences. In January 2012 the Faculty of Pharmaceutical Sciences and the veterinary third of the Faculty of Life Sciences merged with the Faculty of Health Sciences forming the Faculty of Health and Medical Sciences and the other two thirds of the Faculty of Life Sciences were merged into the Faculty of Science.

    Cooperative agreements with other universities

    The university cooperates with universities around the world. In January 2006, the University of Copenhagen entered into a partnership of ten top universities, along with the Australian National University (AU), Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich](CH), The National University of Singapore [Universiti Nasional Singapura] (SG), Peking University [北京大学](CN), University of California Berkeley (US), University of Cambridge (UK), University of Oxford (UK), University of Tokyo {東京大学](JP) and Yale University (US). The partnership is referred to as the International Alliance of Research Universities (IARU).

    The Department of Scandinavian Studies and Linguistics at University of Copenhagen signed a cooperation agreement with the Danish Royal School of Library and Information Science in 2009.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: