Tagged: The DOE’s SLAC National Accelerator Laboratory Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 3:10 pm on December 2, 2022 Permalink | Reply
    Tags: , "The Entanglement Advantage", , Greater sensitivity in atomic clocks and accelerometers would lead to more precise timekeeping and navigation systems such as those used in global positioning systems., How to create quantum-entangled networks of atomic clocks and accelerometers., , , , The DOE’s SLAC National Accelerator Laboratory, The research team’s experimental setup yielded ultraprecise measurements of time and acceleration., The researchers successfully networked four groups of atoms in four separate locations using this configuration., What is quantum entanglement? How does it apply to sensors?   

    From “Q-NEXT” At The DOE’s Argonne National Laboratory: “The Entanglement Advantage” 

    From

    From “Q-NEXT”

    At

    Argonne Lab

    The DOE’s Argonne National Laboratory

    11.28.22
    Leah Hesla

    Researchers affiliated with the Q-NEXT quantum research center show how to create quantum-entangled networks of atomic clocks and accelerometers — and they demonstrate the setup’s superior, high-precision performance.

    1
    Entanglement, a special property of nature at the quantum level, is a correlation between two or more objects. A research team recently harnessed entanglement to develop more precise networked quantum sensors. (Image by Brookhaven National Laboratory.)

    What happened

    For the first time, scientists have entangled atoms for use as networked quantum sensors, specifically, atomic clocks and accelerometers.

    The research team’s experimental setup yielded ultraprecise measurements of time and acceleration. Compared to a similar setup that does not draw on quantum entanglement, their time measurements were 3.5 times more precise, and acceleration measurements exhibited 1.2 times greater precision.

    The result, published in Nature [below], is supported by Q-NEXT, a U.S. Department of Energy (DOE) National Quantum Information Science Research Center led by DOE’s Argonne National Laboratory. The research was conducted by scientists currently working at Stanford University, Cornell University and The DOE’s Brookhaven National Laboratory.

    “The impact of using entanglement in this configuration was that it produced better sensor network performance than would have been available if quantum entanglement were not used as a resource,” said Mark Kasevich, lead author of the paper, a member of Q-NEXT, the William R. Kenan, Jr. professor in the Stanford School of Humanities and Sciences and professor of physics and of applied physics. ​“For atomic clocks and accelerometers, ours is a pioneering demonstration.”

    What is quantum entanglement? How does it apply to sensors?

    Entanglement, a special property of nature at the quantum level, is a correlation between two or more objects. When two atoms are entangled, one can measure the properties of both atoms by observing only one. This is true no matter how much distance — even if it’s light-years — separates the entangled atoms.
    A helpful everyday analogy: A red marble and a blue marble are placed in a box. If you draw a red marble from the box, you know, without having to look at the other one, that it’s blue. The color of the marbles is correlated, or entangled.
    In the quantum realm, entanglement is subtler. An atom can take on multiple states (colors) at once. If our marbles were like atoms, each marble would be both red and blue at the same time. Neither is fully red or blue while it sits the box. The quantum marble ​“decides” its color only at the moment of revelation. And once you draw one marble of ​“decided” color, you know the color of its entangled partner.
    To take a measurement of one member of an entangled pair is effectively to take a simultaneous reading of both.
    Taking this further: Two entangled clocks are practically equivalent to a single clock with two displays. Time measurements taken using entangled clocks can be more precise than measurements from two separate, synchronized clocks. 

    Why it matters

    Greater sensitivity in atomic clocks and accelerometers would lead to more precise timekeeping and navigation systems, such as those used in global positioning systems, in defense and in broadcast communications. Ultraprecise clocks are also used in finance and trading.

    “GPS tells me where I am to about a meter right now,” Kasevich said. ​“But what if I wanted to know where I was to within 10 centimeters? That’s what the impact of better clocks would be.” 

    A note on ultraprecise clocks

    One can mark the passage of time by counting the number of pulses in an electromagnetic wave, just as you would count the ticks of a clock. If you know that a particular wave pulses 6 billion times per second, you know that, once you count 6 billion crests of the wave, one second has passed. So knowing the exact frequency of a microwave gives one a precise way to track time.

    How it works

    The entanglement: Rubidium atoms, trapped inside a cavity, are separated into two groups of about 100,000 atoms each. The groups sit between two mirrors. Light is made to bounce back and forth between the mirrors, tracing its way through the groups of atoms with every shot. The ricocheting light entangles them.

    The sensing: A microwave ripples through the two groups of atoms. The atoms that happen to resonate with the microwave’s particular frequency respond by changing to a different state, like the wine glass that vibrates when a soprano hits just the right note.

    Similarly, when a particular acceleration is applied to the atomic groups, some fraction of the atoms in each group responds by changing state.

    The measurement: The two entangled atomic groups behave like two faces of a single clock, or two readings of one accelerometer.

    The research team measured the number of atoms that changed state — the ones that vibrated like a wine glass — in each group.

    Then they used the numbers to calculate the difference in the microwave frequencies applied to the two groups, and therefore the difference in the groups’ readings of time or acceleration.

    Increased precision: The Kasevich team found that entanglement improves the precision in the frequency or acceleration difference read by the displays. 

    In their setup, the measurement of time in two locations was 3.5 times more precise when the clocks were entangled than if they were operating independently. For acceleration, the measurement was 1.2 times more precise with entanglement.

    Impact

    “If you want to know how long something takes, you might look at one clock as a starting point and then run to another room to look at another clock, the end point,” Kasevich said. ​“Our method exploits the entanglement principle to make that comparison as precise as possible.”

    The researchers also successfully networked four groups of atoms in four separate locations using this configuration.

    In the team’s experiment, the two groups of atoms were separated by about 20 micrometers, close to the average width of a human hair.

    Their work means that time or acceleration can be compared, with unprecedented sensitivity, between four separate, albeit close-together, locations.

    “In the future, we want to push them out to longer distances. The world wants clocks whose time can be compared. It’s the same with accelerometers. There are sensing configurations where you want to be able to read out the difference in the acceleration of one group with respect to another. We were able to show how to do that,” Kasevich said.

    “This is a tour de force result from Mark and his team,” said Q-NEXT Deputy Director JoAnne Hewett, who is also The DOE’s SLAC National Accelerator Laboratory associate director of fundamental physics and chief research officer as well as a Stanford professor of particle physics and astrophysics. ​“This means we can harness entanglement to develop sensors that are far more powerful than those we use today. We are another step closer to wielding quantum phenomena to improve our everyday lives.”

    This work was supported by the DOE’s Office of Science National Quantum Information Science Research Centers as part of the Q-NEXT center.

    Science paper:
    Nature

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Q-NEXT brings together the world’s leading minds from the national laboratories, universities and technology companies to solve cutting-edge challenges in quantum information science.

    Led by the U.S. Department of Energy’s Argonne National Laboratory, Q-NEXT focuses on how to reliably control, store and transmit quantum information at distances that could be as small as the width of a computer chip or as large as the distance between Chicago and San Francisco.

    Advances in quantum information science have the potential to revolutionize how we process and share information, with profound impacts such as advanced medical imaging, the creation of novel materials and ultrasecure communication networks.

    Through its partnerships, Q-NEXT is creating an innovation ecosystem that enables the translation of discovery science into technologies for science and society.

    The DOE’s Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their is a science and engineering research national laboratory operated by UChicago Argonne LLC for the United States Department of Energy. The facility is located in Lemont, Illinois, outside of Chicago, and is the largest national laboratory by size and scope in the Midwest.

    Argonne had its beginnings in the Metallurgical Laboratory of the University of Chicago, formed in part to carry out Enrico Fermi’s work on nuclear reactors for the Manhattan Project during World War II. After the war, it was designated as the first national laboratory in the United States on July 1, 1946. In the post-war era the lab focused primarily on non-weapon related nuclear physics, designing and building the first power-producing nuclear reactors, helping design the reactors used by the United States’ nuclear navy, and a wide variety of similar projects. In 1994, the lab’s nuclear mission ended, and today it maintains a broad portfolio in basic science research, energy storage and renewable energy, environmental sustainability, supercomputing, and national security.

    UChicago Argonne, LLC, the operator of the laboratory, “brings together the expertise of the University of Chicago (the sole member of the LLC) with Jacobs Engineering Group Inc.” Argonne is a part of the expanding Illinois Technology and Research Corridor. Argonne formerly ran a smaller facility called Argonne National Laboratory-West (or simply Argonne-West) in Idaho next to the Idaho National Engineering and Environmental Laboratory. In 2005, the two Idaho-based laboratories merged to become the DOE’s Idaho National Laboratory.

    What would become Argonne began in 1942 as the Metallurgical Laboratory at the University of Chicago, which had become part of the Manhattan Project. The Met Lab built Chicago Pile-1, the world’s first nuclear reactor, under the stands of the University of Chicago sports stadium. Considered unsafe, in 1943, CP-1 was reconstructed as CP-2, in what is today known as Red Gate Woods but was then the Argonne Forest of the Cook County Forest Preserve District near Palos Hills. The lab was named after the surrounding forest, which in turn was named after the Forest of Argonne in France where U.S. troops fought in World War I. Fermi’s pile was originally going to be constructed in the Argonne forest, and construction plans were set in motion, but a labor dispute brought the project to a halt. Since speed was paramount, the project was moved to the squash court under Stagg Field, the football stadium on the campus of the University of Chicago. Fermi told them that he was sure of his calculations, which said that it would not lead to a runaway reaction, which would have contaminated the city.

    Other activities were added to Argonne over the next five years. On July 1, 1946, the “Metallurgical Laboratory” was formally re-chartered as Argonne National Laboratory for “cooperative research in nucleonics.” At the request of the U.S. Atomic Energy Commission, it began developing nuclear reactors for the nation’s peaceful nuclear energy program. In the late 1940s and early 1950s, the laboratory moved to a larger location in unincorporated DuPage County, Illinois and established a remote location in Idaho, called “Argonne-West,” to conduct further nuclear research.

    In quick succession, the laboratory designed and built Chicago Pile 3 (1944), the world’s first heavy-water moderated reactor, and the Experimental Breeder Reactor I (Chicago Pile 4), built-in Idaho, which lit a string of four light bulbs with the world’s first nuclear-generated electricity in 1951. A complete list of the reactors designed and, in most cases, built and operated by Argonne can be viewed in the, Reactors Designed by Argonne page. The knowledge gained from the Argonne experiments conducted with these reactors 1) formed the foundation for the designs of most of the commercial reactors currently used throughout the world for electric power generation and 2) inform the current evolving designs of liquid-metal reactors for future commercial power stations.

    Conducting classified research, the laboratory was heavily secured; all employees and visitors needed badges to pass a checkpoint, many of the buildings were classified, and the laboratory itself was fenced and guarded. Such alluring secrecy drew visitors both authorized—including King Leopold III of Belgium and Queen Frederica of Greece—and unauthorized. Shortly past 1 a.m. on February 6, 1951, Argonne guards discovered reporter Paul Harvey near the 10-foot (3.0 m) perimeter fence, his coat tangled in the barbed wire. Searching his car, guards found a previously prepared four-page broadcast detailing the saga of his unauthorized entrance into a classified “hot zone”. He was brought before a federal grand jury on charges of conspiracy to obtain information on national security and transmit it to the public, but was not indicted.

    Not all nuclear technology went into developing reactors, however. While designing a scanner for reactor fuel elements in 1957, Argonne physicist William Nelson Beck put his own arm inside the scanner and obtained one of the first ultrasound images of the human body. Remote manipulators designed to handle radioactive materials laid the groundwork for more complex machines used to clean up contaminated areas, sealed laboratories or caves. In 1964, the “Janus” reactor opened to study the effects of neutron radiation on biological life, providing research for guidelines on safe exposure levels for workers at power plants, laboratories and hospitals. Scientists at Argonne pioneered a technique to analyze the moon’s surface using alpha radiation, which launched aboard the Surveyor 5 in 1967 and later analyzed lunar samples from the Apollo 11 mission.

    In addition to nuclear work, the laboratory maintained a strong presence in the basic research of physics and chemistry. In 1955, Argonne chemists co-discovered the elements einsteinium and fermium, elements 99 and 100 in the periodic table. In 1962, laboratory chemists produced the first compound of the inert noble gas xenon, opening up a new field of chemical bonding research. In 1963, they discovered the hydrated electron.

    High-energy physics made a leap forward when Argonne was chosen as the site of the 12.5 GeV Zero Gradient Synchrotron, a proton accelerator that opened in 1963. A bubble chamber allowed scientists to track the motions of subatomic particles as they zipped through the chamber; in 1970, they observed the neutrino in a hydrogen bubble chamber for the first time.

    Meanwhile, the laboratory was also helping to design the reactor for the world’s first nuclear-powered submarine, the U.S.S. Nautilus, which steamed for more than 513,550 nautical miles (951,090 km). The next nuclear reactor model was Experimental Boiling Water Reactor, the forerunner of many modern nuclear plants, and Experimental Breeder Reactor II (EBR-II), which was sodium-cooled, and included a fuel recycling facility. EBR-II was later modified to test other reactor designs, including a fast-neutron reactor and, in 1982, the Integral Fast Reactor concept—a revolutionary design that reprocessed its own fuel, reduced its atomic waste and withstood safety tests of the same failures that triggered the Chernobyl and Three Mile Island disasters. In 1994, however, the U.S. Congress terminated funding for the bulk of Argonne’s nuclear programs.

    Argonne moved to specialize in other areas, while capitalizing on its experience in physics, chemical sciences and metallurgy. In 1987, the laboratory was the first to successfully demonstrate a pioneering technique called plasma wakefield acceleration, which accelerates particles in much shorter distances than conventional accelerators. It also cultivated a strong battery research program.

    Following a major push by then-director Alan Schriesheim, the laboratory was chosen as the site of the Advanced Photon Source, a major X-ray facility which was completed in 1995 and produced the brightest X-rays in the world at the time of its construction.

    On 19 March 2019, it was reported in the Chicago Tribune that the laboratory was constructing the world’s most powerful supercomputer. Costing $500 million it will have the processing power of 1 quintillion flops. Applications will include the analysis of stars and improvements in the power grid.

    With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science. For more visit http://www.anl.gov.

    About the Advanced Photon Source

    The U. S. Department of Energy Office of Science’s Advanced Photon Source (APS) at Argonne National Laboratory is one of the world’s most productive X-ray light source facilities. The APS provides high-brightness X-ray beams to a diverse community of researchers in materials science, chemistry, condensed matter physics, the life and environmental sciences, and applied research. These X-rays are ideally suited for explorations of materials and biological structures; elemental distribution; chemical, magnetic, electronic states; and a wide range of technologically important engineering systems from batteries to fuel injector sprays, all of which are the foundations of our nation’s economic, technological, and physical well-being. Each year, more than 5,000 researchers use the APS to produce over 2,000 publications detailing impactful discoveries, and solve more vital biological protein structures than users of any other X-ray light source research facility. APS scientists and engineers innovate technology that is at the heart of advancing accelerator and light-source operations. This includes the insertion devices that produce extreme-brightness X-rays prized by researchers, lenses that focus the X-rays down to a few nanometers, instrumentation that maximizes the way the X-rays interact with samples being studied, and software that gathers and manages the massive quantity of data resulting from discovery research at the APS.

    With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science. For more visit http://www.anl.gov.

    Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science

    Argonne Lab Campus

     
  • richardmitnick 8:37 pm on November 7, 2022 Permalink | Reply
    Tags: "Artificial intelligence deciphers detector "clouds" to accelerate materials research", A detector measures scattered photons which produce a speckle pattern., , , Comparing the two snapshots shows how a material fluctuates within a tiny fraction of a second., If researchers shoot a pair of X-ray pulses just moments apart they get atomic-resolution snapshots of a system at two points in time., , , , Researchers compare the two speckle patterns from each pair of pulses to calculate fluctuations in the sample., Resolving the information in these X-ray snapshots is difficult and time intensive. So researchers turned to artificial intelligence to automate the process., The DOE’s SLAC National Accelerator Laboratory, This new X-ray method extends to previously inaccessible materials.   

    From The DOE’s SLAC National Accelerator Laboratory: “Artificial intelligence deciphers detector “clouds” to accelerate materials research” 

    From The DOE’s SLAC National Accelerator Laboratory

    11.7.22
    Chris Patrick

    1
    A speckle pattern typical of the sort seen at LCLS’s detectors. (Courtesy Joshua Turner)

    X-rays can be used like a superfast, atomic-resolution camera, and if researchers shoot a pair of X-ray pulses just moments apart, they get atomic-resolution snapshots of a system at two points in time. Comparing these snapshots shows how a material fluctuates within a tiny fraction of a second, which could help scientists design future generations of super-fast computers, communications, and other technologies.

    Resolving the information in these X-ray snapshots, however, is difficult and time intensive, so Joshua Turner, a lead scientist at the Department of Energy’s SLAC National Accelerator Center and Stanford University, and ten other researchers turned to artificial intelligence to automate the process. Their machine learning-aided method, published October 17 in Structural Dynamics [below], accelerates this X-ray probing technique, and extends it to previously inaccessible materials.

    “The most exciting thing to me is that we can now access a different range of measurements, which we couldn’t before,” Turner said.

    Handling the blob

    When studying materials using this two-pulse technique, the X-rays scatter off a material and are usually detected one photon at a time. A detector measures these scattered photons, which are used to produce a speckle pattern – a blotchy image that represents the precise configuration of the sample at one instant in time. Researchers compare the speckle patterns from each pair of pulses to calculate fluctuations in the sample.

    “However, every photon creates an explosion of electrical charge on the detector,” Turner said. “If there are too many photons, these charge clouds merge together to create an unrecognizable blob.” This cloud of noise means the researchers must collect tons of scattering data to yield a clear understanding of the speckle pattern.

    “You need a lot of data to work out what’s happening in the system,” said Sathya Chitturi, a Ph.D. student at Stanford University who led this work. He is advised by Turner and coauthor Mike Dunne, director of the Linac Coherent Light Source (LCLS) X-ray laser at SLAC [below].

    With conventional methods, all of the data had to be collected first, then analyzed using models that estimate how the photons bunch together at the detector – a lengthy process to understand the speckle patterns.

    The machine learning method, on the other hand, uses the raw detector image of scattered photons to directly extract fluctuation information. This new method is ten times faster on its own and 100 times faster when combined with improved hardware, allowing data analysis in closer to real time.

    Part of the success of the new method came from the efforts of coauthor Nicolas Burdet, an associate staff scientist at SLAC who developed a simulator that produced data with which to train the machine learning model. Through this training, the algorithm was able to learn how the charge clouds merge, and untangle how many photons hit the detector per blob and per pulse pair. The model proved accurate even under very blobby conditions.

    Seeing beyond the clouds

    The model can extract information for a range of materials that have been difficult to study because X-rays scatter off them too weakly for detection, such as high-temperature superconductors or quantum spin liquids. Chitturi said the new method could also be applied to other, non-quantum materials, including colloids, alloys, and glasses.

    Turner said the research should be a help for the LCLS-II upgrade, which will allow researchers to collect up to a million images, or a few terabytes of data, per second, compared to about a hundred images a second for LCLS.

    “At SLAC we’re excited about this upgrade but have also been kind of worried if we can handle this amount of data,” Turner said. In a related paper, the team found that their new technique should be fast enough to deal with all that data. “This new algorithm will really help.”

    The speed boost offered by artificial intelligence promises to also alter the experimental process itself. Instead of making decisions after data collection and analysis, researchers will be able to analyze data and make changes during data collection, which could save time and money spent during the experiment. It will also allow the researchers to spot surprises and redirect their experiments in real time to investigate unexpected phenomena.

    “This method can let you explore more of the materials science you’re interested in and maximize scientific impact by letting you make decisions at different points along your experiment about changes in experimental variables such as temperature, magnetic field, and material composition,” Chitturi said.

    The study is part of a larger collaboration between SLAC, Northeastern University, and Howard University to use machine learning to advance materials and chemistry research.

    Science paper:
    Structural Dynamics
    See the science paper for instructive material with images.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The DOE’s SLAC National Accelerator Laboratory originally named Stanford Linear Accelerator Center, is a Department of Energy National Laboratory operated by Stanford University under the programmatic direction of the Department of Energy Office of Science and located in Menlo Park, California. It is the site of the Stanford Linear Accelerator, a 3.2 kilometer (2-mile) linear accelerator constructed in 1966 and shut down in the 2000s, which could accelerate electrons to energies of 50 GeV.
    Today SLAC research centers on a broad program in atomic and solid-state physics, chemistry, biology, and medicine using X-rays from synchrotron radiation and a free-electron laser as well as experimental and theoretical research in elementary particle physics, astroparticle physics, and cosmology.

    Founded in 1962 as the Stanford Linear Accelerator Center, the facility is located on 172 hectares (426 acres) of Stanford University-owned land on Sand Hill Road in Menlo Park, California—just west of the University’s main campus. The main accelerator is 3.2 kilometers (2 mi) long—the longest linear accelerator in the world—and has been operational since 1966.

    Research at SLAC has produced three Nobel Prizes in Physics

    1976: The charm quark—see J/ψ meson
    1990: Quark structure inside protons and neutrons
    1995: The tau lepton

    SLAC’s meeting facilities also provided a venue for the Homebrew Computer Club and other pioneers of the home computer revolution of the late 1970s and early 1980s.

    In 1984 the laboratory was named an ASME National Historic Engineering Landmark and an IEEE Milestone.

    SLAC developed and, in December 1991, began hosting the first World Wide Web server outside of Europe.

    In the early-to-mid 1990s, the Stanford Linear Collider (SLC) investigated the properties of the Z boson using the Stanford Large Detector [below].

    As of 2005, SLAC employed over 1,000 people, some 150 of whom were physicists with doctorate degrees, and served over 3,000 visiting researchers yearly, operating particle accelerators for high-energy physics and the Stanford Synchrotron Radiation Laboratory (SSRL) [below] for synchrotron light radiation research, which was “indispensable” in the research leading to the 2006 Nobel Prize in Chemistry awarded to Stanford Professor Roger D. Kornberg.

    In October 2008, the Department of Energy announced that the center’s name would be changed to SLAC National Accelerator Laboratory. The reasons given include a better representation of the new direction of the lab and the ability to trademark the laboratory’s name. Stanford University had legally opposed the Department of Energy’s attempt to trademark “Stanford Linear Accelerator Center”.

    In March 2009, it was announced that the SLAC National Accelerator Laboratory was to receive $68.3 million in Recovery Act Funding to be disbursed by Department of Energy’s Office of Science.

    In October 2016, Bits and Watts launched as a collaboration between SLAC and Stanford University to design “better, greener electric grids”. SLAC later pulled out over concerns about an industry partner, the state-owned Chinese electric utility.

    Accelerator

    The main accelerator was an RF linear accelerator that accelerated electrons and positrons up to 50 GeV. At 3.2 km (2.0 mi) long, the accelerator was the longest linear accelerator in the world, and was claimed to be “the world’s most straight object.” until 2017 when the European x-ray free electron laser opened. The main accelerator is buried 9 m (30 ft) below ground and passes underneath Interstate Highway 280. The above-ground klystron gallery atop the beamline, was the longest building in the United States until the LIGO project’s twin interferometers were completed in 1999. It is easily distinguishable from the air and is marked as a visual waypoint on aeronautical charts.

    A portion of the original linear accelerator is now part of the Linac Coherent Light Source [below].

    Stanford Linear Collider

    The Stanford Linear Collider was a linear accelerator that collided electrons and positrons at SLAC. The center of mass energy was about 90 GeV, equal to the mass of the Z boson, which the accelerator was designed to study. Grad student Barrett D. Milliken discovered the first Z event on 12 April 1989 while poring over the previous day’s computer data from the Mark II detector. The bulk of the data was collected by the SLAC Large Detector, which came online in 1991. Although largely overshadowed by the Large Electron–Positron Collider at CERN, which began running in 1989, the highly polarized electron beam at SLC (close to 80%) made certain unique measurements possible, such as parity violation in Z Boson-b quark coupling.


    Presently no beam enters the south and north arcs in the machine, which leads to the Final Focus, therefore this section is mothballed to run beam into the PEP2 section from the beam switchyard.

    The SLAC Large Detector (SLD) was the main detector for the Stanford Linear Collider. It was designed primarily to detect Z bosons produced by the accelerator’s electron-positron collisions. Built in 1991, the SLD operated from 1992 to 1998.

    SLAC National Accelerator Laboratory Large Detector

    PEP

    PEP (Positron-Electron Project) began operation in 1980, with center-of-mass energies up to 29 GeV. At its apex, PEP had five large particle detectors in operation, as well as a sixth smaller detector. About 300 researchers made used of PEP. PEP stopped operating in 1990, and PEP-II began construction in 1994.

    PEP-II

    From 1999 to 2008, the main purpose of the linear accelerator was to inject electrons and positrons into the PEP-II accelerator, an electron-positron collider with a pair of storage rings 2.2 km (1.4 mi) in circumference. PEP-II was host to the BaBar experiment, one of the so-called B-Factory experiments studying charge-parity symmetry.

    SLAC National Accelerator LaboratoryBaBar

    SLAC National Accelerator LaboratorySSRL

    Fermi Gamma-ray Space Telescope

    SLAC plays a primary role in the mission and operation of the Fermi Gamma-ray Space Telescope, launched in August 2008. The principal scientific objectives of this mission are:

    To understand the mechanisms of particle acceleration in AGNs, pulsars, and SNRs.
    To resolve the gamma-ray sky: unidentified sources and diffuse emission.
    To determine the high-energy behavior of gamma-ray bursts and transients.
    To probe dark matter and fundamental physics.

    National Aeronautics and Space AdministrationFermi Large Area Telescope

    National Aeronautics and Space AdministrationFermi Gamma Ray Space Telescope.

    KIPAC


    KIPAC campus

    The Stanford PULSE Institute (PULSE) is a Stanford Independent Laboratory located in the Central Laboratory at SLAC. PULSE was created by Stanford in 2005 to help Stanford faculty and SLAC scientists develop ultrafast x-ray research at LCLS.

    The Linac Coherent Light Source (LCLS)[below] is a free electron laser facility located at SLAC. The LCLS is partially a reconstruction of the last 1/3 of the original linear accelerator at SLAC, and can deliver extremely intense x-ray radiation for research in a number of areas. It achieved first lasing in April 2009.

    The laser produces hard X-rays, 10^9 times the relative brightness of traditional synchrotron sources and is the most powerful x-ray source in the world. LCLS enables a variety of new experiments and provides enhancements for existing experimental methods. Often, x-rays are used to take “snapshots” of objects at the atomic level before obliterating samples. The laser’s wavelength, ranging from 6.2 to 0.13 nm (200 to 9500 electron volts (eV)) is similar to the width of an atom, providing extremely detailed information that was previously unattainable. Additionally, the laser is capable of capturing images with a “shutter speed” measured in femtoseconds, or million-billionths of a second, necessary because the intensity of the beam is often high enough so that the sample explodes on the femtosecond timescale.

    The LCLS-II [below] project is to provide a major upgrade to LCLS by adding two new X-ray laser beams. The new system will utilize the 500 m (1,600 ft) of existing tunnel to add a new superconducting accelerator at 4 GeV and two new sets of undulators that will increase the available energy range of LCLS. The advancement from the discoveries using this new capabilities may include new drugs, next-generation computers, and new materials.

    FACET

    In 2012, the first two-thirds (~2 km) of the original SLAC LINAC were recommissioned for a new user facility, the Facility for Advanced Accelerator Experimental Tests (FACET). This facility was capable of delivering 20 GeV, 3 nC electron (and positron) beams with short bunch lengths and small spot sizes, ideal for beam-driven plasma acceleration studies. The facility ended operations in 2016 for the constructions of LCLS-II which will occupy the first third of the SLAC LINAC. The FACET-II project will re-establish electron and positron beams in the middle third of the LINAC for the continuation of beam-driven plasma acceleration studies in 2019.

    SLAC National Accelerator LaboratoryFACET

    SLAC National Accelerator Laboratory FACET-II upgrading its Facility for Advanced Accelerator Experimental Tests (FACET) – a test bed for new technologies that could revolutionize the way we build particle accelerators.

    The Next Linear Collider Test Accelerator (NLCTA) is a 60-120 MeV high-brightness electron beam linear accelerator used for experiments on advanced beam manipulation and acceleration techniques. It is located at SLAC’s end station B

    SLAC National Accelerator LaboratoryNext Linear Collider Test Accelerator (NLCTA)

    DOE’s SLAC National Accelerator Laboratory campus

    SLAC National Accelerator LaboratoryLCLS

    SLAC National Accelerator LaboratoryLCLS II projected view

    Magnets called undulators stretch roughly 100 meters down a tunnel at SLAC National Accelerator Laboratory, with one side (right) producing hard x-rays and the other soft x-rays.

    SSRL and LCLS are DOE Office of Science user facilities.

     
  • richardmitnick 8:56 am on October 26, 2022 Permalink | Reply
    Tags: "‘Real-world impact’- Stanford Board of Trustees learns how SLAC can change the future", LCLS-II will provide a major jump in capability – moving from 120 pulses per second to 1 million pulses per second enabling researchers to perform experiments in a wide range of fields currently imp, SLAC is developing an upgrade of its Linac Coherent Light Source (LCLS)., SLAC’s foundational work has led to the ”Q-Next Center”- a Quantum Information Science Research Center., Stanford and SLAC together are accelerating translational science., Stanford looks forward to helping create the policy and technology solutions needed to confront global climate change through the work of the Doerr School of Sustainability and its Sustainability Acce, , Stanford-SLAC collaborations are driving world-class science and increased funding in quantum information systems and devices., The Department of Energy and other government agencies want to see Stanford and SLAC together lead the development of emerging technologies – from Artificial Intelligence to Synthetic Biology., The DOE’s SLAC National Accelerator Laboratory, The work of the nascent Doerr School of Sustainability has truly been a team effort involving the full Stanford community from the beginning.   

    From Stanford University And The DOE’s SLAC National Accelerator Laboratory: “‘Real-world impact’- Stanford Board of Trustees learns how SLAC can change the future” 

    Stanford University Name

    From Stanford University

    And

    The DOE’s SLAC National Accelerator Laboratory

    10.24.22
    Chelcey Adami

    The Stanford Board of Trustees held its first meeting of the 2022-23 academic year Oct. 17-18. Trustees toured the SLAC National Accelerator Laboratory and met the new dean of the Doerr School of Sustainability, among other matters.

    The DOE’s SLAC National Accelerator Laboratory helps to advance technologies and industries that can shape the world’s future and connects fundamental science to real-world impact through its user facilities, SLAC Director Chi-Chang Kao told the Stanford Board of Trustees during its first meeting of the academic year Oct. 17-18.

    SLAC National Accelerator Laboratory is a national science laboratory managed and operated by Stanford for the Department of Energy (DOE). On Oct. 17, trustees visited SLAC, which is celebrating 60 years of science and discovery.

    “The Department of Energy and other government agencies are all interested to see Stanford and SLAC together lead the development of all these emerging technologies – from artificial intelligence to synthetic biology – and to bring the brilliant ideas of faculty and students into laboratories, where big teams can make a much bigger impact than we can do by ourselves,” Kao said.

    Trustees also heard from Arun Majumdar, the new dean of the Stanford Doerr School of Sustainability, which launched Sept. 1 with the goal of addressing urgent climate and sustainability challenges.

    “The idea of trying new things and experimenting with new things is what academia does, and this is what we need to do for solutions,” Majumdar told trustees. “The only thing you can do is innovate, experiment, and see what works.”

    The board also heard a report on a departmental name change within the school – from Geological Sciences to Earth and Planetary Sciences.

    President Marc Tessier-Lavigne and Provost Persis Drell shared their enthusiasm for the academic year ahead with the board, providing updates on matters such as advancing civil discourse, research opportunities, and moving the university’s Long-Range Vision forward.

    For example, through the Civic, Liberal, and Global Education (COLLEGE) program, all first-year students are encouraged to think about their role in society and responsibility as a citizen. Drell told trustees she is thrilled this fall to be co-teaching one of its courses, Why College, which explores the value and role of a liberal college education.

    “This is an important foundational skill not only for their years at Stanford but also for their lives ahead,” Tessier-Lavigne said.

    In support of the university’s vision, Drell said priorities under the IDEAL initiative include the departmentalization of African and African American Studies, and the creation of an institute on race, ethnicity, and society.

    Stanford also looks forward to helping create the policy and technology solutions needed to confront global climate change through the important work of the Doerr School of Sustainability and its Sustainability Accelerator, which aims to co-develop potentially scalable sustainability technology and policy solutions with external partners worldwide.

    “With Stanford’s new model of how research universities meet global changes head on, we are well positioned to be a leader to help advance the public perception of what universities can and should do to address issues of national and global importance,” Tessier-Lavigne said.

    ‘Accelerating translational science’

    As a vibrant multi-program laboratory, SLAC allows Stanford students and faculty to do research and build technologies that help address the world’s most pressing challenges, Kao said during an overview presentation of SLAC.

    For example, SLAC is developing an upgrade of its Linac Coherent Light Source (LCLS) [below]. LCLS-II [below] will provide a major jump in capability – moving from 120 pulses per second to 1 million pulses per second and enabling researchers to perform experiments in a wide range of fields that are currently impossible.

    2
    SLAC is upgrading the Linac Coherent Light Source to provide a major jump in capability and enable researchers to perform experiments in a wide range of fields that are currently impossible. (Image credit: Olivier Bonin)

    SLAC is also enabling researchers to determine 3D structures of proteins and RNAs of SARS-CoV-2, the virus responsible for COVID-19, at the Stanford Synchrotron Radiation Lightsource [below] and the Stanford-SLAC Cryo-Electron Microscopy Center (S2C2) [below] to guide anti-virus therapeutics development.

    SLAC additionally plays a crucial role in a broad set of the nation’s High-Energy Physics strategic projects, including leading the Super Cryogenic Dark Matter Search (sCDMS), measuring the Cosmic Microwave Background (CMB Stage 4), and constructing the LSST Camera for the Vera C. Rubin Observatory in Chile, Kao said.

    Trustees toured many of these projects on Monday.

    “Stanford and SLAC together are accelerating translational science,” said Jennifer Dionne, senior associate vice provost for research platforms/shared facilities and an associate professor of materials science and engineering.

    Stanford-SLAC collaborations are driving world-class science and increased funding in quantum information systems and devices, such as single photon sources and modulators, and in photocatalysis for sustainable, high-yield, and product-selective chemical manufacturing, Dionne said.

    She also touted how SLAC’s foundational work has led to the Q-Next Center, a Quantum Information Science Research Center created by the DOE and White House Office of Science and Technology Policy, and led by The DOE’s Argonne National Laboratory. Q-Next’s mission includes establishing national quantum foundries; delivering quantum interconnects; and demonstrating communication links, networks of sensors, and simulation testbeds. SLAC researchers at the helm of Q-Next include Deputy Director JoAnne Hewett, and Thrust Leader Kent Irwin, who have been instrumental in building the National Superconducting Quantum Foundry.

    ‘Tremendous opportunity’

    The work of the nascent Doerr School of Sustainability has truly been a team effort involving the full Stanford community from the beginning, and that effort still continues, Majumdar told trustees.

    Majumdar said he has been meeting with every faculty member in the school to learn about the diversity, breadth, and depth of its scholarship.

    While scholarship is key, there is also an urgency to address challenges being faced in food, water, and climate issues, Majumdar said, which requires an understanding of how academia could play a critical role in government, business, nonprofits, and society.

    “This a tremendous opportunity for academia to enable and educate not only our students, but also our larger stakeholders in society on what are the latest findings in climate science. Major nations and businesses have made climate commitments, but no one really knows how to navigate a complex landscape to meet their climate commitment,” he said. “This is like a marriage, which first and foremost requires a commitment. Organizations have made the commitment but haven’t figured out the details, and hopefully, there are no divorces in this process. I wouldn’t call us a marriage counselor, but we’re all trying to navigate this together.”

    The value of education is going to be paramount in this coming world, he continued, and the school represents a culture shift in the way academia can help address real-world climate and sustainability challenges. The Doerr School of Sustainability includes academic departments from multiple areas of scholarship needed to advance long-term sustainability; institutes that bridge disciplines and bring various viewpoints to bear on urgent challenges; and an accelerator to provide proof of scalability for new policy and technology solutions throughout the world.

    Climate justice hits home for Majumdar, who shared details of his experience growing up in New Delhi, India, where he often traveled by coal- and steam-powered trains and at times arrived at his destination covered in soot. He also experienced food rationing in the ’60s and said he would not be alive if it were not for the Green Revolution, a significant increase in crop production within South Asia and other developing regions of the world propelled by scholars such as the late Norman Borlaug and Carl Gotsch.

    “That’s how to take ideas and solutions to scale,” Majumdar told trustees.

    ‘Bonds of friendship’

    Stanford strives to create a meaningful and memorable student experience that facilitates connection and learning; a healthy and diverse social environment; and a campus infrastructure that makes it easy for students to host events, said Vice Provost for Student Affairs Susie Brubaker-Cole in an update on campus social life and neighborhoods for the board’s Committee on Student, Alumni, and External Affairs. The presentation was a follow-up from the board’s meeting in June.

    The residential neighborhoods were newly designed last year to provide a consistent community of peers and supportive faculty and staff for undergraduates during their four years at Stanford, and have had a strong start this year, Brubaker-Cole said. This fall, 57% of sophomores are living with more than a dozen classmates who were in their frosh dorm, sharply up from 2019 when just 10% of students reported doing so.

    On the first day of move-in, a longtime resident fellow reported seeing sophomores running through the halls and hugging each other, a contrast to prior years during which halls were relatively quiet and students didn’t know each other as well, Brubaker-Cole said.

    “These are early observations, but they give me a lot of hope that students are more likely to be surrounded by friends and former neighbors, to make the transition back into the school year easier, and to be able to build on the bonds of friendship that they’ve already established,” Brubaker-Cole said.

    Supporting students’ mental health and well-being was among Stanford’s most urgent priorities in the years preceding the pandemic, and it remains a top priority today, Brubaker-Cole said. Early findings on the long-term impact of neighborhoods at Stanford indicate that friendships formed in residences predict student well-being, and these findings suggest that investment in infrastructure that promotes diverse and many friends will support student mental health, as well as their personal and intellectual growth.

    Neighborhoods saw early successes like New Student Orientation neighborhood socials and BBQs during the first week of school. These paired well with campus-wide events that are enlivening campus, such as the return of weekly Cardinal Nights; trivia and live performances at the Arbor, a bar behind Tresidder; the return of Farm Day; and the recent launch of the Explore the Bay series with off-campus experiences like a San Jose Sharks game and a Black Panther: Wakanda Forever screening in Redwood City, she explained.

    Residential & Dining Enterprises and Residential Education have helped make all these efforts possible, Brubaker-Cole said.

    Each neighborhood will design an annual all-campus event that, over time, will become a tradition, plus quarterly festival-type events, and weekly or bi-weekly touchpoint events, Brubaker-Cole added. Row houses have received funding to jumpstart their event planning.

    The Office of the Vice Provost for Student Affairs is excited to see what students do with their neighborhood council events and on the broader campus this year, Brubaker-Cole said. Long term, the Social Life Accelerator Task Force – consisting of a group of alumni, students, parents, and staff – will share findings and recommendations that will inform direction.

    “Students will be able to make their mark on Stanford this year in very special ways that will last for years to come,” Brubaker-Cole said.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The DOE’s SLAC National Accelerator Laboratory originally named Stanford Linear Accelerator Center, is a Department of Energy National Laboratory operated by Stanford University under the programmatic direction of the Department of Energy Office of Science and located in Menlo Park, California. It is the site of the Stanford Linear Accelerator, a 3.2 kilometer (2-mile) linear accelerator constructed in 1966 and shut down in the 2000s, which could accelerate electrons to energies of 50 GeV.
    Today SLAC research centers on a broad program in atomic and solid-state physics, chemistry, biology, and medicine using X-rays from synchrotron radiation and a free-electron laser as well as experimental and theoretical research in elementary particle physics, astroparticle physics, and cosmology.

    Founded in 1962 as the Stanford Linear Accelerator Center, the facility is located on 172 hectares (426 acres) of Stanford University-owned land on Sand Hill Road in Menlo Park, California—just west of the University’s main campus. The main accelerator is 3.2 kilometers (2 mi) long—the longest linear accelerator in the world—and has been operational since 1966.

    Research at SLAC has produced three Nobel Prizes in Physics

    1976: The charm quark—see J/ψ meson
    1990: Quark structure inside protons and neutrons
    1995: The tau lepton

    SLAC’s meeting facilities also provided a venue for the Homebrew Computer Club and other pioneers of the home computer revolution of the late 1970s and early 1980s.

    In 1984 the laboratory was named an ASME National Historic Engineering Landmark and an IEEE Milestone.

    SLAC developed and, in December 1991, began hosting the first World Wide Web server outside of Europe.

    In the early-to-mid 1990s, the Stanford Linear Collider (SLC) investigated the properties of the Z boson using the Stanford Large Detector [below].

    As of 2005, SLAC employed over 1,000 people, some 150 of whom were physicists with doctorate degrees, and served over 3,000 visiting researchers yearly, operating particle accelerators for high-energy physics and the Stanford Synchrotron Radiation Laboratory (SSRL) [below] for synchrotron light radiation research, which was “indispensable” in the research leading to the 2006 Nobel Prize in Chemistry awarded to Stanford Professor Roger D. Kornberg.

    In October 2008, the Department of Energy announced that the center’s name would be changed to SLAC National Accelerator Laboratory. The reasons given include a better representation of the new direction of the lab and the ability to trademark the laboratory’s name. Stanford University had legally opposed the Department of Energy’s attempt to trademark “Stanford Linear Accelerator Center”.

    In March 2009, it was announced that the SLAC National Accelerator Laboratory was to receive $68.3 million in Recovery Act Funding to be disbursed by Department of Energy’s Office of Science.

    In October 2016, Bits and Watts launched as a collaboration between SLAC and Stanford University to design “better, greener electric grids”. SLAC later pulled out over concerns about an industry partner, the state-owned Chinese electric utility.

    Accelerator

    The main accelerator was an RF linear accelerator that accelerated electrons and positrons up to 50 GeV. At 3.2 km (2.0 mi) long, the accelerator was the longest linear accelerator in the world, and was claimed to be “the world’s most straight object.” until 2017 when the European x-ray free electron laser opened. The main accelerator is buried 9 m (30 ft) below ground and passes underneath Interstate Highway 280. The above-ground klystron gallery atop the beamline, was the longest building in the United States until the LIGO project’s twin interferometers were completed in 1999. It is easily distinguishable from the air and is marked as a visual waypoint on aeronautical charts.

    A portion of the original linear accelerator is now part of the Linac Coherent Light Source [below].

    Stanford Linear Collider

    The Stanford Linear Collider was a linear accelerator that collided electrons and positrons at SLAC. The center of mass energy was about 90 GeV, equal to the mass of the Z boson, which the accelerator was designed to study. Grad student Barrett D. Milliken discovered the first Z event on 12 April 1989 while poring over the previous day’s computer data from the Mark II detector. The bulk of the data was collected by the SLAC Large Detector, which came online in 1991. Although largely overshadowed by the Large Electron–Positron Collider at CERN, which began running in 1989, the highly polarized electron beam at SLC (close to 80%) made certain unique measurements possible, such as parity violation in Z Boson-b quark coupling.


    Presently no beam enters the south and north arcs in the machine, which leads to the Final Focus, therefore this section is mothballed to run beam into the PEP2 section from the beam switchyard.

    The SLAC Large Detector (SLD) was the main detector for the Stanford Linear Collider. It was designed primarily to detect Z bosons produced by the accelerator’s electron-positron collisions. Built in 1991, the SLD operated from 1992 to 1998.

    SLAC National Accelerator Laboratory Large Detector

    PEP

    PEP (Positron-Electron Project) began operation in 1980, with center-of-mass energies up to 29 GeV. At its apex, PEP had five large particle detectors in operation, as well as a sixth smaller detector. About 300 researchers made used of PEP. PEP stopped operating in 1990, and PEP-II began construction in 1994.

    PEP-II

    From 1999 to 2008, the main purpose of the linear accelerator was to inject electrons and positrons into the PEP-II accelerator, an electron-positron collider with a pair of storage rings 2.2 km (1.4 mi) in circumference. PEP-II was host to the BaBar experiment, one of the so-called B-Factory experiments studying charge-parity symmetry.

    SLAC National Accelerator Laboratory BaBar

    SLAC National Accelerator Laboratory SSRL

    Fermi Gamma-ray Space Telescope

    SLAC plays a primary role in the mission and operation of the Fermi Gamma-ray Space Telescope, launched in August 2008. The principal scientific objectives of this mission are:

    To understand the mechanisms of particle acceleration in AGNs, pulsars, and SNRs.
    To resolve the gamma-ray sky: unidentified sources and diffuse emission.
    To determine the high-energy behavior of gamma-ray bursts and transients.
    To probe dark matter and fundamental physics.

    National Aeronautics and Space Administration Fermi Large Area Telescope

    National Aeronautics and Space Administration Fermi Gamma Ray Space Telescope.

    KIPAC


    KIPAC campus

    The Stanford PULSE Institute (PULSE) is a Stanford Independent Laboratory located in the Central Laboratory at SLAC. PULSE was created by Stanford in 2005 to help Stanford faculty and SLAC scientists develop ultrafast x-ray research at LCLS.

    The Linac Coherent Light Source (LCLS)[below] is a free electron laser facility located at SLAC. The LCLS is partially a reconstruction of the last 1/3 of the original linear accelerator at SLAC, and can deliver extremely intense x-ray radiation for research in a number of areas. It achieved first lasing in April 2009.

    The laser produces hard X-rays, 10^9 times the relative brightness of traditional synchrotron sources and is the most powerful x-ray source in the world. LCLS enables a variety of new experiments and provides enhancements for existing experimental methods. Often, x-rays are used to take “snapshots” of objects at the atomic level before obliterating samples. The laser’s wavelength, ranging from 6.2 to 0.13 nm (200 to 9500 electron volts (eV)) is similar to the width of an atom, providing extremely detailed information that was previously unattainable. Additionally, the laser is capable of capturing images with a “shutter speed” measured in femtoseconds, or million-billionths of a second, necessary because the intensity of the beam is often high enough so that the sample explodes on the femtosecond timescale.

    The LCLS-II [below] project is to provide a major upgrade to LCLS by adding two new X-ray laser beams. The new system will utilize the 500 m (1,600 ft) of existing tunnel to add a new superconducting accelerator at 4 GeV and two new sets of undulators that will increase the available energy range of LCLS. The advancement from the discoveries using these new capabilities may include new drugs, next-generation computers, and new materials.

    FACET

    In 2012, the first two-thirds (~2 km) of the original SLAC LINAC were recommissioned for a new user facility, the Facility for Advanced Accelerator Experimental Tests (FACET). This facility was capable of delivering 20 GeV, 3 nC electron (and positron) beams with short bunch lengths and small spot sizes, ideal for beam-driven plasma acceleration studies. The facility ended operations in 2016 for the constructions of LCLS-II which will occupy the first third of the SLAC LINAC. The FACET-II project will re-establish electron and positron beams in the middle third of the LINAC for the continuation of beam-driven plasma acceleration studies in 2019.

    SLAC National Accelerator Laboratory FACET

    SLAC National Accelerator Laboratory FACET-II upgrading its Facility for Advanced Accelerator Experimental Tests (FACET) – a test bed for new technologies that could revolutionize the way we build particle accelerators.

    The Next Linear Collider Test Accelerator (NLCTA) is a 60-120 MeV high-brightness electron beam linear accelerator used for experiments on advanced beam manipulation and acceleration techniques. It is located at SLAC’s end station B

    SLAC National Accelerator LaboratoryNext Linear Collider Test Accelerator (NLCTA)

    DOE’s SLAC National Accelerator Laboratory campus

    SLAC National Accelerator LaboratoryLCLS

    SLAC National Accelerator LaboratoryLCLS II projected view

    Magnets called undulators stretch roughly 100 meters down a tunnel at SLAC National Accelerator Laboratory, with one side (right) producing hard x-rays and the other soft x-rays.

    SSRL and LCLS are DOE Office of Science user facilities.

    Stanford University campus

    Leland and Jane Stanford founded Stanford University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members.

    Stanford University, officially Leland Stanford Junior University, is a private research university located in Stanford, California. Stanford was founded in 1885 by Leland and Jane Stanford in memory of their only child, Leland Stanford Jr., who had died of typhoid fever at age 15 the previous year. Stanford is consistently ranked as among the most prestigious and top universities in the world by major education publications. It is also one of the top fundraising institutions in the country, becoming the first school to raise more than a billion dollars in a year.

    Leland Stanford was a U.S. senator and former governor of California who made his fortune as a railroad tycoon. The school admitted its first students on October 1, 1891, as a coeducational and non-denominational institution. Stanford University struggled financially after the death of Leland Stanford in 1893 and again after much of the campus was damaged by the 1906 San Francisco earthquake. Following World War II, provost Frederick Terman supported faculty and graduates’ entrepreneurialism to build self-sufficient local industry in what would later be known as Silicon Valley.

    The university is organized around seven schools: three schools consisting of 40 academic departments at the undergraduate level as well as four professional schools that focus on graduate programs in law, medicine, education, and business. All schools are on the same campus. Students compete in 36 varsity sports, and the university is one of two private institutions in the Division I FBS Pac-12 Conference. It has gained 126 NCAA team championships, and Stanford has won the NACDA Directors’ Cup for 24 consecutive years, beginning in 1994–1995. In addition, Stanford students and alumni have won 270 Olympic medals including 139 gold medals.

    As of October 2020, 84 Nobel laureates, 28 Turing Award laureates, and eight Fields Medalists have been affiliated with Stanford as students, alumni, faculty, or staff. In addition, Stanford is particularly noted for its entrepreneurship and is one of the most successful universities in attracting funding for start-ups. Stanford alumni have founded numerous companies, which combined produce more than $2.7 trillion in annual revenue, roughly equivalent to the 7th largest economy in the world (as of 2020). Stanford is the alma mater of one president of the United States (Herbert Hoover), 74 living billionaires, and 17 astronauts. It is also one of the leading producers of Fulbright Scholars, Marshall Scholars, Rhodes Scholars, and members of the United States Congress.

    Stanford University was founded in 1885 by Leland and Jane Stanford, dedicated to Leland Stanford Jr, their only child. The institution opened in 1891 on Stanford’s previous Palo Alto farm.

    Jane and Leland Stanford modeled their university after the great eastern universities, most specifically Cornell University. Stanford opened being called the “Cornell of the West” in 1891 due to faculty being former Cornell affiliates (either professors, alumni, or both) including its first president, David Starr Jordan, and second president, John Casper Branner. Both Cornell and Stanford were among the first to have higher education be accessible, nonsectarian, and open to women as well as to men. Cornell is credited as one of the first American universities to adopt this radical departure from traditional education, and Stanford became an early adopter as well.

    Despite being impacted by earthquakes in both 1906 and 1989, the campus was rebuilt each time. In 1919, The Hoover Institution on War, Revolution and Peace was started by Herbert Hoover to preserve artifacts related to World War I. The Stanford Medical Center, completed in 1959, is a teaching hospital with over 800 beds. The DOE’s SLAC National Accelerator Laboratory (originally named the Stanford Linear Accelerator Center), established in 1962, performs research in particle physics.

    Land

    Most of Stanford is on an 8,180-acre (12.8 sq mi; 33.1 km^2) campus, one of the largest in the United States. It is located on the San Francisco Peninsula, in the northwest part of the Santa Clara Valley (Silicon Valley) approximately 37 miles (60 km) southeast of San Francisco and approximately 20 miles (30 km) northwest of San Jose. In 2008, 60% of this land remained undeveloped.

    Stanford’s main campus includes a census-designated place within unincorporated Santa Clara County, although some of the university land (such as the Stanford Shopping Center and the Stanford Research Park) is within the city limits of Palo Alto. The campus also includes much land in unincorporated San Mateo County (including the SLAC National Accelerator Laboratory and the Jasper Ridge Biological Preserve), as well as in the city limits of Menlo Park (Stanford Hills neighborhood), Woodside, and Portola Valley.

    Non-central campus

    Stanford currently operates in various locations outside of its central campus.

    On the founding grant:

    Jasper Ridge Biological Preserve is a 1,200-acre (490 ha) natural reserve south of the central campus owned by the university and used by wildlife biologists for research.

    SLAC National Accelerator Laboratory is a facility west of the central campus operated by the university for the Department of Energy. It contains the longest linear particle accelerator in the world, 2 miles (3.2 km) on 426 acres (172 ha) of land. Golf course and a seasonal lake: The university also has its own golf course and a seasonal lake (Lake Lagunita, actually an irrigation reservoir), both home to the vulnerable California tiger salamander. As of 2012 Lake Lagunita was often dry and the university had no plans to artificially fill it.

    Off the founding grant:

    Hopkins Marine Station, in Pacific Grove, California, is a marine biology research center owned by the university since 1892., in Pacific Grove, California, is a marine biology research center owned by the university since 1892.
    Study abroad locations: unlike typical study abroad programs, Stanford itself operates in several locations around the world; thus, each location has Stanford faculty-in-residence and staff in addition to students, creating a “mini-Stanford”.

    Redwood City campus for many of the university’s administrative offices located in Redwood City, California, a few miles north of the main campus. In 2005, the university purchased a small, 35-acre (14 ha) campus in Midpoint Technology Park intended for staff offices; development was delayed by The Great Recession. In 2015 the university announced a development plan and the Redwood City campus opened in March 2019.

    The Bass Center in Washington, DC provides a base, including housing, for the Stanford in Washington program for undergraduates. It includes a small art gallery open to the public.

    China: Stanford Center at Peking University, housed in the Lee Jung Sen Building, is a small center for researchers and students in collaboration with Beijing University [北京大学](CN) (Kavli Institute for Astronomy and Astrophysics at Peking University(CN) (KIAA-PKU).

    Administration and organization

    Stanford is a private, non-profit university that is administered as a corporate trust governed by a privately appointed board of trustees with a maximum membership of 38. Trustees serve five-year terms (not more than two consecutive terms) and meet five times annually.[83] A new trustee is chosen by the current trustees by ballot. The Stanford trustees also oversee the Stanford Research Park, the Stanford Shopping Center, the Cantor Center for Visual Arts, Stanford University Medical Center, and many associated medical facilities (including the Lucile Packard Children’s Hospital).

    The board appoints a president to serve as the chief executive officer of the university, to prescribe the duties of professors and course of study, to manage financial and business affairs, and to appoint nine vice presidents. The provost is the chief academic and budget officer, to whom the deans of each of the seven schools report. Persis Drell became the 13th provost in February 2017.

    As of 2018, the university was organized into seven academic schools. The schools of Humanities and Sciences (27 departments), Engineering (nine departments), and Earth, Energy & Environmental Sciences (four departments) have both graduate and undergraduate programs while the Schools of Law, Medicine, Education and Business have graduate programs only. The powers and authority of the faculty are vested in the Academic Council, which is made up of tenure and non-tenure line faculty, research faculty, senior fellows in some policy centers and institutes, the president of the university, and some other academic administrators, but most matters are handled by the Faculty Senate, made up of 55 elected representatives of the faculty.

    The Associated Students of Stanford University (ASSU) is the student government for Stanford and all registered students are members. Its elected leadership consists of the Undergraduate Senate elected by the undergraduate students, the Graduate Student Council elected by the graduate students, and the President and Vice President elected as a ticket by the entire student body.

    Stanford is the beneficiary of a special clause in the California Constitution, which explicitly exempts Stanford property from taxation so long as the property is used for educational purposes.

    Endowment and donations

    The university’s endowment, managed by the Stanford Management Company, was valued at $27.7 billion as of August 31, 2019. Payouts from the Stanford endowment covered approximately 21.8% of university expenses in the 2019 fiscal year. In the 2018 NACUBO-TIAA survey of colleges and universities in the United States and Canada, only Harvard University, the University of Texas System, and Yale University had larger endowments than Stanford.

    In 2006, President John L. Hennessy launched a five-year campaign called the Stanford Challenge, which reached its $4.3 billion fundraising goal in 2009, two years ahead of time, but continued fundraising for the duration of the campaign. It concluded on December 31, 2011, having raised a total of $6.23 billion and breaking the previous campaign fundraising record of $3.88 billion held by Yale. Specifically, the campaign raised $253.7 million for undergraduate financial aid, as well as $2.33 billion for its initiative in “Seeking Solutions” to global problems, $1.61 billion for “Educating Leaders” by improving K-12 education, and $2.11 billion for “Foundation of Excellence” aimed at providing academic support for Stanford students and faculty. Funds supported 366 new fellowships for graduate students, 139 new endowed chairs for faculty, and 38 new or renovated buildings. The new funding also enabled the construction of a facility for stem cell research; a new campus for the business school; an expansion of the law school; a new Engineering Quad; a new art and art history building; an on-campus concert hall; a new art museum; and a planned expansion of the medical school, among other things. In 2012, the university raised $1.035 billion, becoming the first school to raise more than a billion dollars in a year.

    Research centers and institutes

    DOE’s SLAC National Accelerator Laboratory
    Stanford Research Institute, a center of innovation to support economic development in the region.
    Hoover Institution, a conservative American public policy institution and research institution that promotes personal and economic liberty, free enterprise, and limited government.
    Hasso Plattner Institute of Design, a multidisciplinary design school in cooperation with the Hasso Plattner Institute of University of Potsdam [Universität Potsdam](DE) that integrates product design, engineering, and business management education).
    Martin Luther King Jr. Research and Education Institute, which grew out of and still contains the Martin Luther King Jr. Papers Project.
    John S. Knight Fellowship for Professional Journalists
    Center for Ocean Solutions
    Together with UC Berkeley and UC San Francisco, Stanford is part of the Biohub, a new medical science research center founded in 2016 by a $600 million commitment from Facebook CEO and founder Mark Zuckerberg and pediatrician Priscilla Chan.

    Discoveries and innovation

    Natural sciences

    Biological synthesis of deoxyribonucleic acid (DNA) – Arthur Kornberg synthesized DNA material and won the Nobel Prize in Physiology or Medicine 1959 for his work at Stanford.
    First Transgenic organism – Stanley Cohen and Herbert Boyer were the first scientists to transplant genes from one living organism to another, a fundamental discovery for genetic engineering. Thousands of products have been developed on the basis of their work, including human growth hormone and hepatitis B vaccine.
    Laser – Arthur Leonard Schawlow shared the 1981 Nobel Prize in Physics with Nicolaas Bloembergen and Kai Siegbahn for his work on lasers.
    Nuclear magnetic resonance – Felix Bloch developed new methods for nuclear magnetic precision measurements, which are the underlying principles of the MRI.

    Computer and applied sciences

    ARPANETStanford Research Institute, formerly part of Stanford but on a separate campus, was the site of one of the four original ARPANET nodes.

    Internet—Stanford was the site where the original design of the Internet was undertaken. Vint Cerf led a research group to elaborate the design of the Transmission Control Protocol (TCP/IP) that he originally co-created with Robert E. Kahn (Bob Kahn) in 1973 and which formed the basis for the architecture of the Internet.

    Frequency modulation synthesis – John Chowning of the Music department invented the FM music synthesis algorithm in 1967, and Stanford later licensed it to Yamaha Corporation.

    Google – Google began in January 1996 as a research project by Larry Page and Sergey Brin when they were both PhD students at Stanford. They were working on the Stanford Digital Library Project (SDLP). The SDLP’s goal was “to develop the enabling technologies for a single, integrated and universal digital library” and it was funded through the National Science Foundation, among other federal agencies.

    Klystron tube – invented by the brothers Russell and Sigurd Varian at Stanford. Their prototype was completed and demonstrated successfully on August 30, 1937. Upon publication in 1939, news of the klystron immediately influenced the work of U.S. and UK researchers working on radar equipment.

    RISCARPA funded VLSI project of microprocessor design. Stanford and University of California- Berkeley are most associated with the popularization of this concept. The Stanford MIPS would go on to be commercialized as the successful MIPS architecture, while Berkeley RISC gave its name to the entire concept, commercialized as the SPARC. Another success from this era were IBM’s efforts that eventually led to the IBM POWER instruction set architecture, PowerPC, and Power ISA. As these projects matured, a wide variety of similar designs flourished in the late 1980s and especially the early 1990s, representing a major force in the Unix workstation market as well as embedded processors in laser printers, routers and similar products.
    SUN workstation – Andy Bechtolsheim designed the SUN workstation for the Stanford University Network communications project as a personal CAD workstation, which led to Sun Microsystems.

    Businesses and entrepreneurship

    Stanford is one of the most successful universities in creating companies and licensing its inventions to existing companies; it is often held up as a model for technology transfer. Stanford’s Office of Technology Licensing is responsible for commercializing university research, intellectual property, and university-developed projects.

    The university is described as having a strong venture culture in which students are encouraged, and often funded, to launch their own companies.

    Companies founded by Stanford alumni generate more than $2.7 trillion in annual revenue, equivalent to the 10th-largest economy in the world.

    Some companies closely associated with Stanford and their connections include:

    Hewlett-Packard, 1939, co-founders William R. Hewlett (B.S, PhD) and David Packard (M.S).
    Silicon Graphics, 1981, co-founders James H. Clark (Associate Professor) and several of his grad students.
    Sun Microsystems, 1982, co-founders Vinod Khosla (M.B.A), Andy Bechtolsheim (PhD) and Scott McNealy (M.B.A).
    Cisco, 1984, founders Leonard Bosack (M.S) and Sandy Lerner (M.S) who were in charge of Stanford Computer Science and Graduate School of Business computer operations groups respectively when the hardware was developed.[163]
    Yahoo!, 1994, co-founders Jerry Yang (B.S, M.S) and David Filo (M.S).
    Google, 1998, co-founders Larry Page (M.S) and Sergey Brin (M.S).
    LinkedIn, 2002, co-founders Reid Hoffman (B.S), Konstantin Guericke (B.S, M.S), Eric Lee (B.S), and Alan Liu (B.S).
    Instagram, 2010, co-founders Kevin Systrom (B.S) and Mike Krieger (B.S).
    Snapchat, 2011, co-founders Evan Spiegel and Bobby Murphy (B.S).
    Coursera, 2012, co-founders Andrew Ng (Associate Professor) and Daphne Koller (Professor, PhD).

    Student body

    Stanford enrolled 6,996 undergraduate and 10,253 graduate students as of the 2019–2020 school year. Women comprised 50.4% of undergraduates and 41.5% of graduate students. In the same academic year, the freshman retention rate was 99%.

    Stanford awarded 1,819 undergraduate degrees, 2,393 master’s degrees, 770 doctoral degrees, and 3270 professional degrees in the 2018–2019 school year. The four-year graduation rate for the class of 2017 cohort was 72.9%, and the six-year rate was 94.4%. The relatively low four-year graduation rate is a function of the university’s coterminal degree (or “coterm”) program, which allows students to earn a master’s degree as a 1-to-2-year extension of their undergraduate program.

    As of 2010, fifteen percent of undergraduates were first-generation students.

    Athletics

    As of 2016 Stanford had 16 male varsity sports and 20 female varsity sports, 19 club sports and about 27 intramural sports. In 1930, following a unanimous vote by the Executive Committee for the Associated Students, the athletic department adopted the mascot “Indian.” The Indian symbol and name were dropped by President Richard Lyman in 1972, after objections from Native American students and a vote by the student senate. The sports teams are now officially referred to as the “Stanford Cardinal,” referring to the deep red color, not the cardinal bird. Stanford is a member of the Pac-12 Conference in most sports, the Mountain Pacific Sports Federation in several other sports, and the America East Conference in field hockey with the participation in the inter-collegiate NCAA’s Division I FBS.

    Its traditional sports rival is the University of California, Berkeley, the neighbor to the north in the East Bay. The winner of the annual “Big Game” between the Cal and Cardinal football teams gains custody of the Stanford Axe.

    Stanford has had at least one NCAA team champion every year since the 1976–77 school year and has earned 126 NCAA national team titles since its establishment, the most among universities, and Stanford has won 522 individual national championships, the most by any university. Stanford has won the award for the top-ranked Division 1 athletic program—the NACDA Directors’ Cup, formerly known as the Sears Cup—annually for the past twenty-four straight years. Stanford athletes have won medals in every Olympic Games since 1912, winning 270 Olympic medals total, 139 of them gold. In the 2008 Summer Olympics, and 2016 Summer Olympics, Stanford won more Olympic medals than any other university in the United States. Stanford athletes won 16 medals at the 2012 Summer Olympics (12 gold, two silver and two bronze), and 27 medals at the 2016 Summer Olympics.

    Traditions

    The unofficial motto of Stanford, selected by President Jordan, is Die Luft der Freiheit weht. Translated from the German language, this quotation from Ulrich von Hutten means, “The wind of freedom blows.” The motto was controversial during World War I, when anything in German was suspect; at that time the university disavowed that this motto was official.
    Hail, Stanford, Hail! is the Stanford Hymn sometimes sung at ceremonies or adapted by the various University singing groups. It was written in 1892 by mechanical engineering professor Albert W. Smith and his wife, Mary Roberts Smith (in 1896 she earned the first Stanford doctorate in Economics and later became associate professor of Sociology), but was not officially adopted until after a performance on campus in March 1902 by the Mormon Tabernacle Choir.
    “Uncommon Man/Uncommon Woman”: Stanford does not award honorary degrees, but in 1953 the degree of “Uncommon Man/Uncommon Woman” was created to recognize individuals who give rare and extraordinary service to the University. Technically, this degree is awarded by the Stanford Associates, a voluntary group that is part of the university’s alumni association. As Stanford’s highest honor, it is not conferred at prescribed intervals, but only when appropriate to recognize extraordinary service. Recipients include Herbert Hoover, Bill Hewlett, Dave Packard, Lucile Packard, and John Gardner.
    Big Game events: The events in the week leading up to the Big Game vs. UC Berkeley, including Gaieties (a musical written, composed, produced, and performed by the students of Ram’s Head Theatrical Society).
    “Viennese Ball”: a formal ball with waltzes that was initially started in the 1970s by students returning from the now-closed Stanford in Vienna overseas program. It is now open to all students.
    “Full Moon on the Quad”: An annual event at Main Quad, where students gather to kiss one another starting at midnight. Typically organized by the Junior class cabinet, the festivities include live entertainment, such as music and dance performances.
    “Band Run”: An annual festivity at the beginning of the school year, where the band picks up freshmen from dorms across campus while stopping to perform at each location, culminating in a finale performance at Main Quad.
    “Mausoleum Party”: An annual Halloween Party at the Stanford Mausoleum, the final resting place of Leland Stanford Jr. and his parents. A 20-year tradition, the “Mausoleum Party” was on hiatus from 2002 to 2005 due to a lack of funding, but was revived in 2006. In 2008, it was hosted in Old Union rather than at the actual Mausoleum, because rain prohibited generators from being rented. In 2009, after fundraising efforts by the Junior Class Presidents and the ASSU Executive, the event was able to return to the Mausoleum despite facing budget cuts earlier in the year.
    Former campus traditions include the “Big Game bonfire” on Lake Lagunita (a seasonal lake usually dry in the fall), which was formally ended in 1997 because of the presence of endangered salamanders in the lake bed.

    Award laureates and scholars

    Stanford’s current community of scholars includes:

    19 Nobel Prize laureates (as of October 2020, 85 affiliates in total)
    171 members of the National Academy of Sciences
    109 members of National Academy of Engineering
    76 members of National Academy of Medicine
    288 members of the American Academy of Arts and Sciences
    19 recipients of the National Medal of Science
    1 recipient of the National Medal of Technology
    4 recipients of the National Humanities Medal
    49 members of American Philosophical Society
    56 fellows of the American Physics Society (since 1995)
    4 Pulitzer Prize winners
    31 MacArthur Fellows
    4 Wolf Foundation Prize winners
    2 ACL Lifetime Achievement Award winners
    14 AAAI fellows
    2 Presidential Medal of Freedom winners

    Stanford University Seal

     
  • richardmitnick 9:22 am on October 25, 2022 Permalink | Reply
    Tags: "Molecular cage protects precious metals in catalytic converters", After burning away the polymer mold with heat scientists were left with a web-like cage of alumina surrounding the nanoparticles., Alumina is a ceramic so it’s rigid enough to keep the nanoparticles in place. But it’s also porous so there are openings in the framework where the surface of the nanoparticles can carry out react, , “Nanocasting”: sandwiching platinum nanoparticles between porous layers of polymer and then filling the pores with alumina., Encapsulating precious-metal catalysts in a web-like alumina framework could reduce the amount needed in catalytic converters – and our dependency on these scarce metals., If a catalyst were to be resistant to sintering and deactivation then car manufacturers could use less precious metal., , Scientists built a nanoscale alumina framework to encase catalyst nanoparticles – in this case the precious metal platinum., The DOE’s SLAC National Accelerator Laboratory, The inside of a catalytic converter is hot and steamy and filled with oxygen. This might sound nice but it’s actually a harsh environment that deactivates precious metal catalysts.   

    From The DOE’s SLAC National Accelerator Laboratory: “Molecular cage protects precious metals in catalytic converters” 

    From The DOE’s SLAC National Accelerator Laboratory

    10.24.22
    Chris Patrick

    1
    OEM Catalytic Converter on a 1996 Dodge Ram B2500 van. Credit: Ahanix1989 at English Wikipedia.

    Encapsulating precious-metal catalysts in a web-like alumina framework could reduce the amount needed in catalytic converters – and our dependency on these scarce metals.

    Sometimes, solutions to environmental problems can have environmentally unfriendly side effects. For example, while most gas-powered cars have a catalytic converter that transforms engine emission pollutants into less harmful gases, this comes with a tradeoff: Catalytic converters contain precious metals such as platinum and palladium.

    The good thing about these precious metals is that they act as catalysts that help break down pollutants, with a suite of properties that make them the best elemental candidates for this chemical job. But they are also rare, which makes them expensive, and extracting them from the earth produces its own pollution.

    However, in a paper published October 24 in Nature Materials [below], researchers at the SUNCAT Center for Interface Science and Catalysis and the Precourt Institute for Energy at Stanford University and the Department of Energy’s SLAC National Accelerator Laboratory reported a way of encapsulating catalysts that could reduce the amount of precious metals catalytic converters need to work, which could in turn reduce the practice of precious metal mining.

    “I think the material we made could knock down the amount of precious metals used in a catalytic converter by 50 precent, which would mean a lot once you multiply that by the nearly 1.5 billion cars we now have in circulation on the planet,” said Matteo Cargnello, the new study’s senior author and an assistant professor of chemical engineering at Stanford University.

    Shielding what’s precious

    The inside of a catalytic converter is hot, steamy, and filled with oxygen. This might sound nice, but it’s actually a harsh environment that deactivates precious metal catalysts.

    As soon as someone drives a car, the nanoparticles of catalyst present in the catalytic converter are exposed to high temperatures that cause them to coalesce and form larger particles. This process is known as sintering, and these bigger, sintered chunks of catalyst mean less overall active surface area for the catalysts to do their job: the larger the particles, the lower the catalytic efficiency.

    Car manufacturers must use a certain amount of catalyst to keep a catalytic converter at the required level of efficiency. But if a catalyst were to be resistant to sintering and deactivation, car manufacturers could use less precious metal.

    Aisulu Aitbekova and Cargnello, who was Aitbekova’s advisor while she was earning her PhD at Stanford, came up with an idea for a catalyst system that can do just that. They built a nanoscale alumina framework to encase catalyst nanoparticles – in this case, the precious metal platinum.

    The team produced this cage with nanocasting: They first sandwiched platinum nanoparticles between porous layers of polymer, then filled the pores with alumina. After burning away the polymer mold with heat, they were left with a web-like cage of alumina surrounding the nanoparticles.

    Alumina is a ceramic, like a coffee mug, so it’s rigid enough to keep the nanoparticles in place. But it’s also porous, so there are openings in the framework where the surface of the nanoparticles can carry out reactions.

    Once the samples were assembled, the team had to test them.

    “We tested our materials in an environment that mimics the environment inside catalytic converters – the harsh conditions of high temperature, oxygen, and steam – and our materials showed high performance,” said Aitbekova, the first author on the new paper and currently a Kavli Nanoscience Institute postdoctoral fellow at the California Institute of Technology.

    Crucial X-rays

    The team used X-rays produced by the Stanford Synchrotron Radiation Lightsource (SSRL) at SLAC to conduct X-ray absorption spectroscopy on their samples, which revealed the size of the platinum nanoparticles.

    These sensitive X-rays were able to examine the small amounts of platinum. SSRL also allowed the team to study the sorts of tumultuous reactions that take place in a catalytic converter.

    “SSRL is one of the few synchrotrons in the US where we can readily and safely do experiments like this, which involve flowing flammable, toxic gases onto our sample and interrogating its structure while it’s carrying out a chemical reaction,” Cargnello said. “The depth of experience there for such studies ensured our success, and additionally we took advantage of the strong connection between Simon Bare’s group at SSRL and my group at Stanford.”

    The X-rays showed the researchers that, unlike conventional precious metal catalysts, the caged platinum catalysts do not sinter or deactivate, even at 800 degrees Celsius in the presence of oxygen and steam, conditions akin to those in catalytic converters. While these protected nanoparticles maintained their initial size of about 3.8 nanometers, their uncaged platinum counterparts sintered into particles larger than 100 nanometers.

    “This was the first time someone’s observed stable platinum nanoparticles under such harsh conditions,” said Bare, a distinguished scientist at SLAC who helped the team study the catalysts at SSRL.

    Catalysts in catalytic converters typically experience such high temperatures for only a few seconds, but repeatedly over their lifetimes. The catalyst samples in this study were exposed to high temperatures for hours at a time. The caged platinum catalyst remained stable for 50 hours in 800 degrees Celsius, but the team’s best performing catalyst was actually a mixture of two precious metals: platinum and palladium. This combo catalyst was able to maintain nanoparticle size at 1,100 degrees Celsius for five hours, suggesting palladium further improves the stability of the encapsulated system.

    Fifteen authors contributed to this work, including researchers from DOE’s Lawrence Berkeley National Laboratory, the Karlsruhe Institute of Technology in Germany, and the Center for Interface Science and Catalysis at SUNCAT, a partnership between Stanford and SLAC tackling sustainable catalyst design.

    “This work has been a joint effort that would not have been possible without the contribution from many people,” Aitbekova said.

    The results have now led to a new DOE Basic Energy Sciences grant that the team will use to improve their catalyst system as well as understand why these materials remain stable in such harsh conditions. The data suggests that the alumina cage reduces the occurrence of processes that deactivate platinum and palladium, but a better understanding of this mechanism could help translate it to other catalysts.

    “When Aisulu was collecting the first data and sharing it with us, it was truly exciting,” Bare said. “Now we want to interpret this at a deeper level and apply it to a broader range of materials than just this one catalyst system.”

    The research was funded by the DOE Office of Science grant to the SUNCAT Center for Interface Science and Catalysis and a seed grant from the Stanford Precourt Institute for Energy. SSRL is a DOE Office of Science user facility.

    Science paper:
    Nature Materials

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The DOE’s SLAC National Accelerator Laboratory originally named Stanford Linear Accelerator Center, is a Department of Energy National Laboratory operated by Stanford University under the programmatic direction of the Department of Energy Office of Science and located in Menlo Park, California. It is the site of the Stanford Linear Accelerator, a 3.2 kilometer (2-mile) linear accelerator constructed in 1966 and shut down in the 2000s, which could accelerate electrons to energies of 50 GeV.
    Today SLAC research centers on a broad program in atomic and solid-state physics, chemistry, biology, and medicine using X-rays from synchrotron radiation and a free-electron laser as well as experimental and theoretical research in elementary particle physics, astroparticle physics, and cosmology.

    Founded in 1962 as the Stanford Linear Accelerator Center, the facility is located on 172 hectares (426 acres) of Stanford University-owned land on Sand Hill Road in Menlo Park, California—just west of the University’s main campus. The main accelerator is 3.2 kilometers (2 mi) long—the longest linear accelerator in the world—and has been operational since 1966.

    Research at SLAC has produced three Nobel Prizes in Physics

    1976: The charm quark—see J/ψ meson
    1990: Quark structure inside protons and neutrons
    1995: The tau lepton

    SLAC’s meeting facilities also provided a venue for the Homebrew Computer Club and other pioneers of the home computer revolution of the late 1970s and early 1980s.

    In 1984 the laboratory was named an ASME National Historic Engineering Landmark and an IEEE Milestone.

    SLAC developed and, in December 1991, began hosting the first World Wide Web server outside of Europe.

    In the early-to-mid 1990s, the Stanford Linear Collider (SLC) investigated the properties of the Z boson using the Stanford Large Detector [below].

    As of 2005, SLAC employed over 1,000 people, some 150 of whom were physicists with doctorate degrees, and served over 3,000 visiting researchers yearly, operating particle accelerators for high-energy physics and the Stanford Synchrotron Radiation Laboratory (SSRL) [below] for synchrotron light radiation research, which was “indispensable” in the research leading to the 2006 Nobel Prize in Chemistry awarded to Stanford Professor Roger D. Kornberg.

    In October 2008, the Department of Energy announced that the center’s name would be changed to SLAC National Accelerator Laboratory. The reasons given include a better representation of the new direction of the lab and the ability to trademark the laboratory’s name. Stanford University had legally opposed the Department of Energy’s attempt to trademark “Stanford Linear Accelerator Center”.

    In March 2009, it was announced that the SLAC National Accelerator Laboratory was to receive $68.3 million in Recovery Act Funding to be disbursed by Department of Energy’s Office of Science.

    In October 2016, Bits and Watts launched as a collaboration between SLAC and Stanford University to design “better, greener electric grids”. SLAC later pulled out over concerns about an industry partner, the state-owned Chinese electric utility.

    Accelerator

    The main accelerator was an RF linear accelerator that accelerated electrons and positrons up to 50 GeV. At 3.2 km (2.0 mi) long, the accelerator was the longest linear accelerator in the world, and was claimed to be “the world’s most straight object.” until 2017 when the European x-ray free electron laser opened. The main accelerator is buried 9 m (30 ft) below ground and passes underneath Interstate Highway 280. The above-ground klystron gallery atop the beamline, was the longest building in the United States until the LIGO project’s twin interferometers were completed in 1999. It is easily distinguishable from the air and is marked as a visual waypoint on aeronautical charts.

    A portion of the original linear accelerator is now part of the Linac Coherent Light Source [below].

    Stanford Linear Collider

    The Stanford Linear Collider was a linear accelerator that collided electrons and positrons at SLAC. The center of mass energy was about 90 GeV, equal to the mass of the Z boson, which the accelerator was designed to study. Grad student Barrett D. Milliken discovered the first Z event on 12 April 1989 while poring over the previous day’s computer data from the Mark II detector. The bulk of the data was collected by the SLAC Large Detector, which came online in 1991. Although largely overshadowed by the Large Electron–Positron Collider at CERN, which began running in 1989, the highly polarized electron beam at SLC (close to 80%) made certain unique measurements possible, such as parity violation in Z Boson-b quark coupling.


    Presently no beam enters the south and north arcs in the machine, which leads to the Final Focus, therefore this section is mothballed to run beam into the PEP2 section from the beam switchyard.

    The SLAC Large Detector (SLD) was the main detector for the Stanford Linear Collider. It was designed primarily to detect Z bosons produced by the accelerator’s electron-positron collisions. Built in 1991, the SLD operated from 1992 to 1998.

    SLAC National Accelerator Laboratory Large Detector

    PEP

    PEP (Positron-Electron Project) began operation in 1980, with center-of-mass energies up to 29 GeV. At its apex, PEP had five large particle detectors in operation, as well as a sixth smaller detector. About 300 researchers made used of PEP. PEP stopped operating in 1990, and PEP-II began construction in 1994.

    PEP-II

    From 1999 to 2008, the main purpose of the linear accelerator was to inject electrons and positrons into the PEP-II accelerator, an electron-positron collider with a pair of storage rings 2.2 km (1.4 mi) in circumference. PEP-II was host to the BaBar experiment, one of the so-called B-Factory experiments studying charge-parity symmetry.

    SLAC National Accelerator Laboratory BaBar

    SLAC National Accelerator Laboratory SSRL

    Fermi Gamma-ray Space Telescope

    SLAC plays a primary role in the mission and operation of the Fermi Gamma-ray Space Telescope, launched in August 2008. The principal scientific objectives of this mission are:

    To understand the mechanisms of particle acceleration in AGNs, pulsars, and SNRs.
    To resolve the gamma-ray sky: unidentified sources and diffuse emission.
    To determine the high-energy behavior of gamma-ray bursts and transients.
    To probe dark matter and fundamental physics.

    National Aeronautics and Space Administration Fermi Large Area Telescope

    National Aeronautics and Space Administration Fermi Gamma Ray Space Telescope.

    KIPAC


    KIPAC campus

    The Stanford PULSE Institute (PULSE) is a Stanford Independent Laboratory located in the Central Laboratory at SLAC. PULSE was created by Stanford in 2005 to help Stanford faculty and SLAC scientists develop ultrafast x-ray research at LCLS.

    The Linac Coherent Light Source (LCLS)[below] is a free electron laser facility located at SLAC. The LCLS is partially a reconstruction of the last 1/3 of the original linear accelerator at SLAC, and can deliver extremely intense x-ray radiation for research in a number of areas. It achieved first lasing in April 2009.

    The laser produces hard X-rays, 10^9 times the relative brightness of traditional synchrotron sources and is the most powerful x-ray source in the world. LCLS enables a variety of new experiments and provides enhancements for existing experimental methods. Often, x-rays are used to take “snapshots” of objects at the atomic level before obliterating samples. The laser’s wavelength, ranging from 6.2 to 0.13 nm (200 to 9500 electron volts (eV)) is similar to the width of an atom, providing extremely detailed information that was previously unattainable. Additionally, the laser is capable of capturing images with a “shutter speed” measured in femtoseconds, or million-billionths of a second, necessary because the intensity of the beam is often high enough so that the sample explodes on the femtosecond timescale.

    The LCLS-II [below] project is to provide a major upgrade to LCLS by adding two new X-ray laser beams. The new system will utilize the 500 m (1,600 ft) of existing tunnel to add a new superconducting accelerator at 4 GeV and two new sets of undulators that will increase the available energy range of LCLS. The advancement from the discoveries using these new capabilities may include new drugs, next-generation computers, and new materials.

    FACET

    In 2012, the first two-thirds (~2 km) of the original SLAC LINAC were recommissioned for a new user facility, the Facility for Advanced Accelerator Experimental Tests (FACET). This facility was capable of delivering 20 GeV, 3 nC electron (and positron) beams with short bunch lengths and small spot sizes, ideal for beam-driven plasma acceleration studies. The facility ended operations in 2016 for the constructions of LCLS-II which will occupy the first third of the SLAC LINAC. The FACET-II project will re-establish electron and positron beams in the middle third of the LINAC for the continuation of beam-driven plasma acceleration studies in 2019.

    SLAC National Accelerator Laboratory FACET

    SLAC National Accelerator Laboratory FACET-II upgrading its Facility for Advanced Accelerator Experimental Tests (FACET) – a test bed for new technologies that could revolutionize the way we build particle accelerators.

    The Next Linear Collider Test Accelerator (NLCTA) is a 60-120 MeV high-brightness electron beam linear accelerator used for experiments on advanced beam manipulation and acceleration techniques. It is located at SLAC’s end station B

    SLAC National Accelerator LaboratoryNext Linear Collider Test Accelerator (NLCTA)

    DOE’s SLAC National Accelerator Laboratory campus

    SLAC National Accelerator LaboratoryLCLS

    SLAC National Accelerator LaboratoryLCLS II projected view

    Magnets called undulators stretch roughly 100 meters down a tunnel at SLAC National Accelerator Laboratory, with one side (right) producing hard x-rays and the other soft x-rays.

    SSRL and LCLS are DOE Office of Science user facilities.

     
  • richardmitnick 9:01 am on October 24, 2022 Permalink | Reply
    Tags: "MAGIS-100"- as it is known-will be a new tool in the ongoing search for dark matter., "Multiple mirrors magnify atom interferometry", , Each atom acts like a wave and the laser light puts these atomic waves into a superposition of quantum states., For this technique to work the laser light needs to be just the right intensity., , Matter-wave Atomic Gradiometer Interferometric Sensor (MAGIS-100), , , , The DOE’s SLAC National Accelerator Laboratory   

    From “physicsworld.com” : “Multiple mirrors magnify atom interferometry” 

    From “physicsworld.com”

    10.20.22
    Isabelle Dumé

    1
    Various views of a 3D-printed object captured by a single camera. (Courtesy: Sanha Cheong/The DOE’s SLAC National Accelerator Laboratory)

    A new multiple-mirror imaging technique could greatly improve the performance of atom interferometers, making them more useful in applications ranging from dark matter detection to quality control in manufacturing. By capturing incoming light from many different angles, the new technique enables scientists to collect more light than is possible using conventional imaging set-ups, boosting the system’s sensitivity.

    The new technique, which was developed by researchers at The DOE’s SLAC National Accelerator Laboratory, is an example of light-field imaging, which captures not just the intensity of light, but also the direction in which light rays travel. The multiple mirrors redirect the different light views and overlap them onto an imaging sensor. This light field information can then be used to reconstruct a three-dimensional image of an object.

    Gravitational searches for dark matter

    One possible use for the new technique would be in the Matter-wave Atomic Gradiometer Interferometric Sensor, a 100-metre-long atom interferometer currently being installed at The DOE’s Fermi National Accelerator Laboratory.

    2
    Matter-wave Atomic Gradiometer Interferometric Sensor (MAGIS-100).

    Quantum Science and Technology [below]

    “MAGIS-100”, as it is known, will be a new tool in the ongoing search for dark matter – the mysterious substance that is thought to make up 85% of the matter in the universe but is currently only observable through its gravitational influence, which prevents large objects such as galaxies from flying apart as they rotate.

    In “MAGIS-100”, researchers will release clouds of strontium atoms in a vacuum tube and then shine laser light on the clouds to image them as they fall within the tube. Each atom acts like a wave and the laser light puts these atomic waves into a superposition of quantum states: one state in which the atom continues down its original path and another in which the light “kicks” it higher up the tube. The two waves then recombine, creating an interference pattern. The relative distance between the pairs of quantum waves is highly sensitive to perturbations and could thus reveal the hidden influence of dark matter.

    For this technique to work, however, the laser light needs to be just the right intensity. Too intense, and it will destroy the structure of the atom clouds; not intense enough, and the clouds will be too dim to be picked up by the experiment’s imaging camera (which sits outside the chamber that holds the atoms). One solution to this problem would be to use a camera with a wider aperture, but this would create a narrow depth of field in which only a small part of the image is in focus.

    Capturing more light

    In the new work, the team led by Murtaza Safdari of Stanford University overcame this problem by reflecting light traveling away from the cloud back into the camera lens. The camera can then gather not just more light, but also more views of an object from different angles, each of which shows up on the image as a distinct spot on a black background. A collection of such distinct images can be used to reconstruct a 3D model of the atom cloud.

    “Conventional imaging captures only as much light as the lens aperture can accept, and it necessarily loses directional information since it integrates light over the aperture of the lens,” Safdari tells Physics World. “Conventional spatially multiplexed light field imaging is also hampered by the limited lens aperture. Our system is able to benefit from the 3D information capturing ability of spatially multiplexed systems, while also capturing more light than the lens’ aperture would conventionally allow.”

    Safdari adds that while the system would directly benefit imaging in atom interferometer experiments like “MAGIS-100”, it could also have other applications, such as parts inspection on production lines and particle tracking. He and his colleagues are now adapting their design concept to take images of atom clouds in a magneto-optical trap at Stanford, while in the longer term they would like to develop an in-vacuum version of the system to install at “MAGIS-100”.

    The present work is detailed in the Journal of Instrumentation.
    See this science paper for detailed material with images.

    Science paper:
    Quantum Science and Technology

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    http://www.stemedcoalition.org/”>Stem Education Coalition

    physicsworld is a publication of the Institute of Physics. The Institute of Physics is a leading scientific society. We are a charitable organization with a worldwide membership of more than 50,000, working together to advance physics education, research and application.

    We engage with policymakers and the general public to develop awareness and understanding of the value of physics and, through IOP Publishing, we are world leaders in professional scientific communications.

     
  • richardmitnick 10:09 am on October 4, 2022 Permalink | Reply
    Tags: "The world's biggest digital camera is almost ready to be installed on its telescope", , , , , National Public Radio, NSF NOIRLab NOAO Vera C. Rubin Observatory [LSST] Telescope, The DOE’s SLAC National Accelerator Laboratory   

    From National Public Radio : “The world’s biggest digital camera is almost ready to be installed on its telescope” 

    From National Public Radio

    9.23.22
    Joe Palca

    Technicians are putting the final touches on the world’s largest digital camera at the DOE’s SLAC National Accelerator Laboratory. The camera will be sent to Chile and installed on a telescope in the Andes.


    _________________________________________________________________
    MARY LOUISE KELLY, HOST:

    The world’s largest digital camera is nearly complete. Scientists expect exciting discoveries once the 3.2 billion-pixel camera is paired with its telescope. NPR’s science correspondent Joe Palca recently visited the lab where the camera was built.

    JOE PALCA: The camera is being built at the Department of Energy-funded SLAC National Accelerator Laboratory in Palo Alto, Calif. This camera is huge. It weighs three tons, and it’s two stories tall. When I visited earlier this month, it was lying horizontal on a large steel platform.

    AARON ROODMAN: The lens cover is still on, so we can’t look in the business end.

    PALCA: Aaron Roodman is the camera program lead. We’re inside a high-ceiling clean room, wearing Tyvek hoods, jumpsuits and booties, and latex gloves to avoid contaminating the equipment inside the camera. Sitting on its side, the camera body looks to me a bit like a jet engine.

    ROODMAN: So you want to go up on the – should we go up on the platform to take a closer look?

    PALCA: We clamber up the half-dozen metal steps to the platform. We’re now just inches away from the camera body – so close I could touch it. Roodman says, don’t.

    ROODMAN: It’s OK if you did, but let’s try not to.

    PALCA: Oh, OK.

    ROODMAN: Yeah. Let’s not…

    PALCA: Well, you know, every kid wants to touch it.

    ROODMAN: I know. Let’s try not touching it. I think nothing would happen if you did…

    PALCA: OK.

    ROODMAN: …But just a good practice not to.

    PALCA: Roodman’s caution is understandable. If I spent $168 million for a camera, I wouldn’t want people messing with it either. And there’s nothing quite like this camera. There are custom-built lenses, filters, bespoke electronics, a giant shutter and special refrigeration to keep the equipment cool, all packed into the cylindrical camera body.

    ROODMAN: In this configuration, it is just – it just looks jam-packed, but seeing everything together like this is fantastic.

    PALCA: The Vera Rubin Observatory in Chile, where the camera is headed, is also unique.

    Its telescope is designed to see a large chunk of the sky at a time, so it needs a huge camera to capture the images. Each night, the camera is expected to generate 20 terabytes of data.

    ROODMAN: Right now, we’re scheduled to ship the camera to Chile in April.

    PALCA: This should be a time of elation for people working on this project. The camera’s nearly finished. The telescope is also nearly complete, and Roodman and his colleagues are pretty upbeat. But there’s a problem nobody thought of when the telescope was conceived – communications satellites, thousands already in orbit, many more to come. To the naked eye, they’re usually invisible. But to the telescope camera, they’re bright objects.

    ROODMAN: They’re going to be anywhere from a medium nuisance to a major nuisance. It’s not a good development for us at all.

    PALCA: You can write a computer program that will digitally eliminate the satellites. But because the Vera Rubin telescope sees such a large chunk of the sky at once and there are so many satellites, it will be hard to remove them all. Tony Tyson is chief scientist for the new observatory. He says it was designed to find what Tyson calls things that go bump in the night – objects that are not there one night, but appear a day or so later. These could be exploding stars or stellar collisions or something entirely new to science. The satellites could make this a problem. Tyson says, when the telescope sees something unusual like that, it will alert other telescopes to look at that part of the sky so whatever went bump in the night can be studied in depth.

    TONY TYSON: I think that we’re going to have a very big background of false events – of bogus alerts. That’s what worries me most.

    PALCA: Things that the software misidentifies as new, but are really just a reflection from a satellite. A false tip will send other telescopes off on a wild goose chase. Tyson says some companies, such as Starlink, have agreed to take steps to mitigate the problem, such as using less reflective material in their satellites. Other companies haven’t been as accommodating. Tyson says they won’t know for sure how big a nuisance these satellites are until they install the camera in the telescope and start looking at the sky. Joe Palca, NPR News.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Great storytelling and rigorous reporting. These are the passions that fuel us. Our business is telling stories, small and large, that start conversations, increase understanding, enrich lives and enliven minds.

    We are reporters in Washington D.C., and in bunkers, streets, alleys, jungles and deserts around the world. We are engineers, editors, inventors and visionaries. We are Member stations around the country who are deeply connected to our communities. We are listeners and donors who support public radio because we know how it has enriched our own lives and want it to grow strong in a new age.

    We are NPR. And this is our story.

     
  • richardmitnick 7:38 pm on September 15, 2022 Permalink | Reply
    Tags: "Researchers at SLAC use purified liquid xenon to search for mysterious dark matter particles", An enormous vat of pure liquid xenon will help scientists at SLAC and around the globe learn more about the universe., , , LUX-ZEPLIN (LZ) experiment at SURF, , , The DOE’s SLAC National Accelerator Laboratory   

    From The DOE’s SLAC National Accelerator Laboratory: “Researchers at SLAC use purified liquid xenon to search for mysterious dark matter particles” 

    From The DOE’s SLAC National Accelerator Laboratory

    9.15.22
    Kimberly Hickok

    An enormous vat of pure liquid xenon will help scientists at SLAC and around the globe learn more about the universe.

    1
    Xenon purification system at SLAC. The two central columns are each filled with almost half a ton of charcoal, which is used to produce ultra-clean xenon for the LBNL LUX-ZEPLIN (LZ) dark matter experiment. Credit: Jacqueline Ramseyer Orrell/SLAC National Accelerator Laboratory.

    Sitting a mile below ground in an abandoned gold mine in South Dakota is a gigantic cylinder holding 10 tons of purified liquid xenon closely watched by more than 250 scientists around the world. That tank of xenon is the heart of the LBNL LUX-ZEPLIN (LZ) experiment, an effort to detect dark matter – the mysterious invisible substance that makes up 85% of the matter in the universe.

    2
    Diagram of the former Homestake gold mine and laboratory’s spaces nearly a mile underground at SURF.

    “People have been searching for dark matter for over 30 years, and no one has had a convincing detection yet,” said Dan Akerib, professor of particle physics and astrophysics at the Department of Energy’s (DOE) SLAC National Accelerator Laboratory. But with the help of scientists, engineers, and researchers around the globe, Akerib and his colleagues have made the LZ experiment one of the most sensitive particle detectors on the planet.

    To reach that point, SLAC researchers built on their expertise in working with liquid nobles – the liquid forms of noble gases such as xenon – including advancing the technologies used to purify liquid nobles themselves and the systems for detecting rare dark matter interactions within those liquids. And, Akerib said, what researchers have learned will aid not only the search for dark matter, but also other experiments searching for rare particle physics processes.

    “These are really profound mysteries of nature, and this confluence of understanding the very large and very small at the same time is very exciting,” Akerib said. “It’s possible we could learn something completely new about nature.”

    Looking for dark matter deep underground

    A current leading candidate for dark matter is weakly interacting massive particles, or WIMPs. However, as the acronym suggests, WIMPs barely interact with ordinary matter, making them very difficult to detect, despite the fact there are theoretically many of them passing by us all the time.

    To deal with that challenge, the LZ experiment first went deep underground in the former Homestake gold mine, which is now the Sanford Underground Research Facility (SURF) in Lead, South Dakota [above]. There, the experiment is well protected from the constant bombardment of cosmic rays on Earth’s surface – a source of background noise that could make it hard to pick out hard-to-find dark matter.

    Even then, finding dark matter requires a sensitive detector. For that reason, scientists look to noble gases, which are also notoriously reluctant to react with anything. This means there are very few options for what could happen when a dark matter particle, or WIMP, interacts with the atom of a noble gas, and therefore a lower chance of scientists missing an already tough-to-find interaction.

    3
    This animation shows how krypton (red) is removed from xenon gas (blue) by flowing the combined gases through a column of charcoal (black specks). Both elements stick to the charcoal, but krypton is not as strongly attached and gets swept out first when the column is purged with helium gas. (Greg Stewart/SLAC National Accelerator Laboratory)

    But which noble? As it turns out, “xenon is a particularly good noble for detecting dark matter,” Akerib said. Dark matter interacts most strongly with nuclei, and the interaction becomes even stronger with the atomic mass of the atom, Akerib explained. For example, xenon atoms are a little more than three times as heavy as argon atoms, but they’re expected to have interactions with dark matter that are more than ten times as strong.

    Another benefit: “Once you purify other contaminants out of the liquid xenon, it’s going to be very radio quiet by itself,” Akerib said. In other words, the natural radioactive decay of xenon is unlikely to get in the way of detecting the interactions between WIMPs and xenon atoms.

    Just the xenon, please

    The trick, Akerib said, is getting pure xenon, without which all the benefits of the noble gas are moot. However, purified noble gases aren’t readily available – the fact that they don’t interact with much of anything also means they are generally pretty difficult to separate from one another. And, “unfortunately you can’t just buy a purifier off the shelf that will purify noble gases,” Akerib said.

    Akerib and his colleagues at SLAC therefore had to figure out a way to purify all of the liquid xenon they needed for the detector.

    The biggest contaminant in xenon is krypton, which is the next lightest noble gas and has a radioactive isotope, which could mask the interactions researchers are actually looking for. To prevent krypton from becoming the particle detector’s kryptonite, Akerib and his colleagues spent several years perfecting a xenon purifying technique using what’s called gas charcoal chromatography. The basic idea is to separate ingredients in a mixture based on their chemical properties as the mixture is carried through some kind of medium. Gas charcoal chromatography uses helium as the carrier gas for the mixture, and charcoal as the separation medium.

    “You can think of the helium as a steady breeze through the charcoal,” Akerib explained. “Each xenon and krypton atom spends some fraction of time stuck on the charcoal and some time unstuck. When the atoms are in an unstuck state, the helium breeze sweeps them down the column.” Noble gas atoms are less sticky the smaller they are, which means krypton is somewhat less sticky than the xenon, so it gets swept away by the non-sticky helium “breeze,” thus separating the xenon from the krypton. The researchers could then capture the krypton and throw it away and then recover the xenon, Akerib said. “We did that for something like 200 cylinders of xenon gas – it was a pretty large campaign.”

    The LZ experiment isn’t the first experiment SLAC has been involved in an attempt to search for new physics with xenon. The Enriched Xenon Observatory experiment (EXO-200), which ran from 2011 to 2018, isolated a specific xenon isotope to search for a process called neutrinoless double beta decay. Results from the experiment suggested the process is unimaginably rare, but a new proposed search dubbed Next EXO (nEXO) will continue the search using a detector similar to LZ’s.

    A different sort of electrical grid

    No matter what liquid noble fills the detector, a sophisticated detection system is crucial if scientists ever hope to find something like dark matter. Above and below the tower of liquid xenon for the LZ experiment are large, high-voltage grids that create electric fields in the detector. If a dark matter particle collides with a xenon atom and knocks a few electrons off, it will free some electrons from the atom and separately create a burst of light that can be detected by photo detectors, explained Ryan Linehan, a recent PhD graduate from SLAC’s LZ group who helped develop the high voltage grids. Electric fields running through the detector then drive the free electrons up into a thin layer of gas at the top of the cylinder where they create a second light signal. “We can use that second signal together with the original signal to learn a lot of information about position, energy, particle type, and more,” Linehan said.

    But these aren’t your average electrical grids – they’re carrying tens of thousands of volts, so high that any microscopic bits of dust or debris on the wire grid can cause spontaneous reactions that rip electrons out of the wire itself, Linehan said. “And those electrons can create signals that look just like the electrons that came from the xenon,” thus masking the signals they are trying to detect.

    The researchers came up with two main ways to minimize the chances of getting false signals from the grids, Linehan said. First, the team used a chemical process called passivation to remove iron from the surface of the grid wires, leaving a chromium-rich surface that reduces the tendency of the wire to emit electrons. Second, to remove any dust particles, the researchers thoroughly – and very carefully – sprayed the grids with deionized water immediately before installation. “Those processes together helped us get the grids to a state where we could actually get clear data,” he said.

    The LZ team published their first results online in early July, having pushed the search for dark matter farther than it’s ever gone before.

    Linehan and Akerib said they’re impressed by what LZ’s global collaboration has been able to accomplish. “Together, we’re learning something fundamental about the universe and the nature of matter,” Akerib said. “And we’re just getting started.”

    The LZ effort at SLAC is led by Akerib, together with Maria Elena Monzani, a lead scientist at SLAC and LZ deputy operations manager for computing and software, and Thomas Shutt, who was the founding spokesperson of the LZ collaboration.

    The South Dakota Science and Technology Authority, which manages SURF through a cooperative agreement with the U.S. Department of Energy, secured 80% of the xenon in LZ. Funding came from the South Dakota Governor’s office, the South Dakota Community Foundation, the South Dakota State University Foundation, and the University of South Dakota Foundation.

    LZ is supported by the U.S. Department of Energy, Office of Science and the National Energy Research Scientific Computing Center, a DOE Office of Science user facility. LZ is also supported by the U.S. National Science Foundation, the Science & Technology Facilities Council of the United Kingdom, the Portuguese Foundation for Science and Technology, and the Institute for Basic Science, Korea. Over 35 institutions of higher education and advanced research provided support to LZ. The LZ collaboration acknowledges the assistance of the Sanford Underground Research Facility.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The DOE’s SLAC National Accelerator Laboratory originally named Stanford Linear Accelerator Center, is a Department of Energy National Laboratory operated by Stanford University under the programmatic direction of the Department of Energy Office of Science and located in Menlo Park, California. It is the site of the Stanford Linear Accelerator, a 3.2 kilometer (2-mile) linear accelerator constructed in 1966 and shut down in the 2000s, which could accelerate electrons to energies of 50 GeV.
    Today SLAC research centers on a broad program in atomic and solid-state physics, chemistry, biology, and medicine using X-rays from synchrotron radiation and a free-electron laser as well as experimental and theoretical research in elementary particle physics, astroparticle physics, and cosmology.

    Founded in 1962 as the Stanford Linear Accelerator Center, the facility is located on 172 hectares (426 acres) of Stanford University-owned land on Sand Hill Road in Menlo Park, California—just west of the University’s main campus. The main accelerator is 3.2 kilometers (2 mi) long—the longest linear accelerator in the world—and has been operational since 1966.

    Research at SLAC has produced three Nobel Prizes in Physics

    1976: The charm quark—see J/ψ meson
    1990: Quark structure inside protons and neutrons
    1995: The tau lepton

    SLAC’s meeting facilities also provided a venue for the Homebrew Computer Club and other pioneers of the home computer revolution of the late 1970s and early 1980s.

    In 1984 the laboratory was named an ASME National Historic Engineering Landmark and an IEEE Milestone.

    SLAC developed and, in December 1991, began hosting the first World Wide Web server outside of Europe.

    In the early-to-mid 1990s, the Stanford Linear Collider (SLC) investigated the properties of the Z boson using the Stanford Large Detector [below].

    As of 2005, SLAC employed over 1,000 people, some 150 of whom were physicists with doctorate degrees, and served over 3,000 visiting researchers yearly, operating particle accelerators for high-energy physics and the Stanford Synchrotron Radiation Laboratory (SSRL) [below] for synchrotron light radiation research, which was “indispensable” in the research leading to the 2006 Nobel Prize in Chemistry awarded to Stanford Professor Roger D. Kornberg.

    In October 2008, the Department of Energy announced that the center’s name would be changed to SLAC National Accelerator Laboratory. The reasons given include a better representation of the new direction of the lab and the ability to trademark the laboratory’s name. Stanford University had legally opposed the Department of Energy’s attempt to trademark “Stanford Linear Accelerator Center”.

    In March 2009, it was announced that the SLAC National Accelerator Laboratory was to receive $68.3 million in Recovery Act Funding to be disbursed by Department of Energy’s Office of Science.

    In October 2016, Bits and Watts launched as a collaboration between SLAC and Stanford University to design “better, greener electric grids”. SLAC later pulled out over concerns about an industry partner, the state-owned Chinese electric utility.

    Accelerator

    The main accelerator was an RF linear accelerator that accelerated electrons and positrons up to 50 GeV. At 3.2 km (2.0 mi) long, the accelerator was the longest linear accelerator in the world, and was claimed to be “the world’s most straight object.” until 2017 when the European x-ray free electron laser opened. The main accelerator is buried 9 m (30 ft) below ground and passes underneath Interstate Highway 280. The above-ground klystron gallery atop the beamline, was the longest building in the United States until the LIGO project’s twin interferometers were completed in 1999. It is easily distinguishable from the air and is marked as a visual waypoint on aeronautical charts.

    A portion of the original linear accelerator is now part of the Linac Coherent Light Source [below].

    Stanford Linear Collider

    The Stanford Linear Collider was a linear accelerator that collided electrons and positrons at SLAC. The center of mass energy was about 90 GeV, equal to the mass of the Z boson, which the accelerator was designed to study. Grad student Barrett D. Milliken discovered the first Z event on 12 April 1989 while poring over the previous day’s computer data from the Mark II detector. The bulk of the data was collected by the SLAC Large Detector, which came online in 1991. Although largely overshadowed by the Large Electron–Positron Collider at CERN, which began running in 1989, the highly polarized electron beam at SLC (close to 80%) made certain unique measurements possible, such as parity violation in Z Boson-b quark coupling.


    Presently no beam enters the south and north arcs in the machine, which leads to the Final Focus, therefore this section is mothballed to run beam into the PEP2 section from the beam switchyard.

    The SLAC Large Detector (SLD) was the main detector for the Stanford Linear Collider. It was designed primarily to detect Z bosons produced by the accelerator’s electron-positron collisions. Built in 1991, the SLD operated from 1992 to 1998.

    SLAC National Accelerator Laboratory Large Detector

    PEP

    PEP (Positron-Electron Project) began operation in 1980, with center-of-mass energies up to 29 GeV. At its apex, PEP had five large particle detectors in operation, as well as a sixth smaller detector. About 300 researchers made used of PEP. PEP stopped operating in 1990, and PEP-II began construction in 1994.

    PEP-II

    From 1999 to 2008, the main purpose of the linear accelerator was to inject electrons and positrons into the PEP-II accelerator, an electron-positron collider with a pair of storage rings 2.2 km (1.4 mi) in circumference. PEP-II was host to the BaBar experiment, one of the so-called B-Factory experiments studying charge-parity symmetry.

    SLAC National Accelerator LaboratoryBaBar

    SLAC National Accelerator LaboratorySSRL

    Fermi Gamma-ray Space Telescope

    SLAC plays a primary role in the mission and operation of the Fermi Gamma-ray Space Telescope, launched in August 2008. The principal scientific objectives of this mission are:

    To understand the mechanisms of particle acceleration in AGNs, pulsars, and SNRs.
    To resolve the gamma-ray sky: unidentified sources and diffuse emission.
    To determine the high-energy behavior of gamma-ray bursts and transients.
    To probe dark matter and fundamental physics.

    National Aeronautics and Space AdministrationFermi Large Area Telescope

    National Aeronautics and Space AdministrationFermi Gamma Ray Space Telescope.

    KIPAC


    KIPAC campus

    The Stanford PULSE Institute (PULSE) is a Stanford Independent Laboratory located in the Central Laboratory at SLAC. PULSE was created by Stanford in 2005 to help Stanford faculty and SLAC scientists develop ultrafast x-ray research at LCLS.

    The Linac Coherent Light Source (LCLS)[below] is a free electron laser facility located at SLAC. The LCLS is partially a reconstruction of the last 1/3 of the original linear accelerator at SLAC, and can deliver extremely intense x-ray radiation for research in a number of areas. It achieved first lasing in April 2009.

    The laser produces hard X-rays, 10^9 times the relative brightness of traditional synchrotron sources and is the most powerful x-ray source in the world. LCLS enables a variety of new experiments and provides enhancements for existing experimental methods. Often, x-rays are used to take “snapshots” of objects at the atomic level before obliterating samples. The laser’s wavelength, ranging from 6.2 to 0.13 nm (200 to 9500 electron volts (eV)) is similar to the width of an atom, providing extremely detailed information that was previously unattainable. Additionally, the laser is capable of capturing images with a “shutter speed” measured in femtoseconds, or million-billionths of a second, necessary because the intensity of the beam is often high enough so that the sample explodes on the femtosecond timescale.

    The LCLS-II [below] project is to provide a major upgrade to LCLS by adding two new X-ray laser beams. The new system will utilize the 500 m (1,600 ft) of existing tunnel to add a new superconducting accelerator at 4 GeV and two new sets of undulators that will increase the available energy range of LCLS. The advancement from the discoveries using this new capabilities may include new drugs, next-generation computers, and new materials.

    FACET

    In 2012, the first two-thirds (~2 km) of the original SLAC LINAC were recommissioned for a new user facility, the Facility for Advanced Accelerator Experimental Tests (FACET). This facility was capable of delivering 20 GeV, 3 nC electron (and positron) beams with short bunch lengths and small spot sizes, ideal for beam-driven plasma acceleration studies. The facility ended operations in 2016 for the constructions of LCLS-II which will occupy the first third of the SLAC LINAC. The FACET-II project will re-establish electron and positron beams in the middle third of the LINAC for the continuation of beam-driven plasma acceleration studies in 2019.

    SLAC National Accelerator LaboratoryFACET

    SLAC National Accelerator Laboratory FACET-II upgrading its Facility for Advanced Accelerator Experimental Tests (FACET) – a test bed for new technologies that could revolutionize the way we build particle accelerators.

    The Next Linear Collider Test Accelerator (NLCTA) is a 60-120 MeV high-brightness electron beam linear accelerator used for experiments on advanced beam manipulation and acceleration techniques. It is located at SLAC’s end station B

    SLAC National Accelerator LaboratoryNext Linear Collider Test Accelerator (NLCTA)

    DOE’s SLAC National Accelerator Laboratory campus

    SLAC National Accelerator LaboratoryLCLS

    SLAC National Accelerator LaboratoryLCLS II projected view

    Magnets called undulators stretch roughly 100 meters down a tunnel at SLAC National Accelerator Laboratory, with one side (right) producing hard x-rays and the other soft x-rays.

    SSRL and LCLS are DOE Office of Science user facilities.

     
  • richardmitnick 4:26 pm on September 2, 2022 Permalink | Reply
    Tags: "‘Diamond rain’ on giant icy planets could be more common than previously thought", A new study has found that “diamond rain”-a long-hypothesized exotic type of precipitation on ice giant planets-could be more common than previously thought., Researchers at SLAC found that oxygen boosts this exotic precipitation revealing a new path to make nanodiamonds here on Earth., The DOE’s SLAC National Accelerator Laboratory   

    From The DOE’s SLAC National Accelerator Laboratory: “‘Diamond rain’ on giant icy planets could be more common than previously thought” 

    From The DOE’s SLAC National Accelerator Laboratory

    9.2.22
    Ali Sundermier

    Researchers at SLAC found that the presence oxygen boosts this exotic precipitation revealing a new path to make nanodiamonds here on Earth.

    1

    A new study has found that “diamond rain”-a long-hypothesized exotic type of precipitation on ice giant planets-could be more common than previously thought.

    In an earlier experiment, researchers mimicked the extreme temperatures and pressures found deep inside ice giants Neptune and Uranus and, for the first time, observed diamond rain as it formed [Nature Astronomy 2017].

    Investigating this process in a new material that more closely resembles the chemical makeup of Neptune and Uranus, scientists from the Department of Energy’s SLAC National Accelerator Laboratory and their colleagues discovered that the presence of oxygen makes diamond formation more likely, allowing them to form and grow at a wider range of conditions and throughout more planets.

    The new study provides a more complete picture of how diamond rain forms on other planets and, here on Earth, could lead to a new way of fabricating nanodiamonds, which have a very wide array of applications in drug delivery, medical sensors, noninvasive surgery, sustainable manufacturing, and quantum electronics.

    “The earlier paper was the first time that we directly saw diamond formation from any mixtures,” said Siegfried Glenzer, director of the High Energy Density Division at SLAC. “Since then, there have been quite a lot of experiments with different pure materials. But inside planets, it’s much more complicated; there are a lot more chemicals in the mix. And so, what we wanted to figure out here was what sort of effect these additional chemicals have.”

    The team, led by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and the University of Rostock in Germany, as well as France’s École Polytechnique in collaboration with SLAC, published the results today in Science Advances [below].

    Starting with plastic

    In the previous experiment, the researchers studied a plastic material made from a mixture of hydrogen and carbon, key components of the overall chemical composition of Neptune and Uranus. But in addition to carbon and hydrogen, ice giants contain other elements, such as large amounts of oxygen.

    In the more recent experiment, the researchers used PET plastic – often used in food packaging, plastic bottles, and containers – to reproduce the composition of these planets more accurately.

    “PET has a good balance between carbon, hydrogen and oxygen to simulate the activity in ice planets,” said Dominik Kraus, a physicist at HZDR and professor at the University of Rostock.

    The researchers used a high-powered optical laser at the Matter in Extreme Conditions (MEC) instrument at SLAC’s Linac Coherent Light Source (LCLS)[below] to create shock waves in the PET. Then, they probed what happened in the plastic with X-ray pulses from LCLS.

    Science paper:
    Nature Astronomy 2017
    Science Advances 2022

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The DOE’s SLAC National Accelerator Laboratory originally named Stanford Linear Accelerator Center, is a Department of Energy National Laboratory operated by Stanford University under the programmatic direction of the Department of Energy Office of Science and located in Menlo Park, California. It is the site of the Stanford Linear Accelerator, a 3.2 kilometer (2-mile) linear accelerator constructed in 1966 and shut down in the 2000s, which could accelerate electrons to energies of 50 GeV.
    Today SLAC research centers on a broad program in atomic and solid-state physics, chemistry, biology, and medicine using X-rays from synchrotron radiation and a free-electron laser as well as experimental and theoretical research in elementary particle physics, astroparticle physics, and cosmology.

    Founded in 1962 as the Stanford Linear Accelerator Center, the facility is located on 172 hectares (426 acres) of Stanford University-owned land on Sand Hill Road in Menlo Park, California—just west of the University’s main campus. The main accelerator is 3.2 kilometers (2 mi) long—the longest linear accelerator in the world—and has been operational since 1966.

    Research at SLAC has produced three Nobel Prizes in Physics

    1976: The charm quark—see J/ψ meson
    1990: Quark structure inside protons and neutrons
    1995: The tau lepton

    SLAC’s meeting facilities also provided a venue for the Homebrew Computer Club and other pioneers of the home computer revolution of the late 1970s and early 1980s.

    In 1984 the laboratory was named an ASME National Historic Engineering Landmark and an IEEE Milestone.

    SLAC developed and, in December 1991, began hosting the first World Wide Web server outside of Europe.

    In the early-to-mid 1990s, the Stanford Linear Collider (SLC) investigated the properties of the Z boson using the Stanford Large Detector [below].

    As of 2005, SLAC employed over 1,000 people, some 150 of whom were physicists with doctorate degrees, and served over 3,000 visiting researchers yearly, operating particle accelerators for high-energy physics and the Stanford Synchrotron Radiation Laboratory (SSRL) [below] for synchrotron light radiation research, which was “indispensable” in the research leading to the 2006 Nobel Prize in Chemistry awarded to Stanford Professor Roger D. Kornberg.

    In October 2008, the Department of Energy announced that the center’s name would be changed to SLAC National Accelerator Laboratory. The reasons given include a better representation of the new direction of the lab and the ability to trademark the laboratory’s name. Stanford University had legally opposed the Department of Energy’s attempt to trademark “Stanford Linear Accelerator Center”.

    In March 2009, it was announced that the SLAC National Accelerator Laboratory was to receive $68.3 million in Recovery Act Funding to be disbursed by Department of Energy’s Office of Science.

    In October 2016, Bits and Watts launched as a collaboration between SLAC and Stanford University to design “better, greener electric grids”. SLAC later pulled out over concerns about an industry partner, the state-owned Chinese electric utility.

    Accelerator

    The main accelerator was an RF linear accelerator that accelerated electrons and positrons up to 50 GeV. At 3.2 km (2.0 mi) long, the accelerator was the longest linear accelerator in the world, and was claimed to be “the world’s most straight object.” until 2017 when the European x-ray free electron laser opened. The main accelerator is buried 9 m (30 ft) below ground and passes underneath Interstate Highway 280. The above-ground klystron gallery atop the beamline, was the longest building in the United States until the LIGO project’s twin interferometers were completed in 1999. It is easily distinguishable from the air and is marked as a visual waypoint on aeronautical charts.

    A portion of the original linear accelerator is now part of the Linac Coherent Light Source [below].

    Stanford Linear Collider

    The Stanford Linear Collider was a linear accelerator that collided electrons and positrons at SLAC. The center of mass energy was about 90 GeV, equal to the mass of the Z boson, which the accelerator was designed to study. Grad student Barrett D. Milliken discovered the first Z event on 12 April 1989 while poring over the previous day’s computer data from the Mark II detector. The bulk of the data was collected by the SLAC Large Detector, which came online in 1991. Although largely overshadowed by the Large Electron–Positron Collider at CERN, which began running in 1989, the highly polarized electron beam at SLC (close to 80%) made certain unique measurements possible, such as parity violation in Z Boson-b quark coupling.


    Presently no beam enters the south and north arcs in the machine, which leads to the Final Focus, therefore this section is mothballed to run beam into the PEP2 section from the beam switchyard.

    The SLAC Large Detector (SLD) was the main detector for the Stanford Linear Collider. It was designed primarily to detect Z bosons produced by the accelerator’s electron-positron collisions. Built in 1991, the SLD operated from 1992 to 1998.

    SLAC National Accelerator Laboratory Large Detector

    PEP

    PEP (Positron-Electron Project) began operation in 1980, with center-of-mass energies up to 29 GeV. At its apex, PEP had five large particle detectors in operation, as well as a sixth smaller detector. About 300 researchers made used of PEP. PEP stopped operating in 1990, and PEP-II began construction in 1994.

    PEP-II

    From 1999 to 2008, the main purpose of the linear accelerator was to inject electrons and positrons into the PEP-II accelerator, an electron-positron collider with a pair of storage rings 2.2 km (1.4 mi) in circumference. PEP-II was host to the BaBar experiment, one of the so-called B-Factory experiments studying charge-parity symmetry.

    SLAC National Accelerator Laboratory BaBar

    SLAC National Accelerator Laboratory SSRL

    Fermi Gamma-ray Space Telescope

    SLAC plays a primary role in the mission and operation of the Fermi Gamma-ray Space Telescope, launched in August 2008. The principal scientific objectives of this mission are:

    To understand the mechanisms of particle acceleration in AGNs, pulsars, and SNRs.
    To resolve the gamma-ray sky: unidentified sources and diffuse emission.
    To determine the high-energy behavior of gamma-ray bursts and transients.
    To probe dark matter and fundamental physics.

    National Aeronautics and Space Administration Fermi Large Area Telescope

    National Aeronautics and Space Administration Fermi Gamma Ray Space Telescope.

    KIPAC


    KIPAC campus

    The Stanford PULSE Institute (PULSE) is a Stanford Independent Laboratory located in the Central Laboratory at SLAC. PULSE was created by Stanford in 2005 to help Stanford faculty and SLAC scientists develop ultrafast x-ray research at LCLS.

    The Linac Coherent Light Source (LCLS)[below] is a free electron laser facility located at SLAC. The LCLS is partially a reconstruction of the last 1/3 of the original linear accelerator at SLAC, and can deliver extremely intense x-ray radiation for research in a number of areas. It achieved first lasing in April 2009.

    The laser produces hard X-rays, 10^9 times the relative brightness of traditional synchrotron sources and is the most powerful x-ray source in the world. LCLS enables a variety of new experiments and provides enhancements for existing experimental methods. Often, x-rays are used to take “snapshots” of objects at the atomic level before obliterating samples. The laser’s wavelength, ranging from 6.2 to 0.13 nm (200 to 9500 electron volts (eV)) is similar to the width of an atom, providing extremely detailed information that was previously unattainable. Additionally, the laser is capable of capturing images with a “shutter speed” measured in femtoseconds, or million-billionths of a second, necessary because the intensity of the beam is often high enough so that the sample explodes on the femtosecond timescale.

    The LCLS-II [below] project is to provide a major upgrade to LCLS by adding two new X-ray laser beams. The new system will utilize the 500 m (1,600 ft) of existing tunnel to add a new superconducting accelerator at 4 GeV and two new sets of undulators that will increase the available energy range of LCLS. The advancement from the discoveries using these new capabilities may include new drugs, next-generation computers, and new materials.

    FACET

    In 2012, the first two-thirds (~2 km) of the original SLAC LINAC were recommissioned for a new user facility, the Facility for Advanced Accelerator Experimental Tests (FACET). This facility was capable of delivering 20 GeV, 3 nC electron (and positron) beams with short bunch lengths and small spot sizes, ideal for beam-driven plasma acceleration studies. The facility ended operations in 2016 for the constructions of LCLS-II which will occupy the first third of the SLAC LINAC. The FACET-II project will re-establish electron and positron beams in the middle third of the LINAC for the continuation of beam-driven plasma acceleration studies in 2019.

    SLAC National Accelerator Laboratory FACET

    SLAC National Accelerator Laboratory FACET-II upgrading its Facility for Advanced Accelerator Experimental Tests (FACET) – a test bed for new technologies that could revolutionize the way we build particle accelerators.

    The Next Linear Collider Test Accelerator (NLCTA) is a 60-120 MeV high-brightness electron beam linear accelerator used for experiments on advanced beam manipulation and acceleration techniques. It is located at SLAC’s end station B

    SLAC National Accelerator LaboratoryNext Linear Collider Test Accelerator (NLCTA)

    DOE’s SLAC National Accelerator Laboratory campus

    SLAC National Accelerator LaboratoryLCLS

    SLAC National Accelerator LaboratoryLCLS II projected view

    Magnets called undulators stretch roughly 100 meters down a tunnel at SLAC National Accelerator Laboratory, with one side (right) producing hard x-rays and the other soft x-rays.

    SSRL and LCLS are DOE Office of Science user facilities.

     
  • richardmitnick 10:15 pm on August 31, 2022 Permalink | Reply
    Tags: "Helium’s chilling journey to cool a particle accelerator", At 2 kelvins helium becomes superfluid meaning it flows without viscosity making it the perfect refrigerant for cooling down a superconducting accelerator., LCLS and LCLS-II, LCLS uses copper parts at room temperature to accelerate electrons., LCLS-II must be cooled to 2 kelvins-just 4 degrees Fahrenheit above absolute zero-to become superconducting., LCLS-II will work concurrently with LCLS., Purifiers must trap any moisture or unwanted gases such as nitrogen to achieve 99.999% pure helium., SLAC worked with The DOE's Fermi National Accelerator Laboratory and Jefferson National Accelerator Facility and Oak Ridge National Laboratory and Brookhaven National Laboratory and CERN as well., The Cryogenic team actually built two cryoplants which share a building but LCLS-II only uses one. The second cryoplant will support planned upgrades to LCLS-II., The cryoplant requires a total of four metric tons of helium., The DOE’s SLAC National Accelerator Laboratory, The LCLS-II upgrade employs superconducting cryomodules to generate more powerful X-ray pulses to expand experimental possibilities across fields., Today it only takes one and a half hours to make a superconducting particle accelerator at the Department of Energy’s SLAC National Accelerator Laboratory colder than outer space.   

    From The DOE’s SLAC National Accelerator Laboratory: “Helium’s chilling journey to cool a particle accelerator” 

    From The DOE’s SLAC National Accelerator Laboratory

    8.31.22
    Chris Patrick

    1
    En route to record-breaking X-rays, SLAC’s Cryogenic team built a helium-refrigeration plant that lowers the LCLS-II accelerator to superconducting temperatures. https://www.miragenews.com


    LCLS-II’s Eric Fauve explains how the team cools the accelerator to 2 kelvins. (Max Granoski & Olivier Bonin/SLAC National Accelerator Laboratory)

    Today it only takes one and a half hours to make a superconducting particle accelerator at the Department of Energy’s SLAC National Accelerator Laboratory colder than outer space.

    “Now you click a button and the machine gets from 4.5 kelvins down to 2 kelvins,” said Eric Fauve, director of the Cryogenic team at SLAC.

    While the process is fully automated now, getting this accelerator, called LCLS-II [depiction below], to 2 kelvins, or minus 456 degrees Fahrenheit, took six years of designing, building, installing, and starting up an intricate system.

    The original LCLS [below], or Linac Coherent Light Source, accelerates electrons to ultimately produce X-rays used in atom- and molecule-probing experiments. LCLS-II will work concurrently with LCLS. However, unlike LCLS, which uses copper parts at room temperature to accelerate electrons, the LCLS-II upgrade employs superconducting cryomodules. These cryomodules impart electrons with energy more efficiently, which will help generate more powerful X-ray pulses to expand experimental possibilities across fields.

    But, whereas LCLS can operate at room temperature, LCLS-II must be cooled to 2 kelvins-just 4 degrees Fahrenheit above absolute zero-to become superconducting.

    And that meant SLAC needed a team to focus on cold stuff.

    Assembling a team to assemble a cryoplant

    Before the LCLS-II cool down, there was no group devoted to cryogenics at SLAC.

    “Our biggest challenge was that this was the first time we were doing this with a new team,” Fauve said.

    The LCLS-II Cryogenic team, now consisting of 20 operators and engineers, formed in 2016 at SLAC to construct the facility that cools the accelerator: a cryogenic plant.

    “This is a complicated system with many subsystems that work in tandem,” said Viswanath Ravindranath, lead cryogenic process engineer for LCLS-II.

    SLAC worked closely with engineers from The DOE’s Fermi National Accelerator Laboratory and The DOE’s Jefferson National Accelerator Facility as well as leading cryogenic companies to design and procure materials for the cryoplant.

    2
    A schematic of the LCLS-II cryoplant. (Greg Stewart/SLAC National Accelerator Laboratory)

    “This collaboration allowed the LCLS-II project to benefit from the best cryogenic resources within the DOE Laboratories and elsewhere,” Fauve said.

    The cryoplant is filled with helium, which is cooled and then pumped to LCLS-II. While every other element freezes below 4 kelvins, helium can remain a fluid, and at 2 kelvins helium becomes superfluid meaning it flows without viscosity. That fact, and superfluid helium’s ability to conduct heat better than any other known substance, make it the perfect refrigerant for cooling down a superconducting accelerator.

    Before the cooling begins, trailers piled with hotdog-shaped tanks deliver gaseous helium at ambient temperature (about 300 kelvins) to the cryoplant’s outdoor storage tanks. The cryoplant requires a total of four metric tons of helium.

    But this helium arrives impure. Any impurities will eventually freeze and clog the system, so first purifiers must trap any moisture or unwanted gases, such as nitrogen, to achieve 99.999% helium.

    After purification, compressors raise the helium’s pressure. The pressure and temperature of a gas are coupled: as pressure decreases, temperature also decreases. So, while helpful later, this incidentally raises helium’s temperature to 370 kelvins.

    Following compression, five large towers containing cooling water are used to lower helium’s temperature back down to 300 kelvins. The gas then enters the cryoplant’s 4K cold box, which is a giant, uber-complicated helium refrigerator.

    In the cold box, liquid nitrogen running 77 kelvins knocks the helium down from 300 kelvins to 80 kelvins in a heat exchanger. In this device, the warm helium gas and colder liquid nitrogen travel in opposite directions while separated by a thin metal plate, transferring heat through the plate from the helium to the nitrogen. The plant uses 20 metric tons of liquid nitrogen every other day.

    The helium then runs through a set of four turboexpanders. Now the initial gas-compressing step pays off: the turboexpanders expand the high-pressure gas, lowering its pressure enough to bring the helium all the way to 5.5 kelvins.

    However, the helium has more expanding to do before it can leave the cold box. It travels through a valve that has lower pressure on the other side. This lower pressure causes the gas to expand, lowering its pressure and bringing its temperature down to 4.5 kelvins (hence the name of the 4K cold box), where it becomes a liquid.

    This liquid helium is then sent through pipes to the accelerator’s cryomodules, where it cools the machine to 4.5 kelvins.

    Once the 4K cold box was up and running, it took the Cryogenic team one week to cool LCLS-II from room temperature to 4.5 kelvins, which it reached for the first time on March 28, 2022. But that’s not cold enough!

    Colder still

    3
    A cross section of the LCLS-II accelerator showing where liquid and gaseous helium flow in and out of the system. (Greg Stewart/SLAC National Accelerator Laboratory)

    To reach 2 kelvins, the 4.5 kelvins helium undergoes yet another (final) expansion through a valve in the accelerator’s cryomodules. Again, the lower pressure on the other side of the valve causes helium’s pressure to drop. This cools helium to the goal temperature of 2 kelvins.

    Creating the low pressure inside the cryomodule is a feat in itself.

    “The magic happens when it goes through that valve, but only because we have a train of cold compressors that maintains the pressure in the cryomodule at very low pressure,” Fauve said. This set of five compressors stationed after the valve create the pivotal pressure difference on either side of the valve.

    After months of turning on and configuring this cooling system, LCLS-II finally reached 2 kelvins on April 15.

    “Everything was possible because of all the hard work over the years from so many smart and dedicated people,” said Swapnil Shrishrimal, cryogenic process and controls engineer for LCLS-II. “Being a small team, as well as a young team, we are very proud of the system we commissioned.”

    When the electron beam is on and being accelerated by the cryomodules, the 2 kelvins helium will absorb heat from the accelerator, boil, and turn back into gas. That gas is injected back into the 4K cold box to help cool warmer helium.

    “We don’t want to waste the cooling capacity, so we try to recover as much of it as possible,” Ravindranath said. The system recycles the helium, which is expensive, although essential for long-term operation.

    The Cryogenic team actually built two cryoplants which share a building but LCLS-II only uses one. The second cryoplant will support planned upgrades to LCLS-II. When both cryoplants are on they will use approximately 10 megawatts of electrical power.

    Only four other cryoplants in the United States cool this much helium to 2 kelvins. Thomas Jefferson National Accelerator Facility and Fermi National Accelerator Laboratory, which both house cryoplants of similar magnitude, supported SLAC’s design and procurement of equipment. SLAC collaborated with The DOE’s Oak Ridge National Laboratory The DOE’s Brookhaven National Laboratory and CERN as well.

    “The years of expertise and support of our partner labs allowed us to do this,” Shrishrimal said.
    Fauve also credits the team’s success to their extensive planning and dedication. The entire Cryogenic team stayed on site during the pandemic to continue bringing the plant to life.

    “Even when SLAC was shut down, if you were at the cryoplant you would not be able to tell the difference before and during COVID,” Fauve said, except for the masks and social distancing, of course.

    LCLS-II is expected to produce its first X-rays early next year. The Cryogenic team feels confident they will continue to run their very complicated refrigerator with ease.

    “It’s a pretty nice and easy operation now because everything is automated,” Shrishrimal said.

    The project is supported by DOE’s Office of Science. LCLS is a DOE Office of Science user facility.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The DOE’s SLAC National Accelerator Laboratory originally named Stanford Linear Accelerator Center, is a Department of Energy National Laboratory operated by Stanford University under the programmatic direction of the Department of Energy Office of Science and located in Menlo Park, California. It is the site of the Stanford Linear Accelerator, a 3.2 kilometer (2-mile) linear accelerator constructed in 1966 and shut down in the 2000s, which could accelerate electrons to energies of 50 GeV.
    Today SLAC research centers on a broad program in atomic and solid-state physics, chemistry, biology, and medicine using X-rays from synchrotron radiation and a free-electron laser as well as experimental and theoretical research in elementary particle physics, astroparticle physics, and cosmology.

    Founded in 1962 as the Stanford Linear Accelerator Center, the facility is located on 172 hectares (426 acres) of Stanford University-owned land on Sand Hill Road in Menlo Park, California—just west of the University’s main campus. The main accelerator is 3.2 kilometers (2 mi) long—the longest linear accelerator in the world—and has been operational since 1966.

    Research at SLAC has produced three Nobel Prizes in Physics

    1976: The charm quark—see J/ψ meson
    1990: Quark structure inside protons and neutrons
    1995: The tau lepton

    SLAC’s meeting facilities also provided a venue for the Homebrew Computer Club and other pioneers of the home computer revolution of the late 1970s and early 1980s.

    In 1984 the laboratory was named an ASME National Historic Engineering Landmark and an IEEE Milestone.

    SLAC developed and, in December 1991, began hosting the first World Wide Web server outside of Europe.

    In the early-to-mid 1990s, the Stanford Linear Collider (SLC) investigated the properties of the Z boson using the Stanford Large Detector [below].

    As of 2005, SLAC employed over 1,000 people, some 150 of whom were physicists with doctorate degrees, and served over 3,000 visiting researchers yearly, operating particle accelerators for high-energy physics and the Stanford Synchrotron Radiation Laboratory (SSRL) [below] for synchrotron light radiation research, which was “indispensable” in the research leading to the 2006 Nobel Prize in Chemistry awarded to Stanford Professor Roger D. Kornberg.

    In October 2008, the Department of Energy announced that the center’s name would be changed to SLAC National Accelerator Laboratory. The reasons given include a better representation of the new direction of the lab and the ability to trademark the laboratory’s name. Stanford University had legally opposed the Department of Energy’s attempt to trademark “Stanford Linear Accelerator Center”.

    In March 2009, it was announced that the SLAC National Accelerator Laboratory was to receive $68.3 million in Recovery Act Funding to be disbursed by Department of Energy’s Office of Science.

    In October 2016, Bits and Watts launched as a collaboration between SLAC and Stanford University to design “better, greener electric grids”. SLAC later pulled out over concerns about an industry partner, the state-owned Chinese electric utility.

    Accelerator

    The main accelerator was an RF linear accelerator that accelerated electrons and positrons up to 50 GeV. At 3.2 km (2.0 mi) long, the accelerator was the longest linear accelerator in the world, and was claimed to be “the world’s most straight object.” until 2017 when the European x-ray free electron laser opened. The main accelerator is buried 9 m (30 ft) below ground and passes underneath Interstate Highway 280. The above-ground klystron gallery atop the beamline, was the longest building in the United States until the LIGO project’s twin interferometers were completed in 1999. It is easily distinguishable from the air and is marked as a visual waypoint on aeronautical charts.

    A portion of the original linear accelerator is now part of the Linac Coherent Light Source [below].

    Stanford Linear Collider

    The Stanford Linear Collider was a linear accelerator that collided electrons and positrons at SLAC. The center of mass energy was about 90 GeV, equal to the mass of the Z boson, which the accelerator was designed to study. Grad student Barrett D. Milliken discovered the first Z event on 12 April 1989 while poring over the previous day’s computer data from the Mark II detector. The bulk of the data was collected by the SLAC Large Detector, which came online in 1991. Although largely overshadowed by the Large Electron–Positron Collider at CERN, which began running in 1989, the highly polarized electron beam at SLC (close to 80%) made certain unique measurements possible, such as parity violation in Z Boson-b quark coupling.


    Presently no beam enters the south and north arcs in the machine, which leads to the Final Focus, therefore this section is mothballed to run beam into the PEP2 section from the beam switchyard.

    The SLAC Large Detector (SLD) was the main detector for the Stanford Linear Collider. It was designed primarily to detect Z bosons produced by the accelerator’s electron-positron collisions. Built in 1991, the SLD operated from 1992 to 1998.

    SLAC National Accelerator Laboratory Large Detector

    PEP

    PEP (Positron-Electron Project) began operation in 1980, with center-of-mass energies up to 29 GeV. At its apex, PEP had five large particle detectors in operation, as well as a sixth smaller detector. About 300 researchers made used of PEP. PEP stopped operating in 1990, and PEP-II began construction in 1994.

    PEP-II

    From 1999 to 2008, the main purpose of the linear accelerator was to inject electrons and positrons into the PEP-II accelerator, an electron-positron collider with a pair of storage rings 2.2 km (1.4 mi) in circumference. PEP-II was host to the BaBar experiment, one of the so-called B-Factory experiments studying charge-parity symmetry.

    SLAC National Accelerator Laboratory BaBar

    SLAC National Accelerator Laboratory SSRL

    Fermi Gamma-ray Space Telescope

    SLAC plays a primary role in the mission and operation of the Fermi Gamma-ray Space Telescope, launched in August 2008. The principal scientific objectives of this mission are:

    To understand the mechanisms of particle acceleration in AGNs, pulsars, and SNRs.
    To resolve the gamma-ray sky: unidentified sources and diffuse emission.
    To determine the high-energy behavior of gamma-ray bursts and transients.
    To probe dark matter and fundamental physics.

    National Aeronautics and Space Administration Fermi Large Area Telescope

    National Aeronautics and Space Administration Fermi Gamma Ray Space Telescope.

    KIPAC


    KIPAC campus

    The Stanford PULSE Institute (PULSE) is a Stanford Independent Laboratory located in the Central Laboratory at SLAC. PULSE was created by Stanford in 2005 to help Stanford faculty and SLAC scientists develop ultrafast x-ray research at LCLS.

    The Linac Coherent Light Source (LCLS)[below] is a free electron laser facility located at SLAC. The LCLS is partially a reconstruction of the last 1/3 of the original linear accelerator at SLAC, and can deliver extremely intense x-ray radiation for research in a number of areas. It achieved first lasing in April 2009.

    The laser produces hard X-rays, 10^9 times the relative brightness of traditional synchrotron sources and is the most powerful x-ray source in the world. LCLS enables a variety of new experiments and provides enhancements for existing experimental methods. Often, x-rays are used to take “snapshots” of objects at the atomic level before obliterating samples. The laser’s wavelength, ranging from 6.2 to 0.13 nm (200 to 9500 electron volts (eV)) is similar to the width of an atom, providing extremely detailed information that was previously unattainable. Additionally, the laser is capable of capturing images with a “shutter speed” measured in femtoseconds, or million-billionths of a second, necessary because the intensity of the beam is often high enough so that the sample explodes on the femtosecond timescale.

    The LCLS-II [below] project is to provide a major upgrade to LCLS by adding two new X-ray laser beams. The new system will utilize the 500 m (1,600 ft) of existing tunnel to add a new superconducting accelerator at 4 GeV and two new sets of undulators that will increase the available energy range of LCLS. The advancement from the discoveries using these new capabilities may include new drugs, next-generation computers, and new materials.

    FACET

    In 2012, the first two-thirds (~2 km) of the original SLAC LINAC were recommissioned for a new user facility, the Facility for Advanced Accelerator Experimental Tests (FACET). This facility was capable of delivering 20 GeV, 3 nC electron (and positron) beams with short bunch lengths and small spot sizes, ideal for beam-driven plasma acceleration studies. The facility ended operations in 2016 for the constructions of LCLS-II which will occupy the first third of the SLAC LINAC. The FACET-II project will re-establish electron and positron beams in the middle third of the LINAC for the continuation of beam-driven plasma acceleration studies in 2019.

    SLAC National Accelerator Laboratory FACET

    SLAC National Accelerator Laboratory FACET-II upgrading its Facility for Advanced Accelerator Experimental Tests (FACET) – a test bed for new technologies that could revolutionize the way we build particle accelerators.

    The Next Linear Collider Test Accelerator (NLCTA) is a 60-120 MeV high-brightness electron beam linear accelerator used for experiments on advanced beam manipulation and acceleration techniques. It is located at SLAC’s end station B

    SLAC National Accelerator LaboratoryNext Linear Collider Test Accelerator (NLCTA)

    DOE’s SLAC National Accelerator Laboratory campus

    SLAC National Accelerator LaboratoryLCLS

    SLAC National Accelerator LaboratoryLCLS II projected view

    Magnets called undulators stretch roughly 100 meters down a tunnel at SLAC National Accelerator Laboratory, with one side (right) producing hard x-rays and the other soft x-rays.

    SSRL and LCLS are DOE Office of Science user facilities.

     
  • richardmitnick 4:20 pm on August 20, 2022 Permalink | Reply
    Tags: "How do you take a better image of atom clouds? Mirrors – lots of mirrors", MAGIS-100 experiment, , , The DOE’s SLAC National Accelerator Laboratory, The search for certain kinds of wavelike dark matter.   

    From The DOE’s SLAC National Accelerator Laboratory And Stanford University With The DOE’s Fermi National Accelerator Laboratory : “How do you take a better image of atom clouds? Mirrors – lots of mirrors” 

    From The DOE’s SLAC National Accelerator Laboratory

    And

    Stanford University Name

    Stanford University

    With

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    The DOE’s Fermi National Accelerator Laboratory , an enduring source of strength for the US contribution to scientific research worldwide.

    8.19.22
    Nathan Collins

    1

    To capture as much information as possible about clouds of atoms at the heart of the MAGIS-100 experiment, SLAC scientists devised a dome of mirrors that gathers more light from more angles.

    When it goes online, the MAGIS-100 experiment at the Department of Energy’s Fermi National Accelerator Laboratory and its successors will explore the nature of gravitational waves and search for certain kinds of wavelike dark matter.

    ______________________________________________________
    Atoms in free fall

    The Matter-wave Atomic Gradiometer Interferometric Sensor, also known as MAGIS-100, is a quantum sensor under construction at The DOE’s Fermi National Accelerator Laboratory that aims to explore fundamental physics with a 100-meter-long atom interferometer. This novel detector will search for ultralight dark matter, test quantum mechanics in new regimes and pave the way for future gravitational wave detectors.

    The detector will be housed in a 100-meter-deep shaft at Fermilab that was constructed for a neutrino experiment many years ago. To explore aspects of quantum physics, scientists will drop groups of atoms down a vacuum tube, followed by beams of laser light.

    2

    MAGIS-100 combines established techniques from state-of-the-art 10-meter-scale atom interferometers with the latest technological advances of the world’s best atomic clocks. In addition to enabling new quantum experiments, MAGIS-100 will provide a development platform for a future kilometer-scale detector that would be sensitive enough to detect gravitational waves from known sources.
    ______________________________________________________

    But first, researchers need to figure out something pretty basic: how to get good photographs of the clouds of atoms at the heart of their experiment.

    Researchers at the Department of Energy’s SLAC National Accelerator Laboratory realized that task would be perhaps the ultimate exercise in ultra-low light photography.

    But a SLAC team that included Stanford graduate students Sanha Cheong and Murtaza Safdari, SLAC Professor Ariel Schwartzman, and SLAC scientists Michael Kagan, Sean Gasiorowski, Maxime Vandegar, and Joseph Frish found a simple way to do it: mirrors. By arranging mirrors in a dome-like configuration around an object, they can reflect more light towards the camera and image multiple sides of an object simultaneously.

    And, the team reports in the Journal of Instrumentation [below], there’s an additional benefit. Because the camera now gathers views of an object taken from many different angles, the system is an example of “light-field imaging”, which captures not just the intensity of light but also which direction light rays travel. As a result, the mirror system can help researchers build a three-dimensional model of an object, such as an atom cloud.

    3
    Computer-aided design drawings of the prototype mirror assembly. The system redirects light from many different angles toward a single camera, an example of light-field imaging that allows researchers to reconstruct three-dimensional models of the objects they photograph. (Courtesy Sanha Cheong/Stanford University)

    “We’re advancing the imaging in experiments like MAGIS-100 to the newest imaging paradigm with this system,” Safdari said.

    An unusual photographic challenge

    The 100-meter-long Matter-wave Atomic Gradiometer Interferometric Sensor, or MAGIS-100, is a new kind of experiment being installed in a vertical shaft at DOE’s Fermi National Accelerator Laboratory. Known as an atom interferometer, it will exploit quantum phenomena to detect passing waves of ultralight dark matter and free-falling strontium atoms.

    Experimenters will release clouds of strontium atoms in a vacuum tube that runs the length of the shaft, and then shine laser light on the free-falling clouds. Each strontium atom acts like a wave, and the laser light sends each of these atomic waves into a superposition of quantum states, one of which continues on its original path while the other one is kicked much higher up.

    When re-combined, the waves create an interference pattern in strontium atom wave, similar to the complex pattern of ripples that emerges after skipping a rock on a pond. This interference pattern is sensitive to anything that changes the relative distance between the pairs of quantum waves or the internal properties of the atoms, which might be influenced by the presence of dark matter.

    To see the interference patterns, researchers will literally take pictures of a cloud of strontium atoms, which comes with a number of challenges. The strontium clouds themselves are small, only about a millimeter ­across, and the details that researchers need to see are about a tenth of a millimeter across. The camera itself must sit outside a chamber and peer through a window across a relatively long distance to see the strontium clouds within.

    But the real problem is light. To illuminate the strontium clouds, experimenters will shine lasers on the clouds. However, if the laser light is too intense, it can destroy the details scientists want to see. If it’s not intense enough, light from the clouds will be too dim for the cameras to see.

    “You’re only going to collect as much light as falls on the lens,” said Safdari, “which is not a lot.”

    Mirrors to the rescue

    One idea is to use a wide aperture, or opening, to let more light into the camera, but there’s a tradeoff: A wide aperture creates what photographers call a narrow depth of field, where only a narrow slice of the picture is in focus.

    4
    SLAC researchers tested the completed prototype in the lab using a tiny 3-D printed object, just visible in the image above at the intersection of two tiny wires. (Courtesy Sanha Cheong/Stanford University)

    Another possibility would be to position more cameras around a cloud of strontium atoms. This could gather more of the reemitted light, but it would require more windows or, alternatively, fitting the cameras inside the chamber, and there isn’t much space in there for a bunch of cameras.

    The solution popped up, Schwartzman said, during a brainstorming session in the lab. As they were bouncing ideas around, staff scientist Joe Frisch came up with the idea of mirrors.

    “What you can do is reflect the light traveling away from the cloud back into the camera lens,” said Cheong. As a result, a camera can gather not just much more light but also more views of an object from different angles, each of which shows up on the raw photograph as a distinct spot on a black background. That collection of distinct images, the team realized, meant they had devised a form of so-called ‘light-field imaging’ and might be able to reconstruct a three-dimensional model of the atom cloud, not just a two-dimensional image.

    3D printing an idea

    With support from a Laboratory Directed Research and Development grant, Cheong and Safdari took the mirror idea and ran with it, designing an array of tiny mirrors that could redirect light from all around an atom cloud back toward a camera. Using some algebra and ray-tracing software developed by Kagan and Vandegar, the team calculated just the right positions and angles that would allow the mirror to keep many different images of the cloud in focus on the camera. The team also developed computer vision and artificial intelligence algorithms to use the 2D images to perform 3D reconstruction.

    5
    (Left) A raw photograph showing how many different views of a small object appear on the same image on a black background. (Right) The individual images extracted and blown up, revealing different views of a tiny test object. (Courtesy Sanha Cheong/Stanford University)

    It’s the sort of thing that might seem obvious in retrospect, but it took a lot of thought to achieve, said Schwartzman. “When we first came up with this, we thought, ‘People must have done this before,’” he said, but in fact it’s novel enough that the group have applied for a patent on the device.

    To test out the idea, Cheong and Safdari made a mock-up with a 3D printed scaffold holding the mirrors, then fabricated a micro-3D printed fluorescent object that spells out “DOE” when viewed from different angles. They took a picture of the object with their mirror dome and showed that they could, in fact, gather light from a number of different angles and keep all of the images in focus. What’s more, their 3D reconstruction was so accurate that it revealed a small flaw in the fabrication of the “DOE” object – an arm of the “E” that was bent slightly downward.

    The next step, the researchers said, is to build a new version to test the idea in a smaller atom interferometer at Stanford, which would produce the first 3D images of atom clouds. That version of the mirror dome would sit outside the chamber containing the atom cloud, so if those tests are successful the team would then build a stainless-steel version of the mirror scaffold suitable for the vacuum conditions inside an atom interferometer.

    Schwartzman said the ideas Cheong, Safdari and the rest of the team developed could be useful beyond physics experiments. “It’s a novel device. Our application is atom interferometry, but it may be useful in other applications,” he said, such as quality control for small-object fabrication in industry.

    The research was supported by the Department of Energy, Laboratory Directed Research and Development Program. MAGIS-100 is supported by the Gordon and Betty Moore Foundation and the DOE Office of Science.

    Science paper:
    Journal of Instrumentation

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    The DOE’s Fermi National Accelerator Laboratory, located just outside Batavia, Illinois, near Chicago, is a United States Department of Energy national laboratory specializing in high-energy particle physics. Since 2007, Fermilab has been operated by the Fermi Research Alliance, a joint venture of the University of Chicago, and the Universities Research Association (URA). Fermilab is a part of the Illinois Technology and Research Corridor.

    Fermilab’s Tevatron was a landmark particle accelerator; until the startup in 2008 of the Large Hadron Collider(CH) near Geneva, Switzerland, it was the most powerful particle accelerator in the world, accelerating antiprotons to energies of 500 GeV, and producing proton-proton collisions with energies of up to 1.6 TeV, the first accelerator to reach one “tera-electron-volt” energy. At 3.9 miles (6.3 km), it was the world’s fourth-largest particle accelerator in circumference. One of its most important achievements was the 1995 discovery of the top quark, announced by research teams using the Tevatron’s CDF and DØ detectors. It was shut down in 2011.

    __________________________________________________________
    [Earlier than the LHC at CERN, The DOE’s Fermi National Accelerator Laboratory had sought the Higgs with the Tevatron Accelerator.

    But the Tevatron could barely muster 2 TeV [Terraelectron volts], not enough energy to find the Higgs. CERN’s LHC is capable of 13 TeV.

    Another possible attempt in the U.S. would have been the Super Conducting Supercollider.

    Fermilab has gone on to become a world powerhouse in neutrino research with the LBNF/DUNE project which will send neutrinos 800 miles to SURF-The Sanford Underground Research Facility in in Lead, South Dakota.
    __________________________________________________

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota


    __________________________________________________

    In addition to high-energy collider physics, Fermilab hosts fixed-target and neutrino experiments, such as MicroBooNE (Micro Booster Neutrino Experiment), NOνA (NuMI Off-Axis νe Appearance) and SeaQuest. Completed neutrino experiments include MINOS (Main Injector Neutrino Oscillation Search), MINOS+, MiniBooNE and SciBooNE (SciBar Booster Neutrino Experiment). The MiniBooNE detector was a 40-foot (12 m) diameter sphere containing 800 tons of mineral oil lined with 1,520 phototube detectors. An estimated 1 million neutrino events were recorded each year. SciBooNE sat in the same neutrino beam as MiniBooNE but had fine-grained tracking capabilities. The NOνA experiment uses, and the MINOS experiment used, Fermilab’s NuMI (Neutrinos at the Main Injector) beam, which is an intense beam of neutrinos that travels 455 miles (732 km) through the Earth to the Soudan Mine in Minnesota and the Ash River, Minnesota, site of the NOνA far detector. In 2017, the ICARUS neutrino experiment was moved from CERN to Fermilab.
    In the public realm, Fermilab is home to a native prairie ecosystem restoration project and hosts many cultural events: public science lectures and symposia, classical and contemporary music concerts, folk dancing and arts galleries. The site is open from dawn to dusk to visitors who present valid photo identification.

    Asteroid 11998 Fermilab is named in honor of the laboratory.

    Weston, Illinois, was a community next to Batavia voted out of existence by its village board in 1966 to provide a site for Fermilab.

    The laboratory was founded in 1969 as the National Accelerator Laboratory; it was renamed in honor of Enrico Fermi in 1974. The laboratory’s first director was Robert Rathbun Wilson, under whom the laboratory opened ahead of time and under budget. Many of the sculptures on the site are of his creation. He is the namesake of the site’s high-rise laboratory building, whose unique shape has become the symbol for Fermilab and which is the center of activity on the campus.

    After Wilson stepped down in 1978 to protest the lack of funding for the lab, Leon M. Lederman took on the job. It was under his guidance that the original accelerator was replaced with the Tevatron, an accelerator capable of colliding protons and antiprotons at a combined energy of 1.96 TeV. Lederman stepped down in 1989. The science education center at the site was named in his honor.

    The later directors include:

    John Peoples, 1989 to 1996
    Michael S. Witherell, July 1999 to June 2005
    Piermaria Oddone, July 2005 to July 2013
    Nigel Lockyer, September 2013 to the present

    Fermilab continues to participate in the work at the Large Hadron Collider (LHC); it serves as a Tier 1 site in the Worldwide LHC Computing Grid.

    FNAL Icon

    The DOE’s SLAC National Accelerator Laboratory originally named Stanford Linear Accelerator Center, is a Department of Energy National Laboratory operated by Stanford University under the programmatic direction of the Department of Energy Office of Science and located in Menlo Park, California. It is the site of the Stanford Linear Accelerator, a 3.2 kilometer (2-mile) linear accelerator constructed in 1966 and shut down in the 2000s, which could accelerate electrons to energies of 50 GeV.
    Today SLAC research centers on a broad program in atomic and solid-state physics, chemistry, biology, and medicine using X-rays from synchrotron radiation and a free-electron laser as well as experimental and theoretical research in elementary particle physics, astroparticle physics, and cosmology.

    Founded in 1962 as the Stanford Linear Accelerator Center, the facility is located on 172 hectares (426 acres) of Stanford University-owned land on Sand Hill Road in Menlo Park, California—just west of the University’s main campus. The main accelerator is 3.2 kilometers (2 mi) long—the longest linear accelerator in the world—and has been operational since 1966.

    Research at SLAC has produced three Nobel Prizes in Physics

    1976: The charm quark—see J/ψ meson
    1990: Quark structure inside protons and neutrons
    1995: The tau lepton

    SLAC’s meeting facilities also provided a venue for the Homebrew Computer Club and other pioneers of the home computer revolution of the late 1970s and early 1980s.

    In 1984 the laboratory was named an ASME National Historic Engineering Landmark and an IEEE Milestone.

    SLAC developed and, in December 1991, began hosting the first World Wide Web server outside of Europe.

    In the early-to-mid 1990s, the Stanford Linear Collider (SLC) investigated the properties of the Z boson using the Stanford Large Detector [below].

    As of 2005, SLAC employed over 1,000 people, some 150 of whom were physicists with doctorate degrees, and served over 3,000 visiting researchers yearly, operating particle accelerators for high-energy physics and the Stanford Synchrotron Radiation Laboratory (SSRL) [below] for synchrotron light radiation research, which was “indispensable” in the research leading to the 2006 Nobel Prize in Chemistry awarded to Stanford Professor Roger D. Kornberg.

    In October 2008, the Department of Energy announced that the center’s name would be changed to SLAC National Accelerator Laboratory. The reasons given include a better representation of the new direction of the lab and the ability to trademark the laboratory’s name. Stanford University had legally opposed the Department of Energy’s attempt to trademark “Stanford Linear Accelerator Center”.

    In March 2009, it was announced that the SLAC National Accelerator Laboratory was to receive $68.3 million in Recovery Act Funding to be disbursed by Department of Energy’s Office of Science.

    In October 2016, Bits and Watts launched as a collaboration between SLAC and Stanford University to design “better, greener electric grids”. SLAC later pulled out over concerns about an industry partner, the state-owned Chinese electric utility.

    Accelerator

    The main accelerator was an RF linear accelerator that accelerated electrons and positrons up to 50 GeV. At 3.2 km (2.0 mi) long, the accelerator was the longest linear accelerator in the world, and was claimed to be “the world’s most straight object.” until 2017 when the European x-ray free electron laser opened. The main accelerator is buried 9 m (30 ft) below ground and passes underneath Interstate Highway 280. The above-ground klystron gallery atop the beamline, was the longest building in the United States until the LIGO project’s twin interferometers were completed in 1999. It is easily distinguishable from the air and is marked as a visual waypoint on aeronautical charts.

    A portion of the original linear accelerator is now part of the Linac Coherent Light Source [below].

    Stanford Linear Collider

    The Stanford Linear Collider was a linear accelerator that collided electrons and positrons at SLAC. The center of mass energy was about 90 GeV, equal to the mass of the Z boson, which the accelerator was designed to study. Grad student Barrett D. Milliken discovered the first Z event on 12 April 1989 while poring over the previous day’s computer data from the Mark II detector. The bulk of the data was collected by the SLAC Large Detector, which came online in 1991. Although largely overshadowed by the Large Electron–Positron Collider at CERN, which began running in 1989, the highly polarized electron beam at SLC (close to 80%) made certain unique measurements possible, such as parity violation in Z Boson-b quark coupling.


    Presently no beam enters the south and north arcs in the machine, which leads to the Final Focus, therefore this section is mothballed to run beam into the PEP2 section from the beam switchyard.

    The SLAC Large Detector (SLD) was the main detector for the Stanford Linear Collider. It was designed primarily to detect Z bosons produced by the accelerator’s electron-positron collisions. Built in 1991, the SLD operated from 1992 to 1998.

    SLAC National Accelerator Laboratory Large Detector

    PEP

    PEP (Positron-Electron Project) began operation in 1980, with center-of-mass energies up to 29 GeV. At its apex, PEP had five large particle detectors in operation, as well as a sixth smaller detector. About 300 researchers made used of PEP. PEP stopped operating in 1990, and PEP-II began construction in 1994.

    PEP-II

    From 1999 to 2008, the main purpose of the linear accelerator was to inject electrons and positrons into the PEP-II accelerator, an electron-positron collider with a pair of storage rings 2.2 km (1.4 mi) in circumference. PEP-II was host to the BaBar experiment, one of the so-called B-Factory experiments studying charge-parity symmetry.

    SLAC National Accelerator LaboratoryBaBar

    SLAC National Accelerator LaboratorySSRL

    Fermi Gamma-ray Space Telescope

    SLAC plays a primary role in the mission and operation of the Fermi Gamma-ray Space Telescope, launched in August 2008. The principal scientific objectives of this mission are:

    To understand the mechanisms of particle acceleration in AGNs, pulsars, and SNRs.
    To resolve the gamma-ray sky: unidentified sources and diffuse emission.
    To determine the high-energy behavior of gamma-ray bursts and transients.
    To probe dark matter and fundamental physics.

    National Aeronautics and Space AdministrationFermi Large Area Telescope

    National Aeronautics and Space AdministrationFermi Gamma Ray Space Telescope.

    KIPAC


    KIPAC campus

    The Stanford PULSE Institute (PULSE) is a Stanford Independent Laboratory located in the Central Laboratory at SLAC. PULSE was created by Stanford in 2005 to help Stanford faculty and SLAC scientists develop ultrafast x-ray research at LCLS.

    The Linac Coherent Light Source (LCLS)[below] is a free electron laser facility located at SLAC. The LCLS is partially a reconstruction of the last 1/3 of the original linear accelerator at SLAC, and can deliver extremely intense x-ray radiation for research in a number of areas. It achieved first lasing in April 2009.

    The laser produces hard X-rays, 10^9 times the relative brightness of traditional synchrotron sources and is the most powerful x-ray source in the world. LCLS enables a variety of new experiments and provides enhancements for existing experimental methods. Often, x-rays are used to take “snapshots” of objects at the atomic level before obliterating samples. The laser’s wavelength, ranging from 6.2 to 0.13 nm (200 to 9500 electron volts (eV)) is similar to the width of an atom, providing extremely detailed information that was previously unattainable. Additionally, the laser is capable of capturing images with a “shutter speed” measured in femtoseconds, or million-billionths of a second, necessary because the intensity of the beam is often high enough so that the sample explodes on the femtosecond timescale.

    The LCLS-II [below] project is to provide a major upgrade to LCLS by adding two new X-ray laser beams. The new system will utilize the 500 m (1,600 ft) of existing tunnel to add a new superconducting accelerator at 4 GeV and two new sets of undulators that will increase the available energy range of LCLS. The advancement from the discoveries using this new capabilities may include new drugs, next-generation computers, and new materials.

    FACET

    In 2012, the first two-thirds (~2 km) of the original SLAC LINAC were recommissioned for a new user facility, the Facility for Advanced Accelerator Experimental Tests (FACET). This facility was capable of delivering 20 GeV, 3 nC electron (and positron) beams with short bunch lengths and small spot sizes, ideal for beam-driven plasma acceleration studies. The facility ended operations in 2016 for the constructions of LCLS-II which will occupy the first third of the SLAC LINAC. The FACET-II project will re-establish electron and positron beams in the middle third of the LINAC for the continuation of beam-driven plasma acceleration studies in 2019.

    SLAC National Accelerator LaboratoryFACET

    SLAC National Accelerator Laboratory FACET-II upgrading its Facility for Advanced Accelerator Experimental Tests (FACET) – a test bed for new technologies that could revolutionize the way we build particle accelerators.

    The Next Linear Collider Test Accelerator (NLCTA) is a 60-120 MeV high-brightness electron beam linear accelerator used for experiments on advanced beam manipulation and acceleration techniques. It is located at SLAC’s end station B

    SLAC National Accelerator LaboratoryNext Linear Collider Test Accelerator (NLCTA)

    DOE’s SLAC National Accelerator Laboratory campus

    SLAC National Accelerator LaboratoryLCLS

    SLAC National Accelerator LaboratoryLCLS II projected view

    Magnets called undulators stretch roughly 100 meters down a tunnel at SLAC National Accelerator Laboratory, with one side (right) producing hard x-rays and the other soft x-rays.

    SSRL and LCLS are DOE Office of Science user facilities.

    Stanford University campus

    Leland and Jane Stanford founded Stanford University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members.

    Stanford University, officially Leland Stanford Junior University, is a private research university located in Stanford, California. Stanford was founded in 1885 by Leland and Jane Stanford in memory of their only child, Leland Stanford Jr., who had died of typhoid fever at age 15 the previous year. Stanford is consistently ranked as among the most prestigious and top universities in the world by major education publications. It is also one of the top fundraising institutions in the country, becoming the first school to raise more than a billion dollars in a year.

    Leland Stanford was a U.S. senator and former governor of California who made his fortune as a railroad tycoon. The school admitted its first students on October 1, 1891, as a coeducational and non-denominational institution. Stanford University struggled financially after the death of Leland Stanford in 1893 and again after much of the campus was damaged by the 1906 San Francisco earthquake. Following World War II, provost Frederick Terman supported faculty and graduates’ entrepreneurialism to build self-sufficient local industry in what would later be known as Silicon Valley.

    The university is organized around seven schools: three schools consisting of 40 academic departments at the undergraduate level as well as four professional schools that focus on graduate programs in law, medicine, education, and business. All schools are on the same campus. Students compete in 36 varsity sports, and the university is one of two private institutions in the Division I FBS Pac-12 Conference. It has gained 126 NCAA team championships, and Stanford has won the NACDA Directors’ Cup for 24 consecutive years, beginning in 1994–1995. In addition, Stanford students and alumni have won 270 Olympic medals including 139 gold medals.

    As of October 2020, 84 Nobel laureates, 28 Turing Award laureates, and eight Fields Medalists have been affiliated with Stanford as students, alumni, faculty, or staff. In addition, Stanford is particularly noted for its entrepreneurship and is one of the most successful universities in attracting funding for start-ups. Stanford alumni have founded numerous companies, which combined produce more than $2.7 trillion in annual revenue, roughly equivalent to the 7th largest economy in the world (as of 2020). Stanford is the alma mater of one president of the United States (Herbert Hoover), 74 living billionaires, and 17 astronauts. It is also one of the leading producers of Fulbright Scholars, Marshall Scholars, Rhodes Scholars, and members of the United States Congress.

    Stanford University was founded in 1885 by Leland and Jane Stanford, dedicated to Leland Stanford Jr, their only child. The institution opened in 1891 on Stanford’s previous Palo Alto farm.

    Jane and Leland Stanford modeled their university after the great eastern universities, most specifically Cornell University. Stanford opened being called the “Cornell of the West” in 1891 due to faculty being former Cornell affiliates (either professors, alumni, or both) including its first president, David Starr Jordan, and second president, John Casper Branner. Both Cornell and Stanford were among the first to have higher education be accessible, nonsectarian, and open to women as well as to men. Cornell is credited as one of the first American universities to adopt this radical departure from traditional education, and Stanford became an early adopter as well.

    Despite being impacted by earthquakes in both 1906 and 1989, the campus was rebuilt each time. In 1919, The Hoover Institution on War, Revolution and Peace was started by Herbert Hoover to preserve artifacts related to World War I. The Stanford Medical Center, completed in 1959, is a teaching hospital with over 800 beds. The DOE’s SLAC National Accelerator Laboratory (originally named the Stanford Linear Accelerator Center), established in 1962, performs research in particle physics.

    Land

    Most of Stanford is on an 8,180-acre (12.8 sq mi; 33.1 km^2) campus, one of the largest in the United States. It is located on the San Francisco Peninsula, in the northwest part of the Santa Clara Valley (Silicon Valley) approximately 37 miles (60 km) southeast of San Francisco and approximately 20 miles (30 km) northwest of San Jose. In 2008, 60% of this land remained undeveloped.

    Stanford’s main campus includes a census-designated place within unincorporated Santa Clara County, although some of the university land (such as the Stanford Shopping Center and the Stanford Research Park) is within the city limits of Palo Alto. The campus also includes much land in unincorporated San Mateo County (including the SLAC National Accelerator Laboratory and the Jasper Ridge Biological Preserve), as well as in the city limits of Menlo Park (Stanford Hills neighborhood), Woodside, and Portola Valley.

    Non-central campus

    Stanford currently operates in various locations outside of its central campus.

    On the founding grant:

    Jasper Ridge Biological Preserve is a 1,200-acre (490 ha) natural reserve south of the central campus owned by the university and used by wildlife biologists for research.

    SLAC National Accelerator Laboratory is a facility west of the central campus operated by the university for the Department of Energy. It contains the longest linear particle accelerator in the world, 2 miles (3.2 km) on 426 acres (172 ha) of land. Golf course and a seasonal lake: The university also has its own golf course and a seasonal lake (Lake Lagunita, actually an irrigation reservoir), both home to the vulnerable California tiger salamander. As of 2012 Lake Lagunita was often dry and the university had no plans to artificially fill it.

    Off the founding grant:

    Hopkins Marine Station, in Pacific Grove, California, is a marine biology research center owned by the university since 1892., in Pacific Grove, California, is a marine biology research center owned by the university since 1892.
    Study abroad locations: unlike typical study abroad programs, Stanford itself operates in several locations around the world; thus, each location has Stanford faculty-in-residence and staff in addition to students, creating a “mini-Stanford”.

    Redwood City campus for many of the university’s administrative offices located in Redwood City, California, a few miles north of the main campus. In 2005, the university purchased a small, 35-acre (14 ha) campus in Midpoint Technology Park intended for staff offices; development was delayed by The Great Recession. In 2015 the university announced a development plan and the Redwood City campus opened in March 2019.

    The Bass Center in Washington, DC provides a base, including housing, for the Stanford in Washington program for undergraduates. It includes a small art gallery open to the public.

    China: Stanford Center at Peking University, housed in the Lee Jung Sen Building, is a small center for researchers and students in collaboration with Beijing University [北京大学](CN) (Kavli Institute for Astronomy and Astrophysics at Peking University(CN) (KIAA-PKU).

    Administration and organization

    Stanford is a private, non-profit university that is administered as a corporate trust governed by a privately appointed board of trustees with a maximum membership of 38. Trustees serve five-year terms (not more than two consecutive terms) and meet five times annually.[83] A new trustee is chosen by the current trustees by ballot. The Stanford trustees also oversee the Stanford Research Park, the Stanford Shopping Center, the Cantor Center for Visual Arts, Stanford University Medical Center, and many associated medical facilities (including the Lucile Packard Children’s Hospital).

    The board appoints a president to serve as the chief executive officer of the university, to prescribe the duties of professors and course of study, to manage financial and business affairs, and to appoint nine vice presidents. The provost is the chief academic and budget officer, to whom the deans of each of the seven schools report. Persis Drell became the 13th provost in February 2017.

    As of 2018, the university was organized into seven academic schools. The schools of Humanities and Sciences (27 departments), Engineering (nine departments), and Earth, Energy & Environmental Sciences (four departments) have both graduate and undergraduate programs while the Schools of Law, Medicine, Education and Business have graduate programs only. The powers and authority of the faculty are vested in the Academic Council, which is made up of tenure and non-tenure line faculty, research faculty, senior fellows in some policy centers and institutes, the president of the university, and some other academic administrators, but most matters are handled by the Faculty Senate, made up of 55 elected representatives of the faculty.

    The Associated Students of Stanford University (ASSU) is the student government for Stanford and all registered students are members. Its elected leadership consists of the Undergraduate Senate elected by the undergraduate students, the Graduate Student Council elected by the graduate students, and the President and Vice President elected as a ticket by the entire student body.

    Stanford is the beneficiary of a special clause in the California Constitution, which explicitly exempts Stanford property from taxation so long as the property is used for educational purposes.

    Endowment and donations

    The university’s endowment, managed by the Stanford Management Company, was valued at $27.7 billion as of August 31, 2019. Payouts from the Stanford endowment covered approximately 21.8% of university expenses in the 2019 fiscal year. In the 2018 NACUBO-TIAA survey of colleges and universities in the United States and Canada, only Harvard University, the University of Texas System, and Yale University had larger endowments than Stanford.

    In 2006, President John L. Hennessy launched a five-year campaign called the Stanford Challenge, which reached its $4.3 billion fundraising goal in 2009, two years ahead of time, but continued fundraising for the duration of the campaign. It concluded on December 31, 2011, having raised a total of $6.23 billion and breaking the previous campaign fundraising record of $3.88 billion held by Yale. Specifically, the campaign raised $253.7 million for undergraduate financial aid, as well as $2.33 billion for its initiative in “Seeking Solutions” to global problems, $1.61 billion for “Educating Leaders” by improving K-12 education, and $2.11 billion for “Foundation of Excellence” aimed at providing academic support for Stanford students and faculty. Funds supported 366 new fellowships for graduate students, 139 new endowed chairs for faculty, and 38 new or renovated buildings. The new funding also enabled the construction of a facility for stem cell research; a new campus for the business school; an expansion of the law school; a new Engineering Quad; a new art and art history building; an on-campus concert hall; a new art museum; and a planned expansion of the medical school, among other things. In 2012, the university raised $1.035 billion, becoming the first school to raise more than a billion dollars in a year.

    Research centers and institutes

    DOE’s SLAC National Accelerator Laboratory
    Stanford Research Institute, a center of innovation to support economic development in the region.
    Hoover Institution, a conservative American public policy institution and research institution that promotes personal and economic liberty, free enterprise, and limited government.
    Hasso Plattner Institute of Design, a multidisciplinary design school in cooperation with the Hasso Plattner Institute of University of Potsdam [Universität Potsdam](DE) that integrates product design, engineering, and business management education).
    Martin Luther King Jr. Research and Education Institute, which grew out of and still contains the Martin Luther King Jr. Papers Project.
    John S. Knight Fellowship for Professional Journalists
    Center for Ocean Solutions
    Together with UC Berkeley and UC San Francisco, Stanford is part of the Biohub, a new medical science research center founded in 2016 by a $600 million commitment from Facebook CEO and founder Mark Zuckerberg and pediatrician Priscilla Chan.

    Discoveries and innovation

    Natural sciences

    Biological synthesis of deoxyribonucleic acid (DNA) – Arthur Kornberg synthesized DNA material and won the Nobel Prize in Physiology or Medicine 1959 for his work at Stanford.
    First Transgenic organism – Stanley Cohen and Herbert Boyer were the first scientists to transplant genes from one living organism to another, a fundamental discovery for genetic engineering. Thousands of products have been developed on the basis of their work, including human growth hormone and hepatitis B vaccine.
    Laser – Arthur Leonard Schawlow shared the 1981 Nobel Prize in Physics with Nicolaas Bloembergen and Kai Siegbahn for his work on lasers.
    Nuclear magnetic resonance – Felix Bloch developed new methods for nuclear magnetic precision measurements, which are the underlying principles of the MRI.

    Computer and applied sciences

    ARPANETStanford Research Institute, formerly part of Stanford but on a separate campus, was the site of one of the four original ARPANET nodes.

    Internet—Stanford was the site where the original design of the Internet was undertaken. Vint Cerf led a research group to elaborate the design of the Transmission Control Protocol (TCP/IP) that he originally co-created with Robert E. Kahn (Bob Kahn) in 1973 and which formed the basis for the architecture of the Internet.

    Frequency modulation synthesis – John Chowning of the Music department invented the FM music synthesis algorithm in 1967, and Stanford later licensed it to Yamaha Corporation.

    Google – Google began in January 1996 as a research project by Larry Page and Sergey Brin when they were both PhD students at Stanford. They were working on the Stanford Digital Library Project (SDLP). The SDLP’s goal was “to develop the enabling technologies for a single, integrated and universal digital library” and it was funded through the National Science Foundation, among other federal agencies.

    Klystron tube – invented by the brothers Russell and Sigurd Varian at Stanford. Their prototype was completed and demonstrated successfully on August 30, 1937. Upon publication in 1939, news of the klystron immediately influenced the work of U.S. and UK researchers working on radar equipment.

    RISCARPA funded VLSI project of microprocessor design. Stanford and University of California- Berkeley are most associated with the popularization of this concept. The Stanford MIPS would go on to be commercialized as the successful MIPS architecture, while Berkeley RISC gave its name to the entire concept, commercialized as the SPARC. Another success from this era were IBM’s efforts that eventually led to the IBM POWER instruction set architecture, PowerPC, and Power ISA. As these projects matured, a wide variety of similar designs flourished in the late 1980s and especially the early 1990s, representing a major force in the Unix workstation market as well as embedded processors in laser printers, routers and similar products.
    SUN workstation – Andy Bechtolsheim designed the SUN workstation for the Stanford University Network communications project as a personal CAD workstation, which led to Sun Microsystems.

    Businesses and entrepreneurship

    Stanford is one of the most successful universities in creating companies and licensing its inventions to existing companies; it is often held up as a model for technology transfer. Stanford’s Office of Technology Licensing is responsible for commercializing university research, intellectual property, and university-developed projects.

    The university is described as having a strong venture culture in which students are encouraged, and often funded, to launch their own companies.

    Companies founded by Stanford alumni generate more than $2.7 trillion in annual revenue, equivalent to the 10th-largest economy in the world.

    Some companies closely associated with Stanford and their connections include:

    Hewlett-Packard, 1939, co-founders William R. Hewlett (B.S, PhD) and David Packard (M.S).
    Silicon Graphics, 1981, co-founders James H. Clark (Associate Professor) and several of his grad students.
    Sun Microsystems, 1982, co-founders Vinod Khosla (M.B.A), Andy Bechtolsheim (PhD) and Scott McNealy (M.B.A).
    Cisco, 1984, founders Leonard Bosack (M.S) and Sandy Lerner (M.S) who were in charge of Stanford Computer Science and Graduate School of Business computer operations groups respectively when the hardware was developed.[163]
    Yahoo!, 1994, co-founders Jerry Yang (B.S, M.S) and David Filo (M.S).
    Google, 1998, co-founders Larry Page (M.S) and Sergey Brin (M.S).
    LinkedIn, 2002, co-founders Reid Hoffman (B.S), Konstantin Guericke (B.S, M.S), Eric Lee (B.S), and Alan Liu (B.S).
    Instagram, 2010, co-founders Kevin Systrom (B.S) and Mike Krieger (B.S).
    Snapchat, 2011, co-founders Evan Spiegel and Bobby Murphy (B.S).
    Coursera, 2012, co-founders Andrew Ng (Associate Professor) and Daphne Koller (Professor, PhD).

    Student body

    Stanford enrolled 6,996 undergraduate and 10,253 graduate students as of the 2019–2020 school year. Women comprised 50.4% of undergraduates and 41.5% of graduate students. In the same academic year, the freshman retention rate was 99%.

    Stanford awarded 1,819 undergraduate degrees, 2,393 master’s degrees, 770 doctoral degrees, and 3270 professional degrees in the 2018–2019 school year. The four-year graduation rate for the class of 2017 cohort was 72.9%, and the six-year rate was 94.4%. The relatively low four-year graduation rate is a function of the university’s coterminal degree (or “coterm”) program, which allows students to earn a master’s degree as a 1-to-2-year extension of their undergraduate program.

    As of 2010, fifteen percent of undergraduates were first-generation students.

    Athletics

    As of 2016 Stanford had 16 male varsity sports and 20 female varsity sports, 19 club sports and about 27 intramural sports. In 1930, following a unanimous vote by the Executive Committee for the Associated Students, the athletic department adopted the mascot “Indian.” The Indian symbol and name were dropped by President Richard Lyman in 1972, after objections from Native American students and a vote by the student senate. The sports teams are now officially referred to as the “Stanford Cardinal,” referring to the deep red color, not the cardinal bird. Stanford is a member of the Pac-12 Conference in most sports, the Mountain Pacific Sports Federation in several other sports, and the America East Conference in field hockey with the participation in the inter-collegiate NCAA’s Division I FBS.

    Its traditional sports rival is the University of California, Berkeley, the neighbor to the north in the East Bay. The winner of the annual “Big Game” between the Cal and Cardinal football teams gains custody of the Stanford Axe.

    Stanford has had at least one NCAA team champion every year since the 1976–77 school year and has earned 126 NCAA national team titles since its establishment, the most among universities, and Stanford has won 522 individual national championships, the most by any university. Stanford has won the award for the top-ranked Division 1 athletic program—the NACDA Directors’ Cup, formerly known as the Sears Cup—annually for the past twenty-four straight years. Stanford athletes have won medals in every Olympic Games since 1912, winning 270 Olympic medals total, 139 of them gold. In the 2008 Summer Olympics, and 2016 Summer Olympics, Stanford won more Olympic medals than any other university in the United States. Stanford athletes won 16 medals at the 2012 Summer Olympics (12 gold, two silver and two bronze), and 27 medals at the 2016 Summer Olympics.

    Traditions

    The unofficial motto of Stanford, selected by President Jordan, is Die Luft der Freiheit weht. Translated from the German language, this quotation from Ulrich von Hutten means, “The wind of freedom blows.” The motto was controversial during World War I, when anything in German was suspect; at that time the university disavowed that this motto was official.
    Hail, Stanford, Hail! is the Stanford Hymn sometimes sung at ceremonies or adapted by the various University singing groups. It was written in 1892 by mechanical engineering professor Albert W. Smith and his wife, Mary Roberts Smith (in 1896 she earned the first Stanford doctorate in Economics and later became associate professor of Sociology), but was not officially adopted until after a performance on campus in March 1902 by the Mormon Tabernacle Choir.
    “Uncommon Man/Uncommon Woman”: Stanford does not award honorary degrees, but in 1953 the degree of “Uncommon Man/Uncommon Woman” was created to recognize individuals who give rare and extraordinary service to the University. Technically, this degree is awarded by the Stanford Associates, a voluntary group that is part of the university’s alumni association. As Stanford’s highest honor, it is not conferred at prescribed intervals, but only when appropriate to recognize extraordinary service. Recipients include Herbert Hoover, Bill Hewlett, Dave Packard, Lucile Packard, and John Gardner.
    Big Game events: The events in the week leading up to the Big Game vs. UC Berkeley, including Gaieties (a musical written, composed, produced, and performed by the students of Ram’s Head Theatrical Society).
    “Viennese Ball”: a formal ball with waltzes that was initially started in the 1970s by students returning from the now-closed Stanford in Vienna overseas program. It is now open to all students.
    “Full Moon on the Quad”: An annual event at Main Quad, where students gather to kiss one another starting at midnight. Typically organized by the Junior class cabinet, the festivities include live entertainment, such as music and dance performances.
    “Band Run”: An annual festivity at the beginning of the school year, where the band picks up freshmen from dorms across campus while stopping to perform at each location, culminating in a finale performance at Main Quad.
    “Mausoleum Party”: An annual Halloween Party at the Stanford Mausoleum, the final resting place of Leland Stanford Jr. and his parents. A 20-year tradition, the “Mausoleum Party” was on hiatus from 2002 to 2005 due to a lack of funding, but was revived in 2006. In 2008, it was hosted in Old Union rather than at the actual Mausoleum, because rain prohibited generators from being rented. In 2009, after fundraising efforts by the Junior Class Presidents and the ASSU Executive, the event was able to return to the Mausoleum despite facing budget cuts earlier in the year.
    Former campus traditions include the “Big Game bonfire” on Lake Lagunita (a seasonal lake usually dry in the fall), which was formally ended in 1997 because of the presence of endangered salamanders in the lake bed.

    Award laureates and scholars

    Stanford’s current community of scholars includes:

    19 Nobel Prize laureates (as of October 2020, 85 affiliates in total)
    171 members of the National Academy of Sciences
    109 members of National Academy of Engineering
    76 members of National Academy of Medicine
    288 members of the American Academy of Arts and Sciences
    19 recipients of the National Medal of Science
    1 recipient of the National Medal of Technology
    4 recipients of the National Humanities Medal
    49 members of American Philosophical Society
    56 fellows of the American Physics Society (since 1995)
    4 Pulitzer Prize winners
    31 MacArthur Fellows
    4 Wolf Foundation Prize winners
    2 ACL Lifetime Achievement Award winners
    14 AAAI fellows
    2 Presidential Medal of Freedom winners

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: