Tagged: The DOE’s Argonne National Laboratory Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:59 pm on October 13, 2022 Permalink | Reply
    Tags: "New tool helps researchers investigate clouds rain and climate change", , Argonne scientists plan to use EMC2 in collaboration with DOE’s Energy Exascale Earth System Model (E3SM) designed to examine the most detailed dynamics of climate-generating behavior., , , Earth Model Column Collaboratory (EMC2), , The DOE’s Argonne National Laboratory, The Earth Model Column Collaboratory is an open-source research platform that pairs complex data with weather observations to create highly accurate climate models and forecast predictions.   

    From The DOE’s Argonne National Laboratory: “New tool helps researchers investigate clouds rain and climate change” 

    Argonne Lab

    From The DOE’s Argonne National Laboratory

    10.12.22

    The Earth Model Column Collaboratory is an open-source research platform that pairs complex data with weather observations to create highly accurate climate models and forecast predictions.

    1
    The meteorological observations made by ARM’s Mobile Research Facility will help produce more accurate rainfall prediction models. (Image by Argonne National Laboratory/Scott Collis.)

    Clouds come in all shapes and sizes. While we might imagine puppies or whales or breaking waves, climatologists look at them as massive bundles of water in various forms that contribute to the daily weather, and ultimately, climate. The numbers, shapes and sizes of the liquid drops and ice crystals contained in a cloud, for example, will determine how it will scatter light or emit and absorb heat.

    Despite the enormity of clouds, many of these dynamics happen at a small scale. So, to better understand how all those imaginary creatures produce the effects that they do, researchers rely on computer-generated climate models. These models can bring together information from different weather instruments, physics calculations and other observations to increase our knowledge of how the atmosphere works.

    But due to limits in computing power, climate models must simplify the way clouds are represented. This introduces uncertainty in both projections of cloud behavior and climate change. Typically, in order to improve cloud representations, model results are compared with observations. However, the climate model and observation communities have historically worked separately, sometimes making the process hard to navigate.

    To bridge the gap between these two communities, climate scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory, Pennsylvania State University and the NASA Goddard Institute for Space Studies developed an easier way to compare cloud models with observations from weather instruments. The result is a modelling platform and weather instrument simulator called the Earth Model Column Collaboratory (EMC2).

    Results from current climate models don’t directly compare to those from radars, satellites and other sensors whose signals can’t directly detect key cloud parameters like liquid water content and number of drops. Instead, they detect microwave and visible light reflected by clouds and precipitation. As an instrument simulator, EMC2 can convert the more detailed model-simulated cloud parameters to these weather instrument signals.

    Another complication in climate modeling is the size of the geographic areas researchers want to study. Represented as points on a grid, these areas are typically around the size of a major metropolitan area. However, clouds and precipitation can cover areas as small as a neighborhood. These smaller areas of clouds and precipitation are sampled by radars and satellites. To solve this problem, EMC2 helps represent the spatial variability of cloud cover inside each grid cell on smaller scales like those covered by the weather instruments. This smaller reference point allows climate scientists to evaluate models more accurately.

    What makes EMC2 even more useful is that it integrates all of these tools into a single software package. Designed as open-source software, it allows both researchers and the public to easily add, use and modify models and observations. Further information about the methods, design, as well as where EMC2 can be downloaded are available in Silber et al. (2022) (available at https://​gmd​.coper​ni​cus​.org/​a​r​t​i​c​l​e​s​/​1​5​/​9​0​1​/​2022/).

    2
    Figure 1. The observations of the atmosphere in Figure 1 provide an example of EMC2-simulated reflectivity, a measure the intensity of microwave light scattered by the snow particles from a NASA Unified Weather Research and Forecasting model. (Image by Argonne National Laboratory/Robert Jackson.)

    Using an approach developed for NASA, Argonne scientists plan to use EMC2 in collaboration with DOE’s Energy Exascale Earth System Model (E3SM), a high-resolution model designed to examine the most detailed dynamics of climate-generating behavior. Researchers hope to evaluate the model’s ability to simulate thunderstorms over Houston. Using meteorological observations from one of DOE’s Atmospheric Radiation Measurement (ARM) programs, EMC2 will help climate scientists reduce uncertainties in rainfall predictions by improving the representation of thunderstorms in E3SM. In addition, EMC2 is currently being used to evaluate weather forecasts during the DOE ARM TRacking Aerosol-Cloud interactions ExpeRiment (TRACER) as shown in Figure 1.

    In short, scientists at Argonne in collaboration with Penn State and NASA developed EMC2in order to ease comparisons between climate and weather models with observations from weather instruments. EMC2 will provide a common point for collaboration between climate modelers and observationalists.

    “This kind of open access will help us better balance comparisons between models and observations,” said Robert Jackson, an Argonne assistant atmospheric scientist and collaborator on the model. ​“It will also provide that much-needed bridge between these historically separate communities.”

    The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines. Supported by the U.S. Department of Energy’s (DOE’s) Office of Science, Advanced Scientific Computing Research (ASCR) program, the ALCF is one of two DOE Leadership Computing Facilities in the nation dedicated to open science.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The DOE’s Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their is a science and engineering research national laboratory operated by UChicago Argonne LLC for the United States Department of Energy. The facility is located in Lemont, Illinois, outside of Chicago, and is the largest national laboratory by size and scope in the Midwest.

    Argonne had its beginnings in the Metallurgical Laboratory of the University of Chicago, formed in part to carry out Enrico Fermi’s work on nuclear reactors for the Manhattan Project during World War II. After the war, it was designated as the first national laboratory in the United States on July 1, 1946. In the post-war era the lab focused primarily on non-weapon related nuclear physics, designing and building the first power-producing nuclear reactors, helping design the reactors used by the United States’ nuclear navy, and a wide variety of similar projects. In 1994, the lab’s nuclear mission ended, and today it maintains a broad portfolio in basic science research, energy storage and renewable energy, environmental sustainability, supercomputing, and national security.

    UChicago Argonne, LLC, the operator of the laboratory, “brings together the expertise of the University of Chicago (the sole member of the LLC) with Jacobs Engineering Group Inc.” Argonne is a part of the expanding Illinois Technology and Research Corridor. Argonne formerly ran a smaller facility called Argonne National Laboratory-West (or simply Argonne-West) in Idaho next to the Idaho National Engineering and Environmental Laboratory. In 2005, the two Idaho-based laboratories merged to become the DOE’s Idaho National Laboratory.

    What would become Argonne began in 1942 as the Metallurgical Laboratory at the University of Chicago, which had become part of the Manhattan Project. The Met Lab built Chicago Pile-1, the world’s first nuclear reactor, under the stands of the University of Chicago sports stadium. Considered unsafe, in 1943, CP-1 was reconstructed as CP-2, in what is today known as Red Gate Woods but was then the Argonne Forest of the Cook County Forest Preserve District near Palos Hills. The lab was named after the surrounding forest, which in turn was named after the Forest of Argonne in France where U.S. troops fought in World War I. Fermi’s pile was originally going to be constructed in the Argonne forest, and construction plans were set in motion, but a labor dispute brought the project to a halt. Since speed was paramount, the project was moved to the squash court under Stagg Field, the football stadium on the campus of the University of Chicago. Fermi told them that he was sure of his calculations, which said that it would not lead to a runaway reaction, which would have contaminated the city.

    Other activities were added to Argonne over the next five years. On July 1, 1946, the “Metallurgical Laboratory” was formally re-chartered as Argonne National Laboratory for “cooperative research in nucleonics.” At the request of the U.S. Atomic Energy Commission, it began developing nuclear reactors for the nation’s peaceful nuclear energy program. In the late 1940s and early 1950s, the laboratory moved to a larger location in unincorporated DuPage County, Illinois and established a remote location in Idaho, called “Argonne-West,” to conduct further nuclear research.

    In quick succession, the laboratory designed and built Chicago Pile 3 (1944), the world’s first heavy-water moderated reactor, and the Experimental Breeder Reactor I (Chicago Pile 4), built-in Idaho, which lit a string of four light bulbs with the world’s first nuclear-generated electricity in 1951. A complete list of the reactors designed and, in most cases, built and operated by Argonne can be viewed in the, Reactors Designed by Argonne page. The knowledge gained from the Argonne experiments conducted with these reactors 1) formed the foundation for the designs of most of the commercial reactors currently used throughout the world for electric power generation and 2) inform the current evolving designs of liquid-metal reactors for future commercial power stations.

    Conducting classified research, the laboratory was heavily secured; all employees and visitors needed badges to pass a checkpoint, many of the buildings were classified, and the laboratory itself was fenced and guarded. Such alluring secrecy drew visitors both authorized—including King Leopold III of Belgium and Queen Frederica of Greece—and unauthorized. Shortly past 1 a.m. on February 6, 1951, Argonne guards discovered reporter Paul Harvey near the 10-foot (3.0 m) perimeter fence, his coat tangled in the barbed wire. Searching his car, guards found a previously prepared four-page broadcast detailing the saga of his unauthorized entrance into a classified “hot zone”. He was brought before a federal grand jury on charges of conspiracy to obtain information on national security and transmit it to the public, but was not indicted.

    Not all nuclear technology went into developing reactors, however. While designing a scanner for reactor fuel elements in 1957, Argonne physicist William Nelson Beck put his own arm inside the scanner and obtained one of the first ultrasound images of the human body. Remote manipulators designed to handle radioactive materials laid the groundwork for more complex machines used to clean up contaminated areas, sealed laboratories or caves. In 1964, the “Janus” reactor opened to study the effects of neutron radiation on biological life, providing research for guidelines on safe exposure levels for workers at power plants, laboratories and hospitals. Scientists at Argonne pioneered a technique to analyze the moon’s surface using alpha radiation, which launched aboard the Surveyor 5 in 1967 and later analyzed lunar samples from the Apollo 11 mission.

    In addition to nuclear work, the laboratory maintained a strong presence in the basic research of physics and chemistry. In 1955, Argonne chemists co-discovered the elements einsteinium and fermium, elements 99 and 100 in the periodic table. In 1962, laboratory chemists produced the first compound of the inert noble gas xenon, opening up a new field of chemical bonding research. In 1963, they discovered the hydrated electron.

    High-energy physics made a leap forward when Argonne was chosen as the site of the 12.5 GeV Zero Gradient Synchrotron, a proton accelerator that opened in 1963. A bubble chamber allowed scientists to track the motions of subatomic particles as they zipped through the chamber; in 1970, they observed the neutrino in a hydrogen bubble chamber for the first time.

    Meanwhile, the laboratory was also helping to design the reactor for the world’s first nuclear-powered submarine, the U.S.S. Nautilus, which steamed for more than 513,550 nautical miles (951,090 km). The next nuclear reactor model was Experimental Boiling Water Reactor, the forerunner of many modern nuclear plants, and Experimental Breeder Reactor II (EBR-II), which was sodium-cooled, and included a fuel recycling facility. EBR-II was later modified to test other reactor designs, including a fast-neutron reactor and, in 1982, the Integral Fast Reactor concept—a revolutionary design that reprocessed its own fuel, reduced its atomic waste and withstood safety tests of the same failures that triggered the Chernobyl and Three Mile Island disasters. In 1994, however, the U.S. Congress terminated funding for the bulk of Argonne’s nuclear programs.

    Argonne moved to specialize in other areas, while capitalizing on its experience in physics, chemical sciences and metallurgy. In 1987, the laboratory was the first to successfully demonstrate a pioneering technique called plasma wakefield acceleration, which accelerates particles in much shorter distances than conventional accelerators. It also cultivated a strong battery research program.

    Following a major push by then-director Alan Schriesheim, the laboratory was chosen as the site of the Advanced Photon Source, a major X-ray facility which was completed in 1995 and produced the brightest X-rays in the world at the time of its construction.

    On 19 March 2019, it was reported in the Chicago Tribune that the laboratory was constructing the world’s most powerful supercomputer. Costing $500 million it will have the processing power of 1 quintillion flops. Applications will include the analysis of stars and improvements in the power grid.

    With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science. For more visit http://www.anl.gov.

    About the Advanced Photon Source

    The U. S. Department of Energy Office of Science’s Advanced Photon Source (APS) at Argonne National Laboratory is one of the world’s most productive X-ray light source facilities. The APS provides high-brightness X-ray beams to a diverse community of researchers in materials science, chemistry, condensed matter physics, the life and environmental sciences, and applied research. These X-rays are ideally suited for explorations of materials and biological structures; elemental distribution; chemical, magnetic, electronic states; and a wide range of technologically important engineering systems from batteries to fuel injector sprays, all of which are the foundations of our nation’s economic, technological, and physical well-being. Each year, more than 5,000 researchers use the APS to produce over 2,000 publications detailing impactful discoveries, and solve more vital biological protein structures than users of any other X-ray light source research facility. APS scientists and engineers innovate technology that is at the heart of advancing accelerator and light-source operations. This includes the insertion devices that produce extreme-brightness X-rays prized by researchers, lenses that focus the X-rays down to a few nanometers, instrumentation that maximizes the way the X-rays interact with samples being studied, and software that gathers and manages the massive quantity of data resulting from discovery research at the APS.

    With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science. For more visit http://www.anl.gov.

    Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science

    Argonne Lab Campus

     
  • richardmitnick 12:01 pm on September 26, 2022 Permalink | Reply
    Tags: "Secrets from space:: Advanced Photon Source helps illuminate the journey of a 4 billion-year-old asteroid", , Nearby asteroid 162173 Ryugu, , Study sheds light on the history of our solar system., The DOE’s Argonne National Laboratory   

    From The DOE’s Argonne National Laboratory: “Secrets from space:: Advanced Photon Source helps illuminate the journey of a 4 billion-year-old asteroid” 

    Argonne Lab

    From The DOE’s Argonne National Laboratory

    9.22.22
    Andre Salles

    A year ago, scientists got their first look at material gathered from nearby asteroid 162173 Ryugu. Now the results of those studies have been revealed, and they shed light on the history of our solar system and the long trek of this cosmic wanderer.

    1
    Argonne Distinguished Fellow Esen Ercan Alp, right, and physicist and group leader Jiyong Zhao, left, at APS Beamline 3-ID-B, where scientists measured the composition of fragments of a near-Earth asteroid. (Image by Jason Creps/Argonne National Laboratory.)

    At its closest orbit, asteroid 162173 Ryugu is only about 60,000 miles from Earth. That’s only a quarter of the distance to the moon. But according to newly released results from an international team of scientists, this hunk of rock began its cosmic journey more than 4 billion years ago, and billions of miles away, in the outer part of our solar system. It traveled to us across space, taking in the history of this corner of the universe in the process.

    These revelations are only part of the results of a global effort to study samples from the surface of Ryugu. These specks of asteroid dust were carefully collected and transported back to Earth by Hayabusa 2, a mission operated by the Japanese space agency JAXA, and then sent to institutions around the world.

    Scientists put these tiny fragments through dozens of experiments to tease out their secrets, to determine what they are made of and how the asteroid they came from may have been formed.

    The resulting paper, recently published in Science [below], includes authors from more than 100 institutions in 11 countries. Numbered among them is the U.S. Department of Energy’s (DOE) Argonne National Laboratory, home to the Advanced Photon Source [below], a DOE Office of Science user facility. The APS generates ultrabright X-ray beams that can be used to determine the chemical and structural makeup of samples atom by atom.

    Argonne Distinguished Fellow Esen Ercan Alp led the research team at Argonne, which includes physicist and group leader Jiyong Zhao and physicist Michael Hu, and beamline scientist Barbara Lavina of both Argonne and the University of Chicago. All are co-authors on the paper.

    Alp and his team worked for years to be included in this study. The key contribution of the APS, Alp said, is a particular X-ray technique he and his team specialize in. It’s called Mössbauer spectroscopy — named after German physicist Rudolf Mössbauer — and it is highly sensitive to tiny changes in the chemistry of samples. This technique allowed Alp and his team to determine the chemical composition of these fragments particle by particle.

    2
    UChicago and Argonne beamline scientist Barbara Lavina observes one of the tiny asteroid fragments through a microscope, with the magnified image on the screen beside her. (Image by Jason Creps/Argonne National Laboratory.)

    What they and their international colleagues found was surprising, Alp said.

    “There is enough evidence that Ryugu started in the outer solar system,” he said. ​“Asteroids found in the outer reaches of the solar system would have different characteristics than those found closer to the sun.”

    The APS, Alp said, found several pieces of evidence to support this hypothesis. For one, the grains that make up the asteroid are much finer than you would expect if it was formed at higher temperatures. For another, the structure of the fragments is porous, which means it once held water and ice. Lower temperatures and ice are much more common in the outer solar system, Alp said.

    The Ryugu fragments are very small — ranging from 400 microns, or the size of six human hairs, to 1 millimeter in diameter. But the X-ray beam used at beamline 3-ID-B can be focused down to 15 microns. The team was able to take several measurements on each of the fragments. They found the same porous, fine-grained structure across the samples.

    With the APS’s finely tuned spectroscopy capabilities, the team was able to measure the amount of oxidation that the samples had undergone. This was especially interesting since the fragments themselves had never been exposed to oxygen — they were delivered in vacuum-sealed containers, in pristine condition from their trip across space.

    While the APS team did find a chemical makeup similar to meteorites that have hit the Earth — specifically a group of them called CI chondrites, of which only nine are known to exist on the planet — they did discover something that set the Ryugu fragments apart.


    Space Odyssey: Argonne scientists among the first to study asteroid fragments. (Video by JJ Starr.)

    The spectroscopy measurements found a large amount of pyrrhotite, an iron sulfide that is nowhere to be found in the dozen meteorite samples the team also studied, courtesy of French collaborators Mathieu Roskosz (National Museum of Natural History) and Pierre Beck (Universite Grenoble Alpes). This result also helps scientists put a limit on the temperature and location of Ryugu’s parent asteroid at the time it was formed.

    “Our results and those from other teams show that these asteroid samples are different from meteorites, particularly because meteorites have been through fiery atmosphere entry, weatherization and in particular oxidation on Earth,” said Hu. ​“This is exciting because it’s a completely different kind of sample, from way out in the solar system.”

    With all of the data combined, the paper lays out the multi-billion-year history of 162173 Ryugu. It was once part of a much larger asteroid which formed about 2 million years after the solar system did — roughly 4.5 billion years ago. It was made of many different materials, including water and carbon dioxide ice, and over the next three million years, the ice melted. This led to an interior that was hydrated and surface that was dryer.

    About a billion years ago, another chunk of space rock collided with this asteroid, breaking it apart and sending debris flying, and some of those fragments coalesced into the Ryugu asteroid we know today.

    “For planetary scientists, this is first-degree information coming directly from the solar system, and hence it is invaluable,” Alp said.

    The Argonne team plans their own paper, going into detail about their X-ray techniques and results. But being part of such a large, multi national scientific effort was thrilling, they said, and they look forward to being part of future experiments of this type.

    “This was an exciting and challenging experience for us to participate in such a well-coordinated international research project.” Zhao said. ​“With an upgrade to the APS in the works that will deliver even brighter X-ray beams, we are anticipating studying more materials like this, from far-flung asteroids and planets.”

    This project was funded in part by a grant from France and Chicago Collaborating in the Sciences (FACCTS), administered by the University of Chicago.

    For more on this story, read the Japan Aerospace Exploration Agency press release here.

    Science paper:
    Science

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The DOE’s Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their is a science and engineering research national laboratory operated by UChicago Argonne LLC for the United States Department of Energy. The facility is located in Lemont, Illinois, outside of Chicago, and is the largest national laboratory by size and scope in the Midwest.

    Argonne had its beginnings in the Metallurgical Laboratory of the University of Chicago, formed in part to carry out Enrico Fermi’s work on nuclear reactors for the Manhattan Project during World War II. After the war, it was designated as the first national laboratory in the United States on July 1, 1946. In the post-war era the lab focused primarily on non-weapon related nuclear physics, designing and building the first power-producing nuclear reactors, helping design the reactors used by the United States’ nuclear navy, and a wide variety of similar projects. In 1994, the lab’s nuclear mission ended, and today it maintains a broad portfolio in basic science research, energy storage and renewable energy, environmental sustainability, supercomputing, and national security.

    UChicago Argonne, LLC, the operator of the laboratory, “brings together the expertise of the University of Chicago (the sole member of the LLC) with Jacobs Engineering Group Inc.” Argonne is a part of the expanding Illinois Technology and Research Corridor. Argonne formerly ran a smaller facility called Argonne National Laboratory-West (or simply Argonne-West) in Idaho next to the Idaho National Engineering and Environmental Laboratory. In 2005, the two Idaho-based laboratories merged to become the DOE’s Idaho National Laboratory.

    What would become Argonne began in 1942 as the Metallurgical Laboratory at the University of Chicago, which had become part of the Manhattan Project. The Met Lab built Chicago Pile-1, the world’s first nuclear reactor, under the stands of the University of Chicago sports stadium. Considered unsafe, in 1943, CP-1 was reconstructed as CP-2, in what is today known as Red Gate Woods but was then the Argonne Forest of the Cook County Forest Preserve District near Palos Hills. The lab was named after the surrounding forest, which in turn was named after the Forest of Argonne in France where U.S. troops fought in World War I. Fermi’s pile was originally going to be constructed in the Argonne forest, and construction plans were set in motion, but a labor dispute brought the project to a halt. Since speed was paramount, the project was moved to the squash court under Stagg Field, the football stadium on the campus of the University of Chicago. Fermi told them that he was sure of his calculations, which said that it would not lead to a runaway reaction, which would have contaminated the city.

    Other activities were added to Argonne over the next five years. On July 1, 1946, the “Metallurgical Laboratory” was formally re-chartered as Argonne National Laboratory for “cooperative research in nucleonics.” At the request of the U.S. Atomic Energy Commission, it began developing nuclear reactors for the nation’s peaceful nuclear energy program. In the late 1940s and early 1950s, the laboratory moved to a larger location in unincorporated DuPage County, Illinois and established a remote location in Idaho, called “Argonne-West,” to conduct further nuclear research.

    In quick succession, the laboratory designed and built Chicago Pile 3 (1944), the world’s first heavy-water moderated reactor, and the Experimental Breeder Reactor I (Chicago Pile 4), built-in Idaho, which lit a string of four light bulbs with the world’s first nuclear-generated electricity in 1951. A complete list of the reactors designed and, in most cases, built and operated by Argonne can be viewed in the, Reactors Designed by Argonne page. The knowledge gained from the Argonne experiments conducted with these reactors 1) formed the foundation for the designs of most of the commercial reactors currently used throughout the world for electric power generation and 2) inform the current evolving designs of liquid-metal reactors for future commercial power stations.

    Conducting classified research, the laboratory was heavily secured; all employees and visitors needed badges to pass a checkpoint, many of the buildings were classified, and the laboratory itself was fenced and guarded. Such alluring secrecy drew visitors both authorized—including King Leopold III of Belgium and Queen Frederica of Greece—and unauthorized. Shortly past 1 a.m. on February 6, 1951, Argonne guards discovered reporter Paul Harvey near the 10-foot (3.0 m) perimeter fence, his coat tangled in the barbed wire. Searching his car, guards found a previously prepared four-page broadcast detailing the saga of his unauthorized entrance into a classified “hot zone”. He was brought before a federal grand jury on charges of conspiracy to obtain information on national security and transmit it to the public, but was not indicted.

    Not all nuclear technology went into developing reactors, however. While designing a scanner for reactor fuel elements in 1957, Argonne physicist William Nelson Beck put his own arm inside the scanner and obtained one of the first ultrasound images of the human body. Remote manipulators designed to handle radioactive materials laid the groundwork for more complex machines used to clean up contaminated areas, sealed laboratories or caves. In 1964, the “Janus” reactor opened to study the effects of neutron radiation on biological life, providing research for guidelines on safe exposure levels for workers at power plants, laboratories and hospitals. Scientists at Argonne pioneered a technique to analyze the moon’s surface using alpha radiation, which launched aboard the Surveyor 5 in 1967 and later analyzed lunar samples from the Apollo 11 mission.

    In addition to nuclear work, the laboratory maintained a strong presence in the basic research of physics and chemistry. In 1955, Argonne chemists co-discovered the elements einsteinium and fermium, elements 99 and 100 in the periodic table. In 1962, laboratory chemists produced the first compound of the inert noble gas xenon, opening up a new field of chemical bonding research. In 1963, they discovered the hydrated electron.

    High-energy physics made a leap forward when Argonne was chosen as the site of the 12.5 GeV Zero Gradient Synchrotron, a proton accelerator that opened in 1963. A bubble chamber allowed scientists to track the motions of subatomic particles as they zipped through the chamber; in 1970, they observed the neutrino in a hydrogen bubble chamber for the first time.

    Meanwhile, the laboratory was also helping to design the reactor for the world’s first nuclear-powered submarine, the U.S.S. Nautilus, which steamed for more than 513,550 nautical miles (951,090 km). The next nuclear reactor model was Experimental Boiling Water Reactor, the forerunner of many modern nuclear plants, and Experimental Breeder Reactor II (EBR-II), which was sodium-cooled, and included a fuel recycling facility. EBR-II was later modified to test other reactor designs, including a fast-neutron reactor and, in 1982, the Integral Fast Reactor concept—a revolutionary design that reprocessed its own fuel, reduced its atomic waste and withstood safety tests of the same failures that triggered the Chernobyl and Three Mile Island disasters. In 1994, however, the U.S. Congress terminated funding for the bulk of Argonne’s nuclear programs.

    Argonne moved to specialize in other areas, while capitalizing on its experience in physics, chemical sciences and metallurgy. In 1987, the laboratory was the first to successfully demonstrate a pioneering technique called plasma wakefield acceleration, which accelerates particles in much shorter distances than conventional accelerators. It also cultivated a strong battery research program.

    Following a major push by then-director Alan Schriesheim, the laboratory was chosen as the site of the Advanced Photon Source, a major X-ray facility which was completed in 1995 and produced the brightest X-rays in the world at the time of its construction.

    On 19 March 2019, it was reported in the Chicago Tribune that the laboratory was constructing the world’s most powerful supercomputer. Costing $500 million it will have the processing power of 1 quintillion flops. Applications will include the analysis of stars and improvements in the power grid.

    With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science. For more visit http://www.anl.gov.

    About the Advanced Photon Source

    The U. S. Department of Energy Office of Science’s Advanced Photon Source (APS) at Argonne National Laboratory is one of the world’s most productive X-ray light source facilities. The APS provides high-brightness X-ray beams to a diverse community of researchers in materials science, chemistry, condensed matter physics, the life and environmental sciences, and applied research. These X-rays are ideally suited for explorations of materials and biological structures; elemental distribution; chemical, magnetic, electronic states; and a wide range of technologically important engineering systems from batteries to fuel injector sprays, all of which are the foundations of our nation’s economic, technological, and physical well-being. Each year, more than 5,000 researchers use the APS to produce over 2,000 publications detailing impactful discoveries, and solve more vital biological protein structures than users of any other X-ray light source research facility. APS scientists and engineers innovate technology that is at the heart of advancing accelerator and light-source operations. This includes the insertion devices that produce extreme-brightness X-rays prized by researchers, lenses that focus the X-rays down to a few nanometers, instrumentation that maximizes the way the X-rays interact with samples being studied, and software that gathers and manages the massive quantity of data resulting from discovery research at the APS.

    With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science. For more visit http://www.anl.gov.

    Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science

    Argonne Lab Campus

     
  • richardmitnick 5:02 pm on August 26, 2022 Permalink | Reply
    Tags: , , Current quantum computers are still too "noisy" and prone to error for useful computations., Elevating quantum science and engineering to special prominence in the U.S. and positioning the country to be a global leader in the field., Pushing the frontiers of computing and physics and chemistry and materials science to bring transformational new technologies to the nation., , Quantum information science examines nature’s quantum properties to build new and powerful ways to process information in areas as varied as medicine and energy and finance., , The centers are working to prototype and evaluate the performance and impact of quantum computers and sensors., , The DOE’s Argonne National Laboratory, , , , The interdisciplinary teams at the NQISRCs co-design quantum technologies to set the stage for future scientific discoveries., Understanding how current devices fail reveals to us the path forward., Understanding the quantum behavior of materials is crucial for overcoming these "noise" limitations.   

    From The DOE’s Brookhaven National Laboratory For Argonne National Laboratory And Oak Ridge National Laboratory And Lawrence Berkeley National Laboratory And Fermi National Accelerator Laboratory: “How the Five National Quantum Information Science Research Centers Harness the Quantum Revolution” 

    From The DOE’s Brookhaven National Laboratory

    8.26.22
    Hannah Adams
    Pete Genzer
    Monica Hernandez
    Leah Hesla
    Scott Jones
    Elizabeth Rosenthal
    Denise Yazak

    1
    Mingzhao Liu explores thin film materials fabrication in a collaboration between Brookhaven National Laboratory and Stony Brook University. These superconducting metal silicides are a promising material for the optimization of quantum computing architecture. (Photo: Brookhaven National Laboratory)

    Five National Quantum Information Science Research Centers are leveraging the behavior of nature at the smallest scales to develop technologies for science’s most complex problems. Funded by the U.S. Department of Energy Office of Science, the NQISRCs have been supporting DOE’s mission since 2020 to advance the energy, economic and national security of the United States. By building a national quantum ecosystem and workforce comprising researchers at roughly 70 institutions across the United States, the centers create a rich environment for quantum innovation and co-design.

    The NQISRCs integrate state-of-the-art DOE facilities, preeminent talent at national laboratories and U.S. universities, and the enterprising ingenuity of U.S. technology companies.

    As a result, the centers are pushing the frontier of what’s possible in quantum computers, sensors, devices, materials and much more.

    Each national center is led by a DOE national laboratory:

    Co-design Center for Quantum Advantage (C2QA), led by Brookhaven National Laboratory.
    Q-NEXT, led by Argonne National Laboratory.
    Quantum Science Center, led by Oak Ridge National Laboratory.
    Quantum Systems Accelerator, led by Lawrence Berkeley National Laboratory.
    Superconducting Quantum Materials and Systems Center, led by Fermi National Accelerator Laboratory.

    Leading with science

    “Each center is a formidable force for quantum information science on its own, pushing the frontiers of computing, physics, chemistry and materials science to bring transformational new technologies to the nation,” said Q-NEXT Director David Awschalom. “But together, they’re a national powerhouse, elevating quantum science and engineering to special prominence in the U.S. and positioning the country to be a global leader in the field.”

    A rapidly emerging field of research, quantum information science examines nature’s quantum properties to build new, powerful ways to process information in areas as varied as medicine, energy and finance. By manipulating matter’s most fundamental features, researchers could invent new sensors of unprecedented precision, powerful computers and secure communication networks.

    To that end, the centers are working to prototype and evaluate the performance and impact of quantum computers and sensors built using various technological platforms and architectures.

    “There are many choices and opportunities to be made in the development of quantum computing and understanding how current devices fail reveals to us the path forward,” said C2QA Director Andrew Houck. “The NQISRCs can tackle this surprisingly hard task because, despite great strides in the field, current quantum computers are still too “noisy” and prone to error for useful computations.”

    Understanding the quantum behavior of materials is crucial for overcoming these noise limitations and for the realization of devices that will offer a quantum advantage. The national labs are uniquely positioned to offer advanced facilities and knowledge that guide the understanding and overcoming of these limitations.

    “DOE has invested for years in cutting-edge technologies, tools and facilities at national labs, which offer unique opportunities to enable a leap in performance of quantum devices,” said SQMS Director Anna Grassellino. “We are excited to offer world-leading expertise to make transformational advances in QIS, especially because QIS can help advance our mission of understanding the world at its most fundamental level.”

    1
    Argonne’s Haidan Wen studies the structural dynamics of host materials of quantum sensors for Q-NEXT. Image by Argonne National Laboratory.

    Collaborating for quantum innovation

    The interdisciplinary teams at the NQISRCs co-design quantum technologies to set the stage for future scientific discoveries. Advances in QIS will bring about society wide benefits, such as new materials and powerful quantum sensors that, when combined with medical imagers, could measure tissue at the individual cell level, bringing far greater sensitivity to today’s magnetic resonance imaging machines.

    By understanding what enables and limits different quantum technologies and what tools need to be developed, the co-design effort across the NQISRCs could translate into faster drug and vaccine development, novel materials, improvements in transportation and logistics, and more secure financial networks.

    As a national ecosystem, NQISRCs researchers leverage world-class DOE Office of Science user facilities and programs, such as the Advanced Photon Source at Argonne National Laboratory, the Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory, the Advanced Light Source at Lawrence Berkeley National Laboratory, the National Synchrotron Light Source II at Brookhaven National Laboratory, and the superconducting radio frequency cavity facilities and experience at Fermilab.

    Argonne APS



    “Through the funding of these strategic quantum centers, DOE has given researchers an incredible opportunity to make impactful and world-changing discoveries in QIS,” said QSC Director Travis Humble. “Based on the first two years of operation, there is every reason to believe these centers will make tremendous progress in the coming years in advancing QIS toward real-world innovation. We will see an increasing flow of discovery science through the innovation chain.”

    Similarly, laboratory and university scientists can leverage the market-driven technologies developed by their industry partners, such as test beds and simulation tools. Capitalizing on these networks, each center builds a pathway to commercializing quantum technologies and, eventually, bringing them to the public.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Brookhaven Campus

    One of ten national laboratories overseen and primarily funded by the The DOE Office of Science, The DOE’s Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. The Laboratory’s almost 3,000 scientists, engineers, and support staff are joined each year by more than 5,000 visiting researchers from around the world. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

    Research at BNL specializes in nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience and national security. The 5300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider [below] and National Synchrotron Light Source II [below]. Seven Nobel prizes have been awarded for work conducted at Brookhaven lab.

    BNL is staffed by approximately 2,750 scientists, engineers, technicians, and support personnel, and hosts 4,000 guest investigators every year. The laboratory has its own police station, fire department, and ZIP code (11973). In total, the lab spans a 5,265-acre (21 km^2) area that is mostly coterminous with the hamlet of Upton, New York. BNL is served by a rail spur operated as-needed by the New York and Atlantic Railway. Co-located with the laboratory is the Upton, New York, forecast office of the National Weather Service.

    Major programs

    Although originally conceived as a nuclear research facility, Brookhaven Lab’s mission has greatly expanded. Its foci are now:

    Nuclear and high-energy physics
    Physics and chemistry of materials
    Environmental and climate research
    Nanomaterials
    Energy research
    Nonproliferation
    Structural biology
    Accelerator physics

    Operation

    Brookhaven National Lab was originally owned by the Atomic Energy Commission and is now owned by that agency’s successor, the United States Department of Energy (DOE). DOE subcontracts the research and operation to universities and research organizations. It is currently operated by Brookhaven Science Associates LLC, which is an equal partnership of Stony Brook University and Battelle Memorial Institute. From 1947 to 1998, it was operated by Associated Universities, Inc. (AUI), but AUI lost its contract in the wake of two incidents: a 1994 fire at the facility’s high-beam flux reactor that exposed several workers to radiation and reports in 1997 of a tritium leak into the groundwater of the Long Island Central Pine Barrens on which the facility sits.

    Foundations

    Following World War II, the US Atomic Energy Commission was created to support government-sponsored peacetime research on atomic energy. The effort to build a nuclear reactor in the American northeast was fostered largely by physicists Isidor Isaac Rabi and Norman Foster Ramsey Jr., who during the war witnessed many of their colleagues at Columbia University leave for new remote research sites following the departure of the Manhattan Project from its campus. Their effort to house this reactor near New York City was rivalled by a similar effort at the Massachusetts Institute of Technology to have a facility near Boston, Massachusetts. Involvement was quickly solicited from representatives of northeastern universities to the south and west of New York City such that this city would be at their geographic center. In March 1946 a nonprofit corporation was established that consisted of representatives from nine major research universities — Columbia University, Cornell University, Harvard University, Johns Hopkins University, Massachusetts Institute of Technology, Princeton University, University of Pennsylvania, University of Rochester, and Yale University.

    Out of 17 considered sites in the Boston-Washington corridor, Camp Upton on Long Island was eventually chosen as the most suitable in consideration of space, transportation, and availability. The camp had been a training center from the US Army during both World War I and World War II. After the latter war, Camp Upton was deemed no longer necessary and became available for reuse. A plan was conceived to convert the military camp into a research facility.

    On March 21, 1947, the Camp Upton site was officially transferred from the U.S. War Department to the new U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE).

    Research and facilities

    Reactor history

    In 1947 construction began on the first nuclear reactor at Brookhaven, the Brookhaven Graphite Research Reactor. This reactor, which opened in 1950, was the first reactor to be constructed in the United States after World War II. The High Flux Beam Reactor operated from 1965 to 1999. In 1959 Brookhaven built the first US reactor specifically tailored to medical research, the Brookhaven Medical Research Reactor, which operated until 2000.

    Accelerator history

    In 1952 Brookhaven began using its first particle accelerator, the Cosmotron. At the time the Cosmotron was the world’s highest energy accelerator, being the first to impart more than 1 GeV of energy to a particle.

    BNL Cosmotron 1952-1966.

    The Cosmotron was retired in 1966, after it was superseded in 1960 by the new Alternating Gradient Synchrotron (AGS).

    BNL Alternating Gradient Synchrotron (AGS).

    The AGS was used in research that resulted in 3 Nobel prizes, including the discovery of the muon neutrino, the charm quark, and CP violation.

    In 1970 in BNL started the ISABELLE project to develop and build two proton intersecting storage rings.

    The groundbreaking for the project was in October 1978. In 1981, with the tunnel for the accelerator already excavated, problems with the superconducting magnets needed for the ISABELLE accelerator brought the project to a halt, and the project was eventually cancelled in 1983.

    The National Synchrotron Light Source operated from 1982 to 2014 and was involved with two Nobel Prize-winning discoveries. It has since been replaced by the National Synchrotron Light Source II. [below].

    BNL National Synchrotron Light Source.

    After ISABELLE’S cancellation, physicist at BNL proposed that the excavated tunnel and parts of the magnet assembly be used in another accelerator. In 1984 the first proposal for the accelerator now known as the Relativistic Heavy Ion Collider (RHIC)[below] was put forward. The construction got funded in 1991 and RHIC has been operational since 2000. One of the world’s only two operating heavy-ion colliders, RHIC is as of 2010 the second-highest-energy collider after the Large Hadron Collider (CH). RHIC is housed in a tunnel 2.4 miles (3.9 km) long and is visible from space.

    On January 9, 2020, it was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected over the conceptual design put forward by DOE’s Thomas Jefferson National Accelerator Facility [Jlab] as the future Electron–ion collider (EIC) in the United States.

    In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 from the Department of Energy. BNL’s eRHIC design proposes upgrading the existing Relativistic Heavy Ion Collider, which collides beams light to heavy ions including polarized protons, with a polarized electron facility, to be housed in the same tunnel.

    Other discoveries

    In 1958, Brookhaven scientists created one of the world’s first video games, Tennis for Two. In 1968 Brookhaven scientists patented Maglev, a transportation technology that utilizes magnetic levitation.

    Major facilities

    Relativistic Heavy Ion Collider (RHIC), which was designed to research quark–gluon plasma and the sources of proton spin. Until 2009 it was the world’s most powerful heavy ion collider. It is the only collider of spin-polarized protons.

    Center for Functional Nanomaterials (CFN), used for the study of nanoscale materials.

    BNL National Synchrotron Light Source II, Brookhaven’s newest user facility, opened in 2015 to replace the National Synchrotron Light Source (NSLS), which had operated for 30 years. NSLS was involved in the work that won the 2003 and 2009 Nobel Prize in Chemistry.

    Alternating Gradient Synchrotron, a particle accelerator that was used in three of the lab’s Nobel prizes.
    Accelerator Test Facility, generates, accelerates and monitors particle beams.
    Tandem Van de Graaff, once the world’s largest electrostatic accelerator.

    Computational Science resources, including access to a massively parallel Blue Gene series supercomputer that is among the fastest in the world for scientific research, run jointly by Brookhaven National Laboratory and Stony Brook University-SUNY.

    Interdisciplinary Science Building, with unique laboratories for studying high-temperature superconductors and other materials important for addressing energy challenges.
    NASA Space Radiation Laboratory, where scientists use beams of ions to simulate cosmic rays and assess the risks of space radiation to human space travelers and equipment.

    Off-site contributions

    It is a contributing partner to the ATLAS experiment, one of the four detectors located at the The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] Large Hadron Collider(LHC).

    The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH)[CERN] map.

    Iconic view of the European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear] [Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH) [CERN] ATLAS detector.

    It is currently operating at The European Organization for Nuclear Research [La Organización Europea para la Investigación Nuclear][Organization européenne pour la recherche nucléaire] [Europäische Organization für Kernforschung](CH) [CERN] near Geneva, Switzerland.

    Brookhaven was also responsible for the design of the Spallation Neutron Source at DOE’s Oak Ridge National Laboratory, Tennessee.

    DOE’s Oak Ridge National Laboratory Spallation Neutron Source annotated.

    Brookhaven plays a role in a range of neutrino research projects around the world, including the Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China.

    Daya Bay Neutrino Experiment (CN) nuclear power plant, approximately 52 kilometers northeast of Hong Kong and 45 kilometers east of Shenzhen, China .


    BNL Center for Functional Nanomaterials.

    BNL National Synchrotron Light Source II.

    BNL NSLS II.

    BNL Relative Heavy Ion Collider Campus.

    BNL/RHIC Phenix detector.


     
  • richardmitnick 1:28 pm on July 5, 2022 Permalink | Reply
    Tags: , "The futuristic South Pole Telescope looks far back in time", , , , , , , The DOE’s Argonne National Laboratory   

    From The DOE’s Argonne National Laboratory via “phys.org” : “The futuristic South Pole Telescope looks far back in time” 

    Argonne Lab

    From The DOE’s Argonne National Laboratory

    via

    “phys.org”

    July 5, 2022

    The South Pole Telescope is located at the Amundsen–Scott South Pole Station, Antarctica. The station features dorms, offices, a cafeteria, gym and other amenities for visitors. Credit: Lindsey Bleem/Argonne National Laboratory.
    _____________________________________________________________________________
    Surveying the cosmos from its isolated position in Antarctica, a collaborative project aims to reveal insights about the universe’s beginnings.

    In summer at the South Pole, which lasts from November through February, the average temperature is a biting minus 18 degrees F. The sun does not set during this time, making sleep a challenge. The environment is harsh and dry. And the Internet connection at the Amundsen–Scott South Pole Station, when you can access it, is painfully slow.

    On the other hand, distractions from work are few, and the landscape is stunning. The meals from the onsite kitchen are great. The best part? There’s an unparalleled view of the early universe.

    Seeing the oldest light in the universe

    That view, which comes from the research station’s South Pole Telescope (SPT), isn’t what many of us would imagine when we look up at the sky. Rather than stars and planets, the SPT’s images look more like a Jackson Pollock painting. They capture data related to the origin of the universe and its evolution over billions of years.

    Since the SPT began operating in 2007, it has helped researchers discover over 1,000 giant galaxy clusters (including some truly exceptional ones) and has changed our understanding of the period when the first stars formed, among other revelations. Over 20 universities and U.S. Department of Energy (DOE) research facilities, including Argonne National Laboratory, are collaborating on the effort.

    The 33-foot telescope uses detectors developed and built at Argonne to study the cosmic microwave background (CMB). The CMB consists of light produced when the universe was about 380,000 years old. Back then, the baby universe was an intensely hot plasma, and the glow it produced has been traveling through space for about 14 billion years.

    “Looking at the cosmic microwave background, painting our early universe and connecting it to the observations we see today, forms one of the key foundational pillars of our cosmological model,” said Lindsey Bleem, a physicist at Argonne who collects and analyzes data from the SPT.

    Antarctica is one of the best places in the world to detect this faint signal because it is essentially a frozen desert and very dry. Water in the air can create “noise” in a view of the skies with a telescope, Bleem explained, making the picture less clear. The SPT’s environment is as free of interference as possible on Earth.

    For the most part, scientists can collect and work with the SPT’s data from Argonne in Illinois or from anywhere else that is set up to access the data remotely. But occasionally, maintenance and upgrades such as a third-generation camera installed in 2017 require travel to this facility in the middle of a frozen desert.

    Whether it’s dealing with the teeth-chattering cold, waiting for supplies to come in or making sure equipment is maintained and weatherized, the remote location can be daunting. The lack of humidity alone is “something that’s a bit challenging and can also interfere with how things go day to day,” said Clarence Chang, an Argonne physicist who develops superconducting detectors for the SPT.

    One upside: During the telescope’s summer season, staff cooks provide meals for visiting researchers, and “the food is absolutely fantastic,” Bleem said.

    Super sensitive, superconducting detectors

    The 2017 upgrade to the SPT’s camera took it from 1,600 to 16,000 detectors. Aggregated together, the detectors resemble a honeycomb measuring about 17 inches across. The detectors are kept far colder than even the coldest Antarctic night, at just above absolute zero, or minus 459 F. The temperature, combined with the sensitivity of their superconducting materials, helps them register the very faint light of the CMB.

    Researchers took advantage of Argonne’s Center for Nanoscale Materials, a DOE Office of Science user facility, to fabricate the detectors. The facility’s equipment makes it possible to control superconducting materials and process them consistently.

    One of the research goals of CMB observations is to explore a theory known as cosmic inflation, the idea that the early universe underwent a massive, unimaginably rapid expansion. That theory is associated with predictions of particular patterns in the CMB.

    ___________________________________________________________________
    Cosmic Inflation Theory

    In physical cosmology, cosmic inflation, cosmological inflation is a theory of exponential expansion of space in the early universe. The inflationary epoch lasted from 10^−36 seconds after the conjectured Big Bang singularity to some time between 10^−33 and 10^−32 seconds after the singularity. Following the inflationary period, the universe continued to expand, but at a slower rate. The acceleration of this expansion due to dark energy began after the universe was already over 7.7 billion years old (5.4 billion years ago).

    Inflation theory was developed in the late 1970s and early 80s, with notable contributions by several theoretical physicists, including Alexei Starobinsky at Landau Institute for Theoretical Physics, Alan Guth at Cornell University, and Andrei Linde at Lebedev Physical Institute. Alexei Starobinsky, Alan Guth, and Andrei Linde won the 2014 Kavli Prize “for pioneering the theory of cosmic inflation.” It was developed further in the early 1980s. It explains the origin of the large-scale structure of the cosmos. Quantum fluctuations in the microscopic inflationary region, magnified to cosmic size, become the seeds for the growth of structure in the Universe. Many physicists also believe that inflation explains why the universe appears to be the same in all directions (isotropic), why the cosmic microwave background radiation is distributed evenly, why the universe is flat, and why no magnetic monopoles have been observed.

    The detailed particle physics mechanism responsible for inflation is unknown. The basic inflationary paradigm is accepted by most physicists, as a number of inflation model predictions have been confirmed by observation;[a] however, a substantial minority of scientists dissent from this position. The hypothetical field thought to be responsible for inflation is called the inflaton.

    In 2002 three of the original architects of the theory were recognized for their major contributions; physicists Alan Guth of M.I.T., Andrei Linde of Stanford, and Paul Steinhardt of Princeton shared the prestigious Dirac Prize “for development of the concept of inflation in cosmology”. In 2012 Guth and Linde were awarded the Breakthrough Prize in Fundamental Physics for their invention and development of inflationary cosmology.

    4
    Alan Guth, from M.I.T., who first proposed Cosmic Inflation.

    Lamda Cold Dark Matter Accerated Expansion of The universe http scinotions.com the-cosmic-inflation-suggests-the-existence-of-parallel-universes. Credit: Alex Mittelmann.

    Alan Guth’s notes:
    Alan Guth’s original notes on inflation.
    ___________________________________________________________________

    “These predictions are extremely challenging to measure. The signals are very faint, which requires building incredibly sensitive instruments,” Chang said.

    The SPT began a six-year survey with the new camera in 2018. The enhanced detector array, combined with years of observation, is a little bit like setting a long exposure on the latest and greatest smartphone camera to capture a detailed picture at night.

    “It’s ticking along, collecting the data for us,” said Amy Bender, an Argonne physicist who helped install the third-generation camera. “We are observing the same piece of sky every single day, all day. The more we observe it, the better we can detect fainter signals.”

    When the SPT’s run ends in 2024, scientists will be busy not only analyzing the resulting data but working on further upgrades to the SPT.

    Argonne’s ability to reliably produce super-sensitive telescope detectors will also be critical to a new, ambitious experiment: CMB-S4.

    In that experiment, a collaboration of Argonne and dozens of institutions worldwide, 21 telescopes at the South Pole and in the Chilean Atacama desert will survey the sky for seven years starting at the end of the decade. The number of detectors deployed will jump to 500,000, and some of them will be made at Argonne.

    Crunching the extragalactic numbers

    Simulations that run on high performance computers at the Argonne Leadership Computing Facility, also a DOE Office of Science user facility, are key in decoding observations from the SPT. Scientists use this computing power to correlate theories about how matter and forces interact in the universe. A galaxy cluster in the telescope’s line of sight, for example, will distort background light from other galaxies and the CMB. That effect needs to be measured and correlated back to theoretical predictions.

    To explain how simulations aid observations, Bleem gave an example: Let’s say you had a picture of the Eiffel Tower with no data on how tall the structure is. You could use the known measurement of a nearby object, such as a person standing on the ground, to reason out its dimensions. Similarly, computers help bridge the gap between what we know and what we aim to discover by both giving us understanding into these complicated processes and allowing us to assess how well our analysis tools can reconstruct models of these phenomena.

    With the upgraded SPT and the upcoming CMB-S4 project, scientists continue to generate more observational data. Argonne’s computing resources are keeping pace, noted J.D. Emberson, a computational scientist at Argonne.

    “The first cosmology codes only simulated gravity,” Emberson said. “But as we’re getting better and bigger telescopes that can collect more information in the universe, it’s important that we have the capabilities to simulate more than just gravity.”

    Emberson works on the Hardware/Hybrid Accelerated Cosmology Code (HACC), the framework used to run cosmological simulations for the SPT and other telescopes. His work, part of the Argonne-led ExaSky project, is preparing HACC for exascale computers like Aurora, which will be well suited to handle extreme-scale cosmological simulations.

    “As scientists build next-generation instruments, we want to be able to push next-generation computing to match that,” Emberson said.

    Both the computing and the advanced detectors being developed at Argonne are serving the SPT’s exploration of the cosmos. But they are also relevant to a range of other technologies here on Earth, such as screening for healthcare and security.

    “No company is making equipment like this today,” Bender said. “So, we’re leading the front to push the technology for it. Who knows what doors that might open for other areas?”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The DOE’s Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their is a science and engineering research national laboratory operated by UChicago Argonne LLC for the United States Department of Energy. The facility is located in Lemont, Illinois, outside of Chicago, and is the largest national laboratory by size and scope in the Midwest.

    Argonne had its beginnings in the Metallurgical Laboratory of the University of Chicago, formed in part to carry out Enrico Fermi’s work on nuclear reactors for the Manhattan Project during World War II. After the war, it was designated as the first national laboratory in the United States on July 1, 1946. In the post-war era the lab focused primarily on non-weapon related nuclear physics, designing and building the first power-producing nuclear reactors, helping design the reactors used by the United States’ nuclear navy, and a wide variety of similar projects. In 1994, the lab’s nuclear mission ended, and today it maintains a broad portfolio in basic science research, energy storage and renewable energy, environmental sustainability, supercomputing, and national security.

    UChicago Argonne, LLC, the operator of the laboratory, “brings together the expertise of the University of Chicago (the sole member of the LLC) with Jacobs Engineering Group Inc.” Argonne is a part of the expanding Illinois Technology and Research Corridor. Argonne formerly ran a smaller facility called Argonne National Laboratory-West (or simply Argonne-West) in Idaho next to the Idaho National Engineering and Environmental Laboratory. In 2005, the two Idaho-based laboratories merged to become the DOE’s Idaho National Laboratory.

    What would become Argonne began in 1942 as the Metallurgical Laboratory at the University of Chicago, which had become part of the Manhattan Project. The Met Lab built Chicago Pile-1, the world’s first nuclear reactor, under the stands of the University of Chicago sports stadium. Considered unsafe, in 1943, CP-1 was reconstructed as CP-2, in what is today known as Red Gate Woods but was then the Argonne Forest of the Cook County Forest Preserve District near Palos Hills. The lab was named after the surrounding forest, which in turn was named after the Forest of Argonne in France where U.S. troops fought in World War I. Fermi’s pile was originally going to be constructed in the Argonne forest, and construction plans were set in motion, but a labor dispute brought the project to a halt. Since speed was paramount, the project was moved to the squash court under Stagg Field, the football stadium on the campus of the University of Chicago. Fermi told them that he was sure of his calculations, which said that it would not lead to a runaway reaction, which would have contaminated the city.

    Other activities were added to Argonne over the next five years. On July 1, 1946, the “Metallurgical Laboratory” was formally re-chartered as Argonne National Laboratory for “cooperative research in nucleonics.” At the request of the U.S. Atomic Energy Commission, it began developing nuclear reactors for the nation’s peaceful nuclear energy program. In the late 1940s and early 1950s, the laboratory moved to a larger location in unincorporated DuPage County, Illinois and established a remote location in Idaho, called “Argonne-West,” to conduct further nuclear research.

    In quick succession, the laboratory designed and built Chicago Pile 3 (1944), the world’s first heavy-water moderated reactor, and the Experimental Breeder Reactor I (Chicago Pile 4), built-in Idaho, which lit a string of four light bulbs with the world’s first nuclear-generated electricity in 1951. A complete list of the reactors designed and, in most cases, built and operated by Argonne can be viewed in the, Reactors Designed by Argonne page. The knowledge gained from the Argonne experiments conducted with these reactors 1) formed the foundation for the designs of most of the commercial reactors currently used throughout the world for electric power generation and 2) inform the current evolving designs of liquid-metal reactors for future commercial power stations.

    Conducting classified research, the laboratory was heavily secured; all employees and visitors needed badges to pass a checkpoint, many of the buildings were classified, and the laboratory itself was fenced and guarded. Such alluring secrecy drew visitors both authorized—including King Leopold III of Belgium and Queen Frederica of Greece—and unauthorized. Shortly past 1 a.m. on February 6, 1951, Argonne guards discovered reporter Paul Harvey near the 10-foot (3.0 m) perimeter fence, his coat tangled in the barbed wire. Searching his car, guards found a previously prepared four-page broadcast detailing the saga of his unauthorized entrance into a classified “hot zone”. He was brought before a federal grand jury on charges of conspiracy to obtain information on national security and transmit it to the public, but was not indicted.

    Not all nuclear technology went into developing reactors, however. While designing a scanner for reactor fuel elements in 1957, Argonne physicist William Nelson Beck put his own arm inside the scanner and obtained one of the first ultrasound images of the human body. Remote manipulators designed to handle radioactive materials laid the groundwork for more complex machines used to clean up contaminated areas, sealed laboratories or caves. In 1964, the “Janus” reactor opened to study the effects of neutron radiation on biological life, providing research for guidelines on safe exposure levels for workers at power plants, laboratories and hospitals. Scientists at Argonne pioneered a technique to analyze the moon’s surface using alpha radiation, which launched aboard the Surveyor 5 in 1967 and later analyzed lunar samples from the Apollo 11 mission.

    In addition to nuclear work, the laboratory maintained a strong presence in the basic research of physics and chemistry. In 1955, Argonne chemists co-discovered the elements einsteinium and fermium, elements 99 and 100 in the periodic table. In 1962, laboratory chemists produced the first compound of the inert noble gas xenon, opening up a new field of chemical bonding research. In 1963, they discovered the hydrated electron.

    High-energy physics made a leap forward when Argonne was chosen as the site of the 12.5 GeV Zero Gradient Synchrotron, a proton accelerator that opened in 1963. A bubble chamber allowed scientists to track the motions of subatomic particles as they zipped through the chamber; in 1970, they observed the neutrino in a hydrogen bubble chamber for the first time.

    Meanwhile, the laboratory was also helping to design the reactor for the world’s first nuclear-powered submarine, the U.S.S. Nautilus, which steamed for more than 513,550 nautical miles (951,090 km). The next nuclear reactor model was Experimental Boiling Water Reactor, the forerunner of many modern nuclear plants, and Experimental Breeder Reactor II (EBR-II), which was sodium-cooled, and included a fuel recycling facility. EBR-II was later modified to test other reactor designs, including a fast-neutron reactor and, in 1982, the Integral Fast Reactor concept—a revolutionary design that reprocessed its own fuel, reduced its atomic waste and withstood safety tests of the same failures that triggered the Chernobyl and Three Mile Island disasters. In 1994, however, the U.S. Congress terminated funding for the bulk of Argonne’s nuclear programs.

    Argonne moved to specialize in other areas, while capitalizing on its experience in physics, chemical sciences and metallurgy. In 1987, the laboratory was the first to successfully demonstrate a pioneering technique called plasma wakefield acceleration, which accelerates particles in much shorter distances than conventional accelerators. It also cultivated a strong battery research program.

    Following a major push by then-director Alan Schriesheim, the laboratory was chosen as the site of the Advanced Photon Source, a major X-ray facility which was completed in 1995 and produced the brightest X-rays in the world at the time of its construction.

    On 19 March 2019, it was reported in the Chicago Tribune that the laboratory was constructing the world’s most powerful supercomputer. Costing $500 million it will have the processing power of 1 quintillion flops. Applications will include the analysis of stars and improvements in the power grid.

    With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science. For more visit http://www.anl.gov.

    About the Advanced Photon Source

    The U. S. Department of Energy Office of Science’s Advanced Photon Source (APS) at Argonne National Laboratory is one of the world’s most productive X-ray light source facilities. The APS provides high-brightness X-ray beams to a diverse community of researchers in materials science, chemistry, condensed matter physics, the life and environmental sciences, and applied research. These X-rays are ideally suited for explorations of materials and biological structures; elemental distribution; chemical, magnetic, electronic states; and a wide range of technologically important engineering systems from batteries to fuel injector sprays, all of which are the foundations of our nation’s economic, technological, and physical well-being. Each year, more than 5,000 researchers use the APS to produce over 2,000 publications detailing impactful discoveries, and solve more vital biological protein structures than users of any other X-ray light source research facility. APS scientists and engineers innovate technology that is at the heart of advancing accelerator and light-source operations. This includes the insertion devices that produce extreme-brightness X-rays prized by researchers, lenses that focus the X-rays down to a few nanometers, instrumentation that maximizes the way the X-rays interact with samples being studied, and software that gathers and manages the massive quantity of data resulting from discovery research at the APS.

    With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science. For more visit http://www.anl.gov.

    Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science

    Argonne Lab Campus

     
  • richardmitnick 9:42 pm on June 27, 2022 Permalink | Reply
    Tags: "Quantum network between two national labs achieves record synch", , For the team synchronization proved the beast to tame., Knowing which pairs are entangled is where the synchronicity comes in. The team used similar timing signals to synchronize the clocks at each destination., , Quantum networking is essential for realizing the full potential of quantum computing., The DOE’s Argonne National Laboratory, , The experiment marked the first time that quantum-encoded photons and classical signals were delivered across a metropolitan-scale distance with an unprecedented level of synchronization., The IEQNET collaboration includes the DOE’s Fermi National Accelerator and Argonne National laboratories; Northwestern University and Caltech., The Illinois‐Express Quantum Network (IEQNET) successfully deployed a long-distance quantum network between two U.S. Department of Energy (DOE) laboratories using local fiber optics., The scientists showed record levels of synchronization using readily available technology that relies on radio frequency signals encoded onto light., To assure that they get pairs of photons that are entangled the researchers must generate the quantum-encoded photons in great numbers.   

    From The DOE’s Fermi National Accelerator Laboratory-an enduring source of strength for the US contribution to scientific research worldwide and The DOE’s Argonne National Laboratory: “Quantum network between two national labs achieves record synch” 

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    From The DOE’s Fermi National Accelerator Laboratory-an enduring source of strength for the US contribution to scientific research worldwide.

    and

    Argonne Lab

    The DOE’s Argonne National Laboratory

    June 27, 2022
    Tracy Marc
    Fermilab
    media@fnal.gov
    224-290-7803

    Chris Kramer
    Argonne National Laboratory
    media@anl.gov
    630-252-5580

    The world awaits quantum technology. Quantum computing is expected to solve complex problems that current, or classical, computing cannot. And quantum networking is essential for realizing the full potential of quantum computing, enabling breakthroughs in our understanding of nature, as well as applications that improve everyday life.

    But making it a reality requires the development of precise quantum computers and reliable quantum networks that leverage current computer technologies and existing infrastructure.

    Recently, as a sort of proof of potential and a first step toward functional quantum networks, a team of researchers with the Illinois‐Express Quantum Network (IEQNET) successfully deployed a long-distance quantum network between two U.S. Department of Energy (DOE) laboratories using local fiber optics.

    The experiment marked the first time that quantum-encoded photons — the particle through which quantum information is delivered — and classical signals were simultaneously delivered across a metropolitan-scale distance with an unprecedented level of synchronization.

    The IEQNET collaboration includes the DOE’s Fermi National Accelerator and Argonne National laboratories; Northwestern University and Caltech. Their success is derived, in part, from the fact that its members encompass the breadth of computing architectures, from classical and quantum to hybrid.

    “To have two national labs that are 50 kilometers apart, working on quantum networks with this shared range of technical capability and expertise, is not a trivial thing,” said Panagiotis Spentzouris, head of the Quantum Science Program at Fermilab and lead researcher on the project. “You need a diverse team to attack this very difficult and complex problem.”

    1
    To test the synchronicity of two clocks — one at Argonne and one at Fermilab — scientists transmitted a traditional clock signal (blue) and a quantum signal (orange) simultaneously between the two clocks. The signals were sent over the Illinois Express Quantum Network. Researchers found that the two clocks remained synchronized within a time window smaller than 5 picoseconds, or 5 trillionths of a second. Image: Lee Turman, Argonne.

    And for that team, synchronization proved the beast to tame. Together, they showed that it is possible for quantum and classical signals to coexist across the same network fiber and achieve synchronization, both in metropolitan-scale distances and real-world conditions.

    Classical computing networks, the researchers point out, are complex enough. Introducing the challenge that is quantum networking into the mix changes the game considerably.

    When classical computers need to execute synchronized operations and functions, like those required for security and computation acceleration, they rely on something called the Network Time Protocol. This protocol distributes a clock signal over the same network that carries information, with a precision that is a million times faster than a blink of an eye.

    With quantum computing, the precision required is even greater. Imagine that the classical network time protocol is an Olympic runner; the clock for quantum computing is The Flash, the superfast superhero from comic books and films.

    To assure that they get pairs of photons that are entangled — the ability to influence one another from a distance — the researchers must generate the quantum-encoded photons in great numbers.

    Knowing which pairs are entangled is where the synchronicity comes in. The team used similar timing signals to synchronize the clocks at each destination, or node, across the Fermilab-Argonne network.

    Precision electronics are used to adjust this timing signal based on known factors, like distance and speed — in this case, that photons always travel at the speed of light — as well as for interference generated by the environment, such as temperature changes or vibrations, in the fiber optics.

    Because they had only two fiber strands between the two labs, the researchers had to send the clock on the same fiber that carried the entangled photons. The way to separate the clock from the quantum signal is to use different wavelengths, but that comes with its own challenge.

    “Choosing appropriate wavelengths for the quantum and classical synchronization signals is very important for minimizing interference that will affect the quantum information,” said Rajkumar Kettimuthu, an Argonne computer scientist and project team member. “One analogy could be that the fiber is a road, and wavelengths are lanes. The photon is a cyclist, and the clock is a truck. If we are not careful, the truck can cross into the bike lane. So, we performed a large number of experiments to make sure the truck stayed in its lane.”

    Ultimately, the two were properly assigned and controlled, and the timing signal and photons were distributed from sources at Fermilab. As the photons arrived at each location, measurements were performed and recorded using Argonne’s superconducting nanowire single photon detectors.

    “We showed record levels of synchronization using readily available technology that relies on radio frequency signals encoded onto light,” said Raju Valivarthi, a Caltech researcher and IEQNET team member. “We built and tested the system at Caltech, and the IEQNET experiments demonstrate its readiness and capabilities in a real-world fiber optic network connecting two major national labs.”

    The network was synchronized so accurately that it recorded only a five-picosecond time difference in the clocks at each location; one picosecond is one trillionth of a second.

    Such precision will allow scientists to accurately identify and manipulate entangled photon pairs for supporting quantum network operations over metropolitan distances in real-world conditions. Building on this accomplishment, the IEQNET team is getting ready to perform experiments to demonstrate entanglement swapping. This process enables entanglement between photons from different entangled pairs, thus creating longer quantum communication channels.

    “This is the first demonstration in real conditions to use real optical fiber to achieve this type of superior synchronization accuracy and the ability to coexist with quantum information,” Spentzouris said. “This record performance is an essential step on the path to building practical multinode quantum networks.”

    This project was funded through the DOE Office of Science, Advanced Scientific Computing Research program.

    Fermi National Accelerator Laboratory is America’s premier national laboratory for particle physics research. A U.S. Department of Energy Office of Science laboratory, Fermilab is located near Chicago, Illinois, and operated under contract by the Fermi Research Alliance LLC. Visit Fermilab’s website at https://www.fnal.gov and follow us on Twitter @Fermilab.

    The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The DOE’s Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their is a science and engineering research national laboratory operated by UChicago Argonne LLC for the United States Department of Energy. The facility is located in Lemont, Illinois, outside of Chicago, and is the largest national laboratory by size and scope in the Midwest.

    Argonne had its beginnings in the Metallurgical Laboratory of the University of Chicago, formed in part to carry out Enrico Fermi’s work on nuclear reactors for the Manhattan Project during World War II. After the war, it was designated as the first national laboratory in the United States on July 1, 1946. In the post-war era the lab focused primarily on non-weapon related nuclear physics, designing and building the first power-producing nuclear reactors, helping design the reactors used by the United States’ nuclear navy, and a wide variety of similar projects. In 1994, the lab’s nuclear mission ended, and today it maintains a broad portfolio in basic science research, energy storage and renewable energy, environmental sustainability, supercomputing, and national security.

    UChicago Argonne, LLC, the operator of the laboratory, “brings together the expertise of the University of Chicago (the sole member of the LLC) with Jacobs Engineering Group Inc.” Argonne is a part of the expanding Illinois Technology and Research Corridor. Argonne formerly ran a smaller facility called Argonne National Laboratory-West (or simply Argonne-West) in Idaho next to the Idaho National Engineering and Environmental Laboratory. In 2005, the two Idaho-based laboratories merged to become the DOE’s Idaho National Laboratory.

    What would become Argonne began in 1942 as the Metallurgical Laboratory at the University of Chicago, which had become part of the Manhattan Project. The Met Lab built Chicago Pile-1, the world’s first nuclear reactor, under the stands of the University of Chicago sports stadium. Considered unsafe, in 1943, CP-1 was reconstructed as CP-2, in what is today known as Red Gate Woods but was then the Argonne Forest of the Cook County Forest Preserve District near Palos Hills. The lab was named after the surrounding forest, which in turn was named after the Forest of Argonne in France where U.S. troops fought in World War I. Fermi’s pile was originally going to be constructed in the Argonne forest, and construction plans were set in motion, but a labor dispute brought the project to a halt. Since speed was paramount, the project was moved to the squash court under Stagg Field, the football stadium on the campus of the University of Chicago. Fermi told them that he was sure of his calculations, which said that it would not lead to a runaway reaction, which would have contaminated the city.

    Other activities were added to Argonne over the next five years. On July 1, 1946, the “Metallurgical Laboratory” was formally re-chartered as Argonne National Laboratory for “cooperative research in nucleonics.” At the request of the U.S. Atomic Energy Commission, it began developing nuclear reactors for the nation’s peaceful nuclear energy program. In the late 1940s and early 1950s, the laboratory moved to a larger location in unincorporated DuPage County, Illinois and established a remote location in Idaho, called “Argonne-West,” to conduct further nuclear research.

    In quick succession, the laboratory designed and built Chicago Pile 3 (1944), the world’s first heavy-water moderated reactor, and the Experimental Breeder Reactor I (Chicago Pile 4), built-in Idaho, which lit a string of four light bulbs with the world’s first nuclear-generated electricity in 1951. A complete list of the reactors designed and, in most cases, built and operated by Argonne can be viewed in the, Reactors Designed by Argonne page. The knowledge gained from the Argonne experiments conducted with these reactors 1) formed the foundation for the designs of most of the commercial reactors currently used throughout the world for electric power generation and 2) inform the current evolving designs of liquid-metal reactors for future commercial power stations.

    Conducting classified research, the laboratory was heavily secured; all employees and visitors needed badges to pass a checkpoint, many of the buildings were classified, and the laboratory itself was fenced and guarded. Such alluring secrecy drew visitors both authorized—including King Leopold III of Belgium and Queen Frederica of Greece—and unauthorized. Shortly past 1 a.m. on February 6, 1951, Argonne guards discovered reporter Paul Harvey near the 10-foot (3.0 m) perimeter fence, his coat tangled in the barbed wire. Searching his car, guards found a previously prepared four-page broadcast detailing the saga of his unauthorized entrance into a classified “hot zone”. He was brought before a federal grand jury on charges of conspiracy to obtain information on national security and transmit it to the public, but was not indicted.

    Not all nuclear technology went into developing reactors, however. While designing a scanner for reactor fuel elements in 1957, Argonne physicist William Nelson Beck put his own arm inside the scanner and obtained one of the first ultrasound images of the human body. Remote manipulators designed to handle radioactive materials laid the groundwork for more complex machines used to clean up contaminated areas, sealed laboratories or caves. In 1964, the “Janus” reactor opened to study the effects of neutron radiation on biological life, providing research for guidelines on safe exposure levels for workers at power plants, laboratories and hospitals. Scientists at Argonne pioneered a technique to analyze the moon’s surface using alpha radiation, which launched aboard the Surveyor 5 in 1967 and later analyzed lunar samples from the Apollo 11 mission.

    In addition to nuclear work, the laboratory maintained a strong presence in the basic research of physics and chemistry. In 1955, Argonne chemists co-discovered the elements einsteinium and fermium, elements 99 and 100 in the periodic table. In 1962, laboratory chemists produced the first compound of the inert noble gas xenon, opening up a new field of chemical bonding research. In 1963, they discovered the hydrated electron.

    High-energy physics made a leap forward when Argonne was chosen as the site of the 12.5 GeV Zero Gradient Synchrotron, a proton accelerator that opened in 1963. A bubble chamber allowed scientists to track the motions of subatomic particles as they zipped through the chamber; in 1970, they observed the neutrino in a hydrogen bubble chamber for the first time.

    Meanwhile, the laboratory was also helping to design the reactor for the world’s first nuclear-powered submarine, the U.S.S. Nautilus, which steamed for more than 513,550 nautical miles (951,090 km). The next nuclear reactor model was Experimental Boiling Water Reactor, the forerunner of many modern nuclear plants, and Experimental Breeder Reactor II (EBR-II), which was sodium-cooled, and included a fuel recycling facility. EBR-II was later modified to test other reactor designs, including a fast-neutron reactor and, in 1982, the Integral Fast Reactor concept—a revolutionary design that reprocessed its own fuel, reduced its atomic waste and withstood safety tests of the same failures that triggered the Chernobyl and Three Mile Island disasters. In 1994, however, the U.S. Congress terminated funding for the bulk of Argonne’s nuclear programs.

    Argonne moved to specialize in other areas, while capitalizing on its experience in physics, chemical sciences and metallurgy. In 1987, the laboratory was the first to successfully demonstrate a pioneering technique called plasma wakefield acceleration, which accelerates particles in much shorter distances than conventional accelerators. It also cultivated a strong battery research program.

    Following a major push by then-director Alan Schriesheim, the laboratory was chosen as the site of the Advanced Photon Source, a major X-ray facility which was completed in 1995 and produced the brightest X-rays in the world at the time of its construction.

    On 19 March 2019, it was reported in the Chicago Tribune that the laboratory was constructing the world’s most powerful supercomputer. Costing $500 million it will have the processing power of 1 quintillion flops. Applications will include the analysis of stars and improvements in the power grid.

    With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science. For more visit http://www.anl.gov.

    About the Advanced Photon Source

    The U. S. Department of Energy Office of Science’s Advanced Photon Source (APS) at Argonne National Laboratory is one of the world’s most productive X-ray light source facilities. The APS provides high-brightness X-ray beams to a diverse community of researchers in materials science, chemistry, condensed matter physics, the life and environmental sciences, and applied research. These X-rays are ideally suited for explorations of materials and biological structures; elemental distribution; chemical, magnetic, electronic states; and a wide range of technologically important engineering systems from batteries to fuel injector sprays, all of which are the foundations of our nation’s economic, technological, and physical well-being. Each year, more than 5,000 researchers use the APS to produce over 2,000 publications detailing impactful discoveries, and solve more vital biological protein structures than users of any other X-ray light source research facility. APS scientists and engineers innovate technology that is at the heart of advancing accelerator and light-source operations. This includes the insertion devices that produce extreme-brightness X-rays prized by researchers, lenses that focus the X-rays down to a few nanometers, instrumentation that maximizes the way the X-rays interact with samples being studied, and software that gathers and manages the massive quantity of data resulting from discovery research at the APS.

    With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science. For more visit http://www.anl.gov.

    Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science

    Argonne Lab Campus

    The DOE’s Fermi National Accelerator Laboratory, located just outside Batavia, Illinois, near Chicago, is a United States Department of Energy national laboratory specializing in high-energy particle physics. Since 2007, Fermilab has been operated by the Fermi Research Alliance, a joint venture of the University of Chicago, and the Universities Research Association. Fermilab is a part of the Illinois Technology and Research Corridor.

    Fermilab’s Tevatron was a landmark particle accelerator; until the startup in 2008 of the The European Southern Observatory [La Observatorio Europeo Austral][Observatoire européen austral][Europäische Südsternwarte](EU)(CL)[CERN] Large Hadron Collider(CH) near Geneva, Switzerland, it was the most powerful particle accelerator in the world, accelerating antiprotons to energies of 500 GeV, and producing proton-proton collisions with energies of up to 1.6 TeV, the first accelerator to reach one “tera-electron-volt” energy. At 3.9 miles (6.3 km), it was the world’s fourth-largest particle accelerator in circumference. One of its most important achievements was the 1995 discovery of the top quark, announced by research teams using the Tevatron’s CDF and DØ detectors. It was shut down in 2011.

    In addition to high-energy collider physics, Fermilab hosts a series of fixed-target and neutrino experiments, such as The MicroBooNE (Micro Booster Neutrino Experiment),

    NOνA (NuMI Off-Axis νe Appearance)

    and Seaquest

    .

    Completed neutrino experiments include MINOS (Main Injector Neutrino Oscillation Search), MINOS+, MiniBooNE and SciBooNE (SciBar Booster Neutrino Experiment).

    The MiniBooNE detector was a 40-foot (12 m) diameter sphere containing 800 tons of mineral oil lined with 1,520 phototube detectors. An estimated 1 million neutrino events were recorded each year.

    SciBooNE sat in the same neutrino beam as MiniBooNE but had fine-grained tracking capabilities. The NOνA experiment uses, and the MINOS experiment used, Fermilab’s NuMI (Neutrinos at the Main Injector) beam, which is an intense beam of neutrinos that travels 455 miles (732 km) through the Earth to the Soudan Mine in Minnesota and the Ash River, Minnesota, site of the NOνA far detector.

    The ICARUS neutrino experiment was moved from CERN to Fermilab.

    In the public realm, Fermilab is home to a native prairie ecosystem restoration project and hosts many cultural events: public science lectures and symposia, classical and contemporary music concerts, folk dancing and arts galleries. The site is open from dawn to dusk to visitors who present valid photo identification.

    Asteroid 11998 Fermilab is named in honor of the laboratory.

    The DOE’s Fermi National Accelerator Laboratory campus.

    The DOE’s Fermi National Accelerator Laboratory(US)/MINERvA. Photo Reidar Hahn.

    The DOE’s Fermi National Accelerator LaboratoryDAMIC | The Fermilab Cosmic Physics Center.

    The DOE’s Fermi National Accelerator LaboratoryMuon g-2 studio. As muons race around a ring at the Muon g-2 studio, their spin axes twirl, reflecting the influence of unseen particles.

    The DOE’s Fermi National Accelerator Laboratory Short-Baseline Near Detector under construction.

    The DOE’s Fermi National Accelerator Laboratory Mu2e solenoid.

    The Dark Energy Camera [DECam], built at The DOE’s Fermi National Accelerator Laboratory.

    Weston, Illinois, was a community next to Batavia voted out of existence by its village board in 1966 to provide a site for Fermilab.

    The laboratory was founded in 1969 as the National Accelerator Laboratory; it was renamed in honor of Enrico Fermi in 1974. The laboratory’s first director was Robert Rathbun Wilson, under whom the laboratory opened ahead of time and under budget. Many of the sculptures on the site are of his creation. He is the namesake of the site’s high-rise laboratory building, whose unique shape has become the symbol for Fermilab and which is the center of activity on the campus.

    After Wilson stepped down in 1978 to protest the lack of funding for the lab, Leon M. Lederman took on the job. It was under his guidance that the original accelerator was replaced with the Tevatron, an accelerator capable of colliding protons and antiprotons at a combined energy of 1.96 TeV. Lederman stepped down in 1989. The science education center at the site was named in his honor.

    The later directors include:

    John Peoples, 1989 to 1996
    Michael S. Witherell, July 1999 to June 2005
    Piermaria Oddone, July 2005 to July 2013
    Nigel Lockyer, September 2013 to the present

    Fermilab continues to participate in the work at the Large Hadron Collider (LHC); it serves as a Tier 1 site in the Worldwide LHC Computing Grid and hosts 1000 U.S. scientists who work on the CMS project.

    FNAL Icon

     
  • richardmitnick 8:56 am on June 17, 2022 Permalink | Reply
    Tags: "Chicago expands and activates quantum network taking steps toward a secure quantum internet", "CQE": The Chicago Quantum Exchange, "Q-NEXT", A new 35-mile (56-kilometer) extension has built upon Argonne National Laboratory’s already 89-mile quantum loop launched in 2020., , Chicago at the heart of one of the largest quantum networks in the country and further solidifies the region as a leading global hub for quantum research., Congress introduced the "Quantum Cybersecurity Preparedness Act", For the first time Pritzker School of Molecular Engineering have connected the city of Chicago and suburban labs with a quantum network-doubling the length of one of the longest in the country., , , , Quantum networks can draw upon the laws of quantum mechanics to be made virtually “unhackable"., Quantum security trials with Toshiba have begun on 124-mile quantum network; open soon to industry and academics for testing., Researchers will use the Chicago network to test new communication devices; security protocols and algorithms that will eventually connect distant quantum computers around the nation and the world., The Chicago quantum network presents researchers with unprecedented opportunities to transmit quantum information in a real-world environment., The DOE’s Argonne National Laboratory, The network is now actively running quantum security protocols using technology provided by Toshiba, The Pritzker Nanofabrication Facility at the University of Chicago, The Pritzker School of Molecular Engineering at UChicago, The rise of quantum computers represents both an enormous opportunity and a fundamental threat., The total network is six nodes and 124 miles of optical fiber carrying quantum-encoded information between the DOE's Argonne National Laboratory and South Side UChicago campus and Hyde Park., , This network is important as a testbed of experimentation into how quantum networks can be used.   

    From The Pritzker School of Molecular Engineering at UChicago: “Chicago expands and activates quantum network taking steps toward a secure quantum internet” 

    From The Pritzker School of Molecular Engineering at UChicago

    At

    U Chicago bloc

    The University of Chicago

    Jun 16, 2022
    Meredith Fore

    1
    A new 35-mile extension has built upon The DOE’s Argonne National Laboratory’s already 89-mile (144-kilometer) quantum loop, launched in 2020. The total network now connects to the South Side of Chicago, putting the city at the heart of one of the largest quantum networks in the country and further solidifying the region as a leading global hub for quantum research. Image courtesy of Chicago Quantum Exchange.

    Quantum security trials with Toshiba have begun on 124-mile quantum network; open soon to industry and academics for testing.

    Scientists with The Chicago Quantum Exchange (CQE) at the University of Chicago’s Pritzker School of Molecular Engineering announced today that for the first time they’ve connected the city of Chicago and suburban labs with a quantum network—nearly doubling the length of what was already one of the longest in the country. The Chicago network, which will soon be opened to academia and industry, will become one of the nation’s first publicly-available testbeds for quantum security technology.

    The network is now actively running quantum security protocols using technology provided by Toshiba, distributing quantum keys over optic cable at a speed of over 80,000 quantum bits per second between Chicago and the western suburbs. Toshiba’s participation in the project makes the Chicago network a unique collaboration between academia, government and industry.

    Researchers will use the Chicago network to test new communication devices, security protocols, and algorithms that will eventually connect distant quantum computers around the nation and the world. The work represents the next step towards a national quantum internet, which will have a profound impact on communications, computing, and national security.

    A new 35-mile (56-kilometer) extension has built upon Argonne National Laboratory’s already 89-mile quantum loop launched in 2020. The total network is now composed of six nodes and 124 miles of optical fiber—transmitting particles carrying quantum-encoded information between the DOE’s Argonne National Laboratory in suburban Lemont and two buildings on the South Side of Chicago, one on the UChicago campus and the other at the CQE headquarters in the Hyde Park neighborhood. It puts Chicago at the heart of one of the largest quantum networks in the country and further solidifies the region as a leading global hub for quantum research.

    2
    Researchers work at The Pritzker Nanofabrication Facility at the University of Chicago. The special facility allows scientists to make and test new quantum technology. Photo by Robert Kozloff.

    “The Chicago quantum network presents researchers with unprecedented opportunities to transmit quantum information in a real-world environment and push the boundaries of what is currently possible with quantum security protocols,” said David Awschalom, the Liew Family Professor in Molecular Engineering and Physics at the University of Chicago, director of the Chicago Quantum Exchange, and director of “Q-NEXT”, a Department of Energy National Quantum Information Science Research Center at Argonne. “This extension enables scientists from academia, industry, and government labs to collaborate on advancing our fundamental understanding of quantum communication and develop a secure quantum internet.”

    “While this network is impressive in its scope, it is even more important as a testbed of experimentation into how quantum networks can be used. We look forward to working with CQE to explore the development of quantum network architectures that connect quantum sensors and computers together in new, exciting and useful ways,” said Jay Lowell, chief scientist for Boeing’s Disruptive Computing and Networks team

    The rise of quantum computers represents both an enormous opportunity and a fundamental threat. Once operational, they are expected to be able to solve the kinds of problems that are nearly impossible for ordinary computers and thus easily break current encryption. In April, lawmakers in Congress introduced the “Quantum Cybersecurity Preparedness Act”, which prioritizes timely quantum-proof encrypting of sensitive information so that bad actors cannot steal the data now and decrypt it when stronger quantum computers become reality.

    Scientists believe that quantum networks can draw upon the laws of quantum mechanics to be made virtually “unhackable.” Experts around the world have agreed that the implementation of quantum-secure communication networks is one of the most important technological frontiers of the 21st century.

    Hack-proof encrypting can be done using quantum key distribution, which is the quantum security technology that was activated on the Chicago area quantum network on June 6, 2022, in a collaboration with Toshiba. Key distribution is a routine part of most internet security, but quantum technology can make it virtually impervious to hacking. In quantum key distribution, secret digital keys are distributed using quantum security protocols among parties communicating sensitive data. The quantum keys are sent through a network of optical fiber via particles of light, called photons, using the photons’ quantum properties to encode the bits that make up the keys. Any attempt to intercept the photons destroys the information they hold.

    This kind of unhackable communication has applications anywhere secure communication is particularly vital, including industries such as finance, defense, voting and others.

    “We’re thrilled to continue our partnership with the Chicago Quantum Exchange as trials begin on the network,” said Yasushi Kawakura, vice president of digital solutions at Toshiba. “It’s paramount that we develop quantum-proof technology to proactively defend against threats from the quantum future.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Pritzker School of Molecular Engineering is the first school of engineering at the University of Chicago. It was founded as the Institute for Molecular Engineering in 2011 by the university in partnership with Argonne National Laboratory. When the program was raised to the status of a school in 2019, it became the first school dedicated to molecular engineering in the United States. It is named for a major benefactor, the Pritzker Foundation.

    The scientists, engineers, and students at PME use scientific research to pursue engineering solutions. The school does not have departments. Instead, it organizes its research around interdisciplinary “themes”: immuno-engineering, quantum engineering, autonomous materials, and water and energy. PME works toward technological advancements in areas of global importance, including sustainable energy and natural resources, immunotherapy-based approaches to cancer, “unhackable” communications networks, and a clean global water supply. The school plans to expand its research areas to address more issues of global importance.

    IME was established in 2011, after three years of discussion and review. It was the largest academic program founded by the University of Chicago since 1988, when the Harris School of Public Policy Studies was established.

    Matthew Tirrell was appointed founding Pritzker Director of IME in July 2011. The Pritzker Directorship honors the Pritzker Foundation, which donated a large gift in support of the institute. Tirrell is a researcher in biomolecular engineering and nanotechnology. His honors include election to The National Academy of Engineering, The American Academy of Arts and Sciences, and The National Academy of Sciences. He became dean of PME in 2019.

    The William Eckhardt Research Center (WERC), which houses the school and part of the Physical Sciences Division, was constructed between 2011 and 2015. The WERC was named for alumnus William Eckhardt, in recognition of his donation to support scientific research at the university.

    In 2019, the school received more than $23.1 million in research funding. From 2011 to 2019, faculty at the school have filed 69 invention disclosures and have created six companies.

    On May 28, 2019, the University of Chicago announced a $100 million commitment from the Pritzker Foundation to support the institute’s transition to a school—the first school of molecular engineering in the U.S. The Pritzker Foundation helped establish the school with a new donation of $75 million, adding to an earlier $25 million donation that supported the institute and the construction of the Pritzker Nanofabrication Facility. In 2019, PME became the university’s first new school in three decades.

    PME offers a graduate program in molecular engineering for both Master and Ph.D. students, as well as an undergraduate major and minor in molecular engineering offered with the College of the University of Chicago.

    The institute began accepting applications to its doctoral program in fall 2013. The first class of graduate students was matriculated the following fall. In 2019, the school had 28 faculty members, 91 undergraduate students, 134 graduate students, and 75 postdoctoral fellows.

    The graduate program curriculum includes various science and engineering disciplines, product design, entrepreneurship, and communication. The program is interdisciplinary, featuring a connected art program called STAGE Lab. STAGE Lab creates plays and films in the context of scientific research at PME.

    The undergraduate major was added in spring 2015. It was the first engineering major offered at the University of Chicago. In 2018, the first undergraduate class received degrees in molecular engineering. When the school was established in 2019, it announced plans to expand its undergraduate offerings.

    David Awschalom, a professor at PME, said the school has contributed to Chicago becoming a hub for quantum education and research. PME offers an advanced degree in quantum science and engineering. It also partnered with Harvard University to launch the Quantum Information Science and Engineering Network, a graduate student training program in quantum science and engineering. Participating students are paired with two mentors—one from academia and one from industry. The program was funded by a $1.6 million award from the National Science Foundation.

    The school’s partnership with Argonne National Laboratory provides additional opportunities for research and innovation. Argonne’s facilities include the Advanced Photon Source, the Argonne Leadership Computing Facility, and the Center for Nanoscale Materials. The lab also has experience licensing new technology for industrial and commercial applications.

    PME’s educational outreach initiatives include K-12 programs with events and internships throughout the year. In 2019, with the establishment of PME, the school also launched a partnership with City Colleges of Chicago. The multi-year program connects City College students interested in STEM fields with PME faculty and labs, with the goal of enabling these students to transfer into four-year STEM degree programs.

    U Chicago Campus

    The University of Chicago is an urban research university that has driven new ways of thinking since 1890. Our commitment to free and open inquiry draws inspired scholars to our global campuses, where ideas are born that challenge and change the world.

    We empower individuals to challenge conventional thinking in pursuit of original ideas. Students in the College develop critical, analytic, and writing skills in our rigorous, interdisciplinary core curriculum. Through graduate programs, students test their ideas with University of Chicago scholars, and become the next generation of leaders in academia, industry, nonprofits, and government.

    University of Chicago research has led to such breakthroughs as discovering the link between cancer and genetics, establishing revolutionary theories of economics, and developing tools to produce reliably excellent urban schooling. We generate new insights for the benefit of present and future generations with our national and affiliated laboratories: DOE’s Argonne National Laboratory, DOE’s Fermi National Accelerator Laboratory , and the Marine Biological Laboratory in Woods Hole, Massachusetts.
    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    In all we do, we are driven to dig deeper, push further, and ask bigger questions—and to leverage our knowledge to enrich all human life. Our diverse and creative students and alumni drive innovation, lead international conversations, and make masterpieces. Alumni and faculty, lecturers and postdocs go on to become Nobel laureates, CEOs, university presidents, attorneys general, literary giants, and astronauts. The University of Chicago is a private research university in Chicago, Illinois. Founded in 1890, its main campus is located in Chicago’s Hyde Park neighborhood. It enrolled 16,445 students in Fall 2019, including 6,286 undergraduates and 10,159 graduate students. The University of Chicago is ranked among the top universities in the world by major education publications, and it is among the most selective in the United States.

    The university is composed of one undergraduate college and five graduate research divisions, which contain all of the university’s graduate programs and interdisciplinary committees. Chicago has eight professional schools: the Law School, the Booth School of Business, the Pritzker School of Medicine, the School of Social Service Administration, the Harris School of Public Policy, the Divinity School, the Graham School of Continuing Liberal and Professional Studies, and the Pritzker School of Molecular Engineering. The university has additional campuses and centers in London, Paris, Beijing, Delhi, and Hong Kong, as well as in downtown Chicago.

    University of Chicago scholars have played a major role in the development of many academic disciplines, including economics, law, literary criticism, mathematics, religion, sociology, and the behavioralism school of political science, establishing the Chicago schools in various fields. Chicago’s Metallurgical Laboratory produced the world’s first man-made, self-sustaining nuclear reaction in Chicago Pile-1 beneath the viewing stands of the university’s Stagg Field. Advances in chemistry led to the “radiocarbon revolution” in the carbon-14 dating of ancient life and objects. The university research efforts include administration of DOE’s Fermi National Accelerator Laboratory and DOE’s Argonne National Laboratory, as well as the U Chicago Marine Biological Laboratory in Woods Hole, Massachusetts (MBL). The university is also home to the University of Chicago Press, the largest university press in the United States. The Barack Obama Presidential Center is expected to be housed at the university and will include both the Obama presidential library and offices of the Obama Foundation.

    The University of Chicago’s students, faculty, and staff have included 100 Nobel laureates as of 2020, giving it the fourth-most affiliated Nobel laureates of any university in the world. The university’s faculty members and alumni also include 10 Fields Medalists, 4 Turing Award winners, 52 MacArthur Fellows, 26 Marshall Scholars, 27 Pulitzer Prize winners, 20 National Humanities Medalists, 29 living billionaire graduates, and have won eight Olympic medals.

    The University of Chicago is enriched by the city we call home. In partnership with our neighbors, we invest in Chicago’s mid-South Side across such areas as health, education, economic growth, and the arts. Together with our medical center, we are the largest private employer on the South Side.

    Research

    According to the National Science Foundation, University of Chicago spent $423.9 million on research and development in 2018, ranking it 60th in the nation. It is classified among “R1: Doctoral Universities – Very high research activity” and is a founding member of the Association of American Universities and was a member of the Committee on Institutional Cooperation from 1946 through June 29, 2016, when the group’s name was changed to the Big Ten Academic Alliance. The University of Chicago is not a member of the rebranded consortium, but will continue to be a collaborator.

    The university operates more than 140 research centers and institutes on campus. Among these are the Oriental Institute—a museum and research center for Near Eastern studies owned and operated by the university—and a number of National Resource Centers, including the Center for Middle Eastern Studies. Chicago also operates or is affiliated with several research institutions apart from the university proper. The university manages DOE’s Argonne National Laboratory, part of the United States Department of Energy’s national laboratory system, and co-manages DOE’s Fermi National Accelerator Laboratory, a nearby particle physics laboratory, as well as a stake in the Apache Point Observatory in Sunspot, New Mexico.
    _____________________________________________________________________________________

    SDSS Telescope at Apache Point Observatory, near Sunspot NM, USA, Altitude 2,788 meters (9,147 ft).

    Apache Point Observatory, near Sunspot, New Mexico Altitude 2,788 meters (9,147 ft).
    _____________________________________________________________________________________

    Faculty and students at the adjacent Toyota Technological Institute at Chicago collaborate with the university. In 2013, the university formed an affiliation with the formerly independent Marine Biological Laboratory in Woods Hole, Mass. Although formally unrelated, the National Opinion Research Center is located on Chicago’s campus.

     
  • richardmitnick 2:14 pm on May 4, 2022 Permalink | Reply
    Tags: "The quest for an ideal quantum bit", , , , The DOE’s Argonne National Laboratory, The team chose to trap an electron on an ultrapure solid neon surface in a vacuum., While there are many choices of qubit types the team chose the simplest one — a single electron., While there are various forms of qubits today none of them is ideal.   

    From The DOE’s Argonne National Laboratory: “The quest for an ideal quantum bit” 

    Argonne Lab

    From The DOE’s Argonne National Laboratory

    May 4, 2022
    Joseph E. Harmon

    New qubit platform could transform quantum information science and technology.

    1
    A new qubit platform: Electrons from a heated light filament (top) land on solid neon (red block), where a single electron (represented as a wave function in blue) is trapped and manipulated by a superconducting quantum circuit (bottom patterned chip). Image by Dafei Jin/Argonne National Laboratory.

    You are no doubt viewing this article on a digital device whose basic unit of information is the bit, either 0 or 1. Scientists worldwide are racing to develop a new kind of computer based on use of quantum bits, or qubits.

    In a recent Nature paper, a team led by the U.S. Department of Energy’s Argonne National Laboratory has announced the creation of a new qubit platform formed by freezing neon gas into a solid at very low temperatures, spraying electrons from a light bulb’s filament onto the solid, and trapping a single electron there. This system shows great promise to be developed into ideal building blocks for future quantum computers.

    A qubit is special because it can simultaneously be 0 and 1. Physicists sometimes compare this state to a famous quantum thought experiment in which a cat hidden in a box is theoretically alive and dead at the same time before someone opens the box and looks inside. When there are many qubits, such overlapping states give quantum computers tremendously increased horsepower. They thus could one day solve complex problems beyond any classical supercomputers.

    To realize a useful quantum computer, the quality requirements for the qubits are extremely demanding. While there are various forms of qubits today none of them is ideal.

    What would make an ideal qubit? It has at least three sterling qualities, according to Dafei Jin, an Argonne scientist and the principal investigator of the project.

    It can remain in a simultaneous 0 and 1 state (remember the cat!) over a long time. Scientists call this long ​“coherence.” Ideally, that time would be around a second, a time step that we can perceive on a home clock in our daily life.

    Second, the qubit can be changed from one state to another in a short time. Ideally, that time would be around a billionth of a second (nanosecond), a time step of a classical computer clock.

    Third, the qubit can be easily linked with many other qubits so they can work in parallel with each other. Scientists refer to this linking as entanglement.

    Although at present the well-known qubits are not ideal, companies like IBM, Intel, Google, Honeywell and many startups have picked their favorite. They are aggressively pursuing technological improvement and commercialization.

    ​“Our ambitious goal is not to compete with those companies, but to discover and construct a fundamentally new qubit system that could lead to an ideal platform,” said Jin.

    While there are many choices of qubit types the team chose the simplest one — a single electron. Heating up a simple light filament you might find in a child’s toy can easily shoot out a boundless supply of electrons.

    One of the challenges for any qubit, including the electron, is that it is very sensitive to disturbance from its surroundings. Thus, the team chose to trap an electron on an ultrapure solid neon surface in a vacuum.

    Neon is one of a handful of inert elements that do not react with other elements. ​“Because of this inertness, solid neon can serve as the cleanest possible solid in a vacuum to host and protect any qubits from being disrupted,” said Jin.

    A key component in the team’s qubit platform is a chip-scale microwave resonator made out of a superconductor. (The much larger home microwave oven is also a microwave resonator.) Superconductors — metals with no electrical resistance — allow electrons and photons to interact together at near to absolute zero with minimal loss of energy or information.

    “The microwave resonator crucially provides a way to read out the state of the qubit,” said Kater Murch, physics professor at the Washington University in St. Louis and a senior co-author of the paper. ​“It concentrates the interaction between the qubit and microwave signal. This allows us to make measurements telling how well the qubit works.”

    “With this platform, we achieved, for the first time ever, strong coupling between a single electron in a near-vacuum environment and a single microwave photon in the resonator,” said Xianjing Zhou, a postdoctoral appointee at Argonne and the first author of the paper. ​“This opens up the possibility to use microwave photons to control each electron qubit and link many of them in a quantum processor,” Zhou added.

    The team tested the platform in a scientific instrument called a dilution refrigerator, which can reach temperatures as low as a mere 10 millidegrees above absolute zero. This instrument is one of many quantum capabilities in Argonne’s Center for Nanoscale Materials, a DOE Office of Science user facility.

    The team performed real-time operations to an electron qubit and characterized its quantum properties. These tests demonstrated that the solid neon provides a robust environment for the electron with very low electric noise to disturb it. Most importantly, the qubit attained coherence times in the quantum state competitive with state-of-the-art qubits.

    “Our qubits are actually as good as ones that people have been developing for 20 years,” said David Schuster, physics professor at The University of Chicago and a senior co-author of the paper. ​“This is only our first series of experiments. Our qubit platform is nowhere near optimized. We will continue improving the coherence times. And because the operation speed of this qubit platform is extremely fast, only several nanoseconds, the promise to scale it up to many entangled qubits is significant.”

    There is yet one more advantage to this remarkable qubit platform. ​“Thanks to the relative simplicity of the electron-on-neon platform, it should lend itself to easy manufacture at low cost,” Jin said. ​“It would appear an ideal qubit may be on the horizon.”

    The team published their findings in Nature [above]. In addition to Jin and Zhou, Argonne contributors include Xufeng Zhang, Xu Han, Xinhao Li and Ralu Divan. In addition to David Schuster, the University of Chicago contributors also include Brennan Dizdar. In addition to Kater Murch of Washington University in St. Louis, other researchers include Wei Guo of The Florida State University, Gerwin Koolstra of The DOE’s Lawrence Berkeley National Laboratory and Ge Yang of The Massachusetts Institute of Technology.

    Funding for the Argonne research primarily came from the DOE Office of Basic Energy Sciences, Argonne’s Laboratory Directed Research and Development program and the Julian Schwinger Foundation for Physics Research.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The DOE’s Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their is a science and engineering research national laboratory operated by UChicago Argonne LLC for the United States Department of Energy. The facility is located in Lemont, Illinois, outside of Chicago, and is the largest national laboratory by size and scope in the Midwest.

    Argonne had its beginnings in the Metallurgical Laboratory of the University of Chicago, formed in part to carry out Enrico Fermi’s work on nuclear reactors for the Manhattan Project during World War II. After the war, it was designated as the first national laboratory in the United States on July 1, 1946. In the post-war era the lab focused primarily on non-weapon related nuclear physics, designing and building the first power-producing nuclear reactors, helping design the reactors used by the United States’ nuclear navy, and a wide variety of similar projects. In 1994, the lab’s nuclear mission ended, and today it maintains a broad portfolio in basic science research, energy storage and renewable energy, environmental sustainability, supercomputing, and national security.

    UChicago Argonne, LLC, the operator of the laboratory, “brings together the expertise of the University of Chicago (the sole member of the LLC) with Jacobs Engineering Group Inc.” Argonne is a part of the expanding Illinois Technology and Research Corridor. Argonne formerly ran a smaller facility called Argonne National Laboratory-West (or simply Argonne-West) in Idaho next to the Idaho National Engineering and Environmental Laboratory. In 2005, the two Idaho-based laboratories merged to become the DOE’s Idaho National Laboratory.

    What would become Argonne began in 1942 as the Metallurgical Laboratory at the University of Chicago, which had become part of the Manhattan Project. The Met Lab built Chicago Pile-1, the world’s first nuclear reactor, under the stands of the University of Chicago sports stadium. Considered unsafe, in 1943, CP-1 was reconstructed as CP-2, in what is today known as Red Gate Woods but was then the Argonne Forest of the Cook County Forest Preserve District near Palos Hills. The lab was named after the surrounding forest, which in turn was named after the Forest of Argonne in France where U.S. troops fought in World War I. Fermi’s pile was originally going to be constructed in the Argonne forest, and construction plans were set in motion, but a labor dispute brought the project to a halt. Since speed was paramount, the project was moved to the squash court under Stagg Field, the football stadium on the campus of the University of Chicago. Fermi told them that he was sure of his calculations, which said that it would not lead to a runaway reaction, which would have contaminated the city.

    Other activities were added to Argonne over the next five years. On July 1, 1946, the “Metallurgical Laboratory” was formally re-chartered as Argonne National Laboratory for “cooperative research in nucleonics.” At the request of the U.S. Atomic Energy Commission, it began developing nuclear reactors for the nation’s peaceful nuclear energy program. In the late 1940s and early 1950s, the laboratory moved to a larger location in unincorporated DuPage County, Illinois and established a remote location in Idaho, called “Argonne-West,” to conduct further nuclear research.

    In quick succession, the laboratory designed and built Chicago Pile 3 (1944), the world’s first heavy-water moderated reactor, and the Experimental Breeder Reactor I (Chicago Pile 4), built-in Idaho, which lit a string of four light bulbs with the world’s first nuclear-generated electricity in 1951. A complete list of the reactors designed and, in most cases, built and operated by Argonne can be viewed in the, Reactors Designed by Argonne page. The knowledge gained from the Argonne experiments conducted with these reactors 1) formed the foundation for the designs of most of the commercial reactors currently used throughout the world for electric power generation and 2) inform the current evolving designs of liquid-metal reactors for future commercial power stations.

    Conducting classified research, the laboratory was heavily secured; all employees and visitors needed badges to pass a checkpoint, many of the buildings were classified, and the laboratory itself was fenced and guarded. Such alluring secrecy drew visitors both authorized—including King Leopold III of Belgium and Queen Frederica of Greece—and unauthorized. Shortly past 1 a.m. on February 6, 1951, Argonne guards discovered reporter Paul Harvey near the 10-foot (3.0 m) perimeter fence, his coat tangled in the barbed wire. Searching his car, guards found a previously prepared four-page broadcast detailing the saga of his unauthorized entrance into a classified “hot zone”. He was brought before a federal grand jury on charges of conspiracy to obtain information on national security and transmit it to the public, but was not indicted.

    Not all nuclear technology went into developing reactors, however. While designing a scanner for reactor fuel elements in 1957, Argonne physicist William Nelson Beck put his own arm inside the scanner and obtained one of the first ultrasound images of the human body. Remote manipulators designed to handle radioactive materials laid the groundwork for more complex machines used to clean up contaminated areas, sealed laboratories or caves. In 1964, the “Janus” reactor opened to study the effects of neutron radiation on biological life, providing research for guidelines on safe exposure levels for workers at power plants, laboratories and hospitals. Scientists at Argonne pioneered a technique to analyze the moon’s surface using alpha radiation, which launched aboard the Surveyor 5 in 1967 and later analyzed lunar samples from the Apollo 11 mission.

    In addition to nuclear work, the laboratory maintained a strong presence in the basic research of physics and chemistry. In 1955, Argonne chemists co-discovered the elements einsteinium and fermium, elements 99 and 100 in the periodic table. In 1962, laboratory chemists produced the first compound of the inert noble gas xenon, opening up a new field of chemical bonding research. In 1963, they discovered the hydrated electron.

    High-energy physics made a leap forward when Argonne was chosen as the site of the 12.5 GeV Zero Gradient Synchrotron, a proton accelerator that opened in 1963. A bubble chamber allowed scientists to track the motions of subatomic particles as they zipped through the chamber; in 1970, they observed the neutrino in a hydrogen bubble chamber for the first time.

    Meanwhile, the laboratory was also helping to design the reactor for the world’s first nuclear-powered submarine, the U.S.S. Nautilus, which steamed for more than 513,550 nautical miles (951,090 km). The next nuclear reactor model was Experimental Boiling Water Reactor, the forerunner of many modern nuclear plants, and Experimental Breeder Reactor II (EBR-II), which was sodium-cooled, and included a fuel recycling facility. EBR-II was later modified to test other reactor designs, including a fast-neutron reactor and, in 1982, the Integral Fast Reactor concept—a revolutionary design that reprocessed its own fuel, reduced its atomic waste and withstood safety tests of the same failures that triggered the Chernobyl and Three Mile Island disasters. In 1994, however, the U.S. Congress terminated funding for the bulk of Argonne’s nuclear programs.

    Argonne moved to specialize in other areas, while capitalizing on its experience in physics, chemical sciences and metallurgy. In 1987, the laboratory was the first to successfully demonstrate a pioneering technique called plasma wakefield acceleration, which accelerates particles in much shorter distances than conventional accelerators. It also cultivated a strong battery research program.

    Following a major push by then-director Alan Schriesheim, the laboratory was chosen as the site of the Advanced Photon Source, a major X-ray facility which was completed in 1995 and produced the brightest X-rays in the world at the time of its construction.

    On 19 March 2019, it was reported in the Chicago Tribune that the laboratory was constructing the world’s most powerful supercomputer. Costing $500 million it will have the processing power of 1 quintillion flops. Applications will include the analysis of stars and improvements in the power grid.

    With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science. For more visit http://www.anl.gov.

    About the Advanced Photon Source

    The U. S. Department of Energy Office of Science’s Advanced Photon Source (APS) at Argonne National Laboratory is one of the world’s most productive X-ray light source facilities. The APS provides high-brightness X-ray beams to a diverse community of researchers in materials science, chemistry, condensed matter physics, the life and environmental sciences, and applied research. These X-rays are ideally suited for explorations of materials and biological structures; elemental distribution; chemical, magnetic, electronic states; and a wide range of technologically important engineering systems from batteries to fuel injector sprays, all of which are the foundations of our nation’s economic, technological, and physical well-being. Each year, more than 5,000 researchers use the APS to produce over 2,000 publications detailing impactful discoveries, and solve more vital biological protein structures than users of any other X-ray light source research facility. APS scientists and engineers innovate technology that is at the heart of advancing accelerator and light-source operations. This includes the insertion devices that produce extreme-brightness X-rays prized by researchers, lenses that focus the X-rays down to a few nanometers, instrumentation that maximizes the way the X-rays interact with samples being studied, and software that gathers and manages the massive quantity of data resulting from discovery research at the APS.

    With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science. For more visit http://www.anl.gov.

    Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science

    Argonne Lab Campus

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: