Tagged: The National Science Foundation Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 3:47 pm on March 13, 2023 Permalink | Reply
    Tags: "Were galaxies different in the early universe?", , , , , HERA seeks radiation from the neutral hydrogen that filled the space between early stars and galaxies to determine when that hydrogen became ionized and stopped emitting or absorbing radio waves., Research improves search for cosmic dawn radiation and tests theories of galaxy formation., The earliest stars which may have formed around 200 million years after the Big Bang contained few other elements than hydrogen and helium., The National Science Foundation, When the radio dishes are fully online and calibrated the team hopes to construct a 3D map of the ionized and neutral hydrogen evolved about 200 million to 1 billion years after the Big Bang., While the researchers have yet to detect radio emissions from the end of the cosmic dark ages their results provide clues to the composition of stars and galaxies in the early universe.   

    From The National Science Foundation: “Were galaxies different in the early universe?” 

    From The National Science Foundation

    3.13.23

    Research improves search for cosmic dawn radiation and tests theories of galaxy formation.

    1
    The Milky Way above HERA. HERA sits in a region where radios, cellphones and gas-powered cars are prohibited.
    Credit: Dara Storer.

    An array of 350 radio telescopes in the Karoo desert of South Africa is getting closer to detecting “cosmic dawn,” the era after the Big Bang when stars first ignited and galaxies began to bloom.

    In a paper published in The Astrophysical Journal [below], the Hydrogen Epoch of Reionization Array, or HERA, team reports that it has doubled the sensitivity of the array, which was already the most sensitive radio telescope in the world dedicated to exploring this unique period in the history of the universe.

    The HERA collaboration is led by University of California-Berkeley scientists and includes others across North America, Europe and South Africa. The construction of the array is funded in part by the U.S. National Science Foundation.

    While the researchers have yet to detect radio emissions from the end of the cosmic dark ages their results provide clues to the composition of stars and galaxies in the early universe. The data show that the earliest stars which may have formed around 200 million years after the Big Bang contained few other elements than hydrogen and helium.

    That’s different than the composition of today’s stars, which have a variety of so-called metals, the astronomical term for elements ranging from lithium to uranium that are heavier than helium. The finding is consistent with the current model of how stars and stellar explosions produced most of the other elements.

    “This is moving toward a potentially revolutionary technique in cosmology,” said Joshua Dillon, a scientist at UC Berkeley and lead author of the paper.

    HERA seeks to detect radiation from the neutral hydrogen that filled the space between early stars and galaxies and determine when that hydrogen became ionized and stopped emitting or absorbing radio waves.

    When the radio dishes are fully online and calibrated-likely this fall-the team hopes to construct a 3D map of the bubbles of ionized and neutral hydrogen as they evolved from about 200 million to 1 billion years after the Big Bang. The map could tell us how early stars and galaxies differed from those of today and how the universe as a whole looked in its adolescence.

    The fact that the HERA team has not yet detected these bubbles of ionized hydrogen in the cold hydrogen of the cosmic dark age rules out some theories of how stars evolved in the early universe.

    “Early galaxies had to have been different than the galaxies we observe today for us not to have seen a signal,” said Aaron Parsons, principal investigator for HERA and a UC Berkeley astronomer. “In particular, their X-ray characteristics had to have changed. Otherwise, we would have detected the signal we’re looking for.”

    Additional NSF support for the research came through a number of grants: Illuminating our Early Universe with HERA; HERA: Unveiling the Cosmic Dawn; Data Analysis Techniques for the Epoch of Reionization and Beyond; and XSEDE 2.0: Integrating, Enabling and Enhancing National Cyberinfrastructure with Expanding Community Involvement, which supported XSEDE, Extreme Science and Engineering Discovery Environment, providing advanced computational resources. Computations contributing to the discovery were performed on the NSF-supported Bridges-2 system at the Pittsburgh Supercomputing Center, applying services available through the XSEDE project.

    The Astrophysical Journal
    See the science paper for instructive material with images.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The National Science Foundation is an independent federal agency created by Congress in 1950 “to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense…we are the funding source for approximately 24 percent of all federally supported basic research conducted by America’s colleges and universities. In many fields such as mathematics, computer science and the social sciences, The National Science Foundation is the major source of federal backing.

    We fulfill our mission chiefly by issuing limited-term grants — currently about 12,000 new awards per year, with an average duration of three years — to fund specific research proposals that have been judged the most promising by a rigorous and objective merit-review system. Most of these awards go to individuals or small groups of investigators. Others provide funding for research centers, instruments and facilities that allow scientists, engineers and students to work at the outermost frontiers of knowledge.

    The National Science Foundation ‘s goals — discovery, learning, research infrastructure and stewardship — provide an integrated strategy to advance the frontiers of knowledge, cultivate a world-class, broadly inclusive science and engineering workforce and expand the scientific literacy of all citizens, build the nation’s research capability through investments in advanced instrumentation and facilities, and support excellence in science and engineering research and education through a capable and responsive organization. We like to say that The National Science Foundation is “where discoveries begin.”

    Many of the discoveries and technological advances have been truly revolutionary. In the past few decades, The National Science Foundation -funded researchers have won some 236 Nobel Prizes as well as other honors too numerous to list. These pioneers have included the scientists or teams that discovered many of the fundamental particles of matter, analyzed the cosmic microwaves left over from the earliest epoch of the universe, developed carbon-14 dating of ancient artifacts, decoded the genetics of viruses, and created an entirely new state of matter called a Bose-Einstein condensate.

    The National Science Foundation also funds equipment that is needed by scientists and engineers but is often too expensive for any one group or researcher to afford. Examples of such major research equipment include giant optical and radio telescopes, Antarctic research sites, high-end computer facilities and ultra-high-speed connections, ships for ocean research, sensitive detectors of very subtle physical phenomena and gravitational wave observatories.

    Another essential element in The National Science Foundation ‘s mission is support for science and engineering education, from pre-K through graduate school and beyond. The research we fund is thoroughly integrated with education to help ensure that there will always be plenty of skilled people available to work in new and emerging scientific, engineering and technological fields, and plenty of capable teachers to educate the next generation.

    No single factor is more important to the intellectual and economic progress of society, and to the enhanced well-being of its citizens, than the continuous acquisition of new knowledge. The National Science Foundation is proud to be a major part of that process.

    Specifically, the Foundation’s organic legislation authorizes us to engage in the following activities:

    Initiate and support, through grants and contracts, scientific and engineering research and programs to strengthen scientific and engineering research potential, and education programs at all levels, and appraise the impact of research upon industrial development and the general welfare.

    Award graduate fellowships in the sciences and in engineering.

    Foster the interchange of scientific information among scientists and engineers in the United States and foreign countries.

    Foster and support the development and use of computers and other scientific methods and technologies, primarily for research and education in the sciences.

    Evaluate the status and needs of the various sciences and engineering and take into consideration the results of this evaluation in correlating our research and educational programs with other federal and non-federal programs.

    Provide a central clearinghouse for the collection, interpretation and analysis of data on scientific and technical resources in the United States, and provide a source of information for policy formulation by other federal agencies.

    Determine the total amount of federal money received by universities and appropriate organizations for the conduct of scientific and engineering research, including both basic and applied, and construction of facilities where such research is conducted, but excluding development, and report annually thereon to the President and the Congress.

    Initiate and support specific scientific and engineering activities in connection with matters relating to international cooperation, national security and the effects of scientific and technological applications upon society.

    Initiate and support scientific and engineering research, including applied research, at academic and other nonprofit institutions and, at the direction of the President, support applied research at other organizations.

    Recommend and encourage the pursuit of national policies for the promotion of basic research and education in the sciences and engineering. Strengthen research and education innovation in the sciences and engineering, including independent research by individuals, throughout the United States.

    Support activities designed to increase the participation of women and minorities and others underrepresented in science and technology.

    At present, The National Science Foundation has a total workforce of about 2,100 at its Alexandria, VA, headquarters, including approximately 1,400 career employees, 200 scientists from research institutions on temporary duty, 450 contract workers and the staff of the NSB office and the Office of the Inspector General.

    The National Science Foundation is divided into the following seven directorates that support science and engineering research and education: Biological Sciences, Computer and Information Science and Engineering, Engineering, Geosciences, Mathematical and Physical Sciences, Social, Behavioral and Economic Sciences, and Education and Human Resources. Each is headed by an assistant director and each is further subdivided into divisions like materials research, ocean sciences and behavioral and cognitive sciences.

    Within The National Science Foundation ‘s Office of the Director, the Office of Integrative Activities also supports research and researchers. Other sections of The National Science Foundation are devoted to financial management, award processing and monitoring, legal affairs, outreach and other functions. The Office of the Inspector General examines the foundation’s work and reports to the NSB and Congress.

    Each year, The National Science Foundation supports an average of about 200,000 scientists, engineers, educators and students at universities, laboratories and field sites all over the United States and throughout the world, from Alaska to Alabama to Africa to Antarctica. You could say that The National Science Foundation support goes “to the ends of the earth” to learn more about the planet and its inhabitants, and to produce fundamental discoveries that further the progress of research and lead to products and services that boost the economy and improve general health and well-being.

    As described in our strategic plan, The National Science Foundation is the only federal agency whose mission includes support for all fields of fundamental science and engineering, except for medical sciences. The National Science Foundation is tasked with keeping the United States at the leading edge of discovery in a wide range of scientific areas, from astronomy to geology to zoology. So, in addition to funding research in the traditional academic areas, the agency also supports “high risk, high pay off” ideas, novel collaborations and numerous projects that may seem like science fiction today, but which the public will take for granted tomorrow. And in every case, we ensure that research is fully integrated with education so that today’s revolutionary work will also be training tomorrow’s top scientists and engineers.

    Unlike many other federal agencies, The National Science Foundation does not hire researchers or directly operate our own laboratories or similar facilities. Instead, we support scientists, engineers and educators directly through their own home institutions (typically universities and colleges). Similarly, we fund facilities and equipment such as telescopes, through cooperative agreements with research consortia that have competed successfully for limited-term management contracts.

    The National Science Foundation ‘s job is to determine where the frontiers are, identify the leading U.S. pioneers in these fields and provide money and equipment to help them continue. The results can be transformative. For example, years before most people had heard of “nanotechnology,” The National Science Foundation was supporting scientists and engineers who were learning how to detect, record and manipulate activity at the scale of individual atoms — the nanoscale. Today, scientists are adept at moving atoms around to create devices and materials with properties that are often more useful than those found in nature.

    Dozens of companies are gearing up to produce nanoscale products. The National Science Foundation is funding the research projects, state-of-the-art facilities and educational opportunities that will teach new skills to the science and engineering students who will make up the nanotechnology workforce of tomorrow.

    At the same time, we are looking for the next frontier.

    The National Science Foundation ‘s task of identifying and funding work at the frontiers of science and engineering is not a “top-down” process. The National Science Foundation operates from the “bottom up,” keeping close track of research around the United States and the world, maintaining constant contact with the research community to identify ever-moving horizons of inquiry, monitoring which areas are most likely to result in spectacular progress and choosing the most promising people to conduct the research.

    The National Science Foundation funds research and education in most fields of science and engineering. We do this through grants and cooperative agreements to more than 2,000 colleges, universities, K-12 school systems, businesses, informal science organizations and other research organizations throughout the U.S. The Foundation considers proposals submitted by organizations on behalf of individuals or groups for support in most fields of research. Interdisciplinary proposals also are eligible for consideration. Awardees are chosen from those who send us proposals asking for a specific amount of support for a specific project.

    Proposals may be submitted in response to the various funding opportunities that are announced on the The National Science Foundation website. These funding opportunities fall into three categories — program descriptions, program announcements and program solicitations — and are the mechanisms The National Science Foundation uses to generate funding requests. At any time, scientists and engineers are also welcome to send in unsolicited proposals for research and education projects, in any existing or emerging field. The Proposal and Award Policies and Procedures Guide (PAPPG) provides guidance on proposal preparation and submission and award management. At present, The National Science Foundation receives more than 42,000 proposals per year.

    To ensure that proposals are evaluated in a fair, competitive, transparent and in-depth manner, we use a rigorous system of merit review. Nearly every proposal is evaluated by a minimum of three independent reviewers consisting of scientists, engineers and educators who do not work at NSF or for the institution that employs the proposing researchers. The National Science Foundation selects the reviewers from among the national pool of experts in each field and their evaluations are confidential. On average, approximately 40,000 experts, knowledgeable about the current state of their field, give their time to serve as reviewers each year.

    The reviewer’s job is to decide which projects are of the very highest caliber. The National Science Foundation ‘s merit review process, considered by some to be the “gold standard” of scientific review, ensures that many voices are heard and that only the best projects make it to the funding stage. An enormous amount of research, deliberation, thought and discussion goes into award decisions.

    The National Science Foundation program officer reviews the proposal and analyzes the input received from the external reviewers. After scientific, technical and programmatic review and consideration of appropriate factors, the program officer makes an “award” or “decline” recommendation to the division director. Final programmatic approval for a proposal is generally completed at The National Science Foundation ‘s division level. A principal investigator (PI) whose proposal for The National Science Foundation support has been declined will receive information and an explanation of the reason(s) for declination, along with copies of the reviews considered in making the decision. If that explanation does not satisfy the PI, he/she may request additional information from the cognizant The National Science Foundation program officer or division director.

    If the program officer makes an award recommendation and the division director concurs, the recommendation is submitted to The National Science Foundation’s Division of Grants and Agreements (DGA) for award processing. A DGA officer reviews the recommendation from the program division/office for business, financial and policy implications, and the processing and issuance of a grant or cooperative agreement. DGA generally makes awards to academic institutions within 30 days after the program division/office makes its recommendation.

     
  • richardmitnick 5:51 pm on March 7, 2023 Permalink | Reply
    Tags: "Scientists discover immense biodiversity in high-temperature and deep-sea microorganism communities", , , , , , , Researchers sequence microbial genomes to learn more about diversity and interconnections., The National Science Foundation   

    From The National Science Foundation: “Scientists discover immense biodiversity in high-temperature and deep-sea microorganism communities” 

    From The National Science Foundation

    3.7.23

    1
    High-temperature venting on the caldera wall of Brothers Volcano produces black smoker chimneys.
    Credit: New Zealand-American Submarine Ring of Fire Exploration.

    Researchers sequence microbial genomes to learn more about diversity and interconnections.

    A new study by researchers at Portland State University and the University of Wisconsin finds that a rich diversity of microorganisms lives in interdependent communities in high -temperature geothermal environments in the deep sea.

    The study, published in the journal Microbiome [below], was led by Anna-Louise Reysenbach at PSU.

    When the 350-400 degree C fluid exiting the Earth’s crust through deep-sea hydrothermal vents mixes with seawater, it creates large, porous rocks often referred to as chimneys or hydrothermal deposits. These chimneys are colonized by microbes that thrive in high-temperature environments.

    Reysenbach has collected chimneys from deep-sea hydrothermal vents in the world’s oceans. Her lab uses genetic fingerprinting and cultivation techniques to study the microbial diversity of the communities associated with these rocks.

    In the U.S. National Science Foundation-supported study, Reysenbach and the team were able to take advantage of advances in molecular biology techniques to sequence the entire genomes of the microbes in these communities to learn more about their diversity and interconnected ecosystems.

    “This research demonstrates the incredible diversity of microbial communities in the extreme environments of deep-sea hydrothermal vents throughout the ocean basins,” says Gail Christeson, a program director in NSF’s Division of Ocean Sciences.

    The team constructed genomes of 3,635 bacteria and archaea from 40 rock communities. The diversity was staggering, according to the scientists, and greatly expands what is known about how many different types of bacteria and archaea exist.

    The researchers discovered at least 500 new genera (the level of taxonomic organization above species) and have evidence for two new phyla (five levels up from species). The team also found evidence of microbial diversity hotspots. Samples from the deep-sea Brothers Volcano near New Zealand, for example, were enriched with microorganisms, many endemic to that volcano.

    “That biodiversity was just so huge,” says Reysenbach. “At one volcano there was so much new diversity that we hadn’t seen elsewhere.” The finding suggests that the increased complexity of the subsurface rocks of a volcano makes them more likely to house diverse microbial species compared to deep-sea hydrothermal vents.

    Microbiome

    Fig. 1
    1
    Maximum-likelihood phylogenomic tree of bacterial metagenome-assembled genomes, constructed using 120 bacterial marker genes in GTDB-Tk. Major taxonomic groups are highlighted, and the number of MAGs in each taxon is shown in parentheses. See Table S2 for details. Bacterial lineages are shown at the phylum classification, except for the Proteobacteria which are split into their component classes. The inner ring displays quality (green: high quality, > 90% completion, < 5% contamination; purple: medium quality, ≥ 50% completion, ≤ 10% contamination), while the outer ring shows normalized read coverage up to 200x. The scale bar indicates 0.1 amino acid substitutions per site, and filled circles are shown for SH-like support values ≥ 80%. The tree was artificially rooted with the Patescibacteria using iTOL. The Newick format tree used to generate this figure is available in Data S4, and the formatted tree is available online at https://itol.embl.de/shared/alrlab

    Fig. 2
    2
    Maximum-likelihood phylogenomic reconstruction of deep-sea hydrothermal vent archaeal metagenome-assembled genomes generated in GTDB-Tk. The tree was generated with 122 archaeal marker genes. Taxa are shown at the phylum level, except for the Thermoproteota, Asgardarchaeota, Halobacteriota, and Methanobacteriota, shown at the class level. The number of MAGs in each highlighted taxon is shown in parentheses. See Table S2 for details. Quality is shown on the inner ring (green: high quality, purple: medium quality, with one manually curated Nanoarchaeota MAG below the 50% completion threshold also displayed as medium quality), while the outer ring displays normalized read coverage up to 200x. SH-like support values ≥ 80% are indicated with filled circles, and the scale bar represents 0.1 amino acid substitutions per site. The tree was artificially rooted with the Iainarchaeota, Micrarchaeota, SpSt-1190, Undinarchaeota, Nanohaloarchaeota, EX4484-52, Aenigmarchaeota, Aenigmarchaeota_A, and Nanoarchaeota using iTOL. The tree used to create this figure is available in Newick format (Data S5), and the formatted tree is publicly available on iTOL at https://itol.embl.de/shared/alrlab

    For further images see the science paper.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The National Science Foundation is an independent federal agency created by Congress in 1950 “to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense…we are the funding source for approximately 24 percent of all federally supported basic research conducted by America’s colleges and universities. In many fields such as mathematics, computer science and the social sciences, The National Science Foundation is the major source of federal backing.

    We fulfill our mission chiefly by issuing limited-term grants — currently about 12,000 new awards per year, with an average duration of three years — to fund specific research proposals that have been judged the most promising by a rigorous and objective merit-review system. Most of these awards go to individuals or small groups of investigators. Others provide funding for research centers, instruments and facilities that allow scientists, engineers and students to work at the outermost frontiers of knowledge.

    The National Science Foundation ‘s goals — discovery, learning, research infrastructure and stewardship — provide an integrated strategy to advance the frontiers of knowledge, cultivate a world-class, broadly inclusive science and engineering workforce and expand the scientific literacy of all citizens, build the nation’s research capability through investments in advanced instrumentation and facilities, and support excellence in science and engineering research and education through a capable and responsive organization. We like to say that The National Science Foundation is “where discoveries begin.”

    Many of the discoveries and technological advances have been truly revolutionary. In the past few decades, The National Science Foundation -funded researchers have won some 236 Nobel Prizes as well as other honors too numerous to list. These pioneers have included the scientists or teams that discovered many of the fundamental particles of matter, analyzed the cosmic microwaves left over from the earliest epoch of the universe, developed carbon-14 dating of ancient artifacts, decoded the genetics of viruses, and created an entirely new state of matter called a Bose-Einstein condensate.

    The National Science Foundation also funds equipment that is needed by scientists and engineers but is often too expensive for any one group or researcher to afford. Examples of such major research equipment include giant optical and radio telescopes, Antarctic research sites, high-end computer facilities and ultra-high-speed connections, ships for ocean research, sensitive detectors of very subtle physical phenomena and gravitational wave observatories.

    Another essential element in The National Science Foundation ‘s mission is support for science and engineering education, from pre-K through graduate school and beyond. The research we fund is thoroughly integrated with education to help ensure that there will always be plenty of skilled people available to work in new and emerging scientific, engineering and technological fields, and plenty of capable teachers to educate the next generation.

    No single factor is more important to the intellectual and economic progress of society, and to the enhanced well-being of its citizens, than the continuous acquisition of new knowledge. The National Science Foundation is proud to be a major part of that process.

    Specifically, the Foundation’s organic legislation authorizes us to engage in the following activities:

    Initiate and support, through grants and contracts, scientific and engineering research and programs to strengthen scientific and engineering research potential, and education programs at all levels, and appraise the impact of research upon industrial development and the general welfare.

    Award graduate fellowships in the sciences and in engineering.

    Foster the interchange of scientific information among scientists and engineers in the United States and foreign countries.

    Foster and support the development and use of computers and other scientific methods and technologies, primarily for research and education in the sciences.

    Evaluate the status and needs of the various sciences and engineering and take into consideration the results of this evaluation in correlating our research and educational programs with other federal and non-federal programs.

    Provide a central clearinghouse for the collection, interpretation and analysis of data on scientific and technical resources in the United States, and provide a source of information for policy formulation by other federal agencies.

    Determine the total amount of federal money received by universities and appropriate organizations for the conduct of scientific and engineering research, including both basic and applied, and construction of facilities where such research is conducted, but excluding development, and report annually thereon to the President and the Congress.

    Initiate and support specific scientific and engineering activities in connection with matters relating to international cooperation, national security and the effects of scientific and technological applications upon society.

    Initiate and support scientific and engineering research, including applied research, at academic and other nonprofit institutions and, at the direction of the President, support applied research at other organizations.

    Recommend and encourage the pursuit of national policies for the promotion of basic research and education in the sciences and engineering. Strengthen research and education innovation in the sciences and engineering, including independent research by individuals, throughout the United States.

    Support activities designed to increase the participation of women and minorities and others underrepresented in science and technology.

    At present, The National Science Foundation has a total workforce of about 2,100 at its Alexandria, VA, headquarters, including approximately 1,400 career employees, 200 scientists from research institutions on temporary duty, 450 contract workers and the staff of the NSB office and the Office of the Inspector General.

    The National Science Foundation is divided into the following seven directorates that support science and engineering research and education: Biological Sciences, Computer and Information Science and Engineering, Engineering, Geosciences, Mathematical and Physical Sciences, Social, Behavioral and Economic Sciences, and Education and Human Resources. Each is headed by an assistant director and each is further subdivided into divisions like materials research, ocean sciences and behavioral and cognitive sciences.

    Within The National Science Foundation ‘s Office of the Director, the Office of Integrative Activities also supports research and researchers. Other sections of The National Science Foundation are devoted to financial management, award processing and monitoring, legal affairs, outreach and other functions. The Office of the Inspector General examines the foundation’s work and reports to the NSB and Congress.

    Each year, The National Science Foundation supports an average of about 200,000 scientists, engineers, educators and students at universities, laboratories and field sites all over the United States and throughout the world, from Alaska to Alabama to Africa to Antarctica. You could say that The National Science Foundation support goes “to the ends of the earth” to learn more about the planet and its inhabitants, and to produce fundamental discoveries that further the progress of research and lead to products and services that boost the economy and improve general health and well-being.

    As described in our strategic plan, The National Science Foundation is the only federal agency whose mission includes support for all fields of fundamental science and engineering, except for medical sciences. The National Science Foundation is tasked with keeping the United States at the leading edge of discovery in a wide range of scientific areas, from astronomy to geology to zoology. So, in addition to funding research in the traditional academic areas, the agency also supports “high risk, high pay off” ideas, novel collaborations and numerous projects that may seem like science fiction today, but which the public will take for granted tomorrow. And in every case, we ensure that research is fully integrated with education so that today’s revolutionary work will also be training tomorrow’s top scientists and engineers.

    Unlike many other federal agencies, The National Science Foundation does not hire researchers or directly operate our own laboratories or similar facilities. Instead, we support scientists, engineers and educators directly through their own home institutions (typically universities and colleges). Similarly, we fund facilities and equipment such as telescopes, through cooperative agreements with research consortia that have competed successfully for limited-term management contracts.

    The National Science Foundation ‘s job is to determine where the frontiers are, identify the leading U.S. pioneers in these fields and provide money and equipment to help them continue. The results can be transformative. For example, years before most people had heard of “nanotechnology,” The National Science Foundation was supporting scientists and engineers who were learning how to detect, record and manipulate activity at the scale of individual atoms — the nanoscale. Today, scientists are adept at moving atoms around to create devices and materials with properties that are often more useful than those found in nature.

    Dozens of companies are gearing up to produce nanoscale products. The National Science Foundation is funding the research projects, state-of-the-art facilities and educational opportunities that will teach new skills to the science and engineering students who will make up the nanotechnology workforce of tomorrow.

    At the same time, we are looking for the next frontier.

    The National Science Foundation ‘s task of identifying and funding work at the frontiers of science and engineering is not a “top-down” process. The National Science Foundation operates from the “bottom up,” keeping close track of research around the United States and the world, maintaining constant contact with the research community to identify ever-moving horizons of inquiry, monitoring which areas are most likely to result in spectacular progress and choosing the most promising people to conduct the research.

    The National Science Foundation funds research and education in most fields of science and engineering. We do this through grants and cooperative agreements to more than 2,000 colleges, universities, K-12 school systems, businesses, informal science organizations and other research organizations throughout the U.S. The Foundation considers proposals submitted by organizations on behalf of individuals or groups for support in most fields of research. Interdisciplinary proposals also are eligible for consideration. Awardees are chosen from those who send us proposals asking for a specific amount of support for a specific project.

    Proposals may be submitted in response to the various funding opportunities that are announced on the The National Science Foundation website. These funding opportunities fall into three categories — program descriptions, program announcements and program solicitations — and are the mechanisms The National Science Foundation uses to generate funding requests. At any time, scientists and engineers are also welcome to send in unsolicited proposals for research and education projects, in any existing or emerging field. The Proposal and Award Policies and Procedures Guide (PAPPG) provides guidance on proposal preparation and submission and award management. At present, The National Science Foundation receives more than 42,000 proposals per year.

    To ensure that proposals are evaluated in a fair, competitive, transparent and in-depth manner, we use a rigorous system of merit review. Nearly every proposal is evaluated by a minimum of three independent reviewers consisting of scientists, engineers and educators who do not work at NSF or for the institution that employs the proposing researchers. The National Science Foundation selects the reviewers from among the national pool of experts in each field and their evaluations are confidential. On average, approximately 40,000 experts, knowledgeable about the current state of their field, give their time to serve as reviewers each year.

    The reviewer’s job is to decide which projects are of the very highest caliber. The National Science Foundation ‘s merit review process, considered by some to be the “gold standard” of scientific review, ensures that many voices are heard and that only the best projects make it to the funding stage. An enormous amount of research, deliberation, thought and discussion goes into award decisions.

    The National Science Foundation program officer reviews the proposal and analyzes the input received from the external reviewers. After scientific, technical and programmatic review and consideration of appropriate factors, the program officer makes an “award” or “decline” recommendation to the division director. Final programmatic approval for a proposal is generally completed at The National Science Foundation ‘s division level. A principal investigator (PI) whose proposal for The National Science Foundation support has been declined will receive information and an explanation of the reason(s) for declination, along with copies of the reviews considered in making the decision. If that explanation does not satisfy the PI, he/she may request additional information from the cognizant The National Science Foundation program officer or division director.

    If the program officer makes an award recommendation and the division director concurs, the recommendation is submitted to The National Science Foundation’s Division of Grants and Agreements (DGA) for award processing. A DGA officer reviews the recommendation from the program division/office for business, financial and policy implications, and the processing and issuance of a grant or cooperative agreement. DGA generally makes awards to academic institutions within 30 days after the program division/office makes its recommendation.

     
  • richardmitnick 8:48 am on February 20, 2023 Permalink | Reply
    Tags: "Brains trust - Aussie and US scientists combine smarts to tackle global challenges", , , , , , , , , , , , , The National Science Foundation   

    From CSIRO-Commonwealth Scientific and Industrial Research Organization (AU) And From The National Science Foundation: “Brains trust – Aussie and US scientists combine smarts to tackle global challenges” 

    CSIRO bloc

    From CSIRO-Commonwealth Scientific and Industrial Research Organization (AU)

    And

    From The National Science Foundation

    2.20.23

    An expanding research partnership between CSIRO and the US National Science Foundation will turbo charge international collaboration and joint research.

    1
    Cape Grim aerial shot.

    2
    Together with partners, we aim to transform plastic waste into a commodity, whilst informing waste management policies to build a more resilient Australia and support new industries.

    3
    Silicon for solar PV, nickel, lithium, and cobalt for batteries, and rare earth magnets for wind turbines, are all key areas of opportunity for value added manufacture.

    Climate change, clean energy and sustainability, building low emissions technologies and developing ethical artificial intelligence are some of the challenges being tackled by CSIRO, Australia’s national science agency, and the United States National Science Foundation (NSF) under a multi-million-dollar partnership.

    The recently established partnership between the two leading science organizations is aiming to accelerate joint research and initiatives in areas of mutual priority between Australia and the United States.

    CSIRO Chief Executive Larry Marshall said the two leading science organizations have already enabled a number of opportunities across the two countries in only a year, launching this month an AUD$100 million Global Centers initiative, partnering in the areas of responsible and ethical Artificial Intelligence (AI) and developing sustainable materials for global challenges.

    “As national science agencies, CSIRO and the NSF are working together to build international bridges for national benefit, strengthening our science and innovation to improve lives around the world,” Dr Marshall said.

    “As the world races towards new applications for technologies like AI, it will take global collaboration to champion responsible and ethical applications that embrace the full potential of technological advances and drive healthy competitive advantages.

    “CSIRO is proud to stand side-by-side with the NSF, committed to responsible and ethical AI not only through our own research, but by catalyzing new opportunities across the ecosystem,” he said.

    Three Australia-US teams were announced today as beneficiaries of the responsible and ethical AI grants totaling US$1.8 million from NSF and AUD$2.3 million from CSIRO, with the projects aligned to CSIRO’s Missions, including:

    Fair Sequential Collective Decision-Making – University of Nebraska-Lincoln, Rensselaer Polytechnic Institute and UNSW Sydney.

    Understanding Bias in AI Models for the Prediction of Infectious Disease Spread – Arizona State University, George Mason University, UNSW Sydney and RMIT University.

    Graph Representation Learning for Fair Teaming in Crisis Response – UCLA, The University of Texas at Austin, University of Technology Sydney and the University of Melbourne.

    NSF Director, Sethuraman Panchanathan, currently meeting researchers in Australia, said the CSIRO-NSF partnership was already showing early impact.

    “Through this collaboration we’re building a platform to mobilize the resources and capabilities of the research communities across the United States and Australia to address things which are a priority for both our counties but also the world, like climate resilience and unbiased AI-powered technologies,” Dr Panchanathan said.

    “With this collaboration also comes the opportunity to unlock our ‘missing millions’ – the untapped resource of those who are yet to be engaged for the science, technology, engineering, and mathematics (STEM) workforce who can provide diverse thinking and ideas,” he said.

    CSIRO, this month, joined as an anchor partner in the NSF Global Centres in Climate Change and Clean Energy, involving the United States (NSF); Canada (Natural Sciences and Engineering Research Council of Canada and Social Sciences and Humanities Research Council of Canada); the United Kingdom (UK Research and Innovation); and Australia (CSIRO).

    The Global Centres, with combined funding of more than AUD$100 million across the four partner countries, are supporting international, interdisciplinary collaborative research centres to bring together the brightest minds from across the globe to address the most pressing challenges the world faces today. In Australia, the Global Centres will be supported where they align to the ambitions of CSIRO’s Missions – specifically those that have been established to respond to the energy transition.

    As the national science agency, CSIRO has an important role to play in connecting and strengthening the Australian innovation ecosystem, ensuring we are equipped to meet our biggest challenges for the future. This means harnessing global networks and facilitating opportunities for collaborative research across industry, government and science organizations.

    FROM THE NATIONAL SCIENCE FOUNDATION

    Proposals submitted by the teams of U.S. and Australian researchers in response to the NSF Dear Colleague Letter addressed the design, data use and algorithmic aspects of AI systems as they relate to several societal problems. For this round of awards, the proposals addressed the following topical themes:

    1. Drought resilience, toward net zero, infectious disease resilience

    Fair Sequential Collective Decision-Making

    Led by researchers at the University of Nebraska-Lincoln and Rensselaer Polytechnic Institute on the U.S. side, this project aims to develop AI-powered approaches that enable responsible, fair, and equitable solutions to drought, environmentally harmful emissions, and infectious disease. AI will be employed to determine equitable allocation of resources such as water, optimal placement of refueling stations for non-fossil fuel vehicles, and vaccines and other medical supplies.

    The U.S. team will be joined by Australian researchers at the University of New South Wales.

    2. Infectious disease resilience

    Understanding Bias in AI Models for the Prediction of Infectious Disease Spread

    Led by researchers at Emory University, Arizona State University and George Mason University on the U.S. side, this project aims to mitigate bias in AI-powered modeling and prediction of disease spread for pandemic prevention and response. To accomplish this objective, the teams will investigate how biased data spreads to modeling pipelines and leads to biased AI solutions. In addition, the researchers will leverage different metrics of fairness in AI and study how these fairness measures can be incorporated into AI optimization procedures to mitigate bias.

    The U.S. teams will be joined by Australian researchers at the University of New South Wales and RMIT University.

    Graph Representation Learning for Fair Teaming in Crisis Response

    Led by researchers at UCLA and The University of Texas at Austin on the U.S. side, this research aims to understand how scientific communities have responded to historical pandemic crises and how to improve the response to future pandemics through fair teaming solutions. Researchers in this project will develop fair AI models for establishing global scientific communities that provide equal and inclusive working environment.

    The U.S. teams will be joined by Australian researchers at the University of Technology Sydney and the University of Melbourne.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The National Science Foundation is an independent federal agency created by Congress in 1950 “to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense…we are the funding source for approximately 24 percent of all federally supported basic research conducted by America’s colleges and universities. In many fields such as mathematics, computer science and the social sciences, The National Science Foundation is the major source of federal backing.

    We fulfill our mission chiefly by issuing limited-term grants — currently about 12,000 new awards per year, with an average duration of three years — to fund specific research proposals that have been judged the most promising by a rigorous and objective merit-review system. Most of these awards go to individuals or small groups of investigators. Others provide funding for research centers, instruments and facilities that allow scientists, engineers and students to work at the outermost frontiers of knowledge.

    The National Science Foundation ‘s goals — discovery, learning, research infrastructure and stewardship — provide an integrated strategy to advance the frontiers of knowledge, cultivate a world-class, broadly inclusive science and engineering workforce and expand the scientific literacy of all citizens, build the nation’s research capability through investments in advanced instrumentation and facilities, and support excellence in science and engineering research and education through a capable and responsive organization. We like to say that The National Science Foundation is “where discoveries begin.”

    Many of the discoveries and technological advances have been truly revolutionary. In the past few decades, The National Science Foundation -funded researchers have won some 236 Nobel Prizes as well as other honors too numerous to list. These pioneers have included the scientists or teams that discovered many of the fundamental particles of matter, analyzed the cosmic microwaves left over from the earliest epoch of the universe, developed carbon-14 dating of ancient artifacts, decoded the genetics of viruses, and created an entirely new state of matter called a Bose-Einstein condensate.

    The National Science Foundation also funds equipment that is needed by scientists and engineers but is often too expensive for any one group or researcher to afford. Examples of such major research equipment include giant optical and radio telescopes, Antarctic research sites, high-end computer facilities and ultra-high-speed connections, ships for ocean research, sensitive detectors of very subtle physical phenomena and gravitational wave observatories.

    Another essential element in The National Science Foundation ‘s mission is support for science and engineering education, from pre-K through graduate school and beyond. The research we fund is thoroughly integrated with education to help ensure that there will always be plenty of skilled people available to work in new and emerging scientific, engineering and technological fields, and plenty of capable teachers to educate the next generation.

    No single factor is more important to the intellectual and economic progress of society, and to the enhanced well-being of its citizens, than the continuous acquisition of new knowledge. The National Science Foundation is proud to be a major part of that process.

    Specifically, the Foundation’s organic legislation authorizes us to engage in the following activities:

    Initiate and support, through grants and contracts, scientific and engineering research and programs to strengthen scientific and engineering research potential, and education programs at all levels, and appraise the impact of research upon industrial development and the general welfare.

    Award graduate fellowships in the sciences and in engineering.

    Foster the interchange of scientific information among scientists and engineers in the United States and foreign countries.

    Foster and support the development and use of computers and other scientific methods and technologies, primarily for research and education in the sciences.

    Evaluate the status and needs of the various sciences and engineering and take into consideration the results of this evaluation in correlating our research and educational programs with other federal and non-federal programs.

    Provide a central clearinghouse for the collection, interpretation and analysis of data on scientific and technical resources in the United States, and provide a source of information for policy formulation by other federal agencies.

    Determine the total amount of federal money received by universities and appropriate organizations for the conduct of scientific and engineering research, including both basic and applied, and construction of facilities where such research is conducted, but excluding development, and report annually thereon to the President and the Congress.

    Initiate and support specific scientific and engineering activities in connection with matters relating to international cooperation, national security and the effects of scientific and technological applications upon society.

    Initiate and support scientific and engineering research, including applied research, at academic and other nonprofit institutions and, at the direction of the President, support applied research at other organizations.

    Recommend and encourage the pursuit of national policies for the promotion of basic research and education in the sciences and engineering. Strengthen research and education innovation in the sciences and engineering, including independent research by individuals, throughout the United States.

    Support activities designed to increase the participation of women and minorities and others underrepresented in science and technology.

    At present, The National Science Foundation has a total workforce of about 2,100 at its Alexandria, VA, headquarters, including approximately 1,400 career employees, 200 scientists from research institutions on temporary duty, 450 contract workers and the staff of the NSB office and the Office of the Inspector General.

    The National Science Foundation is divided into the following seven directorates that support science and engineering research and education: Biological Sciences, Computer and Information Science and Engineering, Engineering, Geosciences, Mathematical and Physical Sciences, Social, Behavioral and Economic Sciences, and Education and Human Resources. Each is headed by an assistant director and each is further subdivided into divisions like materials research, ocean sciences and behavioral and cognitive sciences.

    Within The National Science Foundation ‘s Office of the Director, the Office of Integrative Activities also supports research and researchers. Other sections of The National Science Foundation are devoted to financial management, award processing and monitoring, legal affairs, outreach and other functions. The Office of the Inspector General examines the foundation’s work and reports to the NSB and Congress.

    Each year, The National Science Foundation supports an average of about 200,000 scientists, engineers, educators and students at universities, laboratories and field sites all over the United States and throughout the world, from Alaska to Alabama to Africa to Antarctica. You could say that The National Science Foundation support goes “to the ends of the earth” to learn more about the planet and its inhabitants, and to produce fundamental discoveries that further the progress of research and lead to products and services that boost the economy and improve general health and well-being.

    As described in our strategic plan, The National Science Foundation is the only federal agency whose mission includes support for all fields of fundamental science and engineering, except for medical sciences. The National Science Foundation is tasked with keeping the United States at the leading edge of discovery in a wide range of scientific areas, from astronomy to geology to zoology. So, in addition to funding research in the traditional academic areas, the agency also supports “high risk, high pay off” ideas, novel collaborations and numerous projects that may seem like science fiction today, but which the public will take for granted tomorrow. And in every case, we ensure that research is fully integrated with education so that today’s revolutionary work will also be training tomorrow’s top scientists and engineers.

    Unlike many other federal agencies, The National Science Foundation does not hire researchers or directly operate our own laboratories or similar facilities. Instead, we support scientists, engineers and educators directly through their own home institutions (typically universities and colleges). Similarly, we fund facilities and equipment such as telescopes, through cooperative agreements with research consortia that have competed successfully for limited-term management contracts.

    The National Science Foundation ‘s job is to determine where the frontiers are, identify the leading U.S. pioneers in these fields and provide money and equipment to help them continue. The results can be transformative. For example, years before most people had heard of “nanotechnology,” The National Science Foundation was supporting scientists and engineers who were learning how to detect, record and manipulate activity at the scale of individual atoms — the nanoscale. Today, scientists are adept at moving atoms around to create devices and materials with properties that are often more useful than those found in nature.

    Dozens of companies are gearing up to produce nanoscale products. The National Science Foundation is funding the research projects, state-of-the-art facilities and educational opportunities that will teach new skills to the science and engineering students who will make up the nanotechnology workforce of tomorrow.

    At the same time, we are looking for the next frontier.

    The National Science Foundation ‘s task of identifying and funding work at the frontiers of science and engineering is not a “top-down” process. The National Science Foundation operates from the “bottom up,” keeping close track of research around the United States and the world, maintaining constant contact with the research community to identify ever-moving horizons of inquiry, monitoring which areas are most likely to result in spectacular progress and choosing the most promising people to conduct the research.

    The National Science Foundation funds research and education in most fields of science and engineering. We do this through grants and cooperative agreements to more than 2,000 colleges, universities, K-12 school systems, businesses, informal science organizations and other research organizations throughout the U.S. The Foundation considers proposals submitted by organizations on behalf of individuals or groups for support in most fields of research. Interdisciplinary proposals also are eligible for consideration. Awardees are chosen from those who send us proposals asking for a specific amount of support for a specific project.

    Proposals may be submitted in response to the various funding opportunities that are announced on the The National Science Foundation website. These funding opportunities fall into three categories — program descriptions, program announcements and program solicitations — and are the mechanisms The National Science Foundation uses to generate funding requests. At any time, scientists and engineers are also welcome to send in unsolicited proposals for research and education projects, in any existing or emerging field. The Proposal and Award Policies and Procedures Guide (PAPPG) provides guidance on proposal preparation and submission and award management. At present, The National Science Foundation receives more than 42,000 proposals per year.

    To ensure that proposals are evaluated in a fair, competitive, transparent and in-depth manner, we use a rigorous system of merit review. Nearly every proposal is evaluated by a minimum of three independent reviewers consisting of scientists, engineers and educators who do not work at NSF or for the institution that employs the proposing researchers. The National Science Foundation selects the reviewers from among the national pool of experts in each field and their evaluations are confidential. On average, approximately 40,000 experts, knowledgeable about the current state of their field, give their time to serve as reviewers each year.

    The reviewer’s job is to decide which projects are of the very highest caliber. The National Science Foundation ‘s merit review process, considered by some to be the “gold standard” of scientific review, ensures that many voices are heard and that only the best projects make it to the funding stage. An enormous amount of research, deliberation, thought and discussion goes into award decisions.

    The National Science Foundation program officer reviews the proposal and analyzes the input received from the external reviewers. After scientific, technical and programmatic review and consideration of appropriate factors, the program officer makes an “award” or “decline” recommendation to the division director. Final programmatic approval for a proposal is generally completed at The National Science Foundation ‘s division level. A principal investigator (PI) whose proposal for The National Science Foundation support has been declined will receive information and an explanation of the reason(s) for declination, along with copies of the reviews considered in making the decision. If that explanation does not satisfy the PI, he/she may request additional information from the cognizant The National Science Foundation program officer or division director.

    If the program officer makes an award recommendation and the division director concurs, the recommendation is submitted to The National Science Foundation’s Division of Grants and Agreements (DGA) for award processing. A DGA officer reviews the recommendation from the program division/office for business, financial and policy implications, and the processing and issuance of a grant or cooperative agreement. DGA generally makes awards to academic institutions within 30 days after the program division/office makes its recommendation.

    CSIRO campus

    CSIRO-Commonwealth Scientific and Industrial Research Organization (AU ), is Australia’s national science agency and one of the largest and most diverse research agencies in the world.

    CSIRO works with leading organizations around the world. From its headquarters in Canberra, CSIRO maintains more than 50 sites across Australia and in France, Chile and the United States, employing about 5,500 people.

    Federally funded scientific research began in Australia 104 years ago. The Advisory Council of Science and Industry was established in 1916 but was hampered by insufficient available finance. In 1926 the research effort was reinvigorated by establishment of the Council for Scientific and Industrial Research (CSIR), which strengthened national science leadership and increased research funding. CSIR grew rapidly and achieved significant early successes. In 1949 further legislated changes included renaming the organization as CSIRO.

    Notable developments by CSIRO have included the invention of atomic absorption spectroscopy; essential components of Wi-Fi technology; development of the first commercially successful polymer banknote; the invention of the insect repellent in Aerogard and the introduction of a series of biological controls into Australia, such as the introduction of myxomatosis and rabbit calicivirus for the control of rabbit populations.

    Research and focus areas

    Research Business Units

    As at 2019, CSIRO’s research areas are identified as “Impact science” and organized into the following Business Units:

    Agriculture and Food
    Health and Biosecurity
    Data 61
    Energy
    Land and Water
    Manufacturing
    Mineral Resources
    Oceans and Atmosphere

    National Facilities
    CSIRO manages national research facilities and scientific infrastructure on behalf of the nation to assist with the delivery of research. The national facilities and specialized laboratories are available to both international and Australian users from industry and research. As at 2019, the following National Facilities are listed:

    Australian Animal Health Laboratory (AAHL)
    Australia Telescope National Facility – radio telescopes included in the Facility include the Australia Telescope Compact Array, the Parkes Observatory, Mopra Radio Telescope Observatory and the Australian Square Kilometre Array Pathfinder.

    STCA CSIRO Australia Compact Array (AU), six radio telescopes at the Paul Wild Observatory, is an array of six 22-m antennas located about twenty five kilometres (16 mi) west of the town of Narrabri in Australia.

    CSIRO-Commonwealth Scientific and Industrial Research Organization (AU) Parkes Observatory [Murriyang, the traditional Indigenous name], located 20 kilometres north of the town of Parkes, New South Wales, Australia, 414.80m above sea level.

    NASA Canberra Deep Space Communication Complex (AU), Deep Space Network. Credit: NASA.

    CSIRO Canberra campus (AU).

    ESA DSA 1, hosts a 35-metre deep-space antenna with transmission and reception in both S- and X-band and is located 140 kilometres north of Perth, Western Australia, near the town of New Norcia.

    CSIRO-Commonwealth Scientific and Industrial Research Organization (AU) CSIRO R/V Investigator.

    UK Space NovaSAR-1 satellite (UK) synthetic aperture radar satellite.

    CSIRO Pawsey Supercomputing Centre AU)

    Magnus Cray XC40 supercomputer at Pawsey Supercomputer Centre Perth Australia.

    Galaxy Cray XC30 Series Supercomputer at at Pawsey Supercomputer Centre Perth Australia.

    Pausey Supercomputer CSIRO Zeus SGI Linux cluster.

    Others not shown

    SKA

    SKA- Square Kilometer Array.



    SKA Square Kilometre Array low frequency at the Inyarrimanha Ilgari Bundara Murchison Widefield Array, Boolardy station in outback Western Australia on the traditional lands of the Wajarri peoples.

    EDGES telescope in a radio quiet zone at the Inyarrimanha Ilgari Bundara Murchison Radio-astronomy Observatory in Western Australia, on the traditional lands of the Wajarri peoples.

     
  • richardmitnick 11:17 am on November 5, 2022 Permalink | Reply
    Tags: "Gravitational forces deep in Earth impact landscape evolution", , , , , Research centers on integrating tectonics and climate and mammal diversity., , The National Science Foundation   

    From The National Science Foundation And Stoney Brook University – SUNY : “Gravitational forces deep in Earth impact landscape evolution” 

    From The National Science Foundation

    And

    Stoney Brook bloc

    Stoney Brook University – SUNY

    10.31.22

    1
    Metamorphic core complex development showing crustal stresses and strains, faults, uplift of deeper rocks, and sedimentation. Credit: Alireza Bahadori and William Holt.

    Research centers on integrating tectonics, climate and mammal diversity.

    Research led by Stony Brook University scientists focuses on the interplay among the evolution of the landscape, climate and fossil record of mammal evolution, and mammal diversification in the Western U.S.

    A little explored aspect of the research is the connection between gravitational forces deep in the Earth and landscape evolution. Now, in a U.S. National Science Foundation-supported paper in Nature Communications [below], the researchers show through computer modeling that deep roots under mountain belts (analogous to the massive ice below the tips of icebergs) trigger dramatic movements along faults. These movements ultimately result in collapse of the mountain belt and exposure of rocks once some 15 miles below the surface.

    The origin of these exposures, called metamorphic core complexes, has been debated in the scientific community. The study’s findings may alter the way scientists attempt to uncover the history of Earth as an evolving planet.

    “This research explores how landscapes are shaped by a balance of forces from above and below, by climate and by processes acting miles beneath the Earth’s surface, and how changing landscapes have shaped the course of mammal evolution in western North America,” says Candace Major, a program director in NSF’s Division of Earth Sciences. “It’s an example of the complexity of Earth system science, and how seemingly isolated processes are in fact intrinsically connected.”

    Lead scientist William Holt at Stony Brook, first author Alireza Bahadori at Columbia University and their colleagues found that the core complexes are fossil signatures of past mountain belts in the Western U.S. In the distant past, they occupied regions near Phoenix and Las Vegas, and left traces in the form of gravel deposits from ancient northward and eastward flowing rivers. Today, those traces are located south and west of Flagstaff, Arizona.

    The work builds on research also published in Nature Communications [below] in August 2022. Holt and colleagues developed a first-of-its-kind model in three dimensions to illustrate the link between climate and tectonics. They simulated the landscape and erosion/deposition history of the region before, during and after the formation of metamorphic core complexes.

    Science papers:
    Nature Communications
    Nature Communications
    See the science papers for detailed material with images.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stoney Brook campus

    Stony Brook University-SUNY’s reach extends from its 1,039-acre campus on Long Island’s North Shore–encompassing the main academic areas, an 8,300-seat stadium and sports complex and Stony Brook Medicine–to Stony Brook Manhattan, a Research and Development Park, four business incubators including one at Calverton, New York, and the Stony Brook Southampton campus on Long Island’s East End. Stony Brook also co-manages The DOE’s Brookhaven National Laboratory, joining Princeton University , The University of Chicago, Stanford University, and The University of California on the list of major institutions involved in a research collaboration with a national lab.

    And Stony Brook is still growing. To the students, the scholars, the health professionals, the entrepreneurs and all the valued members who make up the vibrant Stony Brook community, this is a not only a great local and national university, but one that is making an impact on a global scale.

    The National Science Foundation is an independent federal agency created by Congress in 1950 “to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense…we are the funding source for approximately 24 percent of all federally supported basic research conducted by America’s colleges and universities. In many fields such as mathematics, computer science and the social sciences, The National Science Foundation is the major source of federal backing.

    We fulfill our mission chiefly by issuing limited-term grants — currently about 12,000 new awards per year, with an average duration of three years — to fund specific research proposals that have been judged the most promising by a rigorous and objective merit-review system. Most of these awards go to individuals or small groups of investigators. Others provide funding for research centers, instruments and facilities that allow scientists, engineers and students to work at the outermost frontiers of knowledge.

    The National Science Foundation ‘s goals — discovery, learning, research infrastructure and stewardship — provide an integrated strategy to advance the frontiers of knowledge, cultivate a world-class, broadly inclusive science and engineering workforce and expand the scientific literacy of all citizens, build the nation’s research capability through investments in advanced instrumentation and facilities, and support excellence in science and engineering research and education through a capable and responsive organization. We like to say that The National Science Foundation is “where discoveries begin.”

    Many of the discoveries and technological advances have been truly revolutionary. In the past few decades, The National Science Foundation -funded researchers have won some 236 Nobel Prizes as well as other honors too numerous to list. These pioneers have included the scientists or teams that discovered many of the fundamental particles of matter, analyzed the cosmic microwaves left over from the earliest epoch of the universe, developed carbon-14 dating of ancient artifacts, decoded the genetics of viruses, and created an entirely new state of matter called a Bose-Einstein condensate.

    The National Science Foundation also funds equipment that is needed by scientists and engineers but is often too expensive for any one group or researcher to afford. Examples of such major research equipment include giant optical and radio telescopes, Antarctic research sites, high-end computer facilities and ultra-high-speed connections, ships for ocean research, sensitive detectors of very subtle physical phenomena and gravitational wave observatories.

    Another essential element in The National Science Foundation ‘s mission is support for science and engineering education, from pre-K through graduate school and beyond. The research we fund is thoroughly integrated with education to help ensure that there will always be plenty of skilled people available to work in new and emerging scientific, engineering and technological fields, and plenty of capable teachers to educate the next generation.

    No single factor is more important to the intellectual and economic progress of society, and to the enhanced well-being of its citizens, than the continuous acquisition of new knowledge. The National Science Foundation is proud to be a major part of that process.

    Specifically, the Foundation’s organic legislation authorizes us to engage in the following activities:

    Initiate and support, through grants and contracts, scientific and engineering research and programs to strengthen scientific and engineering research potential, and education programs at all levels, and appraise the impact of research upon industrial development and the general welfare.

    Award graduate fellowships in the sciences and in engineering.

    Foster the interchange of scientific information among scientists and engineers in the United States and foreign countries.

    Foster and support the development and use of computers and other scientific methods and technologies, primarily for research and education in the sciences.

    Evaluate the status and needs of the various sciences and engineering and take into consideration the results of this evaluation in correlating our research and educational programs with other federal and non-federal programs.

    Provide a central clearinghouse for the collection, interpretation and analysis of data on scientific and technical resources in the United States, and provide a source of information for policy formulation by other federal agencies.

    Determine the total amount of federal money received by universities and appropriate organizations for the conduct of scientific and engineering research, including both basic and applied, and construction of facilities where such research is conducted, but excluding development, and report annually thereon to the President and the Congress.

    Initiate and support specific scientific and engineering activities in connection with matters relating to international cooperation, national security and the effects of scientific and technological applications upon society.

    Initiate and support scientific and engineering research, including applied research, at academic and other nonprofit institutions and, at the direction of the President, support applied research at other organizations.

    Recommend and encourage the pursuit of national policies for the promotion of basic research and education in the sciences and engineering. Strengthen research and education innovation in the sciences and engineering, including independent research by individuals, throughout the United States.

    Support activities designed to increase the participation of women and minorities and others underrepresented in science and technology.

    At present, The National Science Foundation has a total workforce of about 2,100 at its Alexandria, VA, headquarters, including approximately 1,400 career employees, 200 scientists from research institutions on temporary duty, 450 contract workers and the staff of the NSB office and the Office of the Inspector General.

    The National Science Foundation is divided into the following seven directorates that support science and engineering research and education: Biological Sciences, Computer and Information Science and Engineering, Engineering, Geosciences, Mathematical and Physical Sciences, Social, Behavioral and Economic Sciences, and Education and Human Resources. Each is headed by an assistant director and each is further subdivided into divisions like materials research, ocean sciences and behavioral and cognitive sciences.

    Within The National Science Foundation ‘s Office of the Director, the Office of Integrative Activities also supports research and researchers. Other sections of The National Science Foundation are devoted to financial management, award processing and monitoring, legal affairs, outreach and other functions. The Office of the Inspector General examines the foundation’s work and reports to the NSB and Congress.

    Each year, The National Science Foundation supports an average of about 200,000 scientists, engineers, educators and students at universities, laboratories and field sites all over the United States and throughout the world, from Alaska to Alabama to Africa to Antarctica. You could say that The National Science Foundation support goes “to the ends of the earth” to learn more about the planet and its inhabitants, and to produce fundamental discoveries that further the progress of research and lead to products and services that boost the economy and improve general health and well-being.

    As described in our strategic plan, The National Science Foundation is the only federal agency whose mission includes support for all fields of fundamental science and engineering, except for medical sciences. The National Science Foundation is tasked with keeping the United States at the leading edge of discovery in a wide range of scientific areas, from astronomy to geology to zoology. So, in addition to funding research in the traditional academic areas, the agency also supports “high risk, high pay off” ideas, novel collaborations and numerous projects that may seem like science fiction today, but which the public will take for granted tomorrow. And in every case, we ensure that research is fully integrated with education so that today’s revolutionary work will also be training tomorrow’s top scientists and engineers.

    Unlike many other federal agencies, The National Science Foundation does not hire researchers or directly operate our own laboratories or similar facilities. Instead, we support scientists, engineers and educators directly through their own home institutions (typically universities and colleges). Similarly, we fund facilities and equipment such as telescopes, through cooperative agreements with research consortia that have competed successfully for limited-term management contracts.

    The National Science Foundation ‘s job is to determine where the frontiers are, identify the leading U.S. pioneers in these fields and provide money and equipment to help them continue. The results can be transformative. For example, years before most people had heard of “nanotechnology,” The National Science Foundation was supporting scientists and engineers who were learning how to detect, record and manipulate activity at the scale of individual atoms — the nanoscale. Today, scientists are adept at moving atoms around to create devices and materials with properties that are often more useful than those found in nature.

    Dozens of companies are gearing up to produce nanoscale products. The National Science Foundation is funding the research projects, state-of-the-art facilities and educational opportunities that will teach new skills to the science and engineering students who will make up the nanotechnology workforce of tomorrow.

    At the same time, we are looking for the next frontier.

    The National Science Foundation ‘s task of identifying and funding work at the frontiers of science and engineering is not a “top-down” process. The National Science Foundation operates from the “bottom up,” keeping close track of research around the United States and the world, maintaining constant contact with the research community to identify ever-moving horizons of inquiry, monitoring which areas are most likely to result in spectacular progress and choosing the most promising people to conduct the research.

    The National Science Foundation funds research and education in most fields of science and engineering. We do this through grants and cooperative agreements to more than 2,000 colleges, universities, K-12 school systems, businesses, informal science organizations and other research organizations throughout the U.S. The Foundation considers proposals submitted by organizations on behalf of individuals or groups for support in most fields of research. Interdisciplinary proposals also are eligible for consideration. Awardees are chosen from those who send us proposals asking for a specific amount of support for a specific project.

    Proposals may be submitted in response to the various funding opportunities that are announced on the The National Science Foundation website. These funding opportunities fall into three categories — program descriptions, program announcements and program solicitations — and are the mechanisms The National Science Foundation uses to generate funding requests. At any time, scientists and engineers are also welcome to send in unsolicited proposals for research and education projects, in any existing or emerging field. The Proposal and Award Policies and Procedures Guide (PAPPG) provides guidance on proposal preparation and submission and award management. At present, The National Science Foundation receives more than 42,000 proposals per year.

    To ensure that proposals are evaluated in a fair, competitive, transparent and in-depth manner, we use a rigorous system of merit review. Nearly every proposal is evaluated by a minimum of three independent reviewers consisting of scientists, engineers and educators who do not work at NSF or for the institution that employs the proposing researchers. The National Science Foundation selects the reviewers from among the national pool of experts in each field and their evaluations are confidential. On average, approximately 40,000 experts, knowledgeable about the current state of their field, give their time to serve as reviewers each year.

    The reviewer’s job is to decide which projects are of the very highest caliber. The National Science Foundation ‘s merit review process, considered by some to be the “gold standard” of scientific review, ensures that many voices are heard and that only the best projects make it to the funding stage. An enormous amount of research, deliberation, thought and discussion goes into award decisions.

    The National Science Foundation program officer reviews the proposal and analyzes the input received from the external reviewers. After scientific, technical and programmatic review and consideration of appropriate factors, the program officer makes an “award” or “decline” recommendation to the division director. Final programmatic approval for a proposal is generally completed at The National Science Foundation ‘s division level. A principal investigator (PI) whose proposal for The National Science Foundation support has been declined will receive information and an explanation of the reason(s) for declination, along with copies of the reviews considered in making the decision. If that explanation does not satisfy the PI, he/she may request additional information from the cognizant The National Science Foundation program officer or division director.

    If the program officer makes an award recommendation and the division director concurs, the recommendation is submitted to The National Science Foundation ‘s Division of Grants and Agreements (DGA) for award processing. A DGA officer reviews the recommendation from the program division/office for business, financial and policy implications, and the processing and issuance of a grant or cooperative agreement. DGA generally makes awards to academic institutions within 30 days after the program division/office makes its recommendation.

     
  • richardmitnick 12:29 pm on September 6, 2022 Permalink | Reply
    Tags: "National Science Foundation Celebrates the Inauguration of its Daniel K. Inouye Solar Telescope", NSF’s flagship solar telescope-the largest in the world-to herald a new era of solar science., , The National Science Foundation   

    From The National Science Foundation: “National Science Foundation Celebrates the Inauguration of its Daniel K. Inouye Solar Telescope” 

    From The National Science Foundation

    9.5.22

    Dr. Claire Raftery
    NSO Office of Communications
    claire@nso.edu

    U.S. National Science Foundation Celebrates the Inauguration of its Daniel K. Inouye Solar Telescope New image release in honor of the Inouye Solar Telescope Inauguration Ceremony: The first images of the chromosphere – the area of the Sun’s atmosphere.

    1
    The first images of the chromosphere – the area of the Sun’s atmosphere above the surface – taken with the Daniel K. Inouye Solar Telescope on June 3rd, 2022. The image shows a region 82,500 kilometers across at a resolution of 18 km. This image is taken at 486.13 nanometers using the H-beta line from the Balmer series.

    NSF’s flagship solar telescope-the largest in the world-to herald a new era of solar science.

    On August 31, 2022, a delegation of NSF leaders, congressional dignitaries, and members of both the scientific and Native Hawaiian communities gathered near the summit of Haleakalā, Maui to commemorate the inauguration of the world’s most powerful solar telescope. The NSF’s Daniel K. Inouye Solar Telescope is nearing the completion of the first year of its Operations Commissioning Phase (OCP), delivering on its promise to reveal the Sun in ways never seen before.

    If a picture is worth a thousand words, the images and data produced by Inouye Solar Telescope will write the next chapters of solar physics research, including two new images released in celebration of this week’s events.

    Over 25 years ago, the NSF invested in creating a world-leading, ground-based solar observatory to confront the most pressing questions in solar physics and space weather events that impact Earth. This vision, executed by the Association of Universities for Research in Astronomy (AURA) through the NSF’s National Solar Observatory (NSO), was realized during the formal inauguration of the Inouye Solar Telescope.

    “NSF’s Inouye Solar Telescope is the world’s most powerful solar telescope that will forever change the way we explore and understand our sun,” said NSF Director, Sethuraman Panchanathan. “Its insights will transform how our nation, and the planet, predict and prepare for events like solar storms.”

    The inauguration brought NSF leadership, telescope staff, and members of the scientific community together to acknowledge this historical milestone of bringing the telescope online. Representatives from the NSF, AURA, and the NSO were joined by key House and Senate staffers from the Commerce, Justice, Science, and Related Agencies Appropriations Subcommittee, as well as key staff from the House Science, Space, and Technology Committee responsible for authorizing and funding the Inouye Solar Telescope.

    The Inouye Solar Telescope is located on land of spiritual and cultural significance to the Native Hawaiian people. The use of this important site to further scientific knowledge is done so with appreciation and respect. Members of the Inouye Solar Telescope Native Hawaiian Working Group were recognized for their invaluable role in educating NSF and NSO staff about cultural issues of importance to them and in providing cultural input throughout the telescope’s construction. Hōkūlani Holt, Director of the Ka Hikina O Ka Lā program at the University of Hawai‘i Maui College, led an opening pule (prayer) in accordance with Hawaiian cultural protocol.

    The Inouye Solar Telescope has embarked on a mission to progress solar science, research, education, and foster relationships with local communities throughout Hawaiʻi. Since OCP began in February 2022, the Inouye Solar Telescope has gathered data for more than 20 of the accepted scientific proposals and has conducted initial coordinated solar observations with NASA’s Parker Solar Probe and ESA/NASA’s Solar Orbiter.

    “With the world’s largest solar telescope now in science operations, we are grateful for all who make this remarkable facility possible,” said Matt Mountain, AURA President. “In particular we thank the people of Hawai‘i for the privilege of operating from this remarkable site, to the National Science Foundation and the US Congress for their consistent support, and to our Inouye Solar Telescope Team, many of whom have tirelessly devoted over a decade to this transformational project. A new era of Solar Physics is beginning!”

    The NSF and NSO supports the development of Hawai‘i’s scientific & technical workforce through educational and workforce development programs. School and community outreach events, participation in the Akamai Workforce Initiative, and the NSF-funded Ka Hikina O Ka Lā program supports Hawai‘i and Native Hawaiian students on their journey to obtaining careers in STEM. The partnership with the National Park Service (Haleakalā National Park) to host Solar Week in 2022 exemplifies the efforts to bring solar science to the general public. Employment opportunities at the Inouye Solar Telescope aim to diversify Hawaiʻi’s job industry and provide STEM-based career opportunities for Hawaiʻiʻs workforce.

    The inauguration puts a stamp on an ambitious, multi-decade project to provide the world with its greatest solar observatory. The celebration honored the collaborative effort between the many entities and individuals needed to bring the telescope to operations. Yesterday marked the beginning of the Inouye Solar Telescope’s 50-year journey to revolutionize our understanding of the Sun, its magnetic behavior, and its influence on Earth. For more information, visit http://www.nso.edu.

    ###

    The U.S. National Science Foundation’s Daniel K. Inouye Solar Telescope is operated by the National Solar Observatory (NSO), a federally funded research and development center focused on solar research, under management by the Association of Universities for Research in Astronomy (AURA). The Inouye Solar Telescope and NSO are funded by the National Science Foundation through a cooperative agreement with AURA. The Inouye Solar Telescope is located on land of spiritual and cultural significance to Native Hawaiian people. The use of this important site to further scientific knowledge is done so with appreciation and respect. For more information, visit http://www.nso.edu.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The National Science Foundation is an independent federal agency created by Congress in 1950 “to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense…we are the funding source for approximately 24 percent of all federally supported basic research conducted by America’s colleges and universities. In many fields such as mathematics, computer science and the social sciences, The National Science Foundation is the major source of federal backing.

    We fulfill our mission chiefly by issuing limited-term grants — currently about 12,000 new awards per year, with an average duration of three years — to fund specific research proposals that have been judged the most promising by a rigorous and objective merit-review system. Most of these awards go to individuals or small groups of investigators. Others provide funding for research centers, instruments and facilities that allow scientists, engineers and students to work at the outermost frontiers of knowledge.

    The National Science Foundation ‘s goals — discovery, learning, research infrastructure and stewardship — provide an integrated strategy to advance the frontiers of knowledge, cultivate a world-class, broadly inclusive science and engineering workforce and expand the scientific literacy of all citizens, build the nation’s research capability through investments in advanced instrumentation and facilities, and support excellence in science and engineering research and education through a capable and responsive organization. We like to say that The National Science Foundation is “where discoveries begin.”

    Many of the discoveries and technological advances have been truly revolutionary. In the past few decades, The National Science Foundation -funded researchers have won some 236 Nobel Prizes as well as other honors too numerous to list. These pioneers have included the scientists or teams that discovered many of the fundamental particles of matter, analyzed the cosmic microwaves left over from the earliest epoch of the universe, developed carbon-14 dating of ancient artifacts, decoded the genetics of viruses, and created an entirely new state of matter called a Bose-Einstein condensate.

    The National Science Foundation also funds equipment that is needed by scientists and engineers but is often too expensive for any one group or researcher to afford. Examples of such major research equipment include giant optical and radio telescopes, Antarctic research sites, high-end computer facilities and ultra-high-speed connections, ships for ocean research, sensitive detectors of very subtle physical phenomena and gravitational wave observatories.

    Another essential element in The National Science Foundation ‘s mission is support for science and engineering education, from pre-K through graduate school and beyond. The research we fund is thoroughly integrated with education to help ensure that there will always be plenty of skilled people available to work in new and emerging scientific, engineering and technological fields, and plenty of capable teachers to educate the next generation.

    No single factor is more important to the intellectual and economic progress of society, and to the enhanced well-being of its citizens, than the continuous acquisition of new knowledge. The National Science Foundation is proud to be a major part of that process.

    Specifically, the Foundation’s organic legislation authorizes us to engage in the following activities:

    Initiate and support, through grants and contracts, scientific and engineering research and programs to strengthen scientific and engineering research potential, and education programs at all levels, and appraise the impact of research upon industrial development and the general welfare.

    Award graduate fellowships in the sciences and in engineering.

    Foster the interchange of scientific information among scientists and engineers in the United States and foreign countries.

    Foster and support the development and use of computers and other scientific methods and technologies, primarily for research and education in the sciences.

    Evaluate the status and needs of the various sciences and engineering and take into consideration the results of this evaluation in correlating our research and educational programs with other federal and non-federal programs.

    Provide a central clearinghouse for the collection, interpretation and analysis of data on scientific and technical resources in the United States, and provide a source of information for policy formulation by other federal agencies.

    Determine the total amount of federal money received by universities and appropriate organizations for the conduct of scientific and engineering research, including both basic and applied, and construction of facilities where such research is conducted, but excluding development, and report annually thereon to the President and the Congress.

    Initiate and support specific scientific and engineering activities in connection with matters relating to international cooperation, national security and the effects of scientific and technological applications upon society.

    Initiate and support scientific and engineering research, including applied research, at academic and other nonprofit institutions and, at the direction of the President, support applied research at other organizations.

    Recommend and encourage the pursuit of national policies for the promotion of basic research and education in the sciences and engineering. Strengthen research and education innovation in the sciences and engineering, including independent research by individuals, throughout the United States.

    Support activities designed to increase the participation of women and minorities and others underrepresented in science and technology.

    At present, The National Science Foundation has a total workforce of about 2,100 at its Alexandria, VA, headquarters, including approximately 1,400 career employees, 200 scientists from research institutions on temporary duty, 450 contract workers and the staff of the NSB office and the Office of the Inspector General.

    The National Science Foundation is divided into the following seven directorates that support science and engineering research and education: Biological Sciences, Computer and Information Science and Engineering, Engineering, Geosciences, Mathematical and Physical Sciences, Social, Behavioral and Economic Sciences, and Education and Human Resources. Each is headed by an assistant director and each is further subdivided into divisions like materials research, ocean sciences and behavioral and cognitive sciences.

    Within The National Science Foundation ‘s Office of the Director, the Office of Integrative Activities also supports research and researchers. Other sections of The National Science Foundation are devoted to financial management, award processing and monitoring, legal affairs, outreach and other functions. The Office of the Inspector General examines the foundation’s work and reports to the NSB and Congress.

    Each year, The National Science Foundation supports an average of about 200,000 scientists, engineers, educators and students at universities, laboratories and field sites all over the United States and throughout the world, from Alaska to Alabama to Africa to Antarctica. You could say that The National Science Foundation support goes “to the ends of the earth” to learn more about the planet and its inhabitants, and to produce fundamental discoveries that further the progress of research and lead to products and services that boost the economy and improve general health and well-being.

    As described in our strategic plan, The National Science Foundation is the only federal agency whose mission includes support for all fields of fundamental science and engineering, except for medical sciences. The National Science Foundation is tasked with keeping the United States at the leading edge of discovery in a wide range of scientific areas, from astronomy to geology to zoology. So, in addition to funding research in the traditional academic areas, the agency also supports “high risk, high pay off” ideas, novel collaborations and numerous projects that may seem like science fiction today, but which the public will take for granted tomorrow. And in every case, we ensure that research is fully integrated with education so that today’s revolutionary work will also be training tomorrow’s top scientists and engineers.

    Unlike many other federal agencies, The National Science Foundation does not hire researchers or directly operate our own laboratories or similar facilities. Instead, we support scientists, engineers and educators directly through their own home institutions (typically universities and colleges). Similarly, we fund facilities and equipment such as telescopes, through cooperative agreements with research consortia that have competed successfully for limited-term management contracts.

    The National Science Foundation ‘s job is to determine where the frontiers are, identify the leading U.S. pioneers in these fields and provide money and equipment to help them continue. The results can be transformative. For example, years before most people had heard of “nanotechnology,” The National Science Foundation was supporting scientists and engineers who were learning how to detect, record and manipulate activity at the scale of individual atoms — the nanoscale. Today, scientists are adept at moving atoms around to create devices and materials with properties that are often more useful than those found in nature.

    Dozens of companies are gearing up to produce nanoscale products. The National Science Foundation is funding the research projects, state-of-the-art facilities and educational opportunities that will teach new skills to the science and engineering students who will make up the nanotechnology workforce of tomorrow.

    At the same time, we are looking for the next frontier.

    The National Science Foundation ‘s task of identifying and funding work at the frontiers of science and engineering is not a “top-down” process. The National Science Foundation operates from the “bottom up,” keeping close track of research around the United States and the world, maintaining constant contact with the research community to identify ever-moving horizons of inquiry, monitoring which areas are most likely to result in spectacular progress and choosing the most promising people to conduct the research.

    The National Science Foundation funds research and education in most fields of science and engineering. We do this through grants and cooperative agreements to more than 2,000 colleges, universities, K-12 school systems, businesses, informal science organizations and other research organizations throughout the U.S. The Foundation considers proposals submitted by organizations on behalf of individuals or groups for support in most fields of research. Interdisciplinary proposals also are eligible for consideration. Awardees are chosen from those who send us proposals asking for a specific amount of support for a specific project.

    Proposals may be submitted in response to the various funding opportunities that are announced on the The National Science Foundation website. These funding opportunities fall into three categories — program descriptions, program announcements and program solicitations — and are the mechanisms The National Science Foundation uses to generate funding requests. At any time, scientists and engineers are also welcome to send in unsolicited proposals for research and education projects, in any existing or emerging field. The Proposal and Award Policies and Procedures Guide (PAPPG) provides guidance on proposal preparation and submission and award management. At present, The National Science Foundation receives more than 42,000 proposals per year.

    To ensure that proposals are evaluated in a fair, competitive, transparent and in-depth manner, we use a rigorous system of merit review. Nearly every proposal is evaluated by a minimum of three independent reviewers consisting of scientists, engineers and educators who do not work at NSF or for the institution that employs the proposing researchers. The National Science Foundation selects the reviewers from among the national pool of experts in each field and their evaluations are confidential. On average, approximately 40,000 experts, knowledgeable about the current state of their field, give their time to serve as reviewers each year.

    The reviewer’s job is to decide which projects are of the very highest caliber. The National Science Foundation ‘s merit review process, considered by some to be the “gold standard” of scientific review, ensures that many voices are heard and that only the best projects make it to the funding stage. An enormous amount of research, deliberation, thought and discussion goes into award decisions.

    The National Science Foundation program officer reviews the proposal and analyzes the input received from the external reviewers. After scientific, technical and programmatic review and consideration of appropriate factors, the program officer makes an “award” or “decline” recommendation to the division director. Final programmatic approval for a proposal is generally completed at The National Science Foundation ‘s division level. A principal investigator (PI) whose proposal for The National Science Foundation support has been declined will receive information and an explanation of the reason(s) for declination, along with copies of the reviews considered in making the decision. If that explanation does not satisfy the PI, he/she may request additional information from the cognizant The National Science Foundation program officer or division director.

    If the program officer makes an award recommendation and the division director concurs, the recommendation is submitted to The National Science Foundation ‘s Division of Grants and Agreements (DGA) for award processing. A DGA officer reviews the recommendation from the program division/office for business, financial and policy implications, and the processing and issuance of a grant or cooperative agreement. DGA generally makes awards to academic institutions within 30 days after the program division/office makes its recommendation.

     
  • richardmitnick 1:02 pm on July 30, 2022 Permalink | Reply
    Tags: "Public input sought by NSF for environmental review of TMT", , , , , The National Science Foundation,   

    From The University of Hawai’i-Manoa Institute for Astronomy and The National Science Foundation: “Public input sought by NSF for environmental review of TMT” 

    From The University of Hawai’i-Manoa Institute for Astronomy

    and

    The National Science Foundation

    The National Science Foundation (NSF) is seeking public input on whether it should move forward with a formal environmental review for the construction of the Thirty Meter Telescope (TMT) on Mauna Kea on Hawaiʻi Island.

    [This makes no sense. This project, so important for Northern Hemisphere Astronomy has already been twice approved by the appropriate governmental agencies in Hawai’i. There is agreement to decomission twelve existing telescopes in the Mauna Kea Observatory. So much time has been wasted already in this process as to defy description. Now, the NSF is simply adding to the problems.]

    The process begins with a series of public meetings on Hawaiʻi Island August 9–12. An open comment period runs through September 17 and comments can be submitted in-person at the public meetings or online.

    The University of Hawaiʻi has no formal role in the NSF process with the establishment of the Mauna Kea Stewardship and Oversight Authority authorized by the recent adoption of Act 255 (HB2024), however, UH community members are strongly encouraged to participate in the NSF process including its public hearings.

    “Whether you support TMT or not, the NSF needs to hear from you,” said UH Hilo Center for Mauna Kea Stewardship Executive Director Greg Chun. “Robust, public participation is key to finding the best path forward for Mauna Kea and astronomy in Hawaiʻi.”

    NSF has developed a Draft Community Engagement Plan to provide multiple opportunities for the public to participate in the environmental review process, which will include a 2–3 day interactive and NSF-facilitated workshop designed to develop a plan to define and practice responsible astronomy in Hawaiʻi. The public is invited to comment on draft study plans that outline the scope and methodology to be used in any studies that may be conducted as part of the environmental review.

    On July 19, 2022, the NSF posted in the Federal Register, its Notice of Intent To Prepare an Environmental Impact Statement and Initiate Section 106 Consultation for a Potential National Science Foundation Investment in the Construction and Operation of an Extremely Large Telescope Located in the Northern Hemisphere and Notice of Public Scoping Meetings and Comment Period. This notice officially starts (1) the public scoping process for NSF’s environmental impact statement required by the National Environmental Policy Act related to the proposed project’s impacts to resources, and (2) public consultation required under Section 106 of the National Historic Preservation Act related to the proposed project’s impacts specifically on properties that are on or qualify for listing on the National Register of Historic Places.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The National Science Foundation is an independent federal agency created by Congress in 1950 “to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense…we are the funding source for approximately 24 percent of all federally supported basic research conducted by America’s colleges and universities. In many fields such as mathematics, computer science and the social sciences, NSF is the major source of federal backing.

    We fulfill our mission chiefly by issuing limited-term grants — currently about 12,000 new awards per year, with an average duration of three years — to fund specific research proposals that have been judged the most promising by a rigorous and objective merit-review system. Most of these awards go to individuals or small groups of investigators. Others provide funding for research centers, instruments and facilities that allow scientists, engineers and students to work at the outermost frontiers of knowledge.

    NSF’s goals — discovery, learning, research infrastructure and stewardship — provide an integrated strategy to advance the frontiers of knowledge, cultivate a world-class, broadly inclusive science and engineering workforce and expand the scientific literacy of all citizens, build the nation’s research capability through investments in advanced instrumentation and facilities, and support excellence in science and engineering research and education through a capable and responsive organization. We like to say that NSF is “where discoveries begin.”

    Many of the discoveries and technological advances have been truly revolutionary. In the past few decades, NSF-funded researchers have won some 236 Nobel Prizes as well as other honors too numerous to list. These pioneers have included the scientists or teams that discovered many of the fundamental particles of matter, analyzed the cosmic microwaves left over from the earliest epoch of the universe, developed carbon-14 dating of ancient artifacts, decoded the genetics of viruses, and created an entirely new state of matter called a Bose-Einstein condensate.

    NSF also funds equipment that is needed by scientists and engineers but is often too expensive for any one group or researcher to afford. Examples of such major research equipment include giant optical and radio telescopes, Antarctic research sites, high-end computer facilities and ultra-high-speed connections, ships for ocean research, sensitive detectors of very subtle physical phenomena and gravitational wave observatories.

    Another essential element in NSF’s mission is support for science and engineering education, from pre-K through graduate school and beyond. The research we fund is thoroughly integrated with education to help ensure that there will always be plenty of skilled people available to work in new and emerging scientific, engineering and technological fields, and plenty of capable teachers to educate the next generation.

    No single factor is more important to the intellectual and economic progress of society, and to the enhanced well-being of its citizens, than the continuous acquisition of new knowledge. NSF is proud to be a major part of that process.

    Specifically, the Foundation’s organic legislation authorizes us to engage in the following activities:

    Initiate and support, through grants and contracts, scientific and engineering research and programs to strengthen scientific and engineering research potential, and education programs at all levels, and appraise the impact of research upon industrial development and the general welfare.
    Award graduate fellowships in the sciences and in engineering.
    Foster the interchange of scientific information among scientists and engineers in the United States and foreign countries.
    Foster and support the development and use of computers and other scientific methods and technologies, primarily for research and education in the sciences.
    Evaluate the status and needs of the various sciences and engineering and take into consideration the results of this evaluation in correlating our research and educational programs with other federal and non-federal programs.
    Provide a central clearinghouse for the collection, interpretation and analysis of data on scientific and technical resources in the United States, and provide a source of information for policy formulation by other federal agencies.
    Determine the total amount of federal money received by universities and appropriate organizations for the conduct of scientific and engineering research, including both basic and applied, and construction of facilities where such research is conducted, but excluding development, and report annually thereon to the President and the Congress.
    Initiate and support specific scientific and engineering activities in connection with matters relating to international cooperation, national security and the effects of scientific and technological applications upon society.
    Initiate and support scientific and engineering research, including applied research, at academic and other nonprofit institutions and, at the direction of the President, support applied research at other organizations.
    Recommend and encourage the pursuit of national policies for the promotion of basic research and education in the sciences and engineering. Strengthen research and education innovation in the sciences and engineering, including independent research by individuals, throughout the United States.
    Support activities designed to increase the participation of women and minorities and others underrepresented in science and technology.

    At present, NSF has a total workforce of about 2,100 at its Alexandria, VA, headquarters, including approximately 1,400 career employees, 200 scientists from research institutions on temporary duty, 450 contract workers and the staff of the NSB office and the Office of the Inspector General.

    NSF is divided into the following seven directorates that support science and engineering research and education: Biological Sciences, Computer and Information Science and Engineering, Engineering, Geosciences, Mathematical and Physical Sciences, Social, Behavioral and Economic Sciences, and Education and Human Resources. Each is headed by an assistant director and each is further subdivided into divisions like materials research, ocean sciences and behavioral and cognitive sciences.

    Within NSF’s Office of the Director, the Office of Integrative Activities also supports research and researchers. Other sections of NSF are devoted to financial management, award processing and monitoring, legal affairs, outreach and other functions. The Office of the Inspector General examines the foundation’s work and reports to the NSB and Congress.

    Each year, NSF supports an average of about 200,000 scientists, engineers, educators and students at universities, laboratories and field sites all over the United States and throughout the world, from Alaska to Alabama to Africa to Antarctica. You could say that NSF support goes “to the ends of the earth” to learn more about the planet and its inhabitants, and to produce fundamental discoveries that further the progress of research and lead to products and services that boost the economy and improve general health and well-being.

    As described in our strategic plan, NSF is the only federal agency whose mission includes support for all fields of fundamental science and engineering, except for medical sciences. NSF is tasked with keeping the United States at the leading edge of discovery in a wide range of scientific areas, from astronomy to geology to zoology. So, in addition to funding research in the traditional academic areas, the agency also supports “high risk, high pay off” ideas, novel collaborations and numerous projects that may seem like science fiction today, but which the public will take for granted tomorrow. And in every case, we ensure that research is fully integrated with education so that today’s revolutionary work will also be training tomorrow’s top scientists and engineers.

    Unlike many other federal agencies, NSF does not hire researchers or directly operate our own laboratories or similar facilities. Instead, we support scientists, engineers and educators directly through their own home institutions (typically universities and colleges). Similarly, we fund facilities and equipment such as telescopes, through cooperative agreements with research consortia that have competed successfully for limited-term management contracts.

    NSF’s job is to determine where the frontiers are, identify the leading U.S. pioneers in these fields and provide money and equipment to help them continue. The results can be transformative. For example, years before most people had heard of “nanotechnology,” NSF was supporting scientists and engineers who were learning how to detect, record and manipulate activity at the scale of individual atoms — the nanoscale. Today, scientists are adept at moving atoms around to create devices and materials with properties that are often more useful than those found in nature.

    Dozens of companies are gearing up to produce nanoscale products. NSF is funding the research projects, state-of-the-art facilities and educational opportunities that will teach new skills to the science and engineering students who will make up the nanotechnology workforce of tomorrow.

    At the same time, we are looking for the next frontier.

    NSF’s task of identifying and funding work at the frontiers of science and engineering is not a “top-down” process. NSF operates from the “bottom up,” keeping close track of research around the United States and the world, maintaining constant contact with the research community to identify ever-moving horizons of inquiry, monitoring which areas are most likely to result in spectacular progress and choosing the most promising people to conduct the research.

    NSF funds research and education in most fields of science and engineering. We do this through grants and cooperative agreements to more than 2,000 colleges, universities, K-12 school systems, businesses, informal science organizations and other research organizations throughout the U.S. The Foundation considers proposals submitted by organizations on behalf of individuals or groups for support in most fields of research. Interdisciplinary proposals also are eligible for consideration. Awardees are chosen from those who send us proposals asking for a specific amount of support for a specific project.

    Proposals may be submitted in response to the various funding opportunities that are announced on the NSF website. These funding opportunities fall into three categories — program descriptions, program announcements and program solicitations — and are the mechanisms NSF uses to generate funding requests. At any time, scientists and engineers are also welcome to send in unsolicited proposals for research and education projects, in any existing or emerging field. The Proposal and Award Policies and Procedures Guide (PAPPG) provides guidance on proposal preparation and submission and award management. At present, NSF receives more than 42,000 proposals per year.

    To ensure that proposals are evaluated in a fair, competitive, transparent and in-depth manner, we use a rigorous system of merit review. Nearly every proposal is evaluated by a minimum of three independent reviewers consisting of scientists, engineers and educators who do not work at NSF or for the institution that employs the proposing researchers. NSF selects the reviewers from among the national pool of experts in each field and their evaluations are confidential. On average, approximately 40,000 experts, knowledgeable about the current state of their field, give their time to serve as reviewers each year.

    The reviewer’s job is to decide which projects are of the very highest caliber. NSF’s merit review process, considered by some to be the “gold standard” of scientific review, ensures that many voices are heard and that only the best projects make it to the funding stage. An enormous amount of research, deliberation, thought and discussion goes into award decisions.

    The NSF program officer reviews the proposal and analyzes the input received from the external reviewers. After scientific, technical and programmatic review and consideration of appropriate factors, the program officer makes an “award” or “decline” recommendation to the division director. Final programmatic approval for a proposal is generally completed at NSF’s division level. A principal investigator (PI) whose proposal for NSF support has been declined will receive information and an explanation of the reason(s) for declination, along with copies of the reviews considered in making the decision. If that explanation does not satisfy the PI, he/she may request additional information from the cognizant NSF program officer or division director.

    If the program officer makes an award recommendation and the division director concurs, the recommendation is submitted to NSF’s Division of Grants and Agreements (DGA) for award processing. A DGA officer reviews the recommendation from the program division/office for business, financial and policy implications, and the processing and issuance of a grant or cooperative agreement. DGA generally makes awards to academic institutions within 30 days after the program division/office makes its recommendation.

    The The University of Hawai’i Institute for Astronomy is a research unit within the University of Hawai’i system. Institute for Astronomy’s main headquarters are located at 2680 Woodlawn Drive in Honolulu, Hawai’i, adjacent to the University of Hawai’i-Mānoa campus. Additional facilities are located at Pukalani, Maui and Hilo on Hawaiʻi island (the Big Island). Institute for Astronomy employs over 150 astronomers and support staff. Institute for Astronomy astronomers perform research into Solar System objects, stars, galaxies and cosmology.
    The Institute for Astronomy was founded in 1967 to conduct research and to manage the observatory complexes at Haleakalā, Maui and the Mauna Kea Observatory on the summit of Mauna Kea. It has approximately 55 faculty and employs over 300 people.

    From University of Hawai’i-Manoa

    University of Hawaii 2.2 meter telescope, Mauna Kea, Hawai’i

    The W. M. Keck Observatory operates the largest, most scientifically productive telescopes on Earth.

    The two, 10-meter optical/infrared telescopes near the summit of Mauna Kea on the island of Hawai’i feature a suite of advanced instruments including imagers, multi-object spectrographs, high-resolution spectrographs, integral-field spectrographs and world-leading laser guide star adaptive optics systems.

    System Overview

    The The University of Hawai‘i includes 10 campuses and dozens of educational, training and research centers across the Hawaiian Islands. As the public system of higher education in Hawai‘i, The University of Hawai‘i offers opportunities as unique and diverse as our Island home.

    The 10 University of Hawai‘i campuses and educational centers on six Hawai’ian Islands provide unique opportunities for both learning and recreation.

    The University of Hawai‘i is the State’s leading engine for economic growth and diversification, stimulating the local economy with jobs, research and skilled workers.

    The University of Hawaiʻi system, formally The University of Hawaiʻi is a public college and university system that confers associate, bachelor’s, master’s, and doctoral degrees through three university campuses, seven community college campuses, an employment training center, three university centers, four education centers and various other research facilities distributed across six islands throughout the state of Hawaii in the United States. All schools of The University of Hawaiʻi system are accredited by the Western Association of Schools and Colleges. The University of Hawai‘i system’s main administrative offices are located on the property of the University of Hawaiʻi-Mānoa in Honolulu CDP.

    The University of Hawaiʻi-Mānoa is the flagship institution of The University of Hawaiʻi system. It was founded as a land-grant college under the terms of the Morrill Acts of 1862 and 1890. Programs include Hawaiian/Pacific Studies, Astronomy, East Asian Languages and Literature, Asian Studies, Comparative Philosophy, Marine Science, Second Language Studies, along with Botany, Engineering, Ethnomusicology, Geophysics, Law, Business, Linguistics, Mathematics, and Medicine. The second-largest institution is The University of Hawaiʻi at Hilo on the “Big Island” of Hawaiʻi, with over 3,000 students. The University of Hawaiʻi-West Oʻahu in Kapolei primarily serves students who reside in Honolulu’s western and central suburban communities. The University of Hawaiʻi Community College system comprises four community colleges island campuses on O’ahu and one each on Maui, Kauaʻi, and Hawaiʻi. The schools were created to improve accessibility of courses to more Hawaiʻi residents and provide an affordable means of easing the transition from secondary school/high school to college for many students. The University of Hawaiʻi education centers are located in more remote areas of the State and its several islands, supporting rural communities via distance education.

    Research facilities

    Center for Philippine Studies
    Cancer Research Center of Hawaiʻi
    East-West Center
    Haleakalā Observatory
    Hawaiʻi Natural Energy Institute
    Institute for Astronomy
    Institute of Geophysics and Planetology
    Institute of Marine Biology
    Lyon Arboretum
    Mauna Kea Observatory
    W. M. Keck Observatory
    Waikīkī Aquarium

     
  • richardmitnick 8:42 pm on July 28, 2022 Permalink | Reply
    Tags: "Faint fossil galaxy found at the Andromeda galaxy’s edge", , , , , Discovery could contain clues to the formation of ancient galaxies., The dwarf galaxy Pegasus V, The National Science Foundation   

    From The National Science Foundation: “Faint fossil galaxy found at the Andromeda galaxy’s edge” 

    From The National Science Foundation

    July 27, 2022

    1
    Astronomers find remnants of an ancient galaxy at the edge of Andromeda.
    Credit: International Gemini Observatory/NOIRLab/NSF/AURA

    Discovery could contain clues to the formation of ancient galaxies.

    An amateur astronomer examining archival data processed by the NOIRLab Community Science & Data Center tipped off astronomers about a smudge of interest in an image he examined as part of an effort by the Víctor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory to search for dwarf galaxies.


    Astronomers following up on the tip conducted observations using the Gemini North Telescope at the International Gemini Observatory, part of the U.S. National Science Foundation NOIRLab program.


    The astronomers confirmed that the dwarf galaxy at the far edges of the Andromeda galaxy, known as Pegasus V, is likely a fossil of the earliest galaxies.

    “We have found an extremely faint galaxy whose stars formed very early in the history of the Universe,” said Michelle Collins, an astronomer and lead author of a paper [MNRAS Letters (below)] detailing the finding. “This discovery marks the first time a galaxy this faint has been found around the Andromeda Galaxy using an astronomical survey that wasn’t specifically designed for the task.”

    Some of the faintest galaxies are thought to be the first galaxies formed and thus hold clues to the ancient universe. These cosmic relics are hard to find and harder to study, shrouding them in mystery.

    “These extremely faint galaxies have very few of the bright stars we use to identify them and measure their distances,” said Emily Charles, who was involved in the research. “Gemini’s 8.1-meter mirror allowed us to find faint, old stars. That enabled us to measure the distance to Pegasus V and to determine that its stellar population is extremely old.”

    Relative to other faint galaxies around Andromeda, Pegasus V appears significantly older with a low presence of heavy metals, an indicator Pegasus V is a cluster of some of the earliest stars formed.

    “We hope that further study of Pegasus V’s chemical properties will provide clues into the earliest periods of star formation in the universe,” said Collins. “This fossil galaxy from the early universe may help us understand how galaxies form, and whether our understanding of dark matter is correct.”

    “The enormous collecting area of the public-access Gemini North Telescope provides an array of capabilities for community astronomers,” said Martin Still, NSF International Gemini Observatory program officer. “In this case, Gemini supported this team to confirm the presence of the dwarf galaxy, associate it physically with the Andromeda Galaxy, and determine the metal-deficient nature of its evolved stellar population.”

    Astronomers are continuing the search for faint galaxies and other cosmic artifacts that date back to the origins of the universe.

    Science paper:
    MNRAS Letters

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The National Science Foundation is an independent federal agency created by Congress in 1950 “to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense…we are the funding source for approximately 24 percent of all federally supported basic research conducted by America’s colleges and universities. In many fields such as mathematics, computer science and the social sciences, NSF is the major source of federal backing.

    We fulfill our mission chiefly by issuing limited-term grants — currently about 12,000 new awards per year, with an average duration of three years — to fund specific research proposals that have been judged the most promising by a rigorous and objective merit-review system. Most of these awards go to individuals or small groups of investigators. Others provide funding for research centers, instruments and facilities that allow scientists, engineers and students to work at the outermost frontiers of knowledge.

    NSF’s goals — discovery, learning, research infrastructure and stewardship — provide an integrated strategy to advance the frontiers of knowledge, cultivate a world-class, broadly inclusive science and engineering workforce and expand the scientific literacy of all citizens, build the nation’s research capability through investments in advanced instrumentation and facilities, and support excellence in science and engineering research and education through a capable and responsive organization. We like to say that NSF is “where discoveries begin.”

    Many of the discoveries and technological advances have been truly revolutionary. In the past few decades, NSF-funded researchers have won some 236 Nobel Prizes as well as other honors too numerous to list. These pioneers have included the scientists or teams that discovered many of the fundamental particles of matter, analyzed the cosmic microwaves left over from the earliest epoch of the universe, developed carbon-14 dating of ancient artifacts, decoded the genetics of viruses, and created an entirely new state of matter called a Bose-Einstein condensate.

    NSF also funds equipment that is needed by scientists and engineers but is often too expensive for any one group or researcher to afford. Examples of such major research equipment include giant optical and radio telescopes, Antarctic research sites, high-end computer facilities and ultra-high-speed connections, ships for ocean research, sensitive detectors of very subtle physical phenomena and gravitational wave observatories.

    Another essential element in NSF’s mission is support for science and engineering education, from pre-K through graduate school and beyond. The research we fund is thoroughly integrated with education to help ensure that there will always be plenty of skilled people available to work in new and emerging scientific, engineering and technological fields, and plenty of capable teachers to educate the next generation.

    No single factor is more important to the intellectual and economic progress of society, and to the enhanced well-being of its citizens, than the continuous acquisition of new knowledge. NSF is proud to be a major part of that process.

    Specifically, the Foundation’s organic legislation authorizes us to engage in the following activities:

    Initiate and support, through grants and contracts, scientific and engineering research and programs to strengthen scientific and engineering research potential, and education programs at all levels, and appraise the impact of research upon industrial development and the general welfare.
    Award graduate fellowships in the sciences and in engineering.
    Foster the interchange of scientific information among scientists and engineers in the United States and foreign countries.
    Foster and support the development and use of computers and other scientific methods and technologies, primarily for research and education in the sciences.
    Evaluate the status and needs of the various sciences and engineering and take into consideration the results of this evaluation in correlating our research and educational programs with other federal and non-federal programs.
    Provide a central clearinghouse for the collection, interpretation and analysis of data on scientific and technical resources in the United States, and provide a source of information for policy formulation by other federal agencies.
    Determine the total amount of federal money received by universities and appropriate organizations for the conduct of scientific and engineering research, including both basic and applied, and construction of facilities where such research is conducted, but excluding development, and report annually thereon to the President and the Congress.
    Initiate and support specific scientific and engineering activities in connection with matters relating to international cooperation, national security and the effects of scientific and technological applications upon society.
    Initiate and support scientific and engineering research, including applied research, at academic and other nonprofit institutions and, at the direction of the President, support applied research at other organizations.
    Recommend and encourage the pursuit of national policies for the promotion of basic research and education in the sciences and engineering. Strengthen research and education innovation in the sciences and engineering, including independent research by individuals, throughout the United States.
    Support activities designed to increase the participation of women and minorities and others underrepresented in science and technology.

    At present, NSF has a total workforce of about 2,100 at its Alexandria, VA, headquarters, including approximately 1,400 career employees, 200 scientists from research institutions on temporary duty, 450 contract workers and the staff of the NSB office and the Office of the Inspector General.

    NSF is divided into the following seven directorates that support science and engineering research and education: Biological Sciences, Computer and Information Science and Engineering, Engineering, Geosciences, Mathematical and Physical Sciences, Social, Behavioral and Economic Sciences, and Education and Human Resources. Each is headed by an assistant director and each is further subdivided into divisions like materials research, ocean sciences and behavioral and cognitive sciences.

    Within NSF’s Office of the Director, the Office of Integrative Activities also supports research and researchers. Other sections of NSF are devoted to financial management, award processing and monitoring, legal affairs, outreach and other functions. The Office of the Inspector General examines the foundation’s work and reports to the NSB and Congress.

    Each year, NSF supports an average of about 200,000 scientists, engineers, educators and students at universities, laboratories and field sites all over the United States and throughout the world, from Alaska to Alabama to Africa to Antarctica. You could say that NSF support goes “to the ends of the earth” to learn more about the planet and its inhabitants, and to produce fundamental discoveries that further the progress of research and lead to products and services that boost the economy and improve general health and well-being.

    As described in our strategic plan, NSF is the only federal agency whose mission includes support for all fields of fundamental science and engineering, except for medical sciences. NSF is tasked with keeping the United States at the leading edge of discovery in a wide range of scientific areas, from astronomy to geology to zoology. So, in addition to funding research in the traditional academic areas, the agency also supports “high risk, high pay off” ideas, novel collaborations and numerous projects that may seem like science fiction today, but which the public will take for granted tomorrow. And in every case, we ensure that research is fully integrated with education so that today’s revolutionary work will also be training tomorrow’s top scientists and engineers.

    Unlike many other federal agencies, NSF does not hire researchers or directly operate our own laboratories or similar facilities. Instead, we support scientists, engineers and educators directly through their own home institutions (typically universities and colleges). Similarly, we fund facilities and equipment such as telescopes, through cooperative agreements with research consortia that have competed successfully for limited-term management contracts.

    NSF’s job is to determine where the frontiers are, identify the leading U.S. pioneers in these fields and provide money and equipment to help them continue. The results can be transformative. For example, years before most people had heard of “nanotechnology,” NSF was supporting scientists and engineers who were learning how to detect, record and manipulate activity at the scale of individual atoms — the nanoscale. Today, scientists are adept at moving atoms around to create devices and materials with properties that are often more useful than those found in nature.

    Dozens of companies are gearing up to produce nanoscale products. NSF is funding the research projects, state-of-the-art facilities and educational opportunities that will teach new skills to the science and engineering students who will make up the nanotechnology workforce of tomorrow.

    At the same time, we are looking for the next frontier.

    NSF’s task of identifying and funding work at the frontiers of science and engineering is not a “top-down” process. NSF operates from the “bottom up,” keeping close track of research around the United States and the world, maintaining constant contact with the research community to identify ever-moving horizons of inquiry, monitoring which areas are most likely to result in spectacular progress and choosing the most promising people to conduct the research.

    NSF funds research and education in most fields of science and engineering. We do this through grants and cooperative agreements to more than 2,000 colleges, universities, K-12 school systems, businesses, informal science organizations and other research organizations throughout the U.S. The Foundation considers proposals submitted by organizations on behalf of individuals or groups for support in most fields of research. Interdisciplinary proposals also are eligible for consideration. Awardees are chosen from those who send us proposals asking for a specific amount of support for a specific project.

    Proposals may be submitted in response to the various funding opportunities that are announced on the NSF website. These funding opportunities fall into three categories — program descriptions, program announcements and program solicitations — and are the mechanisms NSF uses to generate funding requests. At any time, scientists and engineers are also welcome to send in unsolicited proposals for research and education projects, in any existing or emerging field. The Proposal and Award Policies and Procedures Guide (PAPPG) provides guidance on proposal preparation and submission and award management. At present, NSF receives more than 42,000 proposals per year.

    To ensure that proposals are evaluated in a fair, competitive, transparent and in-depth manner, we use a rigorous system of merit review. Nearly every proposal is evaluated by a minimum of three independent reviewers consisting of scientists, engineers and educators who do not work at NSF or for the institution that employs the proposing researchers. NSF selects the reviewers from among the national pool of experts in each field and their evaluations are confidential. On average, approximately 40,000 experts, knowledgeable about the current state of their field, give their time to serve as reviewers each year.

    The reviewer’s job is to decide which projects are of the very highest caliber. NSF’s merit review process, considered by some to be the “gold standard” of scientific review, ensures that many voices are heard and that only the best projects make it to the funding stage. An enormous amount of research, deliberation, thought and discussion goes into award decisions.

    The NSF program officer reviews the proposal and analyzes the input received from the external reviewers. After scientific, technical and programmatic review and consideration of appropriate factors, the program officer makes an “award” or “decline” recommendation to the division director. Final programmatic approval for a proposal is generally completed at NSF’s division level. A principal investigator (PI) whose proposal for NSF support has been declined will receive information and an explanation of the reason(s) for declination, along with copies of the reviews considered in making the decision. If that explanation does not satisfy the PI, he/she may request additional information from the cognizant NSF program officer or division director.

    If the program officer makes an award recommendation and the division director concurs, the recommendation is submitted to NSF’s Division of Grants and Agreements (DGA) for award processing. A DGA officer reviews the recommendation from the program division/office for business, financial and policy implications, and the processing and issuance of a grant or cooperative agreement. DGA generally makes awards to academic institutions within 30 days after the program division/office makes its recommendation.

     
  • richardmitnick 8:15 pm on July 18, 2022 Permalink | Reply
    Tags: "Evidence that buckyballs and carbon nanotubes form from the dust and gas of dying stars", A theory to explain the presence of the largest molecules known to exist in interstellar gas., , , , , Buckyballs are the largest molecules currently known to occur in interstellar space., , The big problem has been explaining how these massive complex carbon molecules could possibly form in an environment saturated with hydrogen., The detection of the fullerenes C60 and C70 in the interstellar medium (ISM) has transformed our understanding of chemical complexity in space., The National Science Foundation   

    From The National Science Foundation: “Evidence that buckyballs and carbon nanotubes form from the dust and gas of dying stars” 

    From The National Science Foundation

    July 18, 2022

    1
    Credit: NASA and The Hubble Heritage Team (STScI/AURA)

    Astronomers explain where and how these entities emerge.

    Astronomers at the University of Arizona, funded by two grants from the U.S. National Science Foundation, have developed a theory to explain the presence of the largest molecules known to exist in interstellar gas.

    The team simulated the environment of dying stars and observed the formation of buckyballs (carbon atoms linked to three other carbon atoms by covalent bonds) and carbon nanotubes (rolled up sheets of single-layer carbon atoms). The findings indicate that buckyballs and carbon nanotubes can form when silicon carbide dust — known to be proximate to dying stars — releases carbon in reaction to intense heat, shockwaves and high energy particles.

    “We know from infrared observations that buckyballs populate the interstellar medium,” said Jacob Bernal, who led the research. “The big problem has been explaining how these massive complex carbon molecules could possibly form in an environment saturated with hydrogen, which is what you typically have around a dying star.”

    Rearranging the structure of graphene (a sheet of single-layer carbon atoms) could create buckyballs and nanotubes. Building on that, the team heated silicon carbide samples to temperatures that would mimic the aura of a dying star and observed the formation of nanotubes.

    “We were surprised we could make these extraordinary structures,” Bernal said. “Chemically, our nanotubes are very simple, but they are extremely beautiful.”

    Buckyballs are the largest molecules currently known to occur in interstellar space. It is now known that buckyballs containing 60 to 70 carbon atoms are common.

    “We know the raw material is there, and we know the conditions are very close to what you’d see near the envelope of a dying star,” study co-author Lucy Ziurys said. “Shock waves pass through the envelope, and the temperature and pressure conditions have been shown to exist in space. We also see buckyballs in planetary nebulae — in other words, we see the beginning and the end products you would expect in our experiments.”

    Science paper:
    Journal of Physical Chemistry A

    2
    The detection of the fullerenes C60 and C70 in the interstellar medium (ISM) has transformed our understanding of chemical complexity in space. These discoveries also raise the possibility for the presence of even larger molecules in astrophysical environments. Here we report in situ heating of analog silicon carbide (SiC) presolar grains using transmission electron microscopy (TEM). These heating experiments are designed to simulate the temperature conditions occurring in post-AGB stellar envelopes. Our experimental findings reveal that heating the analog SiC grains to the point of decomposition initially yields hemispherical C60-sized nanostructures, with five- and six-membered rings, which transform into multiwalled carbon nanotubes (MWCNTs) if held isothermally >2 min. These MWCNTs are certainly larger than any of the currently observed interstellar fullerene species, both in overall size and number of C atoms. These experimental simulations suggest that such MWCNTs are likely to form in post-AGB circumstellar material, where the structures, along with the smaller fullerenes, are subsequently injected into the ISM.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The National Science Foundation is an independent federal agency created by Congress in 1950 “to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense…we are the funding source for approximately 24 percent of all federally supported basic research conducted by America’s colleges and universities. In many fields such as mathematics, computer science and the social sciences, NSF is the major source of federal backing.

    We fulfill our mission chiefly by issuing limited-term grants — currently about 12,000 new awards per year, with an average duration of three years — to fund specific research proposals that have been judged the most promising by a rigorous and objective merit-review system. Most of these awards go to individuals or small groups of investigators. Others provide funding for research centers, instruments and facilities that allow scientists, engineers and students to work at the outermost frontiers of knowledge.

    NSF’s goals — discovery, learning, research infrastructure and stewardship — provide an integrated strategy to advance the frontiers of knowledge, cultivate a world-class, broadly inclusive science and engineering workforce and expand the scientific literacy of all citizens, build the nation’s research capability through investments in advanced instrumentation and facilities, and support excellence in science and engineering research and education through a capable and responsive organization. We like to say that NSF is “where discoveries begin.”

    Many of the discoveries and technological advances have been truly revolutionary. In the past few decades, NSF-funded researchers have won some 236 Nobel Prizes as well as other honors too numerous to list. These pioneers have included the scientists or teams that discovered many of the fundamental particles of matter, analyzed the cosmic microwaves left over from the earliest epoch of the universe, developed carbon-14 dating of ancient artifacts, decoded the genetics of viruses, and created an entirely new state of matter called a Bose-Einstein condensate.

    NSF also funds equipment that is needed by scientists and engineers but is often too expensive for any one group or researcher to afford. Examples of such major research equipment include giant optical and radio telescopes, Antarctic research sites, high-end computer facilities and ultra-high-speed connections, ships for ocean research, sensitive detectors of very subtle physical phenomena and gravitational wave observatories.

    Another essential element in NSF’s mission is support for science and engineering education, from pre-K through graduate school and beyond. The research we fund is thoroughly integrated with education to help ensure that there will always be plenty of skilled people available to work in new and emerging scientific, engineering and technological fields, and plenty of capable teachers to educate the next generation.

    No single factor is more important to the intellectual and economic progress of society, and to the enhanced well-being of its citizens, than the continuous acquisition of new knowledge. NSF is proud to be a major part of that process.

    Specifically, the Foundation’s organic legislation authorizes us to engage in the following activities:

    Initiate and support, through grants and contracts, scientific and engineering research and programs to strengthen scientific and engineering research potential, and education programs at all levels, and appraise the impact of research upon industrial development and the general welfare.
    Award graduate fellowships in the sciences and in engineering.
    Foster the interchange of scientific information among scientists and engineers in the United States and foreign countries.
    Foster and support the development and use of computers and other scientific methods and technologies, primarily for research and education in the sciences.
    Evaluate the status and needs of the various sciences and engineering and take into consideration the results of this evaluation in correlating our research and educational programs with other federal and non-federal programs.
    Provide a central clearinghouse for the collection, interpretation and analysis of data on scientific and technical resources in the United States, and provide a source of information for policy formulation by other federal agencies.
    Determine the total amount of federal money received by universities and appropriate organizations for the conduct of scientific and engineering research, including both basic and applied, and construction of facilities where such research is conducted, but excluding development, and report annually thereon to the President and the Congress.
    Initiate and support specific scientific and engineering activities in connection with matters relating to international cooperation, national security and the effects of scientific and technological applications upon society.
    Initiate and support scientific and engineering research, including applied research, at academic and other nonprofit institutions and, at the direction of the President, support applied research at other organizations.
    Recommend and encourage the pursuit of national policies for the promotion of basic research and education in the sciences and engineering. Strengthen research and education innovation in the sciences and engineering, including independent research by individuals, throughout the United States.
    Support activities designed to increase the participation of women and minorities and others underrepresented in science and technology.

    At present, NSF has a total workforce of about 2,100 at its Alexandria, VA, headquarters, including approximately 1,400 career employees, 200 scientists from research institutions on temporary duty, 450 contract workers and the staff of the NSB office and the Office of the Inspector General.

    NSF is divided into the following seven directorates that support science and engineering research and education: Biological Sciences, Computer and Information Science and Engineering, Engineering, Geosciences, Mathematical and Physical Sciences, Social, Behavioral and Economic Sciences, and Education and Human Resources. Each is headed by an assistant director and each is further subdivided into divisions like materials research, ocean sciences and behavioral and cognitive sciences.

    Within NSF’s Office of the Director, the Office of Integrative Activities also supports research and researchers. Other sections of NSF are devoted to financial management, award processing and monitoring, legal affairs, outreach and other functions. The Office of the Inspector General examines the foundation’s work and reports to the NSB and Congress.

    Each year, NSF supports an average of about 200,000 scientists, engineers, educators and students at universities, laboratories and field sites all over the United States and throughout the world, from Alaska to Alabama to Africa to Antarctica. You could say that NSF support goes “to the ends of the earth” to learn more about the planet and its inhabitants, and to produce fundamental discoveries that further the progress of research and lead to products and services that boost the economy and improve general health and well-being.

    As described in our strategic plan, NSF is the only federal agency whose mission includes support for all fields of fundamental science and engineering, except for medical sciences. NSF is tasked with keeping the United States at the leading edge of discovery in a wide range of scientific areas, from astronomy to geology to zoology. So, in addition to funding research in the traditional academic areas, the agency also supports “high risk, high pay off” ideas, novel collaborations and numerous projects that may seem like science fiction today, but which the public will take for granted tomorrow. And in every case, we ensure that research is fully integrated with education so that today’s revolutionary work will also be training tomorrow’s top scientists and engineers.

    Unlike many other federal agencies, NSF does not hire researchers or directly operate our own laboratories or similar facilities. Instead, we support scientists, engineers and educators directly through their own home institutions (typically universities and colleges). Similarly, we fund facilities and equipment such as telescopes, through cooperative agreements with research consortia that have competed successfully for limited-term management contracts.

    NSF’s job is to determine where the frontiers are, identify the leading U.S. pioneers in these fields and provide money and equipment to help them continue. The results can be transformative. For example, years before most people had heard of “nanotechnology,” NSF was supporting scientists and engineers who were learning how to detect, record and manipulate activity at the scale of individual atoms — the nanoscale. Today, scientists are adept at moving atoms around to create devices and materials with properties that are often more useful than those found in nature.

    Dozens of companies are gearing up to produce nanoscale products. NSF is funding the research projects, state-of-the-art facilities and educational opportunities that will teach new skills to the science and engineering students who will make up the nanotechnology workforce of tomorrow.

    At the same time, we are looking for the next frontier.

    NSF’s task of identifying and funding work at the frontiers of science and engineering is not a “top-down” process. NSF operates from the “bottom up,” keeping close track of research around the United States and the world, maintaining constant contact with the research community to identify ever-moving horizons of inquiry, monitoring which areas are most likely to result in spectacular progress and choosing the most promising people to conduct the research.

    NSF funds research and education in most fields of science and engineering. We do this through grants and cooperative agreements to more than 2,000 colleges, universities, K-12 school systems, businesses, informal science organizations and other research organizations throughout the U.S. The Foundation considers proposals submitted by organizations on behalf of individuals or groups for support in most fields of research. Interdisciplinary proposals also are eligible for consideration. Awardees are chosen from those who send us proposals asking for a specific amount of support for a specific project.

    Proposals may be submitted in response to the various funding opportunities that are announced on the NSF website. These funding opportunities fall into three categories — program descriptions, program announcements and program solicitations — and are the mechanisms NSF uses to generate funding requests. At any time, scientists and engineers are also welcome to send in unsolicited proposals for research and education projects, in any existing or emerging field. The Proposal and Award Policies and Procedures Guide (PAPPG) provides guidance on proposal preparation and submission and award management. At present, NSF receives more than 42,000 proposals per year.

    To ensure that proposals are evaluated in a fair, competitive, transparent and in-depth manner, we use a rigorous system of merit review. Nearly every proposal is evaluated by a minimum of three independent reviewers consisting of scientists, engineers and educators who do not work at NSF or for the institution that employs the proposing researchers. NSF selects the reviewers from among the national pool of experts in each field and their evaluations are confidential. On average, approximately 40,000 experts, knowledgeable about the current state of their field, give their time to serve as reviewers each year.

    The reviewer’s job is to decide which projects are of the very highest caliber. NSF’s merit review process, considered by some to be the “gold standard” of scientific review, ensures that many voices are heard and that only the best projects make it to the funding stage. An enormous amount of research, deliberation, thought and discussion goes into award decisions.

    The NSF program officer reviews the proposal and analyzes the input received from the external reviewers. After scientific, technical and programmatic review and consideration of appropriate factors, the program officer makes an “award” or “decline” recommendation to the division director. Final programmatic approval for a proposal is generally completed at NSF’s division level. A principal investigator (PI) whose proposal for NSF support has been declined will receive information and an explanation of the reason(s) for declination, along with copies of the reviews considered in making the decision. If that explanation does not satisfy the PI, he/she may request additional information from the cognizant NSF program officer or division director.

    If the program officer makes an award recommendation and the division director concurs, the recommendation is submitted to NSF’s Division of Grants and Agreements (DGA) for award processing. A DGA officer reviews the recommendation from the program division/office for business, financial and policy implications, and the processing and issuance of a grant or cooperative agreement. DGA generally makes awards to academic institutions within 30 days after the program division/office makes its recommendation.

     
  • richardmitnick 4:04 pm on June 22, 2022 Permalink | Reply
    Tags: "Researchers discover particle accelerator region inside a solar flare", , The National Science Foundation   

    From The National Science Foundation: “Researchers discover particle accelerator region inside a solar flare” 

    From The National Science Foundation

    June 22, 2022

    1
    A new study shows where near-light speed particle acceleration occurs inside a solar flare. Credit: Sijie Yu of NJIT/CSTR; NOAA GOES-16/SUVI.

    Solar flares are among the most violent explosions in the solar system. But despite their immense energy — equivalent to a hundred billion atomic bombs detonating at once — physicists still haven’t been able to answer exactly how these sudden eruptions on the sun are able to launch particles to Earth, nearly 93 million miles away, in under an hour.

    Now, in a study published in Nature, U.S. National Science Foundation-supported researchers at the New Jersey Institute of Technology have pinpointed the precise location where solar flare charged particles are accelerated to near-light speed.

    The new findings, made possible through observations of an X-class solar flare in 2017 by NJIT’s Expanded Owens Valley Solar Array radio telescope, have revealed a highly efficient particle accelerator located at the tip of the brightest point of the eruption in the sun’s outer atmosphere, called the flare’s “cusp region,” where the explosion’s ambient plasma is converted to high-energy electrons.

    NJIT’s recently expanded Owens Valley Solar Array (EOVSA)

    “The findings in this study help explain the long-standing mystery of how solar flares can produce so much energy in mere seconds,” said Gregory Fleishman, corresponding author of the paper. “The flare unleashes its power in a much more vast region of the sun than expected by the classic model of solar flares. This is the first time the specific size, shape, and location of this key region has been identified, and the efficiency of the energy conversion to particle acceleration inside the flare has been measured.”

    The researchers say the discovery of the region, measured at almost twice the volume of Earth, could open new doors for investigating fundamental processes of particle acceleration ubiquitous in the universe.

    “Our recent studies suggested the flare cusp could be the location where such high-energy electrons are produced, but we weren’t certain,” said Bin Chen, a co-author of the paper. “We had originally uncovered a magnetic bottle-like structure at the site that contained an overwhelmingly large number of electrons compared to anywhere else in the flare, but now with the new measurements of this study, we can more confidently say this is the flare’s particle accelerator.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The National Science Foundation is an independent federal agency created by Congress in 1950 “to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense…we are the funding source for approximately 24 percent of all federally supported basic research conducted by America’s colleges and universities. In many fields such as mathematics, computer science and the social sciences, NSF is the major source of federal backing.

    We fulfill our mission chiefly by issuing limited-term grants — currently about 12,000 new awards per year, with an average duration of three years — to fund specific research proposals that have been judged the most promising by a rigorous and objective merit-review system. Most of these awards go to individuals or small groups of investigators. Others provide funding for research centers, instruments and facilities that allow scientists, engineers and students to work at the outermost frontiers of knowledge.

    NSF’s goals — discovery, learning, research infrastructure and stewardship — provide an integrated strategy to advance the frontiers of knowledge, cultivate a world-class, broadly inclusive science and engineering workforce and expand the scientific literacy of all citizens, build the nation’s research capability through investments in advanced instrumentation and facilities, and support excellence in science and engineering research and education through a capable and responsive organization. We like to say that NSF is “where discoveries begin.”

    Many of the discoveries and technological advances have been truly revolutionary. In the past few decades, NSF-funded researchers have won some 236 Nobel Prizes as well as other honors too numerous to list. These pioneers have included the scientists or teams that discovered many of the fundamental particles of matter, analyzed the cosmic microwaves left over from the earliest epoch of the universe, developed carbon-14 dating of ancient artifacts, decoded the genetics of viruses, and created an entirely new state of matter called a Bose-Einstein condensate.

    NSF also funds equipment that is needed by scientists and engineers but is often too expensive for any one group or researcher to afford. Examples of such major research equipment include giant optical and radio telescopes, Antarctic research sites, high-end computer facilities and ultra-high-speed connections, ships for ocean research, sensitive detectors of very subtle physical phenomena and gravitational wave observatories.

    Another essential element in NSF’s mission is support for science and engineering education, from pre-K through graduate school and beyond. The research we fund is thoroughly integrated with education to help ensure that there will always be plenty of skilled people available to work in new and emerging scientific, engineering and technological fields, and plenty of capable teachers to educate the next generation.

    No single factor is more important to the intellectual and economic progress of society, and to the enhanced well-being of its citizens, than the continuous acquisition of new knowledge. NSF is proud to be a major part of that process.

    Specifically, the Foundation’s organic legislation authorizes us to engage in the following activities:

    Initiate and support, through grants and contracts, scientific and engineering research and programs to strengthen scientific and engineering research potential, and education programs at all levels, and appraise the impact of research upon industrial development and the general welfare.
    Award graduate fellowships in the sciences and in engineering.
    Foster the interchange of scientific information among scientists and engineers in the United States and foreign countries.
    Foster and support the development and use of computers and other scientific methods and technologies, primarily for research and education in the sciences.
    Evaluate the status and needs of the various sciences and engineering and take into consideration the results of this evaluation in correlating our research and educational programs with other federal and non-federal programs.
    Provide a central clearinghouse for the collection, interpretation and analysis of data on scientific and technical resources in the United States, and provide a source of information for policy formulation by other federal agencies.
    Determine the total amount of federal money received by universities and appropriate organizations for the conduct of scientific and engineering research, including both basic and applied, and construction of facilities where such research is conducted, but excluding development, and report annually thereon to the President and the Congress.
    Initiate and support specific scientific and engineering activities in connection with matters relating to international cooperation, national security and the effects of scientific and technological applications upon society.
    Initiate and support scientific and engineering research, including applied research, at academic and other nonprofit institutions and, at the direction of the President, support applied research at other organizations.
    Recommend and encourage the pursuit of national policies for the promotion of basic research and education in the sciences and engineering. Strengthen research and education innovation in the sciences and engineering, including independent research by individuals, throughout the United States.
    Support activities designed to increase the participation of women and minorities and others underrepresented in science and technology.

    At present, NSF has a total workforce of about 2,100 at its Alexandria, VA, headquarters, including approximately 1,400 career employees, 200 scientists from research institutions on temporary duty, 450 contract workers and the staff of the NSB office and the Office of the Inspector General.

    NSF is divided into the following seven directorates that support science and engineering research and education: Biological Sciences, Computer and Information Science and Engineering, Engineering, Geosciences, Mathematical and Physical Sciences, Social, Behavioral and Economic Sciences, and Education and Human Resources. Each is headed by an assistant director and each is further subdivided into divisions like materials research, ocean sciences and behavioral and cognitive sciences.

    Within NSF’s Office of the Director, the Office of Integrative Activities also supports research and researchers. Other sections of NSF are devoted to financial management, award processing and monitoring, legal affairs, outreach and other functions. The Office of the Inspector General examines the foundation’s work and reports to the NSB and Congress.

    Each year, NSF supports an average of about 200,000 scientists, engineers, educators and students at universities, laboratories and field sites all over the United States and throughout the world, from Alaska to Alabama to Africa to Antarctica. You could say that NSF support goes “to the ends of the earth” to learn more about the planet and its inhabitants, and to produce fundamental discoveries that further the progress of research and lead to products and services that boost the economy and improve general health and well-being.

    As described in our strategic plan, NSF is the only federal agency whose mission includes support for all fields of fundamental science and engineering, except for medical sciences. NSF is tasked with keeping the United States at the leading edge of discovery in a wide range of scientific areas, from astronomy to geology to zoology. So, in addition to funding research in the traditional academic areas, the agency also supports “high risk, high pay off” ideas, novel collaborations and numerous projects that may seem like science fiction today, but which the public will take for granted tomorrow. And in every case, we ensure that research is fully integrated with education so that today’s revolutionary work will also be training tomorrow’s top scientists and engineers.

    Unlike many other federal agencies, NSF does not hire researchers or directly operate our own laboratories or similar facilities. Instead, we support scientists, engineers and educators directly through their own home institutions (typically universities and colleges). Similarly, we fund facilities and equipment such as telescopes, through cooperative agreements with research consortia that have competed successfully for limited-term management contracts.

    NSF’s job is to determine where the frontiers are, identify the leading U.S. pioneers in these fields and provide money and equipment to help them continue. The results can be transformative. For example, years before most people had heard of “nanotechnology,” NSF was supporting scientists and engineers who were learning how to detect, record and manipulate activity at the scale of individual atoms — the nanoscale. Today, scientists are adept at moving atoms around to create devices and materials with properties that are often more useful than those found in nature.

    Dozens of companies are gearing up to produce nanoscale products. NSF is funding the research projects, state-of-the-art facilities and educational opportunities that will teach new skills to the science and engineering students who will make up the nanotechnology workforce of tomorrow.

    At the same time, we are looking for the next frontier.

    NSF’s task of identifying and funding work at the frontiers of science and engineering is not a “top-down” process. NSF operates from the “bottom up,” keeping close track of research around the United States and the world, maintaining constant contact with the research community to identify ever-moving horizons of inquiry, monitoring which areas are most likely to result in spectacular progress and choosing the most promising people to conduct the research.

    NSF funds research and education in most fields of science and engineering. We do this through grants and cooperative agreements to more than 2,000 colleges, universities, K-12 school systems, businesses, informal science organizations and other research organizations throughout the U.S. The Foundation considers proposals submitted by organizations on behalf of individuals or groups for support in most fields of research. Interdisciplinary proposals also are eligible for consideration. Awardees are chosen from those who send us proposals asking for a specific amount of support for a specific project.

    Proposals may be submitted in response to the various funding opportunities that are announced on the NSF website. These funding opportunities fall into three categories — program descriptions, program announcements and program solicitations — and are the mechanisms NSF uses to generate funding requests. At any time, scientists and engineers are also welcome to send in unsolicited proposals for research and education projects, in any existing or emerging field. The Proposal and Award Policies and Procedures Guide (PAPPG) provides guidance on proposal preparation and submission and award management. At present, NSF receives more than 42,000 proposals per year.

    To ensure that proposals are evaluated in a fair, competitive, transparent and in-depth manner, we use a rigorous system of merit review. Nearly every proposal is evaluated by a minimum of three independent reviewers consisting of scientists, engineers and educators who do not work at NSF or for the institution that employs the proposing researchers. NSF selects the reviewers from among the national pool of experts in each field and their evaluations are confidential. On average, approximately 40,000 experts, knowledgeable about the current state of their field, give their time to serve as reviewers each year.

    The reviewer’s job is to decide which projects are of the very highest caliber. NSF’s merit review process, considered by some to be the “gold standard” of scientific review, ensures that many voices are heard and that only the best projects make it to the funding stage. An enormous amount of research, deliberation, thought and discussion goes into award decisions.

    The NSF program officer reviews the proposal and analyzes the input received from the external reviewers. After scientific, technical and programmatic review and consideration of appropriate factors, the program officer makes an “award” or “decline” recommendation to the division director. Final programmatic approval for a proposal is generally completed at NSF’s division level. A principal investigator (PI) whose proposal for NSF support has been declined will receive information and an explanation of the reason(s) for declination, along with copies of the reviews considered in making the decision. If that explanation does not satisfy the PI, he/she may request additional information from the cognizant NSF program officer or division director.

    If the program officer makes an award recommendation and the division director concurs, the recommendation is submitted to NSF’s Division of Grants and Agreements (DGA) for award processing. A DGA officer reviews the recommendation from the program division/office for business, financial and policy implications, and the processing and issuance of a grant or cooperative agreement. DGA generally makes awards to academic institutions within 30 days after the program division/office makes its recommendation.

     
  • richardmitnick 11:58 am on June 4, 2022 Permalink | Reply
    Tags: "Tonga volcano eruption's echoes heard 6200 miles away", , , , Massive eruption of Tonga volcano provides an explosion of data on atmospheric waves., The National Science Foundation,   

    From The National Science Foundation: “Tonga volcano eruption’s echoes heard 6200 miles away” 

    From The National Science Foundation

    June 2, 2022

    Massive eruption of Tonga volcano provides an explosion of data on atmospheric waves.

    1
    Just before nightfall reached Tonga, the Hunga eruption sent atmospheric waves around the globe.

    The Hunga volcano ushered in 2022 with a bang, devastating the island nation of Tonga and sending aid agencies, and Earth scientists, into a flurry of activity. It had been nearly 140 years since an eruption of this scale shook the Earth.

    The University of California, Santa Barbara’s Robin Matoza led a team of 76 scientists from 17 nations to characterize the eruption’s atmospheric waves, the strongest recorded from a volcano since the 1883 Krakatau eruption.

    The U.S. National Science Foundation-supported team’s work, compiled in an unusually short amount of time, details the size of the waves originating from the eruption, which the researchers found were on par with those from Krakatau.

    “Understanding the global impacts of this extraordinary volcanic event would not be possible without this team of scientists combining an unprecedented set of Earth observations,” said Eva Zanzerkia, a program director in NSF’s Division of Earth Sciences. “This effort could transform how we research natural hazards and the connections between the deep Earth, atmosphere and oceans.”

    The data provide exceptional resolution of the evolving wavefield, the researchers said. Their resulting paper, published in the journal Science, is the first comprehensive account of the eruption’s atmospheric waves.

    Evidence suggests that an eruption on January 14, 2022, sank the volcano’s main vent below sea level, priming the massive explosion the following day. That next-day eruption generated a variety of different atmospheric waves — including booms heard 6,200 miles away in Alaska.

    It also created a pulse that caused the unusual occurrence of a tsunami-like disturbance an hour before the actual seismically-driven tsunami began. “This atmospheric-waves event was unprecedented in the modern geophysical record,” said lead author Matoza.

    “The atmospheric waves were recorded globally across a wide frequency band,” added co-author David Fee of the University of Alaska Fairbanks. “By studying this remarkable dataset we will better understand acoustic and atmospheric wave generation, propagation and recording. Our hope is that we will be better able to monitor volcanic eruptions and tsunamis by understanding the atmospheric waves from this eruption.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The National Science Foundation is an independent federal agency created by Congress in 1950 “to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense…we are the funding source for approximately 24 percent of all federally supported basic research conducted by America’s colleges and universities. In many fields such as mathematics, computer science and the social sciences, NSF is the major source of federal backing.

    We fulfill our mission chiefly by issuing limited-term grants — currently about 12,000 new awards per year, with an average duration of three years — to fund specific research proposals that have been judged the most promising by a rigorous and objective merit-review system. Most of these awards go to individuals or small groups of investigators. Others provide funding for research centers, instruments and facilities that allow scientists, engineers and students to work at the outermost frontiers of knowledge.

    NSF’s goals — discovery, learning, research infrastructure and stewardship — provide an integrated strategy to advance the frontiers of knowledge, cultivate a world-class, broadly inclusive science and engineering workforce and expand the scientific literacy of all citizens, build the nation’s research capability through investments in advanced instrumentation and facilities, and support excellence in science and engineering research and education through a capable and responsive organization. We like to say that NSF is “where discoveries begin.”

    Many of the discoveries and technological advances have been truly revolutionary. In the past few decades, NSF-funded researchers have won some 236 Nobel Prizes as well as other honors too numerous to list. These pioneers have included the scientists or teams that discovered many of the fundamental particles of matter, analyzed the cosmic microwaves left over from the earliest epoch of the universe, developed carbon-14 dating of ancient artifacts, decoded the genetics of viruses, and created an entirely new state of matter called a Bose-Einstein condensate.

    NSF also funds equipment that is needed by scientists and engineers but is often too expensive for any one group or researcher to afford. Examples of such major research equipment include giant optical and radio telescopes, Antarctic research sites, high-end computer facilities and ultra-high-speed connections, ships for ocean research, sensitive detectors of very subtle physical phenomena and gravitational wave observatories.

    Another essential element in NSF’s mission is support for science and engineering education, from pre-K through graduate school and beyond. The research we fund is thoroughly integrated with education to help ensure that there will always be plenty of skilled people available to work in new and emerging scientific, engineering and technological fields, and plenty of capable teachers to educate the next generation.

    No single factor is more important to the intellectual and economic progress of society, and to the enhanced well-being of its citizens, than the continuous acquisition of new knowledge. NSF is proud to be a major part of that process.

    Specifically, the Foundation’s organic legislation authorizes us to engage in the following activities:

    Initiate and support, through grants and contracts, scientific and engineering research and programs to strengthen scientific and engineering research potential, and education programs at all levels, and appraise the impact of research upon industrial development and the general welfare.
    Award graduate fellowships in the sciences and in engineering.
    Foster the interchange of scientific information among scientists and engineers in the United States and foreign countries.
    Foster and support the development and use of computers and other scientific methods and technologies, primarily for research and education in the sciences.
    Evaluate the status and needs of the various sciences and engineering and take into consideration the results of this evaluation in correlating our research and educational programs with other federal and non-federal programs.
    Provide a central clearinghouse for the collection, interpretation and analysis of data on scientific and technical resources in the United States, and provide a source of information for policy formulation by other federal agencies.
    Determine the total amount of federal money received by universities and appropriate organizations for the conduct of scientific and engineering research, including both basic and applied, and construction of facilities where such research is conducted, but excluding development, and report annually thereon to the President and the Congress.
    Initiate and support specific scientific and engineering activities in connection with matters relating to international cooperation, national security and the effects of scientific and technological applications upon society.
    Initiate and support scientific and engineering research, including applied research, at academic and other nonprofit institutions and, at the direction of the President, support applied research at other organizations.
    Recommend and encourage the pursuit of national policies for the promotion of basic research and education in the sciences and engineering. Strengthen research and education innovation in the sciences and engineering, including independent research by individuals, throughout the United States.
    Support activities designed to increase the participation of women and minorities and others underrepresented in science and technology.

    At present, NSF has a total workforce of about 2,100 at its Alexandria, VA, headquarters, including approximately 1,400 career employees, 200 scientists from research institutions on temporary duty, 450 contract workers and the staff of the NSB office and the Office of the Inspector General.

    NSF is divided into the following seven directorates that support science and engineering research and education: Biological Sciences, Computer and Information Science and Engineering, Engineering, Geosciences, Mathematical and Physical Sciences, Social, Behavioral and Economic Sciences, and Education and Human Resources. Each is headed by an assistant director and each is further subdivided into divisions like materials research, ocean sciences and behavioral and cognitive sciences.

    Within NSF’s Office of the Director, the Office of Integrative Activities also supports research and researchers. Other sections of NSF are devoted to financial management, award processing and monitoring, legal affairs, outreach and other functions. The Office of the Inspector General examines the foundation’s work and reports to the NSB and Congress.

    Each year, NSF supports an average of about 200,000 scientists, engineers, educators and students at universities, laboratories and field sites all over the United States and throughout the world, from Alaska to Alabama to Africa to Antarctica. You could say that NSF support goes “to the ends of the earth” to learn more about the planet and its inhabitants, and to produce fundamental discoveries that further the progress of research and lead to products and services that boost the economy and improve general health and well-being.

    As described in our strategic plan, NSF is the only federal agency whose mission includes support for all fields of fundamental science and engineering, except for medical sciences. NSF is tasked with keeping the United States at the leading edge of discovery in a wide range of scientific areas, from astronomy to geology to zoology. So, in addition to funding research in the traditional academic areas, the agency also supports “high risk, high pay off” ideas, novel collaborations and numerous projects that may seem like science fiction today, but which the public will take for granted tomorrow. And in every case, we ensure that research is fully integrated with education so that today’s revolutionary work will also be training tomorrow’s top scientists and engineers.

    Unlike many other federal agencies, NSF does not hire researchers or directly operate our own laboratories or similar facilities. Instead, we support scientists, engineers and educators directly through their own home institutions (typically universities and colleges). Similarly, we fund facilities and equipment such as telescopes, through cooperative agreements with research consortia that have competed successfully for limited-term management contracts.

    NSF’s job is to determine where the frontiers are, identify the leading U.S. pioneers in these fields and provide money and equipment to help them continue. The results can be transformative. For example, years before most people had heard of “nanotechnology,” NSF was supporting scientists and engineers who were learning how to detect, record and manipulate activity at the scale of individual atoms — the nanoscale. Today, scientists are adept at moving atoms around to create devices and materials with properties that are often more useful than those found in nature.

    Dozens of companies are gearing up to produce nanoscale products. NSF is funding the research projects, state-of-the-art facilities and educational opportunities that will teach new skills to the science and engineering students who will make up the nanotechnology workforce of tomorrow.

    At the same time, we are looking for the next frontier.

    NSF’s task of identifying and funding work at the frontiers of science and engineering is not a “top-down” process. NSF operates from the “bottom up,” keeping close track of research around the United States and the world, maintaining constant contact with the research community to identify ever-moving horizons of inquiry, monitoring which areas are most likely to result in spectacular progress and choosing the most promising people to conduct the research.

    NSF funds research and education in most fields of science and engineering. We do this through grants and cooperative agreements to more than 2,000 colleges, universities, K-12 school systems, businesses, informal science organizations and other research organizations throughout the U.S. The Foundation considers proposals submitted by organizations on behalf of individuals or groups for support in most fields of research. Interdisciplinary proposals also are eligible for consideration. Awardees are chosen from those who send us proposals asking for a specific amount of support for a specific project.

    Proposals may be submitted in response to the various funding opportunities that are announced on the NSF website. These funding opportunities fall into three categories — program descriptions, program announcements and program solicitations — and are the mechanisms NSF uses to generate funding requests. At any time, scientists and engineers are also welcome to send in unsolicited proposals for research and education projects, in any existing or emerging field. The Proposal and Award Policies and Procedures Guide (PAPPG) provides guidance on proposal preparation and submission and award management. At present, NSF receives more than 42,000 proposals per year.

    To ensure that proposals are evaluated in a fair, competitive, transparent and in-depth manner, we use a rigorous system of merit review. Nearly every proposal is evaluated by a minimum of three independent reviewers consisting of scientists, engineers and educators who do not work at NSF or for the institution that employs the proposing researchers. NSF selects the reviewers from among the national pool of experts in each field and their evaluations are confidential. On average, approximately 40,000 experts, knowledgeable about the current state of their field, give their time to serve as reviewers each year.

    The reviewer’s job is to decide which projects are of the very highest caliber. NSF’s merit review process, considered by some to be the “gold standard” of scientific review, ensures that many voices are heard and that only the best projects make it to the funding stage. An enormous amount of research, deliberation, thought and discussion goes into award decisions.

    The NSF program officer reviews the proposal and analyzes the input received from the external reviewers. After scientific, technical and programmatic review and consideration of appropriate factors, the program officer makes an “award” or “decline” recommendation to the division director. Final programmatic approval for a proposal is generally completed at NSF’s division level. A principal investigator (PI) whose proposal for NSF support has been declined will receive information and an explanation of the reason(s) for declination, along with copies of the reviews considered in making the decision. If that explanation does not satisfy the PI, he/she may request additional information from the cognizant NSF program officer or division director.

    If the program officer makes an award recommendation and the division director concurs, the recommendation is submitted to NSF’s Division of Grants and Agreements (DGA) for award processing. A DGA officer reviews the recommendation from the program division/office for business, financial and policy implications, and the processing and issuance of a grant or cooperative agreement. DGA generally makes awards to academic institutions within 30 days after the program division/office makes its recommendation.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: