Tagged: The DOE’s Lawrence Berkeley National Laboratory Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:35 am on December 5, 2022 Permalink | Reply
    Tags: "How to Edit the Genes of Nature’s Master Manipulators", A CRISPR-Cas system consists of short snippets of RNA that are complementary to sequences in phage genes., , Bacteriophages are some of the most abundant and diverse biological entities on Earth., , CRISPR-Cas is a type of immune defense mechanism that many bacteria and archaea use against phages., CRISPR-Cas13, CRISPR-the Nobel Prize-winning gene editing technology-is poised to have a profound impact on the fields of microbiology and medicine yet again., , , , , , Jill Banfield, , , , Scientists are using CRISPR to engineer the viruses that evolved to engineer bacteria., The DOE’s Lawrence Berkeley National Laboratory, The phage-fighting potency of CRISPR-Cas13 was unexpected given how few microbes use it.   

    From The DOE’s Lawrence Berkeley National Laboratory: “How to Edit the Genes of Nature’s Master Manipulators” 

    From The DOE’s Lawrence Berkeley National Laboratory

    12.5.22
    Aliyah Kovner

    Scientists are using CRISPR to engineer the viruses that evolved to engineer bacteria.

    1
    (Credit: Davian Ho)

    CRISPR, the Nobel Prize-winning gene editing technology, is poised to have a profound impact on the fields of microbiology and medicine yet again.

    A team led by CRISPR pioneer Jennifer Doudna and her longtime collaborator Jill Banfield has developed a clever tool to edit the genomes of bacteria-infecting viruses called bacteriophages using a rare form of CRISPR. The ability to easily engineer custom-designed phages – which has long eluded the research community – could help researchers control microbiomes without antibiotics or harsh chemicals, and treat dangerous drug-resistant infections. A paper describing the work was recently published in Nature Microbiology [below].

    Fig. 1: Maximum-likelihood phylogeny of Cas13 proteins and their distribution across the bacterial tree of life.
    2
    The four known subtypes, Cas13a–d, each form their clade (inner track) with a skewed distribution across bacterial taxa (outer track). A Vibrio cholerae Cas9 (UIO88932.1) was used as the outgroup. Cas13 subtypes and microbial taxa that encode Cas13 are denoted in the colour bar.

    Fig. 2: Comparison of Cas13a and Cas13d in E. coli phage challenge assays with lytic phage T4.
    3
    a, Experimental architecture of Cas13 phage defence. Cas13 is expressed under aTc control alongside a crRNA. During phage infection, Cas13 unleashes toxic cis- and trans-cleavage if Cas13 detects its crRNA target. b, crRNA architecture employed in this study. c, Overview of T4 genes and transcript locations targeted by Cas13 in T4 phage challenge experiments. Approximate gene architecture is shown in forward orientation. crRNA locations are highlighted in orange. d, T4 phage infection in bacteria expressing phage-targeting crRNA and either LbuCas13a or RfxCas13d. EOP values represent the average of three biological replicates for a single crRNA. EOP data are presented as mean ± s.d. e, T4 phage plaque assays comparing the efficacy of Cas13a and toxicity of Cas13d. A representative plaque assay from three biological replicates is shown. An RFP-targeting crRNA is shown as a negative control.

    “Bacteriophages are some of the most abundant and diverse biological entities on Earth. Unlike prior approaches, this editing strategy works against the tremendous genetic diversity of bacteriophages,” said first author Benjamin Adler, a postdoctoral fellow in Doudna’s lab. “There are so many exciting directions here – discovery is literally at our fingertips!”

    4
    An atomic structural model of a T4 phage, the type edited in this research. (Credit: Dr. Victor Padilla-Sanchez/Wikimedia Commons)

    Bacteriophages, also simply called phages, insert their genetic material into bacterial cells using a syringe-like apparatus, then hijack the protein-building machinery of their hosts in order to reproduce themselves – usually killing the bacteria in the process. (They’re harmless to other organisms, including us humans, even though electron microscopy images have revealed that they look like sinister alien spaceships.)

    CRISPR-Cas is a type of immune defense mechanism that many bacteria and archaea use against phages. A CRISPR-Cas system consists of short snippets of RNA that are complementary to sequences in phage genes, allowing the microbe to recognize when invasive genetic material has been inserted, and scissor-like enzymes that neutralize the phage genes by cutting them into harmless pieces, after being guided into place by the RNA.

    Over millennia, the perpetual evolutionary battle between phage offense and bacterial defense forced phages to specialize. There are a lot of microbes, so there are also a lot of phages, each with unique adaptations. This astounding diversity has made phage editing difficult, including making them resistant to many forms of CRISPR, which is why the most commonly used system – CRISPR-Cas9 – doesn’t work for this application.

    “Phages have many ways to evade defenses, ranging from anti-CRISPRs to just being good at repairing their own DNA,” said Adler. “So, in a sense, the adaptations encoded in phage genomes that make them so good at manipulating microbes are the exact same reason why it has been so difficult to develop a general-purpose tool for editing their genomes.”

    Project leaders Doudna and Banfield have developed numerous CRISPR-based tools together since they first collaborated on an early investigation of CRISPR in 2008. That work – performed at Lawrence Berkeley National Laboratory – was cited by the Nobel Prize committee when Doudna and her other collaborator, Emmanuelle Charpentier, received the prize in 2020. Doudna and Banfield’s team of Berkeley Lab and University of California-Berkeley researchers were studying the properties of a rare form of CRISPR called CRISPR-Cas13 (derived from a bacterium commonly found in the human mouth) when they discovered that this version of the defense system works against a huge range of phages.

    The phage-fighting potency of CRISPR-Cas13 was unexpected given how few microbes use it, explained Adler. The scientists were doubly surprised because the phages it defeated in testing all infect using double-stranded DNA, but the CRISPR-Cas13 system only targets and chops single-stranded viral RNA. Like other types of viruses, some phages have DNA-based genomes and some have RNA-based genomes. However, all known viruses use RNA to express their genes. The CRISPR-Cas13 system effectively neutralized nine different DNA phages that all infect strains of E. coli, yet have almost no similarity across their genomes.

    According to co-author and phage expert Vivek Mutalik, a staff scientist in Berkeley Lab’s Biosciences Area, these findings indicate that the CRISPR system can defend against diverse DNA-based phages by targeting their RNA after it has been converted from DNA by the bacteria’s own enzymes prior to protein translation.

    Next, the team demonstrated that the system can be used to edit phage genomes rather than just chop them up defensively.

    First, they made segments of DNA composed of the phage sequence they wanted to create flanked by native phage sequences, and put them into the phage’s target bacteria. When the phages infected the DNA-laden microbes, a small percentage of the phages reproducing inside the microbes took up the altered DNA and incorporated it into their genomes in place of the original sequence. This step is a longstanding DNA editing technique called homologous recombination. The decades-old problem in phage research is that although this step, the actual phage genome editing, works just fine, isolating and replicating the phages with the edited sequence from the larger pool of normal phages is very tricky.

    This is where the CRISPR-Cas13 comes in. In step two, the scientists engineered another strain of host microbe to contain a CRISPR-Cas13 system that senses and defends against the normal phage genome sequence. When the phages made in step one were exposed to the second-round hosts, the phages with the original sequence were defeated by the CRISPR defense system, but the small number of edited phages were able to evade it. They survived and replicated themselves.

    Experiments with three unrelated E. coli phages showed a staggering success rate: more than 99% of the phages produced in the two-step processes contained the edits, which ranged from enormous multi-gene deletions all the way down to precise replacements of a single amino acid.

    “In my opinion, this work on phage engineering is one of the top milestones in phage biology,” said Mutalik. “As phages impact microbial ecology, evolution, population dynamics, and virulence, seamless engineering of bacteria and their phages has profound implications for foundational science, but also has the potential to make a real difference in all aspects of the bioeconomy. In addition to human health, this phage engineering capability will impact everything from biomanufacturing and agriculture to food production.”

    Buoyed by their initial results, the scientists are currently working to expand the CRISPR system to use it on more types of phages, starting with ones that impact microbial soil communities. They are also using it as a tool to explore the genetic mysteries within phage genomes. Who knows what other amazing tools and technologies can be inspired by the spoils of microscopic war between bacteria and virus?

    This research was funded by the Department of Energy Microbial Community Analysis & Functional Evaluation in Soils (m-CAFES) Scientific Focus Area. Jill Banfield is a professor of Earth and Planetary Science and Environmental Science, Policy, & Management at The University of California-Berkeley as well as a faculty scientist in Berkeley Lab’s Biosciences Area and an affiliate in the Earth and Environmental Sciences Area. Jennifer Doudna is a professor in the Molecular and Cell Biology and Chemistry departments at The University of California-Berkeley and a faculty scientist in Berkeley Lab’s Biosciences Area.

    Science paper:
    Nature Microbiology
    See the science paper for instructive material with more images.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LBNL campus

    Bringing Science Solutions to the World

    In the world of science, The Lawrence Berkeley National Laboratory (Berkeley Lab) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the The National Academy of Sciences, one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the The National Academy of Engineering, and three of our scientists have been elected into The Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

    Berkeley Lab is a member of the national laboratory system supported by The DOE through its Office of Science. It is managed by the University of California and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above The University of California-Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

    Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a University of California-Berkeley physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.

    History

    1931–1941

    The laboratory was founded on August 26, 1931, by Ernest Lawrence, as the Radiation Laboratory of the University of California-Berkeley, associated with the Physics Department. It centered physics research around his new instrument, the cyclotron, a type of particle accelerator for which he was awarded the Nobel Prize in Physics in 1939.

    LBNL 88 inch cyclotron.

    LBNL 88 inch cyclotron.

    Throughout the 1930s, Lawrence pushed to create larger and larger machines for physics research, courting private philanthropists for funding. He was the first to develop a large team to build big projects to make discoveries in basic research. Eventually these machines grew too large to be held on the university grounds, and in 1940 the lab moved to its current site atop the hill above campus. Part of the team put together during this period includes two other young scientists who went on to establish large laboratories; J. Robert Oppenheimer founded The DOE’s Los Alamos Laboratory, and Robert Wilson founded The DOE’s Fermi National Accelerator Laboratory.

    1942–1950

    Leslie Groves visited Lawrence’s Radiation Laboratory in late 1942 as he was organizing the Manhattan Project, meeting J. Robert Oppenheimer for the first time. Oppenheimer was tasked with organizing the nuclear bomb development effort and founded today’s Los Alamos National Laboratory to help keep the work secret. At the RadLab, Lawrence and his colleagues developed the technique of electromagnetic enrichment of uranium using their experience with cyclotrons. The “calutrons” (named after the University) became the basic unit of the massive Y-12 facility in Oak Ridge, Tennessee. Lawrence’s lab helped contribute to what have been judged to be the three most valuable technology developments of the war (the atomic bomb, proximity fuse, and radar). The cyclotron, whose construction was stalled during the war, was finished in November 1946. The Manhattan Project shut down two months later.

    1951–2018

    After the war, the Radiation Laboratory became one of the first laboratories to be incorporated into the Atomic Energy Commission (AEC) (now The Department of Energy . The most highly classified work remained at Los Alamos, but the RadLab remained involved. Edward Teller suggested setting up a second lab similar to Los Alamos to compete with their designs. This led to the creation of an offshoot of the RadLab (now The DOE’s Lawrence Livermore National Laboratory) in 1952. Some of the RadLab’s work was transferred to the new lab, but some classified research continued at Berkeley Lab until the 1970s, when it became a laboratory dedicated only to unclassified scientific research.

    Shortly after the death of Lawrence in August 1958, the UC Radiation Laboratory (both branches) was renamed the Lawrence Radiation Laboratory. The Berkeley location became the Lawrence Berkeley Laboratory in 1971, although many continued to call it the RadLab. Gradually, another shortened form came into common usage, LBNL. Its formal name was amended to Ernest Orlando Lawrence Berkeley National Laboratory in 1995, when “National” was added to the names of all DOE labs. “Ernest Orlando” was later dropped to shorten the name. Today, the lab is commonly referred to as “Berkeley Lab”.

    The Alvarez Physics Memos are a set of informal working papers of the large group of physicists, engineers, computer programmers, and technicians led by Luis W. Alvarez from the early 1950s until his death in 1988. Over 1700 memos are available on-line, hosted by the Laboratory.

    The lab remains owned by the Department of Energy , with management from the University of California. Companies such as Intel were funding the lab’s research into computing chips.

    Science mission

    From the 1950s through the present, Berkeley Lab has maintained its status as a major international center for physics research, and has also diversified its research program into almost every realm of scientific investigation. Its mission is to solve the most pressing and profound scientific problems facing humanity, conduct basic research for a secure energy future, understand living systems to improve the environment, health, and energy supply, understand matter and energy in the universe, build and safely operate leading scientific facilities for the nation, and train the next generation of scientists and engineers.

    The Laboratory’s 20 scientific divisions are organized within six areas of research: Computing Sciences; Physical Sciences; Earth and Environmental Sciences; Biosciences; Energy Sciences; and Energy Technologies. Berkeley Lab has six main science thrusts: advancing integrated fundamental energy science; integrative biological and environmental system science; advanced computing for science impact; discovering the fundamental properties of matter and energy; accelerators for the future; and developing energy technology innovations for a sustainable future. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab tradition that continues today.

    Berkeley Lab operates five major National User Facilities for the DOE Office of Science:

    The Advanced Light Source (ALS) is a synchrotron light source with 41 beam lines providing ultraviolet, soft x-ray, and hard x-ray light to scientific experiments.

    The DOE’s Lawrence Berkeley National Laboratory Advanced Light Source.
    The ALS is one of the world’s brightest sources of soft x-rays, which are used to characterize the electronic structure of matter and to reveal microscopic structures with elemental and chemical specificity. About 2,500 scientist-users carry out research at ALS every year. Berkeley Lab is proposing an upgrade of ALS which would increase the coherent flux of soft x-rays by two-three orders of magnitude.

    Berkeley Lab Laser Accelerator (BELLA) Center

    The DOE Joint Genome Institute supports genomic research in support of the DOE missions in alternative energy, global carbon cycling, and environmental management. The JGI’s partner laboratories are Berkeley Lab, DOE’s Lawrence Livermore National Laboratory, DOE’s Oak Ridge National Laboratory (ORNL), DOE’s Pacific Northwest National Laboratory (PNNL), and the HudsonAlpha Institute for Biotechnology . The JGI’s central role is the development of a diversity of large-scale experimental and computational capabilities to link sequence to biological insights relevant to energy and environmental research. Approximately 1,200 scientist-users take advantage of JGI’s capabilities for their research every year.

    LBNL Molecular Foundry

    The LBNL Molecular Foundry is a multidisciplinary nanoscience research facility. Its seven research facilities focus on Imaging and Manipulation of Nanostructures; Nanofabrication; Theory of Nanostructured Materials; Inorganic Nanostructures; Biological Nanostructures; Organic and Macromolecular Synthesis; and Electron Microscopy. Approximately 700 scientist-users make use of these facilities in their research every year.

    The DOE’s NERSC National Energy Research Scientific Computing Center is the scientific computing facility that provides large-scale computing for the DOE’s unclassified research programs. Its current systems provide over 3 billion computational hours annually. NERSC supports 6,000 scientific users from universities, national laboratories, and industry.

    DOE’s NERSC National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory.

    Cray Cori II supercomputer at National Energy Research Scientific Computing Center at DOE’s Lawrence Berkeley National Laboratory, named after Gerty Cori, the first American woman to win a Nobel Prize in science.

    NERSC Hopper Cray XE6 supercomputer.

    NERSC Cray XC30 Edison supercomputer.

    NERSC GPFS for Life Sciences.

    The Genepool system is a cluster dedicated to the DOE Joint Genome Institute’s computing needs. Denovo is a smaller test system for Genepool that is primarily used by NERSC staff to test new system configurations and software.

    NERSC PDSF computer cluster in 2003.

    PDSF is a networked distributed computing cluster designed primarily to meet the detector simulation and data analysis requirements of physics, astrophysics and nuclear science collaborations.

    Cray Shasta Perlmutter SC18 AMD Epyc Nvidia pre-exascale supercomputer.

    NERSC is a DOE Office of Science User Facility.

    The DOE’s Energy Science Network is a high-speed network infrastructure optimized for very large scientific data flows. ESNet provides connectivity for all major DOE sites and facilities, and the network transports roughly 35 petabytes of traffic each month.

    Berkeley Lab is the lead partner in the DOE’s Joint Bioenergy Institute (JBEI), located in Emeryville, California. Other partners are the DOE’s Sandia National Laboratory, the University of California (UC) campuses of Berkeley and Davis, the Carnegie Institution for Science , and DOE’s Lawrence Livermore National Laboratory (LLNL). JBEI’s primary scientific mission is to advance the development of the next generation of biofuels – liquid fuels derived from the solar energy stored in plant biomass. JBEI is one of three new U.S. Department of Energy (DOE) Bioenergy Research Centers (BRCs).

    Berkeley Lab has a major role in two DOE Energy Innovation Hubs. The mission of the Joint Center for Artificial Photosynthesis (JCAP) is to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide. The lead institution for JCAP is the California Institute of Technology and Berkeley Lab is the second institutional center. The mission of the Joint Center for Energy Storage Research (JCESR) is to create next-generation battery technologies that will transform transportation and the electricity grid. DOE’s Argonne National Laboratory leads JCESR and Berkeley Lab is a major partner.

     
  • richardmitnick 10:02 pm on December 1, 2022 Permalink | Reply
    Tags: "From Qubits to Potential Cancer Treatments - Laser Upgrade Opens New Research Possibilities", , A new addition to the Berkeley Lab Laser Accelerator Center means researchers can explore extreme plasmas and radiation biology and materials for quantum computers and beyond., , , , , , , The DOE’s Lawrence Berkeley National Laboratory   

    From The DOE’s Lawrence Berkeley National Laboratory: “From Qubits to Potential Cancer Treatments – Laser Upgrade Opens New Research Possibilities” 

    From The DOE’s Lawrence Berkeley National Laboratory

    12.1.22
    Lauren Biron

    A new addition to the Berkeley Lab Laser Accelerator Center means researchers can explore extreme plasmas and radiation biology and materials for quantum computers and beyond.

    1
    Kei Nakamura, Lieselotte Obst-Huebl, and Anya Jewell (from left) show a radiochromic film that has been hit by the proton beam at BELLA’s iP2. (Credit: Marilyn Sargent/Berkeley Lab)

    Things are looking brighter than ever at the Berkeley Lab Laser Accelerator (BELLA) Center [below] run by the Department of Energy’s Lawrence Berkeley National Laboratory. A recently completed upgrade will expand the center’s capabilities into new areas, including studies of particle acceleration, extremely hot plasmas, cancer treatment techniques, and materials for quantum science.

    The new experimental area, known as Interaction Point 2 (iP2), will use the lab’s petawatt laser to provide intense pulses of protons and ions – building on the center’s expertise in accelerating electrons and lower-energy protons.

    “At iP2, we can focus the laser to a very small spot size, which makes it about 1,000 times brighter,” said Eric Esarey, director of the BELLA Center. “Creating this extreme intensity opens up a wide range of physics research and potential applications, like a new technique that could revolutionize radiotherapy for cancer treatment.”

    Following two years of installation, researchers successfully commissioned iP2 and produced high-energy ion beams this fall. The upgrade expands opportunities for scientists who use DOE’s LaserNetUS, a collection of laser facilities across the United States.

    “We’re ushering in a new era of high-intensity laser experiments,” said Cameron Geddes, director of Berkeley Lab’s Accelerator Technology and Applied Physics (ATAP) Division, which manages the BELLA Center. “This is a great milestone that broadens the whole science reach of the facility and the possibilities for our field.”

    The upgrade, funded through DOE’s Fusion Energy Sciences program, is the second completed at BELLA in 2022. This summer, teams also finished adding a second beamline [see https://sciencesprings.wordpress.com/2022/09/07/from-the-does-lawrence-berkeley-national-laboratory-upgraded-laser-facility-paves-the-way-for-next-generation-particle-accelerators/ ] where researchers plan to stack laser-powered modules to make small, high-energy electron accelerators.

    3
    Postdoctoral researcher Sahel Hakimi and graduate student Jared De Chant (from left) make adjustments to iP2 at BELLA. The new facility will expand research capabilities for Berkeley Lab and the LaserNetUS community. (Credit: Marilyn Sargent/Berkeley Lab)

    Cancer cells, qubits, and magnetic tornadoes

    Researchers already have a number of experiments lined up at iP2 that will take advantage of the laser’s high-energy and its ability to fire quickly (about once per second), delivering particle blasts that last femtoseconds (quadrillionths of a second). The system at iP2 can also focus the laser down to a minuscule size: about 3 microns, a fraction of the width of a human hair.

    One of the first experiments will explore what’s known as the FLASH effect, a phenomenon where radiation delivered by protons in an intense, short burst can kill cancer cells while sparing the healthy tissue nearby. In 2020, researchers at BELLA’s original interaction point (iP1) saw promising results looking at thin layers of cells in Petri dishes. They now plan to use protons with more energy to study the FLASH effect in thicker skin and tumor tissue.

    “We are investigating the potential of using these laser-accelerated protons for radiotherapy, which would require significantly higher proton energies to penetrate deep into the human body,” said Lieselotte Obst-Huebl, a research scientist in ATAP at Berkeley Lab who led the installation work at iP2. “This is basic research and is in its infancy, but it could potentially someday be a powerful tool in our toolkit.”

    Other groups are interested in using the facility to create and test new materials. These could be useful in making qubits, the building blocks of quantum computers, or in high-temperature superconductors, which would carry electricity efficiently without needing to operate in extreme cold. Researchers plan to fire the laser into thin sheets of material such as boron or gold, accelerating the resulting ions and embedding them in targets like silicon wafers or synthetic diamonds. They can then study how these doped materials respond and see whether they have any helpful properties.

    Teams are also planning to explore an area known as high energy density science: the study of matter under extreme pressure or density. Among them are certain plasmas, gas-like collections of electrically charged particles. Understanding these incredibly hot (relativistic) plasmas made in the lab could help advance fusion energy sciences, studies in astrophysics (like how stars are born), and the next generation of particle accelerators.

    3
    This simulation shows magnetic vortex acceleration. The laser pulse comes from the left and passes through a target that is just thick and dense enough to absorb nearly all of its energy. On the other side, it generates a plasma channel with strong magnetic fields that can accelerate an intense proton beam. (Credit: Sahel Hakimi, Axel Huebl, Stepan Bulanov/Berkeley Lab)

    Scientists at BELLA are already combining lasers and plasmas to reduce the size of particle accelerators for lightweight particles such as electrons. New techniques could further improve their power. Researchers will set up experiments at iP2 to study one method called magnetic vortex acceleration (MVA), which could produce more energetic proton and ion beams. They’ll test out special thin, foam-like targets that will interact with the laser to generate rotating magnetic fields that swirl through the plasma like a tornado.

    “With MVA, the idea is to absorb as much laser energy as possible into the electrons to create this magnetic vortex through the target that then accelerates the ions with it,” Obst-Huebl said. Boosting particles to higher energies in a shorter distance means new applications and potentially lower-cost ways to explore the fundamental workings of our universe.

    Simulations and expansions

    Most of the processes studied at BELLA take place over incredibly short periods: around one millionth of one millionth of a second. As a result, it can be difficult to physically measure every aspect, so scientists need to pair their experiments with simulations on some of the most powerful computers in the world to better understand what’s happening.

    “It’s complicated physics, and 3D simulations of this type of experiment are relatively new,” said Jean-Luc Vay, head of the ATAP Accelerator Modeling Program at Berkeley Lab. “We’re ready to do the simulations on new exascale computers in support of iP2 experiments.”

    Computer modeling was also key to successfully installing the iP2 upgrade during the pandemic, when fewer people were on site. Simulations helped the team plan the experimental setup to measure key plasma and beam properties, and can be used to prepare for future experiments at iP2.

    “We have this nice setup, but we don’t yet have all the diagnostic tools,” said Axel Huebl, a computational physicist in ATAP at Berkeley Lab. “So, in parallel with the experiments, we’re getting ourselves ready to build a fully digital twin so that we can measure as many virtual diagnostics in the simulations as possible.”

    The simulations will let researchers look at detailed plasma behaviors at any timescale, which they can then compare with measurements from experiments. The results will prove or improve scientists’ best models and feed into other areas of science.

    4
    Several researchers in Berkeley Lab’s ATAP Division look over the beam profile captured on radiochromic film at the BELLA Center. From left, they are Lieselotte Obst-Huebl, Axel Huebl, Sahel Hakimi, SULI intern Anya Jewell, and Kei Nakamura. (Credit: Marilyn Sargent/Berkeley Lab)

    Researchers can submit proposals through LaserNetUS to conduct research at the BELLA Center and take advantage of the expansion at iP2.

    “People can bring detectors and new targets and get supported by our team here,” said Kei Nakamura, the associate deputy director for experiments at the BELLA Center. “They can propose pure acceleration experiments or applications of accelerated particle beams. Topics we don’t even know now will be happening in the future.”

    This work was funded by the Department of Energy (DOE), Office of Science, Fusion Energy Sciences program.

    The National Energy Research Scientific Computing Center is a DOE Office of Science User Facility.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LBNL campus

    Bringing Science Solutions to the World

    In the world of science, The Lawrence Berkeley National Laboratory (Berkeley Lab) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the The National Academy of Sciences, one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the The National Academy of Engineering, and three of our scientists have been elected into The Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

    Berkeley Lab is a member of the national laboratory system supported by The DOE through its Office of Science. It is managed by the University of California and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above The University of California-Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

    Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a University of California-Berkeley physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.

    History

    1931–1941

    The laboratory was founded on August 26, 1931, by Ernest Lawrence, as the Radiation Laboratory of the University of California-Berkeley, associated with the Physics Department. It centered physics research around his new instrument, the cyclotron, a type of particle accelerator for which he was awarded the Nobel Prize in Physics in 1939.

    LBNL 88 inch cyclotron.

    LBNL 88 inch cyclotron.

    Throughout the 1930s, Lawrence pushed to create larger and larger machines for physics research, courting private philanthropists for funding. He was the first to develop a large team to build big projects to make discoveries in basic research. Eventually these machines grew too large to be held on the university grounds, and in 1940 the lab moved to its current site atop the hill above campus. Part of the team put together during this period includes two other young scientists who went on to establish large laboratories; J. Robert Oppenheimer founded The DOE’s Los Alamos Laboratory, and Robert Wilson founded The DOE’s Fermi National Accelerator Laboratory.

    1942–1950

    Leslie Groves visited Lawrence’s Radiation Laboratory in late 1942 as he was organizing the Manhattan Project, meeting J. Robert Oppenheimer for the first time. Oppenheimer was tasked with organizing the nuclear bomb development effort and founded today’s Los Alamos National Laboratory to help keep the work secret. At the RadLab, Lawrence and his colleagues developed the technique of electromagnetic enrichment of uranium using their experience with cyclotrons. The “calutrons” (named after the University) became the basic unit of the massive Y-12 facility in Oak Ridge, Tennessee. Lawrence’s lab helped contribute to what have been judged to be the three most valuable technology developments of the war (the atomic bomb, proximity fuse, and radar). The cyclotron, whose construction was stalled during the war, was finished in November 1946. The Manhattan Project shut down two months later.

    1951–2018

    After the war, the Radiation Laboratory became one of the first laboratories to be incorporated into the Atomic Energy Commission (AEC) (now The Department of Energy . The most highly classified work remained at Los Alamos, but the RadLab remained involved. Edward Teller suggested setting up a second lab similar to Los Alamos to compete with their designs. This led to the creation of an offshoot of the RadLab (now The DOE’s Lawrence Livermore National Laboratory) in 1952. Some of the RadLab’s work was transferred to the new lab, but some classified research continued at Berkeley Lab until the 1970s, when it became a laboratory dedicated only to unclassified scientific research.

    Shortly after the death of Lawrence in August 1958, the UC Radiation Laboratory (both branches) was renamed the Lawrence Radiation Laboratory. The Berkeley location became the Lawrence Berkeley Laboratory in 1971, although many continued to call it the RadLab. Gradually, another shortened form came into common usage, LBNL. Its formal name was amended to Ernest Orlando Lawrence Berkeley National Laboratory in 1995, when “National” was added to the names of all DOE labs. “Ernest Orlando” was later dropped to shorten the name. Today, the lab is commonly referred to as “Berkeley Lab”.

    The Alvarez Physics Memos are a set of informal working papers of the large group of physicists, engineers, computer programmers, and technicians led by Luis W. Alvarez from the early 1950s until his death in 1988. Over 1700 memos are available on-line, hosted by the Laboratory.

    The lab remains owned by the Department of Energy , with management from the University of California. Companies such as Intel were funding the lab’s research into computing chips.

    Science mission

    From the 1950s through the present, Berkeley Lab has maintained its status as a major international center for physics research, and has also diversified its research program into almost every realm of scientific investigation. Its mission is to solve the most pressing and profound scientific problems facing humanity, conduct basic research for a secure energy future, understand living systems to improve the environment, health, and energy supply, understand matter and energy in the universe, build and safely operate leading scientific facilities for the nation, and train the next generation of scientists and engineers.

    The Laboratory’s 20 scientific divisions are organized within six areas of research: Computing Sciences; Physical Sciences; Earth and Environmental Sciences; Biosciences; Energy Sciences; and Energy Technologies. Berkeley Lab has six main science thrusts: advancing integrated fundamental energy science; integrative biological and environmental system science; advanced computing for science impact; discovering the fundamental properties of matter and energy; accelerators for the future; and developing energy technology innovations for a sustainable future. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab tradition that continues today.

    Berkeley Lab operates five major National User Facilities for the DOE Office of Science:

    The Advanced Light Source (ALS) is a synchrotron light source with 41 beam lines providing ultraviolet, soft x-ray, and hard x-ray light to scientific experiments.

    The DOE’s Lawrence Berkeley National Laboratory Advanced Light Source.
    The ALS is one of the world’s brightest sources of soft x-rays, which are used to characterize the electronic structure of matter and to reveal microscopic structures with elemental and chemical specificity. About 2,500 scientist-users carry out research at ALS every year. Berkeley Lab is proposing an upgrade of ALS which would increase the coherent flux of soft x-rays by two-three orders of magnitude.

    Berkeley Lab Laser Accelerator (BELLA) Center

    The DOE Joint Genome Institute supports genomic research in support of the DOE missions in alternative energy, global carbon cycling, and environmental management. The JGI’s partner laboratories are Berkeley Lab, DOE’s Lawrence Livermore National Laboratory, DOE’s Oak Ridge National Laboratory (ORNL), DOE’s Pacific Northwest National Laboratory (PNNL), and the HudsonAlpha Institute for Biotechnology . The JGI’s central role is the development of a diversity of large-scale experimental and computational capabilities to link sequence to biological insights relevant to energy and environmental research. Approximately 1,200 scientist-users take advantage of JGI’s capabilities for their research every year.

    LBNL Molecular Foundry

    The LBNL Molecular Foundry is a multidisciplinary nanoscience research facility. Its seven research facilities focus on Imaging and Manipulation of Nanostructures; Nanofabrication; Theory of Nanostructured Materials; Inorganic Nanostructures; Biological Nanostructures; Organic and Macromolecular Synthesis; and Electron Microscopy. Approximately 700 scientist-users make use of these facilities in their research every year.

    The DOE’s NERSC National Energy Research Scientific Computing Center is the scientific computing facility that provides large-scale computing for the DOE’s unclassified research programs. Its current systems provide over 3 billion computational hours annually. NERSC supports 6,000 scientific users from universities, national laboratories, and industry.

    DOE’s NERSC National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory.

    Cray Cori II supercomputer at National Energy Research Scientific Computing Center at DOE’s Lawrence Berkeley National Laboratory, named after Gerty Cori, the first American woman to win a Nobel Prize in science.

    NERSC Hopper Cray XE6 supercomputer.

    NERSC Cray XC30 Edison supercomputer.

    NERSC GPFS for Life Sciences.

    The Genepool system is a cluster dedicated to the DOE Joint Genome Institute’s computing needs. Denovo is a smaller test system for Genepool that is primarily used by NERSC staff to test new system configurations and software.

    NERSC PDSF computer cluster in 2003.

    PDSF is a networked distributed computing cluster designed primarily to meet the detector simulation and data analysis requirements of physics, astrophysics and nuclear science collaborations.

    Cray Shasta Perlmutter SC18 AMD Epyc Nvidia pre-exascale supercomputer.

    NERSC is a DOE Office of Science User Facility.

    The DOE’s Energy Science Network is a high-speed network infrastructure optimized for very large scientific data flows. ESNet provides connectivity for all major DOE sites and facilities, and the network transports roughly 35 petabytes of traffic each month.

    Berkeley Lab is the lead partner in the DOE’s Joint Bioenergy Institute (JBEI), located in Emeryville, California. Other partners are the DOE’s Sandia National Laboratory, the University of California (UC) campuses of Berkeley and Davis, the Carnegie Institution for Science , and DOE’s Lawrence Livermore National Laboratory (LLNL). JBEI’s primary scientific mission is to advance the development of the next generation of biofuels – liquid fuels derived from the solar energy stored in plant biomass. JBEI is one of three new U.S. Department of Energy (DOE) Bioenergy Research Centers (BRCs).

    Berkeley Lab has a major role in two DOE Energy Innovation Hubs. The mission of the Joint Center for Artificial Photosynthesis (JCAP) is to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide. The lead institution for JCAP is the California Institute of Technology and Berkeley Lab is the second institutional center. The mission of the Joint Center for Energy Storage Research (JCESR) is to create next-generation battery technologies that will transform transportation and the electricity grid. DOE’s Argonne National Laboratory leads JCESR and Berkeley Lab is a major partner.

     
  • richardmitnick 11:47 am on December 1, 2022 Permalink | Reply
    Tags: "Q&A - Recycling electronic waste could be a golden opportunity", , By 2033 more than 1 billion laptops and cellphones and other electronic devices could be entering the U.S. waste stream each year., , The DOE’s Lawrence Berkeley National Laboratory, The work shows electronic waste could also represent a source of valuable metals namely gold that could benefit the future economy by offsetting increasing demand for virgin mining.   

    From The DOE’s Lawrence Berkeley National Laboratory: “Q&A – Recycling electronic waste could be a golden opportunity” 

    From The DOE’s Lawrence Berkeley National Laboratory

    12.1.22
    Will Ferguson

    1
    A new study projects a dramatic increase in the amount and complexity of U.S. waste electronics in the decade ahead. (Credit: Adam Smigielski/istock)

    By 2033, more than 1 billion laptops, cellphones, and other electronic devices could be entering the U.S. waste stream each year.

    That’s according to a new study in Nature Sustainability [below] that projects a dramatic increase in the amount and complexity of U.S. waste electronics in the decade ahead. If not properly recycled, this influx represents a growing cause for environmental concern as it contains many toxic materials, according to study coauthors Peng Peng and Arman Shehabi, two scientists at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab).

    However, with better end-of-life management, Peng and Shehabi’s work shows electronic waste could also represent a source of valuable metals, namely gold, that could benefit the future economy by offsetting increasing demand for virgin mining.

    2
    From left: Arman Shehabi; Peng Peng (Credit: Berkeley Lab)

    In this Q&A, the researchers discuss the scale of the U.S. electronic waste problem as well as the potential of diverse management solutions across the country.

    Peng Peng is a research scientist in the Sustainable Energy Systems Group in the Energy Analysis and Environmental Impacts (EAEI) Division at Berkeley Lab.

    Arman Shehabi is a staff scientist in the EAEI Division of the Energy Technologies Area at Berkeley Lab.

    Q. How big of a problem is electronic waste now?

    Arman: The amount of electronics that are being discarded is increasing rapidly and in some ways that makes sense if you think about it intuitively. We just have more and more electronic devices in our lives. Many of them have short lifetimes.

    One of the big issues is we don’t really have a system in place or the infrastructure in place to properly take these electronics apart and reuse the different components that are in them, so they are really just being landfilled or shipped off to another country to recycle. A lot of times that recycling process is not done with proper health regulations and could be exposing people to some of the toxic materials in those electronics.

    In our estimate, we saw that just in the U.S. alone projections were showing that there is a ballpark of a billion devices that will be discarded every year in the U.S. by the end of the decade.

    Peng: If you look at the increase in the amount of electronics from like, say 2010 to right now, the amount being generated in a global setting has doubled. The idea of a circular economy, that is finding ways to reuse the valuable materials in waste electronics, has been gaining a lot of interest recently, but one of the problems from a recycling perspective is that we don’t really have good predictions of what the composition of that waste will be in the future because it is changing pretty quickly. There is lag between the type of devices being manufactured and the type of devices going into the waste stream which makes it difficult to predict the type of devices that will need to be recycled.

    Q. How could the results of your study help address the electronic waste problem?

    Peng: There are a lot of uncertainties associated with it, but what we showed is that the amount of gold that is essentially thrown away every year in electronics in the U.S. could be equivalent to the amount of gold that is mined in the country.

    We specifically looked at the value of extracting gold from electronics because gold is the most valuable metal you can get from them.

    Arman: For our analysis we compiled various data sources to look at the sales of different electronics here in the U.S. We specifically focused on consumer electronics just because on a number basis that represents the largest stream of waste. We tied the projected growth in electronic sales to lifetime estimates for different electronic devices and studies that did tear downs of different electronics to get composition breakdowns of the materials in those electronics. And from that we were able to connect different electronic devices with different size integrated circuits, and then those different size integrated circuits with the heavy metal or gold composition of the circuitry.

    Peng: Another important part of the paper was that we showed if theoretically in the United States all the virgin mining refineries were to start refining metals out of electronics, then they would have the productive capability of doing it. One potential problem however is the majority of U.S. gold refining facilities are located primarily in Nevada and Alaska. Theoretically, we found that we could transport all the metals recovered from waste electronics to these refineries in Nevada or Alaska, but shipping them from all over the United States to those places actually creates a lot of economic and environmental burden. Our work shows that if we were to focus on building facilities across the nation to recover metals from these waste electronics in more diverse locations, we could actually reduce the environmental and economic burden associating with this transportation.

    Q. Looking forward, what needs to be done to make your solution possible?

    Peng: One of the issues we had while doing this research is that the disparities between different studies looking at what was in these electronics were rather large. So, depending on who did the experiments and what kind of brand, year of electronic used, etc., there could be dramatic differences between the amount of printed circuit board, plastics within the electronics, and gold or other metals within them. To help us narrow down this uncertainty, it would be really helpful if electronic manufacturers would include the composition of what is in their electronics without exposing their intellectual property. Recyclers could then understand how much metal is in these electronics.

    Arman: If each electronic device had sort of an ingredients label that could tell us what is in them it would make it easier to compile them and move them around the country to the ideal location for them to be refined, based on their content. Having manufacturers working a bit closer with the refiners from end to end on this process would also make it easier to make sure that they have the capacity to process the material and are optimizing their recycling facilities. Another important area where there is an opportunity for future research is in terms of the type of refining that is being done now. Most of it is based on virgin mining and researchers need to continue making progress on more novel extraction techniques that might be better positioned for electronic recycling.

    Q. What do you expect to happen if nothing else is done to address this issue?

    Peng: So, I think if nothing is going to be done for this problem, we are definitely going to be facing a shortage of critical metal materials from virgin resources. And the environmental problem associated with waste electronics will just grow more and more complicated because all of these different electronic types are a lot smaller and more dynamic than they were 10 years ago. I think this could potentially be a very serious problem.

    Arman: I think if nothing changes, we are going to see an increase in the amount of electronic waste that is generated in the United States, and without the infrastructure to grow accordingly, that electronic waste is probably going to be shipped overseas or to other countries and that puts reliance on other countries to take care of our electronic waste. We also would be throwing away lots of valuable materials or just giving them away. I think as we are moving more towards a digital society where we have more and more electronics in our everyday lives, the materials used to make electronics are going to become in higher and higher demand. So, if we can find a better way of extracting and keeping parts of those materials at their end-of-life, it is going to help allow the economy to grow while minimizing the strain on the environment.

    Science paper:
    Nature Sustainability
    See the science paper for instructive material with images.

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LBNL campus

    Bringing Science Solutions to the World

    In the world of science, The Lawrence Berkeley National Laboratory (Berkeley Lab) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the The National Academy of Sciences, one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the The National Academy of Engineering, and three of our scientists have been elected into The Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

    Berkeley Lab is a member of the national laboratory system supported by The DOE through its Office of Science. It is managed by the University of California and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above The University of California-Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

    Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a University of California-Berkeley physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.

    History

    1931–1941

    The laboratory was founded on August 26, 1931, by Ernest Lawrence, as the Radiation Laboratory of the University of California-Berkeley, associated with the Physics Department. It centered physics research around his new instrument, the cyclotron, a type of particle accelerator for which he was awarded the Nobel Prize in Physics in 1939.

    LBNL 88 inch cyclotron.

    LBNL 88 inch cyclotron.

    Throughout the 1930s, Lawrence pushed to create larger and larger machines for physics research, courting private philanthropists for funding. He was the first to develop a large team to build big projects to make discoveries in basic research. Eventually these machines grew too large to be held on the university grounds, and in 1940 the lab moved to its current site atop the hill above campus. Part of the team put together during this period includes two other young scientists who went on to establish large laboratories; J. Robert Oppenheimer founded The DOE’s Los Alamos Laboratory, and Robert Wilson founded The DOE’s Fermi National Accelerator Laboratory.

    1942–1950

    Leslie Groves visited Lawrence’s Radiation Laboratory in late 1942 as he was organizing the Manhattan Project, meeting J. Robert Oppenheimer for the first time. Oppenheimer was tasked with organizing the nuclear bomb development effort and founded today’s Los Alamos National Laboratory to help keep the work secret. At the RadLab, Lawrence and his colleagues developed the technique of electromagnetic enrichment of uranium using their experience with cyclotrons. The “calutrons” (named after the University) became the basic unit of the massive Y-12 facility in Oak Ridge, Tennessee. Lawrence’s lab helped contribute to what have been judged to be the three most valuable technology developments of the war (the atomic bomb, proximity fuse, and radar). The cyclotron, whose construction was stalled during the war, was finished in November 1946. The Manhattan Project shut down two months later.

    1951–2018

    After the war, the Radiation Laboratory became one of the first laboratories to be incorporated into the Atomic Energy Commission (AEC) (now The Department of Energy . The most highly classified work remained at Los Alamos, but the RadLab remained involved. Edward Teller suggested setting up a second lab similar to Los Alamos to compete with their designs. This led to the creation of an offshoot of the RadLab (now The DOE’s Lawrence Livermore National Laboratory) in 1952. Some of the RadLab’s work was transferred to the new lab, but some classified research continued at Berkeley Lab until the 1970s, when it became a laboratory dedicated only to unclassified scientific research.

    Shortly after the death of Lawrence in August 1958, the UC Radiation Laboratory (both branches) was renamed the Lawrence Radiation Laboratory. The Berkeley location became the Lawrence Berkeley Laboratory in 1971, although many continued to call it the RadLab. Gradually, another shortened form came into common usage, LBNL. Its formal name was amended to Ernest Orlando Lawrence Berkeley National Laboratory in 1995, when “National” was added to the names of all DOE labs. “Ernest Orlando” was later dropped to shorten the name. Today, the lab is commonly referred to as “Berkeley Lab”.

    The Alvarez Physics Memos are a set of informal working papers of the large group of physicists, engineers, computer programmers, and technicians led by Luis W. Alvarez from the early 1950s until his death in 1988. Over 1700 memos are available on-line, hosted by the Laboratory.

    The lab remains owned by the Department of Energy , with management from the University of California. Companies such as Intel were funding the lab’s research into computing chips.

    Science mission

    From the 1950s through the present, Berkeley Lab has maintained its status as a major international center for physics research, and has also diversified its research program into almost every realm of scientific investigation. Its mission is to solve the most pressing and profound scientific problems facing humanity, conduct basic research for a secure energy future, understand living systems to improve the environment, health, and energy supply, understand matter and energy in the universe, build and safely operate leading scientific facilities for the nation, and train the next generation of scientists and engineers.

    The Laboratory’s 20 scientific divisions are organized within six areas of research: Computing Sciences; Physical Sciences; Earth and Environmental Sciences; Biosciences; Energy Sciences; and Energy Technologies. Berkeley Lab has six main science thrusts: advancing integrated fundamental energy science; integrative biological and environmental system science; advanced computing for science impact; discovering the fundamental properties of matter and energy; accelerators for the future; and developing energy technology innovations for a sustainable future. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab tradition that continues today.

    Berkeley Lab operates five major National User Facilities for the DOE Office of Science:

    The Advanced Light Source (ALS) is a synchrotron light source with 41 beam lines providing ultraviolet, soft x-ray, and hard x-ray light to scientific experiments.

    The DOE’s Lawrence Berkeley National Laboratory Advanced Light Source.
    The ALS is one of the world’s brightest sources of soft x-rays, which are used to characterize the electronic structure of matter and to reveal microscopic structures with elemental and chemical specificity. About 2,500 scientist-users carry out research at ALS every year. Berkeley Lab is proposing an upgrade of ALS which would increase the coherent flux of soft x-rays by two-three orders of magnitude.

    Berkeley Lab Laser Accelerator (BELLA) Center

    The DOE Joint Genome Institute supports genomic research in support of the DOE missions in alternative energy, global carbon cycling, and environmental management. The JGI’s partner laboratories are Berkeley Lab, DOE’s Lawrence Livermore National Laboratory, DOE’s Oak Ridge National Laboratory (ORNL), DOE’s Pacific Northwest National Laboratory (PNNL), and the HudsonAlpha Institute for Biotechnology . The JGI’s central role is the development of a diversity of large-scale experimental and computational capabilities to link sequence to biological insights relevant to energy and environmental research. Approximately 1,200 scientist-users take advantage of JGI’s capabilities for their research every year.

    LBNL Molecular Foundry

    The LBNL Molecular Foundry is a multidisciplinary nanoscience research facility. Its seven research facilities focus on Imaging and Manipulation of Nanostructures; Nanofabrication; Theory of Nanostructured Materials; Inorganic Nanostructures; Biological Nanostructures; Organic and Macromolecular Synthesis; and Electron Microscopy. Approximately 700 scientist-users make use of these facilities in their research every year.

    The DOE’s NERSC National Energy Research Scientific Computing Center is the scientific computing facility that provides large-scale computing for the DOE’s unclassified research programs. Its current systems provide over 3 billion computational hours annually. NERSC supports 6,000 scientific users from universities, national laboratories, and industry.

    DOE’s NERSC National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory.

    Cray Cori II supercomputer at National Energy Research Scientific Computing Center at DOE’s Lawrence Berkeley National Laboratory, named after Gerty Cori, the first American woman to win a Nobel Prize in science.

    NERSC Hopper Cray XE6 supercomputer.

    NERSC Cray XC30 Edison supercomputer.

    NERSC GPFS for Life Sciences.

    The Genepool system is a cluster dedicated to the DOE Joint Genome Institute’s computing needs. Denovo is a smaller test system for Genepool that is primarily used by NERSC staff to test new system configurations and software.

    NERSC PDSF computer cluster in 2003.

    PDSF is a networked distributed computing cluster designed primarily to meet the detector simulation and data analysis requirements of physics, astrophysics and nuclear science collaborations.

    Cray Shasta Perlmutter SC18 AMD Epyc Nvidia pre-exascale supercomputer.

    NERSC is a DOE Office of Science User Facility.

    The DOE’s Energy Science Network is a high-speed network infrastructure optimized for very large scientific data flows. ESNet provides connectivity for all major DOE sites and facilities, and the network transports roughly 35 petabytes of traffic each month.

    Berkeley Lab is the lead partner in the DOE’s Joint Bioenergy Institute (JBEI), located in Emeryville, California. Other partners are the DOE’s Sandia National Laboratory, the University of California (UC) campuses of Berkeley and Davis, the Carnegie Institution for Science , and DOE’s Lawrence Livermore National Laboratory (LLNL). JBEI’s primary scientific mission is to advance the development of the next generation of biofuels – liquid fuels derived from the solar energy stored in plant biomass. JBEI is one of three new U.S. Department of Energy (DOE) Bioenergy Research Centers (BRCs).

    Berkeley Lab has a major role in two DOE Energy Innovation Hubs. The mission of the Joint Center for Artificial Photosynthesis (JCAP) is to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide. The lead institution for JCAP is the California Institute of Technology and Berkeley Lab is the second institutional center. The mission of the Joint Center for Energy Storage Research (JCESR) is to create next-generation battery technologies that will transform transportation and the electricity grid. DOE’s Argonne National Laboratory leads JCESR and Berkeley Lab is a major partner.

     
  • richardmitnick 9:50 am on November 29, 2022 Permalink | Reply
    Tags: "To Battle Climate Change Scientists Tap Into Carbon-Hungry Microorganisms for Clues", Advancing artificial photosynthesis with carbon-hungry copper, , , , , , , , Converting carbon dioxide (CO2) into liquid acetate - a key ingredient in “liquid sunlight” or solar fuels produced through artificial photosynthesis., Copper’s talent for converting carbon into various useful products was first discovered in the 1970s., Finding synthetic electrocatalysts that work as efficiently as bacteria’s natural enzymatic catalysts has been challenging., New technique could fast-track future carbon-free solar fuels., The DOE’s Lawrence Berkeley National Laboratory,   

    From The DOE’s Lawrence Berkeley National Laboratory: “To Battle Climate Change Scientists Tap Into Carbon-Hungry Microorganisms for Clues” 

    From The DOE’s Lawrence Berkeley National Laboratory

    11.29.22
    Theresa Duque

    1
    Berkeley Lab scientists have developed a nature-inspired technique for converting carbon dioxide into solar fuels. (Credit: Shutterstock/3rdtimeluckystudio)

    New technique could fast-track future carbon-free solar fuels.

    Scientists at Lawrence Berkeley National Laboratory have demonstrated a new technique, modeled after a metabolic process found in some bacteria, for converting carbon dioxide (CO2) into liquid acetate, a key ingredient in “liquid sunlight” or solar fuels produced through artificial photosynthesis.

    The new approach, reported in Nature Catalysis [below], could help advance carbon-free alternatives to fossil fuels linked to global warming and climate change.

    The work is also the first demonstration of a device that mimics how these bacteria naturally synthesize acetate from electrons and CO2.

    1
    Exploration of the bio-analogous asymmetric C–C coupling mechanism in tandem CO2 electroreduction. Credit: Nature

    “What’s amazing is that we learned how to selectively convert carbon dioxide into acetate by mimicking how these little microorganisms do it naturally,” said senior author Peidong Yang, who holds titles of senior faculty scientist in Berkeley Lab’s Materials Sciences Division and professor of chemistry and materials science and engineering at The University of California-Berkeley.

    For decades, researchers have known that a metabolic pathway in some bacteria allows them to digest electrons and CO2 to produce acetate, a reaction driven by the electrons. The pathway breaks CO2 molecules down into two different or “asymmetric” chemical groups: a carbonyl group (CO) or a methyl group (CH3). Enzymes in this reaction pathway enable the carbons in CO and CH3 to bond or “couple,” which then triggers another catalytic reaction that produces acetate as the final product.

    Researchers in the field of artificial photosynthesis have wanted to develop devices that mimic the pathway’s chemistry – called asymmetric carbon-carbon coupling – but finding synthetic electrocatalysts that work as efficiently as bacteria’s natural enzymatic catalysts has been challenging.

    “But we thought, if these microorganisms can do it, one should be able to mimic their chemistry in the lab,” Yang said.

    Advancing artificial photosynthesis with carbon-hungry copper

    Copper’s talent for converting carbon into various useful products was first discovered in the 1970s. Based on those previous studies, Yang and his team reasoned that artificial photosynthesis devices equipped with a copper catalyst should be able to convert CO2 and water into methyl and carbonyl groups, and then turn these products into acetate. So for one experiment, Yang and team designed a model device with a copper surface; then, they exposed the copper surface to liquid methyl iodide (CH3I) and CO gas, and applied an electrical bias to the system.

    The researchers hypothesized that CO would stick to the copper surface, triggering the asymmetric coupling of CO and CH3 groups to produce acetate. Isotope-labelled CH3I was used in the experiments in order to track the reaction pathway and final products. (An isotope is an atom with more or fewer neutrons (uncharged particles) in its nucleus than other atoms of an element.)

    And they were right. Chemical analytical experiments conducted in Yang’s lab revealed that copper’s pairing of carbonyl and methyl groups produced not only acetate but other valuable liquids, including ethanol and acetone. The isotopic tracking allowed the researchers to confirm that the acetate was formed through the combination of the CO and CH3.

    2
    Electron microscopy images of 7-nanometer-diameter copper nanoparticles (shown left) and silver nanoparticles (center). At right: Electron microscopy image of ultrathin material synthesized from copper and silver nanoparticles, which could potentially be coupled with light-absorbing silicon nanowires for the design of efficient artificial photosynthesis systems. (Credit: Peidong Yang/Berkeley Lab; courtesy of Nature Catalysis)

    In another experiment, the researchers synthesized an ultrathin material from a solution of copper and silver nanoparticles, each one just 7 nanometers (billionths of a meter) in diameter. The researchers then designed another model device, this time layered with the nanoparticle thin material.

    As expected, the electrical bias triggered a reaction, driving the silver nanoparticles to convert CO2 into a carbonyl group, while the copper nanoparticles transformed CO2 into a methyl group. Subsequent analyses in the Yang lab revealed that another reaction (the coveted asymmetric coupling) between CO and CH3 synthesized liquid products such as acetate.

    Through electron microscopy experiments at the Molecular Foundry, the researchers learned that the copper and silver nanoparticles are in close contact with each other, forming tandem systems, and that the copper nanoparticles served as the catalytic center for the asymmetric coupling.

    Yang said that these copper-silver nanoparticles could potentially be coupled with light-absorbing silicon nanowires in the future design of efficient artificial photosynthesis systems.

    In 2015, Yang co-led a study [Nano Letters (below)] that demonstrated an artificial photosynthesis system comprised of semiconducting nanowires and bacteria using the energy in sunlight to produce acetate from carbon dioxide and water.

    3
    Direct solar-powered production of value-added chemicals from CO2 and H2O, a process that mimics natural photosynthesis, is of fundamental and practical interest. Copyright © 2015 American Chemical Society.

    The finding had significant implications for a growing field in which researchers have spent decades looking for the best chemical reactions to produce high yields of liquid products from CO2.

    The new study advances this earlier work by demonstrating a synthetic electrocatalyst – the copper-silver nanoparticles – that “clearly mimics what bacteria do to produce liquid products from CO2,” Yang said. “We still have a lot of work to do to improve it, but we’re excited by its potential to advance artificial photosynthesis.”

    Researchers from Berkeley Lab and The University of California-Berkeley participated in the study.

    This work was supported by the DOE Office of Science.

    The Molecular Foundry [below] is a DOE Office of Science user facility at Berkeley Lab.

    Science papers:
    Nature Catalysis
    Nano Letters 2015

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LBNL campus

    Bringing Science Solutions to the World

    In the world of science, The Lawrence Berkeley National Laboratory (Berkeley Lab) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the The National Academy of Sciences, one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the The National Academy of Engineering, and three of our scientists have been elected into The Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

    Berkeley Lab is a member of the national laboratory system supported by The DOE through its Office of Science. It is managed by the University of California and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above The University of California-Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

    Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a University of California-Berkeley physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.

    History

    1931–1941

    The laboratory was founded on August 26, 1931, by Ernest Lawrence, as the Radiation Laboratory of the University of California-Berkeley, associated with the Physics Department. It centered physics research around his new instrument, the cyclotron, a type of particle accelerator for which he was awarded the Nobel Prize in Physics in 1939.

    LBNL 88 inch cyclotron.

    LBNL 88 inch cyclotron.

    Throughout the 1930s, Lawrence pushed to create larger and larger machines for physics research, courting private philanthropists for funding. He was the first to develop a large team to build big projects to make discoveries in basic research. Eventually these machines grew too large to be held on the university grounds, and in 1940 the lab moved to its current site atop the hill above campus. Part of the team put together during this period includes two other young scientists who went on to establish large laboratories; J. Robert Oppenheimer founded The DOE’s Los Alamos Laboratory, and Robert Wilson founded The DOE’s Fermi National Accelerator Laboratory.

    1942–1950

    Leslie Groves visited Lawrence’s Radiation Laboratory in late 1942 as he was organizing the Manhattan Project, meeting J. Robert Oppenheimer for the first time. Oppenheimer was tasked with organizing the nuclear bomb development effort and founded today’s Los Alamos National Laboratory to help keep the work secret. At the RadLab, Lawrence and his colleagues developed the technique of electromagnetic enrichment of uranium using their experience with cyclotrons. The “calutrons” (named after the University) became the basic unit of the massive Y-12 facility in Oak Ridge, Tennessee. Lawrence’s lab helped contribute to what have been judged to be the three most valuable technology developments of the war (the atomic bomb, proximity fuse, and radar). The cyclotron, whose construction was stalled during the war, was finished in November 1946. The Manhattan Project shut down two months later.

    1951–2018

    After the war, the Radiation Laboratory became one of the first laboratories to be incorporated into the Atomic Energy Commission (AEC) (now The Department of Energy . The most highly classified work remained at Los Alamos, but the RadLab remained involved. Edward Teller suggested setting up a second lab similar to Los Alamos to compete with their designs. This led to the creation of an offshoot of the RadLab (now The DOE’s Lawrence Livermore National Laboratory) in 1952. Some of the RadLab’s work was transferred to the new lab, but some classified research continued at Berkeley Lab until the 1970s, when it became a laboratory dedicated only to unclassified scientific research.

    Shortly after the death of Lawrence in August 1958, the UC Radiation Laboratory (both branches) was renamed the Lawrence Radiation Laboratory. The Berkeley location became the Lawrence Berkeley Laboratory in 1971, although many continued to call it the RadLab. Gradually, another shortened form came into common usage, LBNL. Its formal name was amended to Ernest Orlando Lawrence Berkeley National Laboratory in 1995, when “National” was added to the names of all DOE labs. “Ernest Orlando” was later dropped to shorten the name. Today, the lab is commonly referred to as “Berkeley Lab”.

    The Alvarez Physics Memos are a set of informal working papers of the large group of physicists, engineers, computer programmers, and technicians led by Luis W. Alvarez from the early 1950s until his death in 1988. Over 1700 memos are available on-line, hosted by the Laboratory.

    The lab remains owned by the Department of Energy , with management from the University of California. Companies such as Intel were funding the lab’s research into computing chips.

    Science mission

    From the 1950s through the present, Berkeley Lab has maintained its status as a major international center for physics research, and has also diversified its research program into almost every realm of scientific investigation. Its mission is to solve the most pressing and profound scientific problems facing humanity, conduct basic research for a secure energy future, understand living systems to improve the environment, health, and energy supply, understand matter and energy in the universe, build and safely operate leading scientific facilities for the nation, and train the next generation of scientists and engineers.

    The Laboratory’s 20 scientific divisions are organized within six areas of research: Computing Sciences; Physical Sciences; Earth and Environmental Sciences; Biosciences; Energy Sciences; and Energy Technologies. Berkeley Lab has six main science thrusts: advancing integrated fundamental energy science; integrative biological and environmental system science; advanced computing for science impact; discovering the fundamental properties of matter and energy; accelerators for the future; and developing energy technology innovations for a sustainable future. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab tradition that continues today.

    Berkeley Lab operates five major National User Facilities for the DOE Office of Science:

    The Advanced Light Source (ALS) is a synchrotron light source with 41 beam lines providing ultraviolet, soft x-ray, and hard x-ray light to scientific experiments.

    The DOE’s Lawrence Berkeley National Laboratory Advanced Light Source.
    The ALS is one of the world’s brightest sources of soft x-rays, which are used to characterize the electronic structure of matter and to reveal microscopic structures with elemental and chemical specificity. About 2,500 scientist-users carry out research at ALS every year. Berkeley Lab is proposing an upgrade of ALS which would increase the coherent flux of soft x-rays by two-three orders of magnitude.

    Berkeley Lab Laser Accelerator (BELLA) Center

    The DOE Joint Genome Institute supports genomic research in support of the DOE missions in alternative energy, global carbon cycling, and environmental management. The JGI’s partner laboratories are Berkeley Lab, DOE’s Lawrence Livermore National Laboratory, DOE’s Oak Ridge National Laboratory (ORNL), DOE’s Pacific Northwest National Laboratory (PNNL), and the HudsonAlpha Institute for Biotechnology . The JGI’s central role is the development of a diversity of large-scale experimental and computational capabilities to link sequence to biological insights relevant to energy and environmental research. Approximately 1,200 scientist-users take advantage of JGI’s capabilities for their research every year.

    LBNL Molecular Foundry

    The LBNL Molecular Foundry is a multidisciplinary nanoscience research facility. Its seven research facilities focus on Imaging and Manipulation of Nanostructures; Nanofabrication; Theory of Nanostructured Materials; Inorganic Nanostructures; Biological Nanostructures; Organic and Macromolecular Synthesis; and Electron Microscopy. Approximately 700 scientist-users make use of these facilities in their research every year.

    The DOE’s NERSC National Energy Research Scientific Computing Center is the scientific computing facility that provides large-scale computing for the DOE’s unclassified research programs. Its current systems provide over 3 billion computational hours annually. NERSC supports 6,000 scientific users from universities, national laboratories, and industry.

    DOE’s NERSC National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory.

    Cray Cori II supercomputer at National Energy Research Scientific Computing Center at DOE’s Lawrence Berkeley National Laboratory, named after Gerty Cori, the first American woman to win a Nobel Prize in science.

    NERSC Hopper Cray XE6 supercomputer.

    NERSC Cray XC30 Edison supercomputer.

    NERSC GPFS for Life Sciences.

    The Genepool system is a cluster dedicated to the DOE Joint Genome Institute’s computing needs. Denovo is a smaller test system for Genepool that is primarily used by NERSC staff to test new system configurations and software.

    NERSC PDSF computer cluster in 2003.

    PDSF is a networked distributed computing cluster designed primarily to meet the detector simulation and data analysis requirements of physics, astrophysics and nuclear science collaborations.

    Cray Shasta Perlmutter SC18 AMD Epyc Nvidia pre-exascale supercomputer.

    NERSC is a DOE Office of Science User Facility.

    The DOE’s Energy Science Network is a high-speed network infrastructure optimized for very large scientific data flows. ESNet provides connectivity for all major DOE sites and facilities, and the network transports roughly 35 petabytes of traffic each month.

    Berkeley Lab is the lead partner in the DOE’s Joint Bioenergy Institute (JBEI), located in Emeryville, California. Other partners are the DOE’s Sandia National Laboratory, the University of California (UC) campuses of Berkeley and Davis, the Carnegie Institution for Science , and DOE’s Lawrence Livermore National Laboratory (LLNL). JBEI’s primary scientific mission is to advance the development of the next generation of biofuels – liquid fuels derived from the solar energy stored in plant biomass. JBEI is one of three new U.S. Department of Energy (DOE) Bioenergy Research Centers (BRCs).

    Berkeley Lab has a major role in two DOE Energy Innovation Hubs. The mission of the Joint Center for Artificial Photosynthesis (JCAP) is to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide. The lead institution for JCAP is the California Institute of Technology and Berkeley Lab is the second institutional center. The mission of the Joint Center for Energy Storage Research (JCESR) is to create next-generation battery technologies that will transform transportation and the electricity grid. DOE’s Argonne National Laboratory leads JCESR and Berkeley Lab is a major partner.

     
  • richardmitnick 10:58 am on November 22, 2022 Permalink | Reply
    Tags: "Limiting Global Warming Now Can Preserve Valuable Freshwater Resource", , Saving snow and freshwater by curbing greenhouse gas emissions, The DOE’s Lawrence Berkeley National Laboratory, The need to implement wide-scale carbon mitigation strategies to maintain snowpack throughout the Americas.   

    From The DOE’s Lawrence Berkeley National Laboratory: “Limiting Global Warming Now Can Preserve Valuable Freshwater Resource” 

    From The DOE’s Lawrence Berkeley National Laboratory

    11.22.22
    Theresa Duque

    Berkeley Lab researchers highlight need to implement wide-scale carbon mitigation strategies to maintain snowpack throughout the Americas.

    1
    Spring snowmelt in the Ansel Adams Wilderness of the California Sierra Nevada. New research identifies how climate change could differentially alter spring snowmelt in iconic mountain landscapes of the American Cordillera. (Credit: Image courtesy of Alan Rhoades)

    Snowcapped mountains not only look majestic – They’re vital to a delicate ecosystem that has existed for tens of thousands of years. Mountain water runoff and snowmelt flows down to streams, rivers, lakes, and oceans – and today, around a quarter of the world depends on these natural “water towers” to replenish downstream reservoirs and groundwater aquifers for urban water supplies, agricultural irrigation, and ecosystem support.

    But this valuable freshwater resource is in danger of disappearing. The planet is now around 1.1 degrees Celsius (1.9 degrees Fahrenheit) warmer than pre-industrial levels, and mountain snowpacks are shrinking. Last year, a study co-led by Alan Rhoades and Erica Siirila-Woodburn, research scientists in the Earth and Environmental Sciences Area of Lawrence Berkeley National Laboratory (Berkeley Lab), found that if global warming continues along the high-emissions scenario, low-to-no-snow winters will become a regular occurrence in the mountain ranges of the western U.S. in 35 to 60 years.

    Now, in a recent Nature Climate Change [below] study, a research team led by Alan Rhoades found that if global warming reaches around 2.5 degrees Celsius compared to pre-industrial levels, mountain ranges in the southern midlatitudes, the Andean region of Chile in particular, will face a low-to-no-snow future between the years 2046 and 2051 – or 20 years earlier than mountain ranges in the northern midlatitudes such as the Sierra Nevada or Rockies. (Low-to-no-snow occurs when the annual maximum water stored as snowpack is within the bottom 30% of historical conditions for a decade or more.)

    The researchers also found that low-to-no-snow conditions would emerge in the southern midlatitudes at a third of the warming compared to the northern midlatitudes.

    “These findings are pretty shocking. We assumed that both regions in the southern and northern hemispheres would respond similarly to climate change, and that the Andes would be more resilient given its high elevation,” Rhoades said. “This shows that not every degree of warming has the same effect in one region as another.”

    In another major finding, the researchers learned that such a low-to-no-snow future coincides with roughly 10% less mountain runoff in both hemispheres, during wet and dry years.

    “If you expect 10% less runoff, that means there’s at least 10% less water available every year to refill reservoirs in the summer months when agriculture and mountain ecosystems most need it,” Rhoades said.

    Such diminished runoff would be particularly devastating for agricultural regions already parched by multiyear droughts.

    California’s current drought is entering its fourth year. According to the U.S. Drought Monitor, more than 94 percent of the state is in severe, extreme, or exceptional drought. Shrinking groundwater supplies and municipal wells throughout the state are severely impacting the San Joaquin Valley, the state’s agricultural heartland.

    And Chile – which exports approximately 30% of its fresh fruit production every year, with much of it shipped to the United States – is in the midst of a historic 13-year drought.

    2
    View of the Chilean Andes (Torres del Paine National Park). (Credit: Image courtesy of Alan Rhoades)

    Saving snow and freshwater by curbing greenhouse gas emissions

    But the new study also suggests that low-to-no-snow in both the northern and southern midlatitude mountain ranges can be prevented if global warming is limited to essentially 2.5 degrees Celsius (4.5 degrees Fahrenheit), the researchers said.

    Their analysis is based on Earth system models that simulate the various components of the climate, such as the atmosphere and land surface, to identify how mountain water cycles could continue to change through the 21st century, and what warming levels might give rise to a widespread and persistent low-to-no-snow future across the American Cordillera – a chain of mountain ranges spanning the western “backbone” of North America, Central America, and South America.

    The researchers used computing resources at Berkeley Lab’s National Energy Research Scientific Computing Center (NERSC) to process and analyze data collected by climate researchers from all over the world through the Department of Energy’s CASCADE (Calibrated & Systematic Characterization, Attribution, & Detection of Extremes) project. (Post-analysis data from the study is available to the research community at NERSC.)

    The closest to what Rhoades and his team considered to be “episodic low-to-no snow” conditions occurred in California between 2012 to 2016. The low snow and drought conditions in these years demonstrated the vulnerability of our water supply and, in part, led to the passing of the California Sustainable Groundwater Management Act, new approaches to water and agricultural management practices, and mandatory water cuts, Rhoades said.

    3
    Alan Rhoades with his dog Luna on a backpacking trip in the Sierra Nevada (Ansel Adams Wilderness) last year. (Credit: Image courtesy of Alan Rhoades)

    Persistent low-to-no snow (10 years in a row) has yet to occur, but Rhoades said that water managers are already thinking about such a future. “They’re collaborating with scientists to come up with strategies to proactively rather than reactively manage water resources for the worst-case scenarios if we can’t mitigate greenhouse gas emissions to avoid certain warming levels. But the better strategy would be to prevent further warming by cutting greenhouse gas emissions,” he said.

    For future studies, Rhoades plans to continue to examine and run new Earth system model simulations at even higher resolution “to give more spatial context of when and where snow loss might occur and what causes it,” he said, and investigate how every degree of warming might change other key drivers of the mountain-water cycle, such as the landfall location and intensity of atmospheric rivers, and mountain ecosystem responses.

    He also plans to continue to work with water managers through the Department of Energy-funded HyperFACETS project to identify ways we can better prepare for a low-to-no snow future through new management strategies such as infrastructure hardening against drought and floods and managed aquifer recharge.

    Rhoades is optimistic, citing research from another Berkeley Lab-led study that found reaching zero net emissions of carbon dioxide from energy and industry by 2050 can be accomplished by rebuilding the U.S. energy infrastructure to run primarily on renewable energy.

    “It just requires the will and initiative to invest financial resources at the level of urgency that climate change demands, which means we need to start doing this today,” he said.

    Researchers from the Desert Research Institute in Reno, Nevada; UC Berkeley; UC Davis; California State University, Long Beach; UC Irvine; the National Center for Atmospheric Research; and Penn State University participated in the study.

    The work was supported by the DOE Office of Science and DOE Office of Biological and Environmental Research.

    NERSC is a DOE Office of Science user facility at Berkeley Lab.

    Science paper:
    Nature Climate Change
    See the science paper for instructive material with images.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LBNL campus

    Bringing Science Solutions to the World

    In the world of science, The Lawrence Berkeley National Laboratory (Berkeley Lab) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the The National Academy of Sciences, one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the The National Academy of Engineering, and three of our scientists have been elected into The Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

    Berkeley Lab is a member of the national laboratory system supported by The DOE through its Office of Science. It is managed by the University of California and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above The University of California-Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

    Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a University of California-Berkeley physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.

    History

    1931–1941

    The laboratory was founded on August 26, 1931, by Ernest Lawrence, as the Radiation Laboratory of the University of California-Berkeley, associated with the Physics Department. It centered physics research around his new instrument, the cyclotron, a type of particle accelerator for which he was awarded the Nobel Prize in Physics in 1939.

    LBNL 88 inch cyclotron.

    LBNL 88 inch cyclotron.

    Throughout the 1930s, Lawrence pushed to create larger and larger machines for physics research, courting private philanthropists for funding. He was the first to develop a large team to build big projects to make discoveries in basic research. Eventually these machines grew too large to be held on the university grounds, and in 1940 the lab moved to its current site atop the hill above campus. Part of the team put together during this period includes two other young scientists who went on to establish large laboratories; J. Robert Oppenheimer founded The DOE’s Los Alamos Laboratory, and Robert Wilson founded The DOE’s Fermi National Accelerator Laboratory.

    1942–1950

    Leslie Groves visited Lawrence’s Radiation Laboratory in late 1942 as he was organizing the Manhattan Project, meeting J. Robert Oppenheimer for the first time. Oppenheimer was tasked with organizing the nuclear bomb development effort and founded today’s Los Alamos National Laboratory to help keep the work secret. At the RadLab, Lawrence and his colleagues developed the technique of electromagnetic enrichment of uranium using their experience with cyclotrons. The “calutrons” (named after the University) became the basic unit of the massive Y-12 facility in Oak Ridge, Tennessee. Lawrence’s lab helped contribute to what have been judged to be the three most valuable technology developments of the war (the atomic bomb, proximity fuse, and radar). The cyclotron, whose construction was stalled during the war, was finished in November 1946. The Manhattan Project shut down two months later.

    1951–2018

    After the war, the Radiation Laboratory became one of the first laboratories to be incorporated into the Atomic Energy Commission (AEC) (now The Department of Energy . The most highly classified work remained at Los Alamos, but the RadLab remained involved. Edward Teller suggested setting up a second lab similar to Los Alamos to compete with their designs. This led to the creation of an offshoot of the RadLab (now The DOE’s Lawrence Livermore National Laboratory) in 1952. Some of the RadLab’s work was transferred to the new lab, but some classified research continued at Berkeley Lab until the 1970s, when it became a laboratory dedicated only to unclassified scientific research.

    Shortly after the death of Lawrence in August 1958, the UC Radiation Laboratory (both branches) was renamed the Lawrence Radiation Laboratory. The Berkeley location became the Lawrence Berkeley Laboratory in 1971, although many continued to call it the RadLab. Gradually, another shortened form came into common usage, LBNL. Its formal name was amended to Ernest Orlando Lawrence Berkeley National Laboratory in 1995, when “National” was added to the names of all DOE labs. “Ernest Orlando” was later dropped to shorten the name. Today, the lab is commonly referred to as “Berkeley Lab”.

    The Alvarez Physics Memos are a set of informal working papers of the large group of physicists, engineers, computer programmers, and technicians led by Luis W. Alvarez from the early 1950s until his death in 1988. Over 1700 memos are available on-line, hosted by the Laboratory.

    The lab remains owned by the Department of Energy , with management from the University of California. Companies such as Intel were funding the lab’s research into computing chips.

    Science mission

    From the 1950s through the present, Berkeley Lab has maintained its status as a major international center for physics research, and has also diversified its research program into almost every realm of scientific investigation. Its mission is to solve the most pressing and profound scientific problems facing humanity, conduct basic research for a secure energy future, understand living systems to improve the environment, health, and energy supply, understand matter and energy in the universe, build and safely operate leading scientific facilities for the nation, and train the next generation of scientists and engineers.

    The Laboratory’s 20 scientific divisions are organized within six areas of research: Computing Sciences; Physical Sciences; Earth and Environmental Sciences; Biosciences; Energy Sciences; and Energy Technologies. Berkeley Lab has six main science thrusts: advancing integrated fundamental energy science; integrative biological and environmental system science; advanced computing for science impact; discovering the fundamental properties of matter and energy; accelerators for the future; and developing energy technology innovations for a sustainable future. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab tradition that continues today.

    Berkeley Lab operates five major National User Facilities for the DOE Office of Science:

    The Advanced Light Source (ALS) is a synchrotron light source with 41 beam lines providing ultraviolet, soft x-ray, and hard x-ray light to scientific experiments.

    The DOE’s Lawrence Berkeley National Laboratory Advanced Light Source.
    The ALS is one of the world’s brightest sources of soft x-rays, which are used to characterize the electronic structure of matter and to reveal microscopic structures with elemental and chemical specificity. About 2,500 scientist-users carry out research at ALS every year. Berkeley Lab is proposing an upgrade of ALS which would increase the coherent flux of soft x-rays by two-three orders of magnitude.

    Berkeley Lab Laser Accelerator (BELLA) Center

    The DOE Joint Genome Institute supports genomic research in support of the DOE missions in alternative energy, global carbon cycling, and environmental management. The JGI’s partner laboratories are Berkeley Lab, DOE’s Lawrence Livermore National Laboratory, DOE’s Oak Ridge National Laboratory (ORNL), DOE’s Pacific Northwest National Laboratory (PNNL), and the HudsonAlpha Institute for Biotechnology . The JGI’s central role is the development of a diversity of large-scale experimental and computational capabilities to link sequence to biological insights relevant to energy and environmental research. Approximately 1,200 scientist-users take advantage of JGI’s capabilities for their research every year.

    LBNL Molecular Foundry

    The LBNL Molecular Foundry is a multidisciplinary nanoscience research facility. Its seven research facilities focus on Imaging and Manipulation of Nanostructures; Nanofabrication; Theory of Nanostructured Materials; Inorganic Nanostructures; Biological Nanostructures; Organic and Macromolecular Synthesis; and Electron Microscopy. Approximately 700 scientist-users make use of these facilities in their research every year.

    The DOE’s NERSC National Energy Research Scientific Computing Center is the scientific computing facility that provides large-scale computing for the DOE’s unclassified research programs. Its current systems provide over 3 billion computational hours annually. NERSC supports 6,000 scientific users from universities, national laboratories, and industry.

    DOE’s NERSC National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory.

    Cray Cori II supercomputer at National Energy Research Scientific Computing Center at DOE’s Lawrence Berkeley National Laboratory, named after Gerty Cori, the first American woman to win a Nobel Prize in science.

    NERSC Hopper Cray XE6 supercomputer.

    NERSC Cray XC30 Edison supercomputer.

    NERSC GPFS for Life Sciences.

    The Genepool system is a cluster dedicated to the DOE Joint Genome Institute’s computing needs. Denovo is a smaller test system for Genepool that is primarily used by NERSC staff to test new system configurations and software.

    NERSC PDSF computer cluster in 2003.

    PDSF is a networked distributed computing cluster designed primarily to meet the detector simulation and data analysis requirements of physics, astrophysics and nuclear science collaborations.

    Cray Shasta Perlmutter SC18 AMD Epyc Nvidia pre-exascale supercomputer.

    NERSC is a DOE Office of Science User Facility.

    The DOE’s Energy Science Network is a high-speed network infrastructure optimized for very large scientific data flows. ESNet provides connectivity for all major DOE sites and facilities, and the network transports roughly 35 petabytes of traffic each month.

    Berkeley Lab is the lead partner in the DOE’s Joint Bioenergy Institute (JBEI), located in Emeryville, California. Other partners are the DOE’s Sandia National Laboratory, the University of California (UC) campuses of Berkeley and Davis, the Carnegie Institution for Science , and DOE’s Lawrence Livermore National Laboratory (LLNL). JBEI’s primary scientific mission is to advance the development of the next generation of biofuels – liquid fuels derived from the solar energy stored in plant biomass. JBEI is one of three new U.S. Department of Energy (DOE) Bioenergy Research Centers (BRCs).

    Berkeley Lab has a major role in two DOE Energy Innovation Hubs. The mission of the Joint Center for Artificial Photosynthesis (JCAP) is to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide. The lead institution for JCAP is the California Institute of Technology and Berkeley Lab is the second institutional center. The mission of the Joint Center for Energy Storage Research (JCESR) is to create next-generation battery technologies that will transform transportation and the electricity grid. DOE’s Argonne National Laboratory leads JCESR and Berkeley Lab is a major partner.

     
  • richardmitnick 5:27 pm on November 15, 2022 Permalink | Reply
    Tags: "Advanced Light Source Upgrade Approved to Start Construction", , , , Brighter beams mean better science., , , , , , , , , , The ALS specializes in “soft” X-rays., The ALS upgrade will enable researchers to make scientific advances in many different areas for the next 30 to 40 years., The DOE approval-known as Critical Decision 3 (CD-3)-formally releases funds for purchasing and building and installing upgrades to the ALS., The DOE’s Lawrence Berkeley National Laboratory, The upgraded ALS will squeeze the X-ray beams from about 100 microns (thousandths of a millimeter) to only a few microns wide.,   

    From The DOE’s Lawrence Berkeley National Laboratory: “Advanced Light Source Upgrade Approved to Start Construction” 

    From The DOE’s Lawrence Berkeley National Laboratory

    11.15.22
    Lauren Biron

    Berkeley Lab’s biggest project in three decades now moves from planning to execution. The ALS upgrade will make brighter beams for research into new materials, chemical reactions, and biological processes.

    The Advanced Light Source (ALS) [below], a scientific user facility at The DOE’s Lawrence Berkeley National Laboratory, has received federal approval to start construction on an upgrade that will boost the brightness of its X-ray beams at least a hundredfold.

    “The ALS upgrade is an amazing engineering undertaking that is going to give us an even more powerful scientific tool,” said Berkeley Lab Director Michael Witherell. “I can’t wait to see the many ways researchers use it to improve the world and tackle some of the biggest challenges facing society today.”

    Scientists will use the upgraded ALS for research spanning biology; chemistry; physics; and materials, energy, and environmental sciences. The brighter, more laser-like light will help experts better understand what’s happening at extremely small scales as reactions and processes take place. These insights can have a huge array of applications, such as improving batteries and clean energy technologies, creating new materials for sensors and computing, and investigating biological matter to develop better medicines.

    “That’s the wonderful thing about the ALS: The applications are so broad and the impact is so profound,” said Dave Robin, the project director for the ALS upgrade. “What really excites me every day is knowing that, when it’s complete, the ALS upgrade will enable researchers to make scientific advances in many different areas for the next 30 to 40 years.”

    The DOE approval, known as Critical Decision 3 (CD-3), formally releases funds for purchasing, building, and installing upgrades to the ALS. This includes constructing an entirely new storage ring and accumulator ring, building four feature (two new and two upgraded) beamlines, and installing seismic and shielding upgrades for the concrete structure housing the equipment.

    4
    A cutaway view of the Advanced Light Source shows the new accumulator and storage ring that will be installed during the ALS Upgrade project. (Credit: Berkeley Lab)

    The $590 million project is the biggest investment at Berkeley Lab since the ALS was built in 1993.

    Brighter beams, better science

    The ALS generates X-rays by circulating electrons through a 600-foot-circumference storage ring. As the electrons travel through this series of magnets, they radiate light along beamlines to stations where researchers conduct experiments. The light comes in many wavelengths, but the ALS specializes in “soft” X-rays that reveal the electronic, magnetic, and chemical properties of materials.

    The upgraded ALS will use a new storage ring [see cutaway above] with more advanced magnets that can better steer and focus the electrons, in turn creating brighter, tighter beams of light. This will squeeze the X-ray beams from about 100 microns (thousandths of a millimeter) to only a few microns wide, meaning researchers can image their samples with even finer resolution and over shorter timescales. It’s like switching from a cell phone camera in dim light to a top-of-the-line high-speed camera in vivid daylight.

    2
    The beam profile of Berkeley Lab’s Advanced Light Source today (left), compared to the highly focused beam (right) that will be available after the upgrade. Credit: Berkeley Lab.

    “With the upgrade, we’ll be able to routinely study how samples change in 3D – something that is currently very difficult to do,” said Andreas Scholl, a physicist at Berkeley Lab and the interim division director for the ALS. “One of our goals is to find and develop the materials that will be essential for the next generation of technologies in areas like energy storage and computing.”

    With 40 beamlines and more than 1,600 users per year, the ALS supports a variety of research. For example, researchers can look at how microbes break down toxins, study how substances interact to produce better solar cells or biofuels, and test magnetic materials that could have applications in microelectronics. Teams will build two new beamlines optimized to take advantage of the improved light, and realign and upgrade several existing beamlines.

    One crucial element of the upgrade already underway is a second ring known as the accumulator, which will take electrons made by the accelerator complex and prepare them for the new storage ring. Construction began on the accumulator in 2020 with a special advance approval known as CD-3a. By installing and testing the accumulator first, teams can minimize how long ALS operations will be paused to complete the upgrade.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LBNL campus

    Bringing Science Solutions to the World

    In the world of science, The Lawrence Berkeley National Laboratory (Berkeley Lab) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the The National Academy of Sciences, one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the The National Academy of Engineering, and three of our scientists have been elected into the Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

    Berkeley Lab is a member of the national laboratory system supported by The DOE through its Office of Science. It is managed by the University of California and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above The University of California-Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

    Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a University of California-Berkeley physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.

    History

    1931–1941

    The laboratory was founded on August 26, 1931, by Ernest Lawrence, as the Radiation Laboratory of the University of California-Berkeley, associated with the Physics Department. It centered physics research around his new instrument, the cyclotron, a type of particle accelerator for which he was awarded the Nobel Prize in Physics in 1939.

    LBNL 88 inch cyclotron.

    LBNL 88 inch cyclotron.

    Throughout the 1930s, Lawrence pushed to create larger and larger machines for physics research, courting private philanthropists for funding. He was the first to develop a large team to build big projects to make discoveries in basic research. Eventually these machines grew too large to be held on the university grounds, and in 1940 the lab moved to its current site atop the hill above campus. Part of the team put together during this period includes two other young scientists who went on to establish large laboratories; J. Robert Oppenheimer founded The DOE’s Los Alamos Laboratory, and Robert Wilson founded The DOE’s Fermi National Accelerator Laboratory.

    1942–1950

    Leslie Groves visited Lawrence’s Radiation Laboratory in late 1942 as he was organizing the Manhattan Project, meeting J. Robert Oppenheimer for the first time. Oppenheimer was tasked with organizing the nuclear bomb development effort and founded today’s Los Alamos National Laboratory to help keep the work secret. At the RadLab, Lawrence and his colleagues developed the technique of electromagnetic enrichment of uranium using their experience with cyclotrons. The “calutrons” (named after the University) became the basic unit of the massive Y-12 facility in Oak Ridge, Tennessee. Lawrence’s lab helped contribute to what have been judged to be the three most valuable technology developments of the war (the atomic bomb, proximity fuse, and radar). The cyclotron, whose construction was stalled during the war, was finished in November 1946. The Manhattan Project shut down two months later.

    1951–2018

    After the war, the Radiation Laboratory became one of the first laboratories to be incorporated into the Atomic Energy Commission (AEC) (now The Department of Energy . The most highly classified work remained at Los Alamos, but the RadLab remained involved. Edward Teller suggested setting up a second lab similar to Los Alamos to compete with their designs. This led to the creation of an offshoot of the RadLab (now The DOE’s Lawrence Livermore National Laboratory) in 1952. Some of the RadLab’s work was transferred to the new lab, but some classified research continued at Berkeley Lab until the 1970s, when it became a laboratory dedicated only to unclassified scientific research.

    Shortly after the death of Lawrence in August 1958, the UC Radiation Laboratory (both branches) was renamed the Lawrence Radiation Laboratory. The Berkeley location became the Lawrence Berkeley Laboratory in 1971, although many continued to call it the RadLab. Gradually, another shortened form came into common usage, LBNL. Its formal name was amended to Ernest Orlando Lawrence Berkeley National Laboratory in 1995, when “National” was added to the names of all DOE labs. “Ernest Orlando” was later dropped to shorten the name. Today, the lab is commonly referred to as “Berkeley Lab”.

    The Alvarez Physics Memos are a set of informal working papers of the large group of physicists, engineers, computer programmers, and technicians led by Luis W. Alvarez from the early 1950s until his death in 1988. Over 1700 memos are available on-line, hosted by the Laboratory.

    The lab remains owned by the Department of Energy , with management from the University of California. Companies such as Intel were funding the lab’s research into computing chips.

    Science mission

    From the 1950s through the present, Berkeley Lab has maintained its status as a major international center for physics research, and has also diversified its research program into almost every realm of scientific investigation. Its mission is to solve the most pressing and profound scientific problems facing humanity, conduct basic research for a secure energy future, understand living systems to improve the environment, health, and energy supply, understand matter and energy in the universe, build and safely operate leading scientific facilities for the nation, and train the next generation of scientists and engineers.

    The Laboratory’s 20 scientific divisions are organized within six areas of research: Computing Sciences; Physical Sciences; Earth and Environmental Sciences; Biosciences; Energy Sciences; and Energy Technologies. Berkeley Lab has six main science thrusts: advancing integrated fundamental energy science; integrative biological and environmental system science; advanced computing for science impact; discovering the fundamental properties of matter and energy; accelerators for the future; and developing energy technology innovations for a sustainable future. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab tradition that continues today.

    Berkeley Lab operates five major National User Facilities for the DOE Office of Science:

    The Advanced Light Source (ALS) is a synchrotron light source with 41 beam lines providing ultraviolet, soft x-ray, and hard x-ray light to scientific experiments.

    The DOE’s Lawrence Berkeley National Laboratory Advanced Light Source.
    The ALS is one of the world’s brightest sources of soft x-rays, which are used to characterize the electronic structure of matter and to reveal microscopic structures with elemental and chemical specificity. About 2,500 scientist-users carry out research at ALS every year. Berkeley Lab is proposing an upgrade of ALS which would increase the coherent flux of soft x-rays by two-three orders of magnitude.

    Berkeley Lab Laser Accelerator (BELLA) Center

    The DOE Joint Genome Institute supports genomic research in support of the DOE missions in alternative energy, global carbon cycling, and environmental management. The JGI’s partner laboratories are Berkeley Lab, DOE’s Lawrence Livermore National Laboratory, DOE’s Oak Ridge National Laboratory (ORNL), DOE’s Pacific Northwest National Laboratory (PNNL), and the HudsonAlpha Institute for Biotechnology . The JGI’s central role is the development of a diversity of large-scale experimental and computational capabilities to link sequence to biological insights relevant to energy and environmental research. Approximately 1,200 scientist-users take advantage of JGI’s capabilities for their research every year.

    LBNL Molecular Foundry

    The LBNL Molecular Foundry is a multidisciplinary nanoscience research facility. Its seven research facilities focus on Imaging and Manipulation of Nanostructures; Nanofabrication; Theory of Nanostructured Materials; Inorganic Nanostructures; Biological Nanostructures; Organic and Macromolecular Synthesis; and Electron Microscopy. Approximately 700 scientist-users make use of these facilities in their research every year.

    The DOE’s NERSC National Energy Research Scientific Computing Center is the scientific computing facility that provides large-scale computing for the DOE’s unclassified research programs. Its current systems provide over 3 billion computational hours annually. NERSC supports 6,000 scientific users from universities, national laboratories, and industry.

    DOE’s NERSC National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory.

    Cray Cori II supercomputer at National Energy Research Scientific Computing Center at DOE’s Lawrence Berkeley National Laboratory, named after Gerty Cori, the first American woman to win a Nobel Prize in science.

    NERSC Hopper Cray XE6 supercomputer.

    NERSC Cray XC30 Edison supercomputer.

    NERSC GPFS for Life Sciences.

    The Genepool system is a cluster dedicated to the DOE Joint Genome Institute’s computing needs. Denovo is a smaller test system for Genepool that is primarily used by NERSC staff to test new system configurations and software.

    NERSC PDSF computer cluster in 2003.

    PDSF is a networked distributed computing cluster designed primarily to meet the detector simulation and data analysis requirements of physics, astrophysics and nuclear science collaborations.

    Cray Shasta Perlmutter SC18 AMD Epyc Nvidia pre-exascale supercomputer.

    NERSC is a DOE Office of Science User Facility.

    The DOE’s Energy Science Network is a high-speed network infrastructure optimized for very large scientific data flows. ESNet provides connectivity for all major DOE sites and facilities, and the network transports roughly 35 petabytes of traffic each month.

    Berkeley Lab is the lead partner in the DOE’s Joint Bioenergy Institute (JBEI), located in Emeryville, California. Other partners are the DOE’s Sandia National Laboratory, the University of California (UC) campuses of Berkeley and Davis, the Carnegie Institution for Science , and DOE’s Lawrence Livermore National Laboratory (LLNL). JBEI’s primary scientific mission is to advance the development of the next generation of biofuels – liquid fuels derived from the solar energy stored in plant biomass. JBEI is one of three new U.S. Department of Energy (DOE) Bioenergy Research Centers (BRCs).

    Berkeley Lab has a major role in two DOE Energy Innovation Hubs. The mission of the Joint Center for Artificial Photosynthesis (JCAP) is to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide. The lead institution for JCAP is the California Institute of Technology and Berkeley Lab is the second institutional center. The mission of the Joint Center for Energy Storage Research (JCESR) is to create next-generation battery technologies that will transform transportation and the electricity grid. DOE’s Argonne National Laboratory leads JCESR and Berkeley Lab is a major partner.

     
  • richardmitnick 9:09 pm on November 14, 2022 Permalink | Reply
    Tags: "FRIB Experiment Pushes Elements to the Limit", A new study led by the Department of Energy’s Lawrence Berkeley National Laboratory has measured how long it takes for several kinds of exotic nuclei to decay., , , Half-life measurements are one of the first things researchers can observe about these short-lived particles., , , Research is going to be coming out in different areas that will impact things scintists haven’t even thought of yet., Researchers focused on unstable isotopes near the “drip-line”-the spot where neutrons can no longer bind to a nucleus., Some isotopes are so unstable they only exist for fractions of a second., The DOE’s Lawrence Berkeley National Laboratory, The facility will become 400 times more powerful over the coming years., The first result from an experiment at the Facility for Rare Isotope Beams measures how long exotic nuclei can survive at the edge of stability.   

    From The DOE’s Lawrence Berkeley National Laboratory: “FRIB Experiment Pushes Elements to the Limit” 

    From The DOE’s Lawrence Berkeley National Laboratory

    11.14.22
    Lauren Biron

    The first result from an experiment at the Facility for Rare Isotope Beams measures how long exotic nuclei can survive at the edge of stability.

    1
    A multi-institutional team of scientific users have published the results of the first scientific experiment at the Facility for Rare Isotope Beams in the journal Physical Review Letters. The experiment studied the decay of isotopes so unstable that they only exist for fractions of a second. To perform the study, the rare isotopes were implanted into the center of a sensitive detector known as the FRIB Decay Station initiator. (Credit: Facility for Rare Isotope Beams)

    A new study led by the Department of Energy’s Lawrence Berkeley National Laboratory has measured how long it takes for several kinds of exotic nuclei to decay. The paper, published today in Physical Review Letters [below], marks the first experimental result from the Facility for Rare Isotope Beams (FRIB), a DOE Office of Science user facility operated by Michigan State University.

    Scientists used the one-of-a-kind facility to better understand nuclei, the collection of protons and neutrons found at the heart of atoms. Understanding these basic building blocks allows scientists to refine their best models and has applications in medicine, national security, and industry.

    “The breadth of the facility and the programs that are being pursued are really exciting to watch,” said Heather Crawford, a physicist at Berkeley Lab and lead spokesperson for the first FRIB experiment. “Research is going to be coming out in different areas that will impact things we haven’t even thought of yet. There’s so much discovery potential.”

    The first experiment is just a small taste of what’s to come at the facility, which will become 400 times more powerful over the coming years. “It’s going to be really exciting – mind-blowing, honestly,” Crawford said.

    More than 50 participants from ten universities and national laboratories were involved in the first experiment. The study looked at isotopes of several elements. Isotopes are variations of a particular element; they have the same number of protons but can have different numbers of neutrons.

    Researchers focused on unstable isotopes near the “drip-line,” the spot where neutrons can no longer bind to a nucleus. Instead, any additional neutrons drip off, like water from a saturated kitchen sponge.

    Researchers smashed a beam of stable calcium-48 nuclei traveling at about 60% of the speed of light into a beryllium target. The calcium fragmented, producing a slew of isotopes that were separated, individually identified, and delivered to a sensitive detector that measured how long they took to decay. The result? The first reported measurements of half-lives for five exotic, neutron-laden isotopes of phosphorus, silicon, aluminum, and magnesium.

    Half-life measurements (perhaps best known from applications in carbon dating) are one of the first things researchers can observe about these short-lived particles. The fundamental information about nuclei at the limits of their existence provides a useful test for different models of the atomic world.

    More complete theories help advance research in areas such as astrophysics and nuclear physics – for example, understanding how elements form in exploding stars or how processes unfold in nuclear reactors.

    Crawford and the team plan to repeat the half-life experiment again next year, taking advantage of additional beam intensity that will increase the number of isotopes produced, including rare isotopes near the neutron drip-line. In the meantime, other groups will take advantage of the facility’s many beamlines and instruments.

    “Bringing the facility online was a big effort by a lot of people, and something the community has been looking forward to for a long time,” Crawford said. “I’m excited I am young enough to keep taking advantage of it for the next several decades.”

    Multiple institutions collaborated on the first experiment, with researchers from Argonne National Laboratory (ANL), Berkeley Lab, Brookhaven National Laboratory, Florida State University, FRIB, Lawrence Livermore National Laboratory, Louisiana State University, Los Alamos National Laboratory, Mississippi State University, Oak Ridge National Laboratory (ORNL), and the University of Tennessee Knoxville (UTK).


    FRIB at Michigan State University

    Scientists from ORNL, UTK, ANL and FRIB led the collaboration to provide the instruments used in the FRIB Decay Station initiator, the sensitive detector system that measured the isotopes.

    Science paper:
    Physical Review Letters

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LBNL campus

    Bringing Science Solutions to the World

    In the world of science, The Lawrence Berkeley National Laboratory (Berkeley Lab) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the The National Academy of Sciences, one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the The National Academy of Engineering, and three of our scientists have been elected into the Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

    Berkeley Lab is a member of the national laboratory system supported by the U.S. Department of Energy through its Office of Science. It is managed by the University of California and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above the University of California- Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

    Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a University of California-Berkeley physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.

    History

    1931–1941

    The laboratory was founded on August 26, 1931, by Ernest Lawrence, as the Radiation Laboratory of the University of California-Berkeley, associated with the Physics Department. It centered physics research around his new instrument, the cyclotron, a type of particle accelerator for which he was awarded the Nobel Prize in Physics in 1939.

    LBNL 88 inch cyclotron.

    LBNL 88 inch cyclotron.

    Throughout the 1930s, Lawrence pushed to create larger and larger machines for physics research, courting private philanthropists for funding. He was the first to develop a large team to build big projects to make discoveries in basic research. Eventually these machines grew too large to be held on the university grounds, and in 1940 the lab moved to its current site atop the hill above campus. Part of the team put together during this period includes two other young scientists who went on to establish large laboratories; J. Robert Oppenheimer founded The DOE’s Los Alamos Laboratory, and Robert Wilson founded The DOE’s Fermi National Accelerator Laboratory.

    1942–1950

    Leslie Groves visited Lawrence’s Radiation Laboratory in late 1942 as he was organizing the Manhattan Project, meeting J. Robert Oppenheimer for the first time. Oppenheimer was tasked with organizing the nuclear bomb development effort and founded today’s Los Alamos National Laboratory to help keep the work secret. At the RadLab, Lawrence and his colleagues developed the technique of electromagnetic enrichment of uranium using their experience with cyclotrons. The “calutrons” (named after the University) became the basic unit of the massive Y-12 facility in Oak Ridge, Tennessee. Lawrence’s lab helped contribute to what have been judged to be the three most valuable technology developments of the war (the atomic bomb, proximity fuse, and radar). The cyclotron, whose construction was stalled during the war, was finished in November 1946. The Manhattan Project shut down two months later.

    1951–2018

    After the war, the Radiation Laboratory became one of the first laboratories to be incorporated into the Atomic Energy Commission (AEC) (now The Department of Energy . The most highly classified work remained at Los Alamos, but the RadLab remained involved. Edward Teller suggested setting up a second lab similar to Los Alamos to compete with their designs. This led to the creation of an offshoot of the RadLab (now The DOE’s Lawrence Livermore National Laboratory) in 1952. Some of the RadLab’s work was transferred to the new lab, but some classified research continued at Berkeley Lab until the 1970s, when it became a laboratory dedicated only to unclassified scientific research.

    Shortly after the death of Lawrence in August 1958, the UC Radiation Laboratory (both branches) was renamed the Lawrence Radiation Laboratory. The Berkeley location became the Lawrence Berkeley Laboratory in 1971, although many continued to call it the RadLab. Gradually, another shortened form came into common usage, LBNL. Its formal name was amended to Ernest Orlando Lawrence Berkeley National Laboratory in 1995, when “National” was added to the names of all DOE labs. “Ernest Orlando” was later dropped to shorten the name. Today, the lab is commonly referred to as “Berkeley Lab”.

    The Alvarez Physics Memos are a set of informal working papers of the large group of physicists, engineers, computer programmers, and technicians led by Luis W. Alvarez from the early 1950s until his death in 1988. Over 1700 memos are available on-line, hosted by the Laboratory.

    The lab remains owned by the Department of Energy , with management from the University of California. Companies such as Intel were funding the lab’s research into computing chips.

    Science mission

    From the 1950s through the present, Berkeley Lab has maintained its status as a major international center for physics research, and has also diversified its research program into almost every realm of scientific investigation. Its mission is to solve the most pressing and profound scientific problems facing humanity, conduct basic research for a secure energy future, understand living systems to improve the environment, health, and energy supply, understand matter and energy in the universe, build and safely operate leading scientific facilities for the nation, and train the next generation of scientists and engineers.

    The Laboratory’s 20 scientific divisions are organized within six areas of research: Computing Sciences; Physical Sciences; Earth and Environmental Sciences; Biosciences; Energy Sciences; and Energy Technologies. Berkeley Lab has six main science thrusts: advancing integrated fundamental energy science; integrative biological and environmental system science; advanced computing for science impact; discovering the fundamental properties of matter and energy; accelerators for the future; and developing energy technology innovations for a sustainable future. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab tradition that continues today.

    Berkeley Lab operates five major National User Facilities for the DOE Office of Science:

    The Advanced Light Source (ALS) is a synchrotron light source with 41 beam lines providing ultraviolet, soft x-ray, and hard x-ray light to scientific experiments.

    The DOE’s Lawrence Berkeley National Laboratory Advanced Light Source.
    The ALS is one of the world’s brightest sources of soft x-rays, which are used to characterize the electronic structure of matter and to reveal microscopic structures with elemental and chemical specificity. About 2,500 scientist-users carry out research at ALS every year. Berkeley Lab is proposing an upgrade of ALS which would increase the coherent flux of soft x-rays by two-three orders of magnitude.

    Berkeley Lab Laser Accelerator (BELLA) Center

    The DOE Joint Genome Institute supports genomic research in support of the DOE missions in alternative energy, global carbon cycling, and environmental management. The JGI’s partner laboratories are Berkeley Lab, DOE’s Lawrence Livermore National Laboratory, DOE’s Oak Ridge National Laboratory (ORNL), DOE’s Pacific Northwest National Laboratory (PNNL), and the HudsonAlpha Institute for Biotechnology . The JGI’s central role is the development of a diversity of large-scale experimental and computational capabilities to link sequence to biological insights relevant to energy and environmental research. Approximately 1,200 scientist-users take advantage of JGI’s capabilities for their research every year.

    LBNL Molecular Foundry

    The LBNL Molecular Foundry is a multidisciplinary nanoscience research facility. Its seven research facilities focus on Imaging and Manipulation of Nanostructures; Nanofabrication; Theory of Nanostructured Materials; Inorganic Nanostructures; Biological Nanostructures; Organic and Macromolecular Synthesis; and Electron Microscopy. Approximately 700 scientist-users make use of these facilities in their research every year.

    The DOE’s NERSC National Energy Research Scientific Computing Center is the scientific computing facility that provides large-scale computing for the DOE’s unclassified research programs. Its current systems provide over 3 billion computational hours annually. NERSC supports 6,000 scientific users from universities, national laboratories, and industry.

    DOE’s NERSC National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory.

    Cray Cori II supercomputer at National Energy Research Scientific Computing Center at DOE’s Lawrence Berkeley National Laboratory, named after Gerty Cori, the first American woman to win a Nobel Prize in science.

    NERSC Hopper Cray XE6 supercomputer.

    NERSC Cray XC30 Edison supercomputer.

    NERSC GPFS for Life Sciences.

    The Genepool system is a cluster dedicated to the DOE Joint Genome Institute’s computing needs. Denovo is a smaller test system for Genepool that is primarily used by NERSC staff to test new system configurations and software.

    NERSC PDSF computer cluster in 2003.

    PDSF is a networked distributed computing cluster designed primarily to meet the detector simulation and data analysis requirements of physics, astrophysics and nuclear science collaborations.

    Cray Shasta Perlmutter SC18 AMD Epyc Nvidia pre-exascale supercomputer.

    NERSC is a DOE Office of Science User Facility.

    The DOE’s Energy Science Network is a high-speed network infrastructure optimized for very large scientific data flows. ESNet provides connectivity for all major DOE sites and facilities, and the network transports roughly 35 petabytes of traffic each month.

    Berkeley Lab is the lead partner in the DOE’s Joint Bioenergy Institute (JBEI), located in Emeryville, California. Other partners are the DOE’s Sandia National Laboratory, the University of California (UC) campuses of Berkeley and Davis, the Carnegie Institution for Science , and DOE’s Lawrence Livermore National Laboratory (LLNL). JBEI’s primary scientific mission is to advance the development of the next generation of biofuels – liquid fuels derived from the solar energy stored in plant biomass. JBEI is one of three new U.S. Department of Energy (DOE) Bioenergy Research Centers (BRCs).

    Berkeley Lab has a major role in two DOE Energy Innovation Hubs. The mission of the Joint Center for Artificial Photosynthesis (JCAP) is to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide. The lead institution for JCAP is the California Institute of Technology and Berkeley Lab is the second institutional center. The mission of the Joint Center for Energy Storage Research (JCESR) is to create next-generation battery technologies that will transform transportation and the electricity grid. DOE’s Argonne National Laboratory leads JCESR and Berkeley Lab is a major partner.

     
  • richardmitnick 7:37 am on November 4, 2022 Permalink | Reply
    Tags: "Inflation Reduction Act Funds Accelerate Berkeley Lab’s Ability to Bring Science Solutions to the World", Advanced Light Source Upgrade (ALS-U), , , Cosmic Microwave Background – Stage 4 (CMB-S4), CUORE Upgrade with Particle Identification (CUPID), Gamma Ray Energy Tracking Array (GRETA), , National Energy Research Scientific Computing Center (NERSC) "Perlmutter" supercomputer, The Biological and Environmental Program Integration Center (BioEPIC), The DOE’s Lawrence Berkeley National Laboratory   

    From The DOE’s Lawrence Berkeley National Laboratory: “Inflation Reduction Act Funds Accelerate Berkeley Lab’s Ability to Bring Science Solutions to the World” 

    From The DOE’s Lawrence Berkeley National Laboratory

    11.4.22

    Funding provided by the Inflation Reduction Act (IRA) is accelerating the development of several critical facilities and projects at the Department of Energy’s (DOE) Lawrence Berkeley National Laboratory (Berkeley Lab). These projects, which support research spanning disciplines ranging from biology and physics to nanoscience and supercomputing, will improve Berkeley Lab’s ability to find solutions for science, people, and the planet.

    “America’s commitment to science and ingenuity shaped us into the world leaders we are today, and the continued success of our national laboratories will ensure we’re at the global forefront of innovation for generations to come,” said U.S. Secretary of Energy Jennifer M. Granholm. “Thanks to President Biden’s Inflation Reduction Act, these world-class institutions will receive $1.5 billion—one of the largest ever investments in national laboratory infrastructure—to develop advanced energy and manufacturing technologies we need to advance the frontiers of science and tackle tomorrow’s challenges.”

    “Accelerating the construction of new scientific facilities and equipment will enable our world-class experts to develop science solutions today and for decades to come, and continue to train the next generation of scientists,” said Berkeley Lab director Mike Witherell.

    In all, Berkeley Lab will receive at least $200 million in Inflation Reduction Act funding. Below are some of the projects and facilities that will deliver results faster, and at a greater scope, due to this investment.

    Science Laboratory Infrastructure Projects

    BioEPIC: The Biological and Environmental Program Integration Center (BioEPIC) is a new facility under construction at Berkeley Lab, which seeks to revolutionize our understanding of how microbes interact with soils and plants to influence the environment.

    2
    BioEPIC. Credit: Berkeley Lab.

    IRA funding will help complete the project more efficiently and support more researchers pursuing a wider range of work, including mitigating the effects of climate change through soil carbon sequestration.

    Seismic Safety Modernization: This project provides enormous benefits to the seismic safety of Berkeley Lab staff and visitors by addressing the highest priority seismic risks and replacing the 70 year old cafeteria complex. The new facility will provide broader opportunities for science collaboration with modern conference and meeting space, allowing the Laboratory to host scientific workshops and enhance the impact of DOE research across our nation. IRA funding will ensure this project advances quickly, meeting its budget and timeline goals.

    The Science Laboratories Infrastructure program supports scientific and technological innovation at the Office of Science laboratories by funding and sustaining mission-ready infrastructure and fostering safe and environmentally responsible operations.

    Cutting Edge Physics Projects

    Cosmic Microwave Background – Stage 4 (CMB-S4): CMB-S4 is the next-generation ground-based cosmic microwave background experiment, which will provide a dramatic leap forward in our understanding of the fundamental nature of space and time and the evolution of the universe.

    IRA funding provides important support to the project to advance the conceptual design phase and to continue development of key technologies needed to achieve the ambitious goals of this experiment.

    Gamma Ray Energy Tracking Array (GRETA): GRETA, a new high-resolution gamma-ray detector system that will be used at the Facility for Rare Isotope Beams (FRIB), will enable cutting-edge research with rare isotopes for FRIB’s international community. IRA funding enables the procurement of three more detector modules, advancing the project schedule, and reducing risk related to supply chain delays.


    CUORE Upgrade with Particle Identification (CUPID): CUPID is a neutrinoless-double beta decay detector that will provide new insight about the nature of matter and how stars create elements.

    IRA funding will enable R&D and other efforts by the US members of this international collaboration to move towards completion of the project definition and conceptual design phase (CD-1).

    National Energy Research Scientific Computing Center (NERSC)

    The National Energy Research Scientific Computing Center (NERSC) is currently deploying “Perlmutter”, a high performance computing system.

    The Perlmutter system will play a key role in advancing scientific research in the U.S. across the DOE Office of Science mission. Perlmutter is the first NERSC system designed for modeling and simulation, large-scale data analysis, and AI for science. The IRA funds allow NERSC to reduce financing costs by enabling the outright purchase of the Phase-2 Perlmutter system.

    Advanced Light Source Upgrade (ALS-U)

    The ALS-U project will transform the ALS into the world’s highest coherent flux source of soft x-rays, ensuring its continuing scientific leadership for decades to come.


    ALS Upgrade moves forward. Credit:Berkeley Lab

    IRA funds will benefit the project in several ways, including accelerating large procurements, which will reduce schedule risk and the impacts of inflation. When completed, the project will be used to provide insights vital to advancing DOE priorities, from energy storage and alternative fuels to quantum information and microelectronics. More than 1,600 scientific users from around the world benefit from the ALS’s capabilities each year.

    Molecular Foundry

    IRA funds will be used to accelerate the delivery of multimodal optoelectronic scanning transmission electron microscopy capabilities at the Molecular Foundry.

    This world-unique instrument will combine state-of-the-art analytical capabilities with the center’s expertise in atomic resolution tomography and nanoscale optoelectronic characterization to enable the study of complex energy conversion and transfer processes.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LBNL campus

    Bringing Science Solutions to the World

    In the world of science, The Lawrence Berkeley National Laboratory (Berkeley Lab) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the The National Academy of Sciences, one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the The National Academy of Engineering, and three of our scientists have been elected into the Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

    Berkeley Lab is a member of the national laboratory system supported by the U.S. Department of Energy through its Office of Science. It is managed by the University of California and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above the University of California- Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

    Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a University of California-Berkeley physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.

    History

    1931–1941

    The laboratory was founded on August 26, 1931, by Ernest Lawrence, as the Radiation Laboratory of the University of California-Berkeley, associated with the Physics Department. It centered physics research around his new instrument, the cyclotron, a type of particle accelerator for which he was awarded the Nobel Prize in Physics in 1939.

    LBNL 88 inch cyclotron.

    LBNL 88 inch cyclotron.

    Throughout the 1930s, Lawrence pushed to create larger and larger machines for physics research, courting private philanthropists for funding. He was the first to develop a large team to build big projects to make discoveries in basic research. Eventually these machines grew too large to be held on the university grounds, and in 1940 the lab moved to its current site atop the hill above campus. Part of the team put together during this period includes two other young scientists who went on to establish large laboratories; J. Robert Oppenheimer founded The DOE’s Los Alamos Laboratory, and Robert Wilson founded The DOE’s Fermi National Accelerator Laboratory.

    1942–1950

    Leslie Groves visited Lawrence’s Radiation Laboratory in late 1942 as he was organizing the Manhattan Project, meeting J. Robert Oppenheimer for the first time. Oppenheimer was tasked with organizing the nuclear bomb development effort and founded today’s Los Alamos National Laboratory to help keep the work secret. At the RadLab, Lawrence and his colleagues developed the technique of electromagnetic enrichment of uranium using their experience with cyclotrons. The “calutrons” (named after the University) became the basic unit of the massive Y-12 facility in Oak Ridge, Tennessee. Lawrence’s lab helped contribute to what have been judged to be the three most valuable technology developments of the war (the atomic bomb, proximity fuse, and radar). The cyclotron, whose construction was stalled during the war, was finished in November 1946. The Manhattan Project shut down two months later.

    1951–2018

    After the war, the Radiation Laboratory became one of the first laboratories to be incorporated into the Atomic Energy Commission (AEC) (now The Department of Energy . The most highly classified work remained at Los Alamos, but the RadLab remained involved. Edward Teller suggested setting up a second lab similar to Los Alamos to compete with their designs. This led to the creation of an offshoot of the RadLab (now The DOE’s Lawrence Livermore National Laboratory) in 1952. Some of the RadLab’s work was transferred to the new lab, but some classified research continued at Berkeley Lab until the 1970s, when it became a laboratory dedicated only to unclassified scientific research.

    Shortly after the death of Lawrence in August 1958, the UC Radiation Laboratory (both branches) was renamed the Lawrence Radiation Laboratory. The Berkeley location became the Lawrence Berkeley Laboratory in 1971, although many continued to call it the RadLab. Gradually, another shortened form came into common usage, LBNL. Its formal name was amended to Ernest Orlando Lawrence Berkeley National Laboratory in 1995, when “National” was added to the names of all DOE labs. “Ernest Orlando” was later dropped to shorten the name. Today, the lab is commonly referred to as “Berkeley Lab”.

    The Alvarez Physics Memos are a set of informal working papers of the large group of physicists, engineers, computer programmers, and technicians led by Luis W. Alvarez from the early 1950s until his death in 1988. Over 1700 memos are available on-line, hosted by the Laboratory.

    The lab remains owned by the Department of Energy , with management from the University of California. Companies such as Intel were funding the lab’s research into computing chips.

    Science mission

    From the 1950s through the present, Berkeley Lab has maintained its status as a major international center for physics research, and has also diversified its research program into almost every realm of scientific investigation. Its mission is to solve the most pressing and profound scientific problems facing humanity, conduct basic research for a secure energy future, understand living systems to improve the environment, health, and energy supply, understand matter and energy in the universe, build and safely operate leading scientific facilities for the nation, and train the next generation of scientists and engineers.

    The Laboratory’s 20 scientific divisions are organized within six areas of research: Computing Sciences; Physical Sciences; Earth and Environmental Sciences; Biosciences; Energy Sciences; and Energy Technologies. Berkeley Lab has six main science thrusts: advancing integrated fundamental energy science; integrative biological and environmental system science; advanced computing for science impact; discovering the fundamental properties of matter and energy; accelerators for the future; and developing energy technology innovations for a sustainable future. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab tradition that continues today.

    Berkeley Lab operates five major National User Facilities for the DOE Office of Science:

    The Advanced Light Source (ALS) is a synchrotron light source with 41 beam lines providing ultraviolet, soft x-ray, and hard x-ray light to scientific experiments.

    The DOE’s Lawrence Berkeley National Laboratory Advanced Light Source.
    The ALS is one of the world’s brightest sources of soft x-rays, which are used to characterize the electronic structure of matter and to reveal microscopic structures with elemental and chemical specificity. About 2,500 scientist-users carry out research at ALS every year. Berkeley Lab is proposing an upgrade of ALS which would increase the coherent flux of soft x-rays by two-three orders of magnitude.

    Berkeley Lab Laser Accelerator (BELLA) Center

    The DOE Joint Genome Institute supports genomic research in support of the DOE missions in alternative energy, global carbon cycling, and environmental management. The JGI’s partner laboratories are Berkeley Lab, DOE’s Lawrence Livermore National Laboratory, DOE’s Oak Ridge National Laboratory (ORNL), DOE’s Pacific Northwest National Laboratory (PNNL), and the HudsonAlpha Institute for Biotechnology . The JGI’s central role is the development of a diversity of large-scale experimental and computational capabilities to link sequence to biological insights relevant to energy and environmental research. Approximately 1,200 scientist-users take advantage of JGI’s capabilities for their research every year.

    LBNL Molecular Foundry

    The LBNL Molecular Foundry is a multidisciplinary nanoscience research facility. Its seven research facilities focus on Imaging and Manipulation of Nanostructures; Nanofabrication; Theory of Nanostructured Materials; Inorganic Nanostructures; Biological Nanostructures; Organic and Macromolecular Synthesis; and Electron Microscopy. Approximately 700 scientist-users make use of these facilities in their research every year.

    The DOE’s NERSC National Energy Research Scientific Computing Center is the scientific computing facility that provides large-scale computing for the DOE’s unclassified research programs. Its current systems provide over 3 billion computational hours annually. NERSC supports 6,000 scientific users from universities, national laboratories, and industry.

    DOE’s NERSC National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory.

    Cray Cori II supercomputer at National Energy Research Scientific Computing Center at DOE’s Lawrence Berkeley National Laboratory, named after Gerty Cori, the first American woman to win a Nobel Prize in science.

    NERSC Hopper Cray XE6 supercomputer.

    NERSC Cray XC30 Edison supercomputer.

    NERSC GPFS for Life Sciences.

    The Genepool system is a cluster dedicated to the DOE Joint Genome Institute’s computing needs. Denovo is a smaller test system for Genepool that is primarily used by NERSC staff to test new system configurations and software.

    NERSC PDSF computer cluster in 2003.

    PDSF is a networked distributed computing cluster designed primarily to meet the detector simulation and data analysis requirements of physics, astrophysics and nuclear science collaborations.

    Cray Shasta Perlmutter SC18 AMD Epyc Nvidia pre-exascale supercomputer.

    NERSC is a DOE Office of Science User Facility.

    The DOE’s Energy Science Network is a high-speed network infrastructure optimized for very large scientific data flows. ESNet provides connectivity for all major DOE sites and facilities, and the network transports roughly 35 petabytes of traffic each month.

    Berkeley Lab is the lead partner in the DOE’s Joint Bioenergy Institute (JBEI), located in Emeryville, California. Other partners are the DOE’s Sandia National Laboratory, the University of California (UC) campuses of Berkeley and Davis, the Carnegie Institution for Science , and DOE’s Lawrence Livermore National Laboratory (LLNL). JBEI’s primary scientific mission is to advance the development of the next generation of biofuels – liquid fuels derived from the solar energy stored in plant biomass. JBEI is one of three new U.S. Department of Energy (DOE) Bioenergy Research Centers (BRCs).

    Berkeley Lab has a major role in two DOE Energy Innovation Hubs. The mission of the Joint Center for Artificial Photosynthesis (JCAP) is to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide. The lead institution for JCAP is the California Institute of Technology and Berkeley Lab is the second institutional center. The mission of the Joint Center for Energy Storage Research (JCESR) is to create next-generation battery technologies that will transform transportation and the electricity grid. DOE’s Argonne National Laboratory leads JCESR and Berkeley Lab is a major partner.

     
  • richardmitnick 7:36 pm on October 31, 2022 Permalink | Reply
    Tags: "Efficiency and Stability Best-Practices Proposed for Solar Water-Splitting To Make Hydrogen", "PEC" water-splitting efficiency measurements do not yet have a widely accepted protocol., "PEC" water-splitting was first noted in scientific publications in 1972., "PEC": Photoelectrochemical water-splitting, "STH": solar-to-hydrogen, A guide as to how to best measure the efficiency of producing hydrogen directly from solar power., , Best practices were verified by both laboratories., , , Photoelectrochemical (PEC) water-splitting stands out as potentially one of the most sustainable routes to clean energy., So far no standardized STH measurement procedures have been established., The DOE’s Lawrence Berkeley National Laboratory, The National Renewable Energy Laboratory, The U.S. Department of Energy’s Hydrogen and Fuel Cell Technologies Office has set 25% as the ultimate target for “STH” through “PEC” water-splitting.   

    From NREL- The National Renewable Energy Laboratory And The DOE’s Lawrence Berkeley National Laboratory: “Efficiency and Stability Best-Practices Proposed for Solar Water-Splitting To Make Hydrogen” 

    From NREL- The National Renewable Energy Laboratory

    And

    The DOE’s Lawrence Berkeley National Laboratory

    10.31.22

    NREL and The DOE’s Lawrence Berkeley National Laboratory Offer Ideal Methods To Provide Confidence in Comparing Measurements.

    1
    Photo shows laboratory equipment used to produce hydrogen by means of a photoelectrode. A photoelectrode is used to produce hydrogen by splitting water. Researchers have developed a best-practices guide on how to best compare water-splitting technologies across different laboratories. Photo by Dennis Schroeder, NREL.

    Scientists from the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) and Lawrence Berkeley National Laboratory (Berkeley Lab) are providing researchers with a guide as to how to best measure the efficiency of producing hydrogen directly from solar power.

    Photoelectrochemical (“PEC”) water-splitting, which relies on sunlight to split water into its component elements—oxygen and hydrogen—stands out as potentially one of the most sustainable routes to clean energy. Measurements of how efficient the PEC process is on an identical system can vary wildly from different laboratories, however, from a lack of standardized methods. The newly developed best-practices guide published in Frontiers in Energy Research [below] is intended to provide confidence in comparing results obtained at different sites and by different groups.

    The publication provides a road map for the PEC community as researchers continue to refine the technology. These best practices were verified by both laboratories via round-robin testing using the same testing hardware, PEC photoelectrodes, and measurement procedures. Research into photovoltaics has allowed a certification of cell efficiencies, but “PEC” water-splitting efficiency measurements do not yet have a widely accepted protocol.

    “It’s really difficult to compare reported PEC water-splitting efficiency results between labs, because people tend to make measurements under different conditions,” said Todd Deutsch, a senior scientist at NREL and co-author of the new journal article in Frontiers in Energy Research [below]. “The Department of Energy recognized this a while ago, so there have been quite a few efforts to establish standards that we’ve been involved in—multi-lab collaborative efforts and also NREL-specific efforts.”

    Other authors from NREL are Keenan Wyatt, Myles Steiner, and James Young.

    “The motivation for this protocol paper was both to serve as a guide for researchers just entering the field as well as describing subtle technique tips for more experienced scientists,” said Francesca Toma, a materials staff scientist at Berkeley Lab and a co-author of the journal article. “We leveraged the unique strengths of two national labs that together span the basic to applied science realms.”

    Other co-authors from Berkeley Lab are Olivia Alley, Guiji Liu, Tobias Kistler, David Larson, and Jason Cooper.

    The article spells out the path so that all laboratories can follow a uniformity of experimental practices, beginning with the materials needed for the fabrication of photoelectrodes. The authors go on to detail the fabrication procedure, the experimental setup, and the process to measure the solar-to-hydrogen (“STH”) efficiency. Direct measurement of the amount of hydrogen generated by PEC water-splitting is required for an accurate characterization of “STH” efficiency, the researchers noted.

    “PEC” water-splitting was first noted in scientific publications in 1972. Research since then has continued to refine and improve the process, but so far, no standardized “STH” measurement procedures have been established. NREL set the first record for “STH” efficiency exceeding 10% (12.4% “STH”) in 1998, but in 2016 revised that figure downward in a publication that described common pitfalls to avoid in making efficiency measurements, after realizing the original experiment had been over-illuminated. In 2017, the team used bandgap engineering to design light absorbers more optimized to utilize the solar spectrum, which resulted in a higher “STH” of 16.2%, a new world record at the time.

    The U.S. Department of Energy’s Hydrogen and Fuel Cell Technologies Office has set 25% as the ultimate target for “STH” through “PEC” water-splitting, although preliminary cost analysis suggests that competitively costed hydrogen could be achieved with lower efficiencies. Photoelectrodes have demonstrated efficiencies from 10% to 20%.

    “PEC” researchers also continue to work on improvements to durability. The semiconductor used to capture sunlight is immersed in an aqueous (water-based) electrolyte. But with electrolyte pH ranging from acidic to alkaline, the electrolyte corrodes the semiconductor and shortens its lifespan.

    “Durability still is pretty much a showstopper for this technology,” Deutsch said. “There’s been some progress, but not nearly as much as there has been recently in improving efficiency.”

    Deutsch co-authored another new paper, also in Frontiers in Energy Research [below] that describes achieving the simultaneous highly efficient and stable unassisted “PEC” water-splitting as the “Holy Grail” in clean and renewable fuel generation. That paper provides a framework for conducting long-term stability experiments with the hopes of achieving ultrahigh stability (lasting more than 10,000 hours) and efficiency greater than 15%.

    HydroGEN Advanced Water Splitting Materials Consortium, established as part of the Energy Materials Network under the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy’s Hydrogen and Fuel Cell Technologies Office, funded the research.

    Science papers:
    Frontiers in Energy Research
    Frontiers in Energy Research
    See the science papers for detailed material with images.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LBNL campus

    Bringing Science Solutions to the World

    In the world of science, The Lawrence Berkeley National Laboratory (Berkeley Lab) is synonymous with “excellence.” Thirteen Nobel prizes are associated with Berkeley Lab. Seventy Lab scientists are members of the The National Academy of Sciences, one of the highest honors for a scientist in the United States. Thirteen of our scientists have won the National Medal of Science, our nation’s highest award for lifetime achievement in fields of scientific research. Eighteen of our engineers have been elected to the The National Academy of Engineering, and three of our scientists have been elected into the Institute of Medicine. In addition, Berkeley Lab has trained thousands of university science and engineering students who are advancing technological innovations across the nation and around the world.

    Berkeley Lab is a member of the national laboratory system supported by the U.S. Department of Energy through its Office of Science. It is managed by the University of California and is charged with conducting unclassified research across a wide range of scientific disciplines. Located on a 202-acre site in the hills above the University of California- Berkeley campus that offers spectacular views of the San Francisco Bay, Berkeley Lab employs approximately 3,232 scientists, engineers and support staff. The Lab’s total costs for FY 2014 were $785 million. A recent study estimates the Laboratory’s overall economic impact through direct, indirect and induced spending on the nine counties that make up the San Francisco Bay Area to be nearly $700 million annually. The Lab was also responsible for creating 5,600 jobs locally and 12,000 nationally. The overall economic impact on the national economy is estimated at $1.6 billion a year. Technologies developed at Berkeley Lab have generated billions of dollars in revenues, and thousands of jobs. Savings as a result of Berkeley Lab developments in lighting and windows, and other energy-efficient technologies, have also been in the billions of dollars.

    Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a University of California-Berkeley physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab legacy that continues today.

    History

    1931–1941

    The laboratory was founded on August 26, 1931, by Ernest Lawrence, as the Radiation Laboratory of the University of California-Berkeley, associated with the Physics Department. It centered physics research around his new instrument, the cyclotron, a type of particle accelerator for which he was awarded the Nobel Prize in Physics in 1939.

    LBNL 88 inch cyclotron.

    LBNL 88 inch cyclotron.

    Throughout the 1930s, Lawrence pushed to create larger and larger machines for physics research, courting private philanthropists for funding. He was the first to develop a large team to build big projects to make discoveries in basic research. Eventually these machines grew too large to be held on the university grounds, and in 1940 the lab moved to its current site atop the hill above campus. Part of the team put together during this period includes two other young scientists who went on to establish large laboratories; J. Robert Oppenheimer founded The DOE’s Los Alamos Laboratory, and Robert Wilson founded The DOE’s Fermi National Accelerator Laboratory.

    1942–1950

    Leslie Groves visited Lawrence’s Radiation Laboratory in late 1942 as he was organizing the Manhattan Project, meeting J. Robert Oppenheimer for the first time. Oppenheimer was tasked with organizing the nuclear bomb development effort and founded today’s Los Alamos National Laboratory to help keep the work secret. At the RadLab, Lawrence and his colleagues developed the technique of electromagnetic enrichment of uranium using their experience with cyclotrons. The “calutrons” (named after the University) became the basic unit of the massive Y-12 facility in Oak Ridge, Tennessee. Lawrence’s lab helped contribute to what have been judged to be the three most valuable technology developments of the war (the atomic bomb, proximity fuse, and radar). The cyclotron, whose construction was stalled during the war, was finished in November 1946. The Manhattan Project shut down two months later.

    1951–2018

    After the war, the Radiation Laboratory became one of the first laboratories to be incorporated into the Atomic Energy Commission (AEC) (now The Department of Energy . The most highly classified work remained at Los Alamos, but the RadLab remained involved. Edward Teller suggested setting up a second lab similar to Los Alamos to compete with their designs. This led to the creation of an offshoot of the RadLab (now The DOE’s Lawrence Livermore National Laboratory) in 1952. Some of the RadLab’s work was transferred to the new lab, but some classified research continued at Berkeley Lab until the 1970s, when it became a laboratory dedicated only to unclassified scientific research.

    Shortly after the death of Lawrence in August 1958, the UC Radiation Laboratory (both branches) was renamed the Lawrence Radiation Laboratory. The Berkeley location became the Lawrence Berkeley Laboratory in 1971, although many continued to call it the RadLab. Gradually, another shortened form came into common usage, LBNL. Its formal name was amended to Ernest Orlando Lawrence Berkeley National Laboratory in 1995, when “National” was added to the names of all DOE labs. “Ernest Orlando” was later dropped to shorten the name. Today, the lab is commonly referred to as “Berkeley Lab”.

    The Alvarez Physics Memos are a set of informal working papers of the large group of physicists, engineers, computer programmers, and technicians led by Luis W. Alvarez from the early 1950s until his death in 1988. Over 1700 memos are available on-line, hosted by the Laboratory.

    The lab remains owned by the Department of Energy , with management from the University of California. Companies such as Intel were funding the lab’s research into computing chips.

    Science mission

    From the 1950s through the present, Berkeley Lab has maintained its status as a major international center for physics research, and has also diversified its research program into almost every realm of scientific investigation. Its mission is to solve the most pressing and profound scientific problems facing humanity, conduct basic research for a secure energy future, understand living systems to improve the environment, health, and energy supply, understand matter and energy in the universe, build and safely operate leading scientific facilities for the nation, and train the next generation of scientists and engineers.

    The Laboratory’s 20 scientific divisions are organized within six areas of research: Computing Sciences; Physical Sciences; Earth and Environmental Sciences; Biosciences; Energy Sciences; and Energy Technologies. Berkeley Lab has six main science thrusts: advancing integrated fundamental energy science; integrative biological and environmental system science; advanced computing for science impact; discovering the fundamental properties of matter and energy; accelerators for the future; and developing energy technology innovations for a sustainable future. It was Lawrence’s belief that scientific research is best done through teams of individuals with different fields of expertise, working together. His teamwork concept is a Berkeley Lab tradition that continues today.

    Berkeley Lab operates five major National User Facilities for the DOE Office of Science:

    The Advanced Light Source (ALS) is a synchrotron light source with 41 beam lines providing ultraviolet, soft x-ray, and hard x-ray light to scientific experiments.

    The DOE’s Lawrence Berkeley National Laboratory Advanced Light Source.
    The ALS is one of the world’s brightest sources of soft x-rays, which are used to characterize the electronic structure of matter and to reveal microscopic structures with elemental and chemical specificity. About 2,500 scientist-users carry out research at ALS every year. Berkeley Lab is proposing an upgrade of ALS which would increase the coherent flux of soft x-rays by two-three orders of magnitude.

    Berkeley Lab Laser Accelerator (BELLA) Center

    The DOE Joint Genome Institute supports genomic research in support of the DOE missions in alternative energy, global carbon cycling, and environmental management. The JGI’s partner laboratories are Berkeley Lab, DOE’s Lawrence Livermore National Laboratory, DOE’s Oak Ridge National Laboratory (ORNL), DOE’s Pacific Northwest National Laboratory (PNNL), and the HudsonAlpha Institute for Biotechnology . The JGI’s central role is the development of a diversity of large-scale experimental and computational capabilities to link sequence to biological insights relevant to energy and environmental research. Approximately 1,200 scientist-users take advantage of JGI’s capabilities for their research every year.

    LBNL Molecular Foundry

    The LBNL Molecular Foundry is a multidisciplinary nanoscience research facility. Its seven research facilities focus on Imaging and Manipulation of Nanostructures; Nanofabrication; Theory of Nanostructured Materials; Inorganic Nanostructures; Biological Nanostructures; Organic and Macromolecular Synthesis; and Electron Microscopy. Approximately 700 scientist-users make use of these facilities in their research every year.

    The DOE’s NERSC National Energy Research Scientific Computing Center is the scientific computing facility that provides large-scale computing for the DOE’s unclassified research programs. Its current systems provide over 3 billion computational hours annually. NERSC supports 6,000 scientific users from universities, national laboratories, and industry.

    DOE’s NERSC National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory.

    Cray Cori II supercomputer at National Energy Research Scientific Computing Center at DOE’s Lawrence Berkeley National Laboratory, named after Gerty Cori, the first American woman to win a Nobel Prize in science.

    NERSC Hopper Cray XE6 supercomputer.

    NERSC Cray XC30 Edison supercomputer.

    NERSC GPFS for Life Sciences.

    The Genepool system is a cluster dedicated to the DOE Joint Genome Institute’s computing needs. Denovo is a smaller test system for Genepool that is primarily used by NERSC staff to test new system configurations and software.

    NERSC PDSF computer cluster in 2003.

    PDSF is a networked distributed computing cluster designed primarily to meet the detector simulation and data analysis requirements of physics, astrophysics and nuclear science collaborations.

    Cray Shasta Perlmutter SC18 AMD Epyc Nvidia pre-exascale supercomputer.

    NERSC is a DOE Office of Science User Facility.

    The DOE’s Energy Science Network is a high-speed network infrastructure optimized for very large scientific data flows. ESNet provides connectivity for all major DOE sites and facilities, and the network transports roughly 35 petabytes of traffic each month.

    Berkeley Lab is the lead partner in the DOE’s Joint Bioenergy Institute (JBEI), located in Emeryville, California. Other partners are the DOE’s Sandia National Laboratory, the University of California (UC) campuses of Berkeley and Davis, the Carnegie Institution for Science , and DOE’s Lawrence Livermore National Laboratory (LLNL). JBEI’s primary scientific mission is to advance the development of the next generation of biofuels – liquid fuels derived from the solar energy stored in plant biomass. JBEI is one of three new U.S. Department of Energy (DOE) Bioenergy Research Centers (BRCs).

    Berkeley Lab has a major role in two DOE Energy Innovation Hubs. The mission of the Joint Center for Artificial Photosynthesis (JCAP) is to find a cost-effective method to produce fuels using only sunlight, water, and carbon dioxide. The lead institution for JCAP is the California Institute of Technology and Berkeley Lab is the second institutional center. The mission of the Joint Center for Energy Storage Research (JCESR) is to create next-generation battery technologies that will transform transportation and the electricity grid. DOE’s Argonne National Laboratory leads JCESR and Berkeley Lab is a major partner.

    The National Renewable Energy Laboratory , located in Golden, Colorado, specializes in renewable energy and energy efficiency research and development. NREL is a government-owned, contractor-operated facility, and is funded through the United States Department of Energy. This arrangement allows a private entity to operate the lab on behalf of the federal government. NREL receives funding from Congress to be applied toward research and development projects. NREL also performs research on photovoltaics (PV) under the National Center for Photovoltaics. NREL has a number of PV research capabilities including research and development, testing, and deployment. NREL’s campus houses several facilities dedicated to PV research.

    NREL is the U.S. Department of Energy’s primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for the Energy Department by the Alliance for Sustainable Energy, LLC.

    NREL’s areas of research and development are renewable electricity, energy productivity, energy storage, systems integration, and sustainable transportation.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: