From The MPG Institute for Extraterrestrial Physics [MPG Institut für Extraterrestrische Physik](DE): “Helium-burning white dwarf discovered”
From The MPG Institute for Extraterrestrial Physics [MPG Institut für Extraterrestrische Physik](DE)
3.22.23
Greiner, Jochen
scientist
Tel +49 89 30000-3847
+49 89 30000-3569
jcg@mpe.mpg.de
Maitra, Chandreyee
scientist
Tel +49 89 30000-3833
+49 89 30000-3569
cmaitra@mpe.mpg.de
A white dwarf star can explode as a supernova when its mass exceeds the limit of about 1.4 solar masses. A team led by the Max Planck Institute for Extraterrestrial Physics has now found a binary star system in which matter flows onto the white dwarf from its companion. The system was found due to bright, so-called super-soft X-rays, which originate in the nuclear fusion of the overflowed gas near the surface of the white dwarf. The unusual thing about this source is that it is helium and not hydrogen that overflows and burns. The measured luminosity suggests that the mass of the white dwarf is growing more slowly than previously thought possible, which may help to understand the number of supernovae caused by exploding white dwarfs.
Exploding white dwarfs are not only considered the main source of iron in the Universe, they are also an important tool for cosmology: as so-called Type Ia supernovae (SN Ia), they are all roughly equally bright, allowing astrophysicists a precise determination of the distance to their host galaxies. However, even after many years of intensive research, the circumstances under which the mass of a white dwarf can grow to the so-called Chandrasekhar limit remain unclear.
Artist’s impression of a supersoft X-ray source: the accretion disk around a white dwarf star is made mainly of helium.
© schematics: F. Bodensteiner; background image: ESO.
In the early 1990s, super-soft X-ray sources with stable hydrogen burning on their surfaces were established as a new class of objects with ROSAT, and for a time those were considered potential candidates for SN Ia progenitors.
The problem with these sources, however, is their hydrogen abundance: type Ia supernovae show no trace of hydrogen.
For over 30 years, double star systems have been predicted, in which a white dwarf accretes and burns helium stably at its surface, but such sources have never been observed. An international team led by the Max Planck Institute for Extraterrestrial Physics (MPE) has now found an X-ray source whose optical spectrum is completely dominated by helium. “The super-soft X-ray source [HP99] 159 has been known since the 1990s, when it was first observed with ROSAT, more recently with XMM-Newton and now with eROSITA,” explains Jochen Greiner, who leads the analysis of this source at MPE.

eRosita The DLR German Aerospace Center [Deutsches Zentrum für Luft- und Raumfahrt e.V.](DE)/ The MPG Institute for Extraterrestrial Physics [MPG Institut für außerirdische Physik](DE) on Russian German space X-ray telescope The Russian-German space probe Spektrum-Roentgen-Gamma (SRG).
“Now, we were able to identify it as an optical source in the Large Magellanic Cloud.”

The European Southern Observatory [La Observatorio Europeo Austral] [Observatoire européen austral][Europaiche Sûdsternwarte] (EU)(CL)’s VISTA telescope reveals a remarkable image of the Large Magellanic Cloud.
In its spectrum we found mainly emission lines of helium originating from the accretion disk.”
However, this does not solve the problem of SN Ia progenitors: theoretical models predict that about 2-5% of the matter of the helium companion star will be carried away by the SN Ia explosion and ejected into the environment. However, this amount of helium has not been found in most supernovae Ia observed to date. There is, however, a subclass with smaller luminosity, the SN Iax, in which the explosion is weaker, and therefore less helium is blown away.
Low-resolution optical spectrum of [HP99] 159, taken with the SALT/RSS spectrograph, with labels for the main emission lines, which are all due to helium. (The two ‘bkg’ labels are residuals of removing sky lines). The insets demonstrate that at two wavelengths, where He- and H-lines are close together, the signal results from He II and not hydrogen. © MPE.
SALT Robert Stobie Spectrograph.
The newly identified system [HP99] 159 could end up in such a SN Iax, since the measurements indicate that continuous helium burning in white dwarfs is possible even at lower accretion rates than theoretically predicted. The measured luminosity of [HP99] 159 is about ten times smaller than expected at the canonical rate, while at the same time the measured X-ray temperature is exactly in the expected range for stable helium burning. Since previous measurements indicate that the luminosity has remained the same for about 50 years, a wide range of accretion rates leading to explosions should be possible.
“Stars without hydrogen envelopes, such as the companion star found in [HP99] 159, are an important intermediate step in the life cycle of binary stars that should occur in about 30% of such systems,” says Julia Bodensteiner of ESO, who has been studying massive stars since her master’s thesis at MPE. “There should be many such stars; but only a few have been observed so far.” The team now hopes to find dozens of similar sources in the two Magellanic Clouds with eROSITA.
This should allow them to further constrain the conditions for SN Ia progenitors.
Nature
See the science paper for instructive material with images.
See the full article here.
Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct.
five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.
For their astrophysical research, The MPG Institute for Extraterrestrial Physics [MPG Institut für Extraterrestrische Physik]( DE) scientists measure the radiation of far away objects in different wavelenths areas: from millimetere/sub-millimetre and infared all the way to X-ray and gamma-ray wavelengths. These methods span more than twelve decades of the electromagnetic spectrum.
The research topics pursued at MPE range from the physics of cosmic plasmas and of stars to the physics and chemistry of interstellar matter, from star formation and nucleosynthesis to extragalactic astrophysics and cosmology. The interaction with observers and experimentalists in the institute not only leads to better consolidated efforts but also helps to identify new, promising research areas early on.
The structural development of the institute mainly has been directed by the desire to work on cutting-edge experimental, astrophysical topics using instruments developed in-house. This includes individual detectors, spectrometers and cameras but also telescopes and integrated, complete payloads. Therefore the engineering and workshop areas are especially important for the close interlink between scientific and technical aspects.
The scientific work is done in four major research areas that are supervised by one of the directors:
Center for Astrochemical Studies (CAS)
High-Energy Astrophysics
Infrared/Submillimeter Astronomy
Optical & Interpretative Astronomy
Within these areas scientists lead individual experiments and research projects organized in about 25 project teams.
MPG Society for the Advancement of Science [MPG Gesellschaft zur Förderung der Wissenschaften e. V.] (DE)is a formally independent non-governmental and non-profit association of German research institutes founded in 1911 as the Kaiser Wilhelm Society and renamed the Max Planck Society in 1948 in honor of its former president, theoretical physicist Max Planck. The society is funded by the federal and state governments of Germany as well as other sources.
According to its primary goal, the MPG Society supports fundamental research in the natural, life and social sciences, the arts and humanities in its 83 (as of January 2014) MPG Institutes. The society has a total staff of approximately 17,000 permanent employees, including 5,470 scientists, plus around 4,600 non-tenured scientists and guests. Society budget for 2015 was about €1.7 billion.
The MPG Institutes focus on excellence in research. The MPG Society has a world-leading reputation as a science and technology research organization, with 33 Nobel Prizes awarded to their scientists, and is generally regarded as the foremost basic research organization in Europe and the world. In 2013, the Nature Publishing Index placed the MPG institutes fifth worldwide in terms of research published in Nature journals (after Harvard University, The Massachusetts Institute of Technology, Stanford University and The National Institutes of Health). In terms of total research volume (unweighted by citations or impact), the Max Planck Society is only outranked by The Chinese Academy of Sciences [中国科学院](CN), The Russian Academy of Sciences [Росси́йская акаде́мия нау́к](RU) and Harvard University. The Thomson Reuters-Science Watch website placed the MPG Society as the second leading research organization worldwide following Harvard University, in terms of the impact of the produced research over science fields.
The MPG Society and its predecessor Kaiser Wilhelm Society hosted several renowned scientists in their fields, including Otto Hahn, Werner Heisenberg, and Albert Einstein.
History
The organization was established in 1911 as the Kaiser Wilhelm Society, or Kaiser-Wilhelm-Gesellschaft (KWG), a non-governmental research organization named for the then German emperor. The KWG was one of the world’s leading research organizations; its board of directors included scientists like Walther Bothe, Peter Debye, Albert Einstein, and Fritz Haber. In 1946, Otto Hahn assumed the position of President of KWG, and in 1948, the society was renamed the Max Planck Society (MPG) after its former President (1930–37) Max Planck, who died in 1947.
The MPG Society has a world-leading reputation as a science and technology research organization. In 2006, the Times Higher Education Supplement rankings of non-university research institutions (based on international peer review by academics) placed the MPG Society as No.1 in the world for science research, and No.3 in technology research (behind AT&T Corporation and The DOE’s Argonne National Laboratory.
The domain mpg.de attracted at least 1.7 million visitors annually by 2008 according to a Compete.com study.
MPG Institutes and research groups
The MPG Society consists of over 80 research institutes. In addition, the society funds a number of Max Planck Research Groups (MPRG) and International Max Planck Research Schools (IMPRS). The purpose of establishing independent research groups at various universities is to strengthen the required networking between universities and institutes of the Max Planck Society.
The research units are primarily located across Europe with a few in South Korea and the U.S. In 2007, the Society established its first non-European centre, with an institute on the Jupiter campus of Florida Atlantic University (US) focusing on neuroscience.
The MPG Institutes operate independently from, though in close cooperation with, the universities, and focus on innovative research which does not fit into the university structure due to their interdisciplinary or transdisciplinary nature or which require resources that cannot be met by the state universities.
Internally, MPG Institutes are organized into research departments headed by directors such that each MPI has several directors, a position roughly comparable to anything from full professor to department head at a university. Other core members include Junior and Senior Research Fellows.
In addition, there are several associated institutes:
International Max Planck Research Schools
International Max Planck Research Schools
Together with the Association of Universities and other Education Institutions in Germany, the Max Planck Society established numerous International Max Planck Research Schools (IMPRS) to promote junior scientists:
• Cologne Graduate School of Ageing Research, Cologne
• International Max Planck Research School for Intelligent Systems, at the Max Planck Institute for Intelligent Systems located in Tübingen and Stuttgart
• International Max Planck Research School on Adapting Behavior in a Fundamentally Uncertain World (Uncertainty School), at the Max Planck Institutes for Economics, for Human Development, and/or Research on Collective Goods
• International Max Planck Research School for Analysis, Design and Optimization in Chemical and Biochemical Process Engineering, Magdeburg
• International Max Planck Research School for Astronomy and Cosmic Physics, Heidelberg at the MPI for Astronomy
• International Max Planck Research School for Astrophysics, Garching at the MPI for Astrophysics
• International Max Planck Research School for Complex Surfaces in Material Sciences, Berlin
• International Max Planck Research School for Computer Science, Saarbrücken
• International Max Planck Research School for Earth System Modeling, Hamburg
• International Max Planck Research School for Elementary Particle Physics, Munich, at the MPI for Physics
• International Max Planck Research School for Environmental, Cellular and Molecular Microbiology, Marburg at the Max Planck Institute for Terrestrial Microbiology
• International Max Planck Research School for Evolutionary Biology, Plön at the Max Planck Institute for Evolutionary Biology
• International Max Planck Research School “From Molecules to Organisms”, Tübingen at the Max Planck Institute for Developmental Biology
• International Max Planck Research School for Global Biogeochemical Cycles, Jena at the Max Planck Institute for Biogeochemistry
• International Max Planck Research School on Gravitational Wave Astronomy, Hannover and Potsdam MPI for Gravitational Physics
• International Max Planck Research School for Heart and Lung Research, Bad Nauheim at the Max Planck Institute for Heart and Lung Research
• International Max Planck Research School for Infectious Diseases and Immunity, Berlin at the Max Planck Institute for Infection Biology
• International Max Planck Research School for Language Sciences, Nijmegen
• International Max Planck Research School for Neurosciences, Göttingen
• International Max Planck Research School for Cognitive and Systems Neuroscience, Tübingen
• International Max Planck Research School for Marine Microbiology (MarMic), joint program of the Max Planck Institute for Marine Microbiology in Bremen, the University of Bremen, the Alfred Wegener Institute for Polar and Marine Research in Bremerhaven, and the Jacobs University Bremen
• International Max Planck Research School for Maritime Affairs, Hamburg
• International Max Planck Research School for Molecular and Cellular Biology, Freiburg
• International Max Planck Research School for Molecular and Cellular Life Sciences, Munich
• International Max Planck Research School for Molecular Biology, Göttingen
• International Max Planck Research School for Molecular Cell Biology and Bioengineering, Dresden
• International Max Planck Research School Molecular Biomedicine, program combined with the ‘Graduate Programm Cell Dynamics And Disease’ at the University of Münster and the Max Planck Institute for Molecular Biomedicine
• International Max Planck Research School on Multiscale Bio-Systems, Potsdam
• International Max Planck Research School for Organismal Biology, at the University of Konstanz and the Max Planck Institute for Ornithology
• International Max Planck Research School on Reactive Structure Analysis for Chemical Reactions (IMPRS RECHARGE), Mülheim an der Ruhr, at the Max Planck Institute for Chemical Energy Conversion
• International Max Planck Research School for Science and Technology of Nano-Systems, Halle at Max Planck Institute of Microstructure Physics
• International Max Planck Research School for Solar System Science at the University of Göttingen hosted by MPI for Solar System Research
• International Max Planck Research School for Astronomy and Astrophysics, Bonn, at the MPI for Radio Astronomy (formerly the International Max Planck Research School for Radio and Infrared Astronomy)
• International Max Planck Research School for the Social and Political Constitution of the Economy, Cologne
• International Max Planck Research School for Surface and Interface Engineering in Advanced Materials, Düsseldorf at Max Planck Institute for Iron Research GmbH
• International Max Planck Research School for Ultrafast Imaging and Structural Dynamics, Hamburg
Max Planck Schools
• Max Planck School of Cognition
• Max Planck School Matter to Life
• Max Planck School of Photonics
Max Planck Center
• The Max Planck Centre for Attosecond Science (MPC-AS), POSTECH Pohang
• The Max Planck POSTECH Center for Complex Phase Materials, POSTECH Pohang
Max Planck Institutes
Among others:
• Max Planck Institute for Neurobiology of Behavior – caesar, Bonn
• Max Planck Institute for Aeronomics in Katlenburg-Lindau was renamed to Max Planck Institute for Solar System Research in 2004;
• Max Planck Institute for Biology in Tübingen was closed in 2005;
• Max Planck Institute for Cell Biology in Ladenburg b. Heidelberg was closed in 2003;
• Max Planck Institute for Economics in Jena was renamed to the Max Planck Institute for the Science of Human History in 2014;
• Max Planck Institute for Ionospheric Research in Katlenburg-Lindau was renamed to Max Planck Institute for Aeronomics in 1958;
• Max Planck Institute for Metals Research, Stuttgart
• Max Planck Institute of Oceanic Biology in Wilhelmshaven was renamed to Max Planck Institute of Cell Biology in 1968 and moved to Ladenburg 1977;
• Max Planck Institute for Psychological Research in Munich merged into the Max Planck Institute for Human Cognitive and Brain Sciences in 2004;
• Max Planck Institute for Protein and Leather Research in Regensburg moved to Munich 1957 and was united with the Max Planck Institute for Biochemistry in 1977;
• Max Planck Institute for Virus Research in Tübingen was renamed as Max Planck Institute for Developmental Biology in 1985;
• Max Planck Institute for the Study of the Scientific-Technical World in Starnberg (from 1970 until 1981 (closed)) directed by Carl Friedrich von Weizsäcker and Jürgen Habermas.
• Max Planck Institute for Behavioral Physiology
• Max Planck Institute of Experimental Endocrinology
• Max Planck Institute for Foreign and International Social Law
• Max Planck Institute for Physics and Astrophysics
• Max Planck Research Unit for Enzymology of Protein Folding
• Max Planck Institute for Biology of Ageing
Reply