Tagged: The Chinese Academy of Sciences [中国科学院](CN) Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:06 pm on September 7, 2022 Permalink | Reply
    Tags: "China Claims New World Record for Strongest Steady Magnetic Field", The Chinese Academy of Sciences [中国科学院](CN)   

    From The Chinese Academy of Sciences [中国科学院](CN): “China Claims New World Record for Strongest Steady Magnetic Field” 

    From The Chinese Academy of Sciences [中国科学院](CN)

    8.12.22

    ZHAO Weiwei
    Hefei Institutes of Physical Science
    annyzhao@ipp.ac.cn

    The hybrid magnet at the Steady High Magnetic Field Facility (SHMFF) in Hefei, China set a world record for the highest steady magnetic field by a working magnet when it produced a steady field of 45.22 tesla (T) on Aug. 12.

    It broke the previous world record of 45 tesla set in 1999 by a hybrid magnet at the National High Magnetic Field Laboratory of the United States.

    This 45.22-tesla hybrid magnet is composed of a resistive insert nested in a superconducting outsert with a bore of 32 mm.

    The Hefei team constructed the hybrid magnet in 2016. At the time, it generated a central magnetic field of 40 tesla, making it the world’s second 40-tesla-level magnet.

    The 40-tesla achievement was apparently not the end, though. Since then, the team’s pursuit of higher magnetic fields has never stopped.

    “To achieve higher magnetic fields, we innovated the structure of the magnet and developed new materials,” said Prof. KUANG Guangli, academic director of the High Magnetic Field Laboratory of the Hefei Institutes of Physical Science, Chinese Academy of Sciences (CHMFL), where SHMFF is located. “The manufacturing process for the Bitter discs was also optimized,” said KUANG in a statement made during an onsite validation by seven CAS members.

    The success of the 45.22-tesla magnet represents an important milestone in the development of magnetic technology in China and the world as well.

    This magnet is one of 10 magnets developed and operated by CHMFL.

    The lab in Hefei has previously set three world records with its resistive magnets.

    SHMFF, a user facility that now provides scientists worldwide the world’s strongest steady state magnetic field, has operated for more than 500,000 machine hours since it went into service, providing over 170 institutes or universities at home and abroad the experimental conditions for cutting-edge research in multiple disciplines.

    1
    The new world record of 45.22 tesla steady state high magnetic field. (Image by the SHMFF team)

    2
    The hybrid magnet. (Image by the SHMFF team)

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Chinese Academy of Sciences[中国科学院](CN) is the national academy for the natural sciences of the People’s Republic of China. It has historical origins in the Academia Sinica during the Republican era and was formerly also known by that name. Collectively known as the “Two Academies (两院)” along with the Chinese Academy of Engineering, it functions as the national scientific think tank and academic governing body, providing advisory and appraisal services on issues stemming from the national economy, social development, and science and technology progress. It is headquartered in Xicheng District, Beijing, with branch institutes all over mainland China. It has also created hundreds of commercial enterprises, Lenovo being one of the most famous.

    It is the world’s largest research organization, comprising around 60,000 researchers working in 114 institutes, and has been consistently ranked among the top research organizations around the world. It also holds the University of Science and Technology of China and the University of Chinese Academy of Sciences.

    The Chinese Academy of Sciences has been ranked the No. 1 research institute in the world by Nature Index since the list’s inception in 2016 by Nature Portfolio. It is the most productive institution publishing articles of sustainable development indexed in Web of Science from 1981 to 2018 among all universities and research institutions in the world.

    The Chinese Academy originated in the Academia Sinica founded, in 1928, by the Republic of China. After the Communist Party took control of mainland China in 1949, the residual of Academia Sinica was renamed Chinese Academy of Sciences (CAS), while others relocated to Taiwan.

    The Chinese Academy of Sciences has six academic divisions:

    Chemistry (化学部)
    Information Technological Sciences (信息技术科学部)
    Earth Sciences (地学部)
    Life Sciences and Medical Sciences (生命科学和医学学部)
    Mathematics and Physics (数学物理学部)
    Technological Sciences (技术科学部)

    The CAS has thirteen regional branches, in Beijing, Shenyang, Changchun, Shanghai, Nanjing, Wuhan, Guangzhou, Chengdu, Kunming, Xi’an, Lanzhou, Hefei and Xinjiang. It has over one hundred institutes and four universities (the University of Science and Technology of China at Hefei, Anhui, the University of the Chinese Academy of Sciences in Beijing, ShanghaiTech University, and Shenzhen Institute of Adavanced Technology). Backed by the institutes of CAS, UCAS is headquartered in Beijing, with graduate education bases in Shanghai, Chengdu, Wuhan, Guangzhou and Lanzhou, four Science Libraries of Chinese Academy of Sciences, three technology support centers and two news and publishing units. These CAS branches and offices are located in 20 provinces and municipalities throughout China. CAS has invested in or created over 430 science- and technology-based enterprises in eleven industries, including eight companies listed on stock exchanges.

    Being granted a Fellowship of the Academy represents the highest level of national honor for Chinese scientists. The CAS membership system includes Academicians (院士), Emeritus Academicians (荣誉院士) and Foreign Academicians (外籍院士).

    The Chinese Academy of Sciences was ranked #1 in the 2016, 2017, 2018, 2019, and 2020 Nature Index Annual Tables, which measure the largest contributors to papers published in 82 leading journals.

    Research institutes

    Beijing Branch
    University of the Chinese Academy of Sciences (UCAS)
    Academy of Mathematics and Systems Science
    Institute of Acoustics (IOA)
    Institute of Atmospheric Physics
    Institute of Botany, Chinese Academy of Sciences
    Institute of Physics (IOPCAS)
    Institute of Semiconductors
    Institute of Electrical Engineering (IEE)
    Institute of Information Engineering (IIE)
    Institute of Theoretical Physics
    Institute of High Energy Physics
    Institute of Biophysics
    Institute of Genetics and Developmental Biology
    Institute of Electronics
    National Astronomical Observatories
    Institute of Computing Technology
    Institute of Software
    Institute of Automation
    Beijing Institute of Genomics
    Institute of Geographic Sciences and Natural Resources
    Institute of Geology and Geophysics (IGG)
    Institute of Remote Sensing and Digital Earth
    Institute of Tibetan Plateau Research
    Institute of Vertebrate Paleontology and Paleoanthropology
    National Center for Nanoscience and Technology
    Institute of Policy and Management
    Institute of Psychology
    Institute of Zoology
    Changchun Branch
    Changchun Institute of Optics, Fine Mechanics and Physics
    Changchun Institute of Applied Chemistry
    Northeast Institute of Geography and Agroecology
    Changchun Observatory
    Chengdu Branch
    Institute of Mountain Hazards and Environment
    Chengdu Institute of Biology
    Institute of Optics and Electronics
    Chengdu Institute of Organic Chemistry
    Institute of Computer Application
    Chongqing Institute of Green and Intelligent Technology
    Guangzhou Branch
    South China Botanical Garden
    Shenzhen Institutes of Advanced Technology
    South China Sea Institute of Oceanology
    Guangzhou Institute of Energy Conversion
    Guangzhou Institute of Geochemistry
    Guangzhou Institute of Biomedicine and Health
    Guiyang Branch
    Institute of Geochemistry
    Hefei Branch
    Hefei Institutes of Physical Science
    University of Science and Technology of China
    Kunming Branch
    Kunming Institute of Botany
    Kunming Institute of Zoology
    Xishuangbanna Tropical Botanical Garden
    Institute of Geochemistry
    Yunnan Astronomical Observatory
    Lanzhou Branch
    Institute of Modern Physics
    Lanzhou Institute of Chemical Physics
    Lanzhou Institute of Geology
    Northwest Institute of Plateau Biology
    Northwest Institute of Eco-Environment and Resources
    Qinghai Institute of Salt Lakes Research
    Nanjing Branch
    Purple Mountain Observatory (Zijinshan Astronomical Observatory)
    Institute of Soil Science
    Nanjing Institute of Geology and Palaeontology
    Nanjing Institute of Geography and Limnology
    Nanjing Institute of Astronomical Optics and Technology
    Suzhou Institute of Nano-tech and Nano-bionics (SINANO)
    Suzhou Institute of Biomedical Engineering and Technology (SIBET)
    Nanjing Botanical Garden, Memorial Sun Yat-Sen (Institute of Botany, Jiangsu Province and Chinese Academy of Science)
    University of Chinese Academy of Sciences, Nanjing College
    Shanghai Branch
    Shanghai Astronomical Observatory
    Shanghai Institute of Microsystem and Information Technology
    Shanghai Institute of Technical Physics
    Shanghai Institute of Optics and Fine Mechanics
    Shanghai Institute of Ceramics
    Shanghai Institute of Organic Chemistry
    Shanghai Institute of Applied Physics
    Shanghai Institutes for Biological Sciences
    Shanghai Institute of Materia Medica
    Institut Pasteur of Shanghai
    Shanghai Advanced Research Institute, CAS
    Institute of Neuroscience (ION)
    ShanghaiTech University
    Shenyang Branch
    Institute of Metal Research
    Shenyang Institute of Automation
    Shenyang Institute of Applied Ecology, formerly the Institute of Forestry and Pedology
    Shenyang Institute of Computing Technology
    Dalian Institute of Chemical Physics
    Qingdao Institute of Oceanology
    Qingdao Institute of Bioenergy and Bioprocess Technology
    Yantai Institute of Coastal Zone Research
    Taiyuan Branch
    Shanxi Institute of Coal Chemistry (ICCCAS)
    Wuhan Branch
    Wuhan Institute of Rock and Soil Mechanics
    Wuhan Institute of Physics and Mathematics
    Wuhan Institute of Virology
    Institute of Geodesy and Geophysics
    Institute of Hydrobiology
    Wuhan Botanical Garden
    Xinjiang Branch
    Xinjiang Technical Institute of Physics and Chemistry
    Xinjiang Institute of Ecology and Geography
    Xi’an Branch
    Xi’an Institute of Optics and Precision Mechanics
    National Time Service Center
    Institute of Earth Environment

     
  • richardmitnick 12:35 pm on September 5, 2022 Permalink | Reply
    Tags: "EP-WXT Pathfinder Catches First Wide-field Snapshots of X-ray Universe", , , , , , The Chinese Academy of Sciences [中国科学院](CN)   

    From The Chinese Academy of Sciences [中国科学院](CN): “EP-WXT Pathfinder Catches First Wide-field Snapshots of X-ray Universe” 

    From The Chinese Academy of Sciences [中国科学院](CN)

    9.2.22
    XU Ang
    National Astronomical Observatories
    annxu@nao.cas.cn

    EP-WXT Pathfinder, the experimental version of a module that will eventually be part of the wide-field X-ray telescope (WXT) aboard the astronomical satellite Einstein Probe (EP), released its first results Aug. 27 from an earlier test flight.

    These include an 800-second X-ray time-lapse photograph of a region of the Galactic center, a dense area at the core of our home galaxy, the Milky Way.

    These mark the first wide-field X-ray snapshots of our universe available to the public so far, captured by the first truly wide-field X-ray focusing imaging telescope ever flown in space.

    The results were reported by scientists from the Chinese Academy of Sciences (CAS) at the Second China Space Science Assembly held in Taiyuan, China.

    Since the first detection of X-ray signals from the depths of the universe 60 years ago, no wide-field X-ray focusing telescope has been available for X-ray surveys and monitoring until Pathfinder.

    1
    Fig. 1 EP-WXT Pathfinder targets a region of the Galactic center at the core of the Milky Way. Inset shows the 800-second time-lapse photograph from the observation. (Image by CAS/ESA/Gaia/DPAC)

    The Pathfinder was sent into orbit to verify the module’s in-orbit performance. The experimental journey is meant to pave the way for the future in-orbit science operation of EP as it makes observations in the soft X-ray waveband.

    EP will explore open questions in time-domain astrophysics through observation of transients. The mission is sponsored by CAS in cooperation with the European Space Agency (ESA) and the Max Planck Institute for Extraterrestrial Physics and is expected to fly by the end of 2023.

    The WXT test module covers a field of view up to 340 square degrees (18.6°x18.6°) wide, which makes it the first truly wide-field X-ray focusing imaging telescope. X-ray imaging by bending light rays (focusing) is notoriously difficult due to the high energy of X-ray photons; and it is even more difficult to obtain clear images from a wide field of view. Thanks to a state-of-the-art technology called lobster-eye micropore optics, the test module boasts a field of view at least 100 times those of other focusing X-ray imagers. The complete WXT to fly aboard EP will be composed of 12 such identical modules, covering a field of view up to 3,600 square degrees wide.

    During the test flight, Pathfinder conducted a total of four days of in-orbit experimental observations and obtained authentic X-ray spectra and images based on real measurements.

    The key components of Pathfinder include the X-ray imaging mirror assembly, which features an array of 36 micropore lobster-eye plates and a focal-plane detector composed of four sets of large-format imaging sensors.

    Even though these results are still preliminary and extensive data processing must be done, the test flight demonstrates that even a one-shot observation can cover X-ray sources from all directions within the observed patch of sky, including stellar-mass black holes and neutron stars. The observation also captured the brightening of X-rays from a binary system containing a neutron star. The data from these observations provide information about how X-ray radiation from such celestial bodies changes over time, as well as the X-ray spectra of these celestial bodies. The images and spectra resulting from the test observations are highly consistent with simulations.

    The instrument also targeted a number of other X-ray sources, including the Large Magellanic Cloud (LMC), one of our neighboring galaxies. The results demonstrate that even a one-shot observation can cover the whole of this galaxy, detecting multiple X-ray sources, including black holes, neutron stars and supernova remnants. The instrument’s clear imaging of a distant quasar, 3C 382, at a distance of 810 million light-years, reveals its capacity to detect relatively faint X-ray sources. In its future observations, the imager is expected to effectively monitor the X-ray variability of celestial bodies and discover new transient sources.

    2
    Fig. 2 The preliminary X-ray “time-lapse photograph” (right) in 0.5–4 keV band as the result from a 700-second one-shot observation on the Large Magellanic Cloud (LMC), our neighbor galaxy, in comparison with the DSS optical image of LMC. (Image by CAS/DSS)

    According to Dr. YUAN Weimin, principal investigator (PI) of the EP mission and researcher at the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), initial results show that “the instrument operates smoothly” and meets EP WXT module requirements. “It’s exciting to see the decade-long effort bearing its first fruit,” he smiled.

    Other researchers involved with the EP mission were also satisfied.

    Dr. ZHANG Chen, PI of the WXT mirror assembly, said the results promise “abundant, high-quality data” after the probe is launched.

    Prof. Paul O’Brien, ESA-appointed scientist for the EP mission and researcher at the University of Leicester, said the results are “really impressive.”

    “We have been waiting for a true wide-field, soft X-ray imager for many decades, so it is wonderful to see the WXT test module in flight on EP-WXT Pathfinder,” said Prof. Richard Willingale, Prof. O’Brien’s colleague at the University of Leicester.

    3
    Fig. 3 X-ray image of the Cygnus Loop nebula (2.5-degree diameter) obtained with several observations totaling 2,400 seconds. (Image by CAS)

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Chinese Academy of Sciences[中国科学院](CN) is the national academy for the natural sciences of the People’s Republic of China. It has historical origins in the Academia Sinica during the Republican era and was formerly also known by that name. Collectively known as the “Two Academies (两院)” along with the Chinese Academy of Engineering, it functions as the national scientific think tank and academic governing body, providing advisory and appraisal services on issues stemming from the national economy, social development, and science and technology progress. It is headquartered in Xicheng District, Beijing, with branch institutes all over mainland China. It has also created hundreds of commercial enterprises, Lenovo being one of the most famous.

    It is the world’s largest research organization, comprising around 60,000 researchers working in 114 institutes, and has been consistently ranked among the top research organizations around the world. It also holds the University of Science and Technology of China and the University of Chinese Academy of Sciences.

    The Chinese Academy of Sciences has been ranked the No. 1 research institute in the world by Nature Index since the list’s inception in 2016 by Nature Portfolio. It is the most productive institution publishing articles of sustainable development indexed in Web of Science from 1981 to 2018 among all universities and research institutions in the world.

    The Chinese Academy originated in the Academia Sinica founded, in 1928, by the Republic of China. After the Communist Party took control of mainland China in 1949, the residual of Academia Sinica was renamed Chinese Academy of Sciences (CAS), while others relocated to Taiwan.

    The Chinese Academy of Sciences has six academic divisions:

    Chemistry (化学部)
    Information Technological Sciences (信息技术科学部)
    Earth Sciences (地学部)
    Life Sciences and Medical Sciences (生命科学和医学学部)
    Mathematics and Physics (数学物理学部)
    Technological Sciences (技术科学部)

    The CAS has thirteen regional branches, in Beijing, Shenyang, Changchun, Shanghai, Nanjing, Wuhan, Guangzhou, Chengdu, Kunming, Xi’an, Lanzhou, Hefei and Xinjiang. It has over one hundred institutes and four universities (the University of Science and Technology of China at Hefei, Anhui, the University of the Chinese Academy of Sciences in Beijing, ShanghaiTech University, and Shenzhen Institute of Adavanced Technology). Backed by the institutes of CAS, UCAS is headquartered in Beijing, with graduate education bases in Shanghai, Chengdu, Wuhan, Guangzhou and Lanzhou, four Science Libraries of Chinese Academy of Sciences, three technology support centers and two news and publishing units. These CAS branches and offices are located in 20 provinces and municipalities throughout China. CAS has invested in or created over 430 science- and technology-based enterprises in eleven industries, including eight companies listed on stock exchanges.

    Being granted a Fellowship of the Academy represents the highest level of national honor for Chinese scientists. The CAS membership system includes Academicians (院士), Emeritus Academicians (荣誉院士) and Foreign Academicians (外籍院士).

    The Chinese Academy of Sciences was ranked #1 in the 2016, 2017, 2018, 2019, and 2020 Nature Index Annual Tables, which measure the largest contributors to papers published in 82 leading journals.

    Research institutes

    Beijing Branch
    University of the Chinese Academy of Sciences (UCAS)
    Academy of Mathematics and Systems Science
    Institute of Acoustics (IOA)
    Institute of Atmospheric Physics
    Institute of Botany, Chinese Academy of Sciences
    Institute of Physics (IOPCAS)
    Institute of Semiconductors
    Institute of Electrical Engineering (IEE)
    Institute of Information Engineering (IIE)
    Institute of Theoretical Physics
    Institute of High Energy Physics
    Institute of Biophysics
    Institute of Genetics and Developmental Biology
    Institute of Electronics
    National Astronomical Observatories
    Institute of Computing Technology
    Institute of Software
    Institute of Automation
    Beijing Institute of Genomics
    Institute of Geographic Sciences and Natural Resources
    Institute of Geology and Geophysics (IGG)
    Institute of Remote Sensing and Digital Earth
    Institute of Tibetan Plateau Research
    Institute of Vertebrate Paleontology and Paleoanthropology
    National Center for Nanoscience and Technology
    Institute of Policy and Management
    Institute of Psychology
    Institute of Zoology
    Changchun Branch
    Changchun Institute of Optics, Fine Mechanics and Physics
    Changchun Institute of Applied Chemistry
    Northeast Institute of Geography and Agroecology
    Changchun Observatory
    Chengdu Branch
    Institute of Mountain Hazards and Environment
    Chengdu Institute of Biology
    Institute of Optics and Electronics
    Chengdu Institute of Organic Chemistry
    Institute of Computer Application
    Chongqing Institute of Green and Intelligent Technology
    Guangzhou Branch
    South China Botanical Garden
    Shenzhen Institutes of Advanced Technology
    South China Sea Institute of Oceanology
    Guangzhou Institute of Energy Conversion
    Guangzhou Institute of Geochemistry
    Guangzhou Institute of Biomedicine and Health
    Guiyang Branch
    Institute of Geochemistry
    Hefei Branch
    Hefei Institutes of Physical Science
    University of Science and Technology of China
    Kunming Branch
    Kunming Institute of Botany
    Kunming Institute of Zoology
    Xishuangbanna Tropical Botanical Garden
    Institute of Geochemistry
    Yunnan Astronomical Observatory
    Lanzhou Branch
    Institute of Modern Physics
    Lanzhou Institute of Chemical Physics
    Lanzhou Institute of Geology
    Northwest Institute of Plateau Biology
    Northwest Institute of Eco-Environment and Resources
    Qinghai Institute of Salt Lakes Research
    Nanjing Branch
    Purple Mountain Observatory (Zijinshan Astronomical Observatory)
    Institute of Soil Science
    Nanjing Institute of Geology and Palaeontology
    Nanjing Institute of Geography and Limnology
    Nanjing Institute of Astronomical Optics and Technology
    Suzhou Institute of Nano-tech and Nano-bionics (SINANO)
    Suzhou Institute of Biomedical Engineering and Technology (SIBET)
    Nanjing Botanical Garden, Memorial Sun Yat-Sen (Institute of Botany, Jiangsu Province and Chinese Academy of Science)
    University of Chinese Academy of Sciences, Nanjing College
    Shanghai Branch
    Shanghai Astronomical Observatory
    Shanghai Institute of Microsystem and Information Technology
    Shanghai Institute of Technical Physics
    Shanghai Institute of Optics and Fine Mechanics
    Shanghai Institute of Ceramics
    Shanghai Institute of Organic Chemistry
    Shanghai Institute of Applied Physics
    Shanghai Institutes for Biological Sciences
    Shanghai Institute of Materia Medica
    Institut Pasteur of Shanghai
    Shanghai Advanced Research Institute, CAS
    Institute of Neuroscience (ION)
    ShanghaiTech University
    Shenyang Branch
    Institute of Metal Research
    Shenyang Institute of Automation
    Shenyang Institute of Applied Ecology, formerly the Institute of Forestry and Pedology
    Shenyang Institute of Computing Technology
    Dalian Institute of Chemical Physics
    Qingdao Institute of Oceanology
    Qingdao Institute of Bioenergy and Bioprocess Technology
    Yantai Institute of Coastal Zone Research
    Taiyuan Branch
    Shanxi Institute of Coal Chemistry (ICCCAS)
    Wuhan Branch
    Wuhan Institute of Rock and Soil Mechanics
    Wuhan Institute of Physics and Mathematics
    Wuhan Institute of Virology
    Institute of Geodesy and Geophysics
    Institute of Hydrobiology
    Wuhan Botanical Garden
    Xinjiang Branch
    Xinjiang Technical Institute of Physics and Chemistry
    Xinjiang Institute of Ecology and Geography
    Xi’an Branch
    Xi’an Institute of Optics and Precision Mechanics
    National Time Service Center
    Institute of Earth Environment

     
  • richardmitnick 9:31 am on August 15, 2022 Permalink | Reply
    Tags: "China Sets World Record in Steady High Magnetic Field Research", , The Chinese Academy of Sciences [中国科学院](CN)   

    From The Hefei Institutes of Physical Science (HFIPS): “China Sets World Record in Steady High Magnetic Field Research” 

    From The Chinese Academy of Sciences [中国科学院](CN)

    8.15.22

    1
    The Steady High Magnetic Field Facility in central China’s Hefei, Anhui Province. /CFP

    Chinese scientists on Friday produced a steady field of 45.22 Tesla, the highest of its kind in the world, according to Hefei Institutes of Physical Science (HFIPS) under the Chinese Academy of Sciences.

    The achievement occurred at the hybrid magnet of the Steady High Magnetic Field Facility (SHMFF) in the city of Hefei, Anhui Province, breaking the previous world record of 45 Tesla, created in 1999 by a hybrid magnet at the National High Magnetic Field Laboratory of the United States.

    Such a success represents an important milestone in the development of magnetic technology in China and the world. Stronger magnetic fields enable scientists to see the internal structures of materials more clearly, helping people understand the world better and develop new technologies, said Kuang Guangli, academic director of the HFIPS High Magnetic Field Laboratory, where SHMFF is based.

    SHMFF’s scientific team constructed the hybrid magnet in 2016, which generated a central magnetic field of 40 Tesla at the time, making it the second 40-Tesla level magnet in the world.

    “To achieve a higher magnetic field, we innovated with the structure of the magnet, and developed new materials,” said Kuang during an on-site verification process conducted by seven academicians. “The Bitter disc manufacturing process was also optimized.”

    SHMFF, open to scientists worldwide, has operated more than 500,000 machine hours since it began operation, providing over 170 scientific and educational institutions at home and abroad with the experimental conditions for cutting-edge research in multiple disciplines, including physics, chemistry, materials, the life sciences and engineering. (Xinhua)

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Chinese Academy of Sciences[中国科学院](CN) is the national academy for the natural sciences of the People’s Republic of China. It has historical origins in the Academia Sinica during the Republican era and was formerly also known by that name. Collectively known as the “Two Academies (两院)” along with the Chinese Academy of Engineering, it functions as the national scientific think tank and academic governing body, providing advisory and appraisal services on issues stemming from the national economy, social development, and science and technology progress. It is headquartered in Xicheng District, Beijing, with branch institutes all over mainland China. It has also created hundreds of commercial enterprises, Lenovo being one of the most famous.

    It is the world’s largest research organization, comprising around 60,000 researchers working in 114 institutes, and has been consistently ranked among the top research organizations around the world. It also holds the University of Science and Technology of China and the University of Chinese Academy of Sciences.

    The Chinese Academy of Sciences has been ranked the No. 1 research institute in the world by Nature Index since the list’s inception in 2016 by Nature Portfolio. It is the most productive institution publishing articles of sustainable development indexed in Web of Science from 1981 to 2018 among all universities and research institutions in the world.

    The Chinese Academy originated in the Academia Sinica founded, in 1928, by the Republic of China. After the Communist Party took control of mainland China in 1949, the residual of Academia Sinica was renamed Chinese Academy of Sciences (CAS), while others relocated to Taiwan.

    The Chinese Academy of Sciences has six academic divisions:

    Chemistry (化学部)
    Information Technological Sciences (信息技术科学部)
    Earth Sciences (地学部)
    Life Sciences and Medical Sciences (生命科学和医学学部)
    Mathematics and Physics (数学物理学部)
    Technological Sciences (技术科学部)

    The CAS has thirteen regional branches, in Beijing, Shenyang, Changchun, Shanghai, Nanjing, Wuhan, Guangzhou, Chengdu, Kunming, Xi’an, Lanzhou, Hefei and Xinjiang. It has over one hundred institutes and four universities (the University of Science and Technology of China at Hefei, Anhui, the University of the Chinese Academy of Sciences in Beijing, ShanghaiTech University, and Shenzhen Institute of Adavanced Technology). Backed by the institutes of CAS, UCAS is headquartered in Beijing, with graduate education bases in Shanghai, Chengdu, Wuhan, Guangzhou and Lanzhou, four Science Libraries of Chinese Academy of Sciences, three technology support centers and two news and publishing units. These CAS branches and offices are located in 20 provinces and municipalities throughout China. CAS has invested in or created over 430 science- and technology-based enterprises in eleven industries, including eight companies listed on stock exchanges.

    Being granted a Fellowship of the Academy represents the highest level of national honor for Chinese scientists. The CAS membership system includes Academicians (院士), Emeritus Academicians (荣誉院士) and Foreign Academicians (外籍院士).

    The Chinese Academy of Sciences was ranked #1 in the 2016, 2017, 2018, 2019, and 2020 Nature Index Annual Tables, which measure the largest contributors to papers published in 82 leading journals.

    Research institutes

    Beijing Branch
    University of the Chinese Academy of Sciences (UCAS)
    Academy of Mathematics and Systems Science
    Institute of Acoustics (IOA)
    Institute of Atmospheric Physics
    Institute of Botany, Chinese Academy of Sciences
    Institute of Physics (IOPCAS)
    Institute of Semiconductors
    Institute of Electrical Engineering (IEE)
    Institute of Information Engineering (IIE)
    Institute of Theoretical Physics
    Institute of High Energy Physics
    Institute of Biophysics
    Institute of Genetics and Developmental Biology
    Institute of Electronics
    National Astronomical Observatories
    Institute of Computing Technology
    Institute of Software
    Institute of Automation
    Beijing Institute of Genomics
    Institute of Geographic Sciences and Natural Resources
    Institute of Geology and Geophysics (IGG)
    Institute of Remote Sensing and Digital Earth
    Institute of Tibetan Plateau Research
    Institute of Vertebrate Paleontology and Paleoanthropology
    National Center for Nanoscience and Technology
    Institute of Policy and Management
    Institute of Psychology
    Institute of Zoology
    Changchun Branch
    Changchun Institute of Optics, Fine Mechanics and Physics
    Changchun Institute of Applied Chemistry
    Northeast Institute of Geography and Agroecology
    Changchun Observatory
    Chengdu Branch
    Institute of Mountain Hazards and Environment
    Chengdu Institute of Biology
    Institute of Optics and Electronics
    Chengdu Institute of Organic Chemistry
    Institute of Computer Application
    Chongqing Institute of Green and Intelligent Technology
    Guangzhou Branch
    South China Botanical Garden
    Shenzhen Institutes of Advanced Technology
    South China Sea Institute of Oceanology
    Guangzhou Institute of Energy Conversion
    Guangzhou Institute of Geochemistry
    Guangzhou Institute of Biomedicine and Health
    Guiyang Branch
    Institute of Geochemistry
    Hefei Branch
    Hefei Institutes of Physical Science
    University of Science and Technology of China
    Kunming Branch
    Kunming Institute of Botany
    Kunming Institute of Zoology
    Xishuangbanna Tropical Botanical Garden
    Institute of Geochemistry
    Yunnan Astronomical Observatory
    Lanzhou Branch
    Institute of Modern Physics
    Lanzhou Institute of Chemical Physics
    Lanzhou Institute of Geology
    Northwest Institute of Plateau Biology
    Northwest Institute of Eco-Environment and Resources
    Qinghai Institute of Salt Lakes Research
    Nanjing Branch
    Purple Mountain Observatory (Zijinshan Astronomical Observatory)
    Institute of Soil Science
    Nanjing Institute of Geology and Palaeontology
    Nanjing Institute of Geography and Limnology
    Nanjing Institute of Astronomical Optics and Technology
    Suzhou Institute of Nano-tech and Nano-bionics (SINANO)
    Suzhou Institute of Biomedical Engineering and Technology (SIBET)
    Nanjing Botanical Garden, Memorial Sun Yat-Sen (Institute of Botany, Jiangsu Province and Chinese Academy of Science)
    University of Chinese Academy of Sciences, Nanjing College
    Shanghai Branch
    Shanghai Astronomical Observatory
    Shanghai Institute of Microsystem and Information Technology
    Shanghai Institute of Technical Physics
    Shanghai Institute of Optics and Fine Mechanics
    Shanghai Institute of Ceramics
    Shanghai Institute of Organic Chemistry
    Shanghai Institute of Applied Physics
    Shanghai Institutes for Biological Sciences
    Shanghai Institute of Materia Medica
    Institut Pasteur of Shanghai
    Shanghai Advanced Research Institute, CAS
    Institute of Neuroscience (ION)
    ShanghaiTech University
    Shenyang Branch
    Institute of Metal Research
    Shenyang Institute of Automation
    Shenyang Institute of Applied Ecology, formerly the Institute of Forestry and Pedology
    Shenyang Institute of Computing Technology
    Dalian Institute of Chemical Physics
    Qingdao Institute of Oceanology
    Qingdao Institute of Bioenergy and Bioprocess Technology
    Yantai Institute of Coastal Zone Research
    Taiyuan Branch
    Shanxi Institute of Coal Chemistry (ICCCAS)
    Wuhan Branch
    Wuhan Institute of Rock and Soil Mechanics
    Wuhan Institute of Physics and Mathematics
    Wuhan Institute of Virology
    Institute of Geodesy and Geophysics
    Institute of Hydrobiology
    Wuhan Botanical Garden
    Xinjiang Branch
    Xinjiang Technical Institute of Physics and Chemistry
    Xinjiang Institute of Ecology and Geography
    Xi’an Branch
    Xi’an Institute of Optics and Precision Mechanics
    National Time Service Center
    Institute of Earth Environment

     
  • richardmitnick 10:42 am on July 16, 2022 Permalink | Reply
    Tags: "Denser and More Turbulent Environments Tend to Form Multiple Stars", , , , , , The Chinese Academy of Sciences [中国科学院](CN), The Orion Cloud complex   

    From The Chinese Academy of Sciences [中国科学院](CN): “Denser and More Turbulent Environments Tend to Form Multiple Stars” 

    From The Chinese Academy of Sciences [中国科学院](CN)

    July 14, 2022

    LIU Tie
    Shanghai Astronomical Observatory
    liutie@shao.ac.cn

    1
    G205.46-14.56 clump located in the Orion molecular cloud complex. The yellow contours represent the dense cores discovered by JCMT; the zoomed-in images show the 1.3 mm continuum emission from the ALMA observation. (Image by SHAO)

    Astronomers studying stellar nurseries, the birthplace of stars in our galaxy, have found that nearly half the stars in the Galaxy are formed in binary/multiple stellar systems (think twins, triplets, quadruplets).

    Despite the prevalence of binary/multiple births, previous studies of stellar nurseries have concentrated more on how single stars form. As a result, the origin of binary/multiple stellar systems has long been a mystery to astronomers.

    Now, however, an international team led by researchers from the Shanghai Astronomical Observatory (SHAO) of the Chinese Academy of Sciences (CAS) has revealed that denser and more turbulent environments tend to form multiple stars.

    The birth of any star requires the gravitational collapse of cold dense pockets of gas and dust (known as cores) found in what are known as molecular clouds. However, previous investigations have rarely addressed how the properties of these dense cores affect stellar multiplicity.

    In this study, the researchers used the James Clerk Maxwell Telescope (JCMT) in Hawaii and the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile to look at the Orion Cloud complex, which is the closest active star formation region to Earth.

    Located about 1,500 light-years away in the Orion constellation, this stellar nursery is an ideal laboratory for testing various models of star formation.

    Using the JCMT telescope, the scientists identified 49 cold, dense cores in the Orion clouds that are in the process of forming young stars. They then used ALMA to unveil the internal structures within these dense cores.

    Based on high-resolution ALMA observations, the researchers found that about 13 dense cores are giving birth to binary/multiple stars, while the other cores are only forming single stars. They subsequently estimated the physical characteristics (e.g., size, gas density, and mass) of these dense cores from the JCMT observations.

    Surprisingly, they found that cores forming binary/multiple stars tend to show greater H2 gas density and mass than those forming single stars, although the sizes of various cores showed little difference. “Denser cores are much easier to fragment due to the perturbations caused by self-gravity inside molecular cores,” said LUO Qiuyi, a Ph.D. student from SHAO and first author of the study.

    The team also observed the 49 cores in the N2H+ (J=1-0) molecular line using the Nobeyama 45-meter telescope. They found that N2H+ line widths for cores forming binary/multiple stars are statistically larger than those of cores forming single stars. “These Nobeyama observations provide a good measurement of turbulence levels in dense cores. Our findings indicate that binary/multiple stars tend to form in more turbulent cores,” said Prof. Ken’ichi Tatematsu, who lead the Nobeyama observations.

    “In a word, we found that binary/multiple stars tend to form in denser and more turbulent molecular cores in this study,” said LUO.

    “JCMT has proven to be a great tool for uncovering these stellar nurseries for ALMA follow-up. With ALMA providing unprecedented sensitivity and resolution, we can do similar studies on a much larger sample of dense cores for a more thorough understanding of star formation,” said Liu Sheng-Yuan, co-author of the study.

    “As for future work, we have yet to look at the effect of magnetic fields in our analysis. Magnetic fields may suppress the fragmentation in dense cores. So, we are excited to focus the next stage of our research on this area using JCMT and ALMA,” said LIU Tie, corresponding author of the study and lead for the ALMA data.

    The study was published in The Astrophysical Journal.
    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Chinese Academy of Sciences[中国科学院](CN) is the national academy for the natural sciences of the People’s Republic of China. It has historical origins in the Academia Sinica during the Republican era and was formerly also known by that name. Collectively known as the “Two Academies (两院)” along with the Chinese Academy of Engineering, it functions as the national scientific think tank and academic governing body, providing advisory and appraisal services on issues stemming from the national economy, social development, and science and technology progress. It is headquartered in Xicheng District, Beijing, with branch institutes all over mainland China. It has also created hundreds of commercial enterprises, Lenovo being one of the most famous.

    It is the world’s largest research organization, comprising around 60,000 researchers working in 114 institutes, and has been consistently ranked among the top research organizations around the world. It also holds the University of Science and Technology of China and the University of Chinese Academy of Sciences.

    The Chinese Academy of Sciences has been ranked the No. 1 research institute in the world by Nature Index since the list’s inception in 2016 by Nature Portfolio. It is the most productive institution publishing articles of sustainable development indexed in Web of Science from 1981 to 2018 among all universities and research institutions in the world.

    The Chinese Academy originated in the Academia Sinica founded, in 1928, by the Republic of China. After the Communist Party took control of mainland China in 1949, the residual of Academia Sinica was renamed Chinese Academy of Sciences (CAS), while others relocated to Taiwan.

    The Chinese Academy of Sciences has six academic divisions:

    Chemistry (化学部)
    Information Technological Sciences (信息技术科学部)
    Earth Sciences (地学部)
    Life Sciences and Medical Sciences (生命科学和医学学部)
    Mathematics and Physics (数学物理学部)
    Technological Sciences (技术科学部)

    The CAS has thirteen regional branches, in Beijing, Shenyang, Changchun, Shanghai, Nanjing, Wuhan, Guangzhou, Chengdu, Kunming, Xi’an, Lanzhou, Hefei and Xinjiang. It has over one hundred institutes and four universities (the University of Science and Technology of China at Hefei, Anhui, the University of the Chinese Academy of Sciences in Beijing, ShanghaiTech University, and Shenzhen Institute of Adavanced Technology). Backed by the institutes of CAS, UCAS is headquartered in Beijing, with graduate education bases in Shanghai, Chengdu, Wuhan, Guangzhou and Lanzhou, four Science Libraries of Chinese Academy of Sciences, three technology support centers and two news and publishing units. These CAS branches and offices are located in 20 provinces and municipalities throughout China. CAS has invested in or created over 430 science- and technology-based enterprises in eleven industries, including eight companies listed on stock exchanges.

    Being granted a Fellowship of the Academy represents the highest level of national honor for Chinese scientists. The CAS membership system includes Academicians (院士), Emeritus Academicians (荣誉院士) and Foreign Academicians (外籍院士).

    The Chinese Academy of Sciences was ranked #1 in the 2016, 2017, 2018, 2019, and 2020 Nature Index Annual Tables, which measure the largest contributors to papers published in 82 leading journals.

    Research institutes

    Beijing Branch
    University of the Chinese Academy of Sciences (UCAS)
    Academy of Mathematics and Systems Science
    Institute of Acoustics (IOA)
    Institute of Atmospheric Physics
    Institute of Botany, Chinese Academy of Sciences
    Institute of Physics (IOPCAS)
    Institute of Semiconductors
    Institute of Electrical Engineering (IEE)
    Institute of Information Engineering (IIE)
    Institute of Theoretical Physics
    Institute of High Energy Physics
    Institute of Biophysics
    Institute of Genetics and Developmental Biology
    Institute of Electronics
    National Astronomical Observatories
    Institute of Computing Technology
    Institute of Software
    Institute of Automation
    Beijing Institute of Genomics
    Institute of Geographic Sciences and Natural Resources
    Institute of Geology and Geophysics (IGG)
    Institute of Remote Sensing and Digital Earth
    Institute of Tibetan Plateau Research
    Institute of Vertebrate Paleontology and Paleoanthropology
    National Center for Nanoscience and Technology
    Institute of Policy and Management
    Institute of Psychology
    Institute of Zoology
    Changchun Branch
    Changchun Institute of Optics, Fine Mechanics and Physics
    Changchun Institute of Applied Chemistry
    Northeast Institute of Geography and Agroecology
    Changchun Observatory
    Chengdu Branch
    Institute of Mountain Hazards and Environment
    Chengdu Institute of Biology
    Institute of Optics and Electronics
    Chengdu Institute of Organic Chemistry
    Institute of Computer Application
    Chongqing Institute of Green and Intelligent Technology
    Guangzhou Branch
    South China Botanical Garden
    Shenzhen Institutes of Advanced Technology
    South China Sea Institute of Oceanology
    Guangzhou Institute of Energy Conversion
    Guangzhou Institute of Geochemistry
    Guangzhou Institute of Biomedicine and Health
    Guiyang Branch
    Institute of Geochemistry
    Hefei Branch
    Hefei Institutes of Physical Science
    University of Science and Technology of China
    Kunming Branch
    Kunming Institute of Botany
    Kunming Institute of Zoology
    Xishuangbanna Tropical Botanical Garden
    Institute of Geochemistry
    Yunnan Astronomical Observatory
    Lanzhou Branch
    Institute of Modern Physics
    Lanzhou Institute of Chemical Physics
    Lanzhou Institute of Geology
    Northwest Institute of Plateau Biology
    Northwest Institute of Eco-Environment and Resources
    Qinghai Institute of Salt Lakes Research
    Nanjing Branch
    Purple Mountain Observatory (Zijinshan Astronomical Observatory)
    Institute of Soil Science
    Nanjing Institute of Geology and Palaeontology
    Nanjing Institute of Geography and Limnology
    Nanjing Institute of Astronomical Optics and Technology
    Suzhou Institute of Nano-tech and Nano-bionics (SINANO)
    Suzhou Institute of Biomedical Engineering and Technology (SIBET)
    Nanjing Botanical Garden, Memorial Sun Yat-Sen (Institute of Botany, Jiangsu Province and Chinese Academy of Science)
    University of Chinese Academy of Sciences, Nanjing College
    Shanghai Branch
    Shanghai Astronomical Observatory
    Shanghai Institute of Microsystem and Information Technology
    Shanghai Institute of Technical Physics
    Shanghai Institute of Optics and Fine Mechanics
    Shanghai Institute of Ceramics
    Shanghai Institute of Organic Chemistry
    Shanghai Institute of Applied Physics
    Shanghai Institutes for Biological Sciences
    Shanghai Institute of Materia Medica
    Institut Pasteur of Shanghai
    Shanghai Advanced Research Institute, CAS
    Institute of Neuroscience (ION)
    ShanghaiTech University
    Shenyang Branch
    Institute of Metal Research
    Shenyang Institute of Automation
    Shenyang Institute of Applied Ecology, formerly the Institute of Forestry and Pedology
    Shenyang Institute of Computing Technology
    Dalian Institute of Chemical Physics
    Qingdao Institute of Oceanology
    Qingdao Institute of Bioenergy and Bioprocess Technology
    Yantai Institute of Coastal Zone Research
    Taiyuan Branch
    Shanxi Institute of Coal Chemistry (ICCCAS)
    Wuhan Branch
    Wuhan Institute of Rock and Soil Mechanics
    Wuhan Institute of Physics and Mathematics
    Wuhan Institute of Virology
    Institute of Geodesy and Geophysics
    Institute of Hydrobiology
    Wuhan Botanical Garden
    Xinjiang Branch
    Xinjiang Technical Institute of Physics and Chemistry
    Xinjiang Institute of Ecology and Geography
    Xi’an Branch
    Xi’an Institute of Optics and Precision Mechanics
    National Time Service Center
    Institute of Earth Environment

     
  • richardmitnick 12:01 pm on June 18, 2022 Permalink | Reply
    Tags: "Formation and Evolution of Massive Binaries May Share the Same Mechanism in Milky Way and Andromeda Galaxy", , , , , Massive binary contains at least an early-type star whose spectral type is "O" B-type., Messier 31 is the closest spiral galaxy to the Milky Way and the largest galaxy in the Local Group and its structure and metallicity are very close to that of the Milky Way., The Chinese Academy of Sciences [中国科学院](CN), The researcher studied the evolution stage of V375 Cassiopeia (V375 Cas) a massive binary and contains two components of B-type.   

    From The Chinese Academy of Sciences [中国科学院](CN): “Formation and Evolution of Massive Binaries May Share the Same Mechanism in Milky Way and Andromeda Galaxy” 

    From The Chinese Academy of Sciences [中国科学院](CN)

    Jun 17, 2022

    LI Fuxing
    Yunnan Observatories
    lfx@ynao.ac.cn

    A research team led by Prof. QIAN Shengbang and PhD student LI Fuxing from the Yunnan Observatories of the Chinese Academy of Sciences has found that the formation and evolution of the massive binaries in the Milky Way and Andromeda Galaxy (Messier 31) may share the same mechanism.

    Their findings were published in MNRAS and The Astrophysical Journal.

    Massive binary contains at least an early-type star whose spectral type is “O” B-type. These binaries have high-energy radiation such as X-rays, and they perhaps create neutron stars or black holes. The progenitors of these semidetached binaries are the detached binaries where the original more massive components evolve faster and fill their critical Roche lobes first, and then transfer mass to their companions with the case A evolution.

    During this process, the orbital period of the system will be decreased and the mass ratio will be increased. When the system evolves to the critical state where the mass ratio equals to one (twin binaries), this binary has the shortest orbital period. Then the mass ratio of binary will be reversed with mass transfer from the less-massive component to the more-massive one after this special stage.

    According to the study published in MNRAS, the researcher studied the evolution stage of V375 Cassiopeia (V375 Cas) a massive binary and contains two components of B-type.

    They analyzed the light curves of V375 Cas and found that V375 Cas should undergo a late case A mass transfer from the less-massive component to the more-massive one.

    Meanwhile, according to the statistics, those massive semidetached binaries have a third body with different periods. From the H-R diagram, the components of the massive binaries almost are the main-sequence stars, and the evolutionary age of the secondary component is larger than that of the primary for V375 Cas. “V375 Cas is a hierarchical triple system where a massive main-sequence star accompanies a massive semidetached mass-transfer binary based on the estimation of the third light,” said LI.

    The researchers also discovered two massive close binaries with twin components in Messier 31. Messier 31 is the closest spiral galaxy to the Milky Way and the largest galaxy in the Local Group and its structure and metallicity are very close to that of the Milky Way.

    The photometric solutions are performed with the W-D method from 437 eclipsing binaries, and two twin binaries have been found. One system is a contact binary with a mass ratio of 0.974, and the other system is a semidetached binary with a mass ratio of 0.924. This result hints that the massive twin binaries are rare in M31.

    Based on the study of the orbital period changes by the O-C diagrams and configurations of binaries, the researchers found that these two massive twin binaries are at different evolutionary stages with similar mass ratios (close to unity). The twin contact binary is about to enter the critical evolutionary stage of the shortest period with rapid mass transfer. The semidetached binary has experienced that evolution stage and fails to form a contact binary during the orbit decreasing phase with case A mass transfer.

    These findings were published in The Astrophysical Journal.

    These two works indicate that the evolution of massive binaries is possible the same in the Milky Way and M31, and these binaries at a special stage create an ideal testbed of evolutionary models of massive binaries.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Chinese Academy of Sciences[中国科学院](CN) is the national academy for the natural sciences of the People’s Republic of China. It has historical origins in the Academia Sinica during the Republican era and was formerly also known by that name. Collectively known as the “Two Academies (两院)” along with the Chinese Academy of Engineering, it functions as the national scientific think tank and academic governing body, providing advisory and appraisal services on issues stemming from the national economy, social development, and science and technology progress. It is headquartered in Xicheng District, Beijing, with branch institutes all over mainland China. It has also created hundreds of commercial enterprises, Lenovo being one of the most famous.

    It is the world’s largest research organization, comprising around 60,000 researchers working in 114 institutes, and has been consistently ranked among the top research organizations around the world. It also holds the University of Science and Technology of China and the University of Chinese Academy of Sciences.

    The Chinese Academy of Sciences has been ranked the No. 1 research institute in the world by Nature Index since the list’s inception in 2016 by Nature Portfolio. It is the most productive institution publishing articles of sustainable development indexed in Web of Science from 1981 to 2018 among all universities and research institutions in the world.

    The Chinese Academy originated in the Academia Sinica founded, in 1928, by the Republic of China. After the Communist Party took control of mainland China in 1949, the residual of Academia Sinica was renamed Chinese Academy of Sciences (CAS), while others relocated to Taiwan.

    The Chinese Academy of Sciences has six academic divisions:

    Chemistry (化学部)
    Information Technological Sciences (信息技术科学部)
    Earth Sciences (地学部)
    Life Sciences and Medical Sciences (生命科学和医学学部)
    Mathematics and Physics (数学物理学部)
    Technological Sciences (技术科学部)

    The CAS has thirteen regional branches, in Beijing, Shenyang, Changchun, Shanghai, Nanjing, Wuhan, Guangzhou, Chengdu, Kunming, Xi’an, Lanzhou, Hefei and Xinjiang. It has over one hundred institutes and four universities (the University of Science and Technology of China at Hefei, Anhui, the University of the Chinese Academy of Sciences in Beijing, ShanghaiTech University, and Shenzhen Institute of Adavanced Technology). Backed by the institutes of CAS, UCAS is headquartered in Beijing, with graduate education bases in Shanghai, Chengdu, Wuhan, Guangzhou and Lanzhou, four Science Libraries of Chinese Academy of Sciences, three technology support centers and two news and publishing units. These CAS branches and offices are located in 20 provinces and municipalities throughout China. CAS has invested in or created over 430 science- and technology-based enterprises in eleven industries, including eight companies listed on stock exchanges.

    Being granted a Fellowship of the Academy represents the highest level of national honor for Chinese scientists. The CAS membership system includes Academicians (院士), Emeritus Academicians (荣誉院士) and Foreign Academicians (外籍院士).

    The Chinese Academy of Sciences was ranked #1 in the 2016, 2017, 2018, 2019, and 2020 Nature Index Annual Tables, which measure the largest contributors to papers published in 82 leading journals.

    Research institutes

    Beijing Branch
    University of the Chinese Academy of Sciences (UCAS)
    Academy of Mathematics and Systems Science
    Institute of Acoustics (IOA)
    Institute of Atmospheric Physics
    Institute of Botany, Chinese Academy of Sciences
    Institute of Physics (IOPCAS)
    Institute of Semiconductors
    Institute of Electrical Engineering (IEE)
    Institute of Information Engineering (IIE)
    Institute of Theoretical Physics
    Institute of High Energy Physics
    Institute of Biophysics
    Institute of Genetics and Developmental Biology
    Institute of Electronics
    National Astronomical Observatories
    Institute of Computing Technology
    Institute of Software
    Institute of Automation
    Beijing Institute of Genomics
    Institute of Geographic Sciences and Natural Resources
    Institute of Geology and Geophysics (IGG)
    Institute of Remote Sensing and Digital Earth
    Institute of Tibetan Plateau Research
    Institute of Vertebrate Paleontology and Paleoanthropology
    National Center for Nanoscience and Technology
    Institute of Policy and Management
    Institute of Psychology
    Institute of Zoology
    Changchun Branch
    Changchun Institute of Optics, Fine Mechanics and Physics
    Changchun Institute of Applied Chemistry
    Northeast Institute of Geography and Agroecology
    Changchun Observatory
    Chengdu Branch
    Institute of Mountain Hazards and Environment
    Chengdu Institute of Biology
    Institute of Optics and Electronics
    Chengdu Institute of Organic Chemistry
    Institute of Computer Application
    Chongqing Institute of Green and Intelligent Technology
    Guangzhou Branch
    South China Botanical Garden
    Shenzhen Institutes of Advanced Technology
    South China Sea Institute of Oceanology
    Guangzhou Institute of Energy Conversion
    Guangzhou Institute of Geochemistry
    Guangzhou Institute of Biomedicine and Health
    Guiyang Branch
    Institute of Geochemistry
    Hefei Branch
    Hefei Institutes of Physical Science
    University of Science and Technology of China
    Kunming Branch
    Kunming Institute of Botany
    Kunming Institute of Zoology
    Xishuangbanna Tropical Botanical Garden
    Institute of Geochemistry
    Yunnan Astronomical Observatory
    Lanzhou Branch
    Institute of Modern Physics
    Lanzhou Institute of Chemical Physics
    Lanzhou Institute of Geology
    Northwest Institute of Plateau Biology
    Northwest Institute of Eco-Environment and Resources
    Qinghai Institute of Salt Lakes Research
    Nanjing Branch
    Purple Mountain Observatory (Zijinshan Astronomical Observatory)
    Institute of Soil Science
    Nanjing Institute of Geology and Palaeontology
    Nanjing Institute of Geography and Limnology
    Nanjing Institute of Astronomical Optics and Technology
    Suzhou Institute of Nano-tech and Nano-bionics (SINANO)
    Suzhou Institute of Biomedical Engineering and Technology (SIBET)
    Nanjing Botanical Garden, Memorial Sun Yat-Sen (Institute of Botany, Jiangsu Province and Chinese Academy of Science)
    University of Chinese Academy of Sciences, Nanjing College
    Shanghai Branch
    Shanghai Astronomical Observatory
    Shanghai Institute of Microsystem and Information Technology
    Shanghai Institute of Technical Physics
    Shanghai Institute of Optics and Fine Mechanics
    Shanghai Institute of Ceramics
    Shanghai Institute of Organic Chemistry
    Shanghai Institute of Applied Physics
    Shanghai Institutes for Biological Sciences
    Shanghai Institute of Materia Medica
    Institut Pasteur of Shanghai
    Shanghai Advanced Research Institute, CAS
    Institute of Neuroscience (ION)
    ShanghaiTech University
    Shenyang Branch
    Institute of Metal Research
    Shenyang Institute of Automation
    Shenyang Institute of Applied Ecology, formerly the Institute of Forestry and Pedology
    Shenyang Institute of Computing Technology
    Dalian Institute of Chemical Physics
    Qingdao Institute of Oceanology
    Qingdao Institute of Bioenergy and Bioprocess Technology
    Yantai Institute of Coastal Zone Research
    Taiyuan Branch
    Shanxi Institute of Coal Chemistry (ICCCAS)
    Wuhan Branch
    Wuhan Institute of Rock and Soil Mechanics
    Wuhan Institute of Physics and Mathematics
    Wuhan Institute of Virology
    Institute of Geodesy and Geophysics
    Institute of Hydrobiology
    Wuhan Botanical Garden
    Xinjiang Branch
    Xinjiang Technical Institute of Physics and Chemistry
    Xinjiang Institute of Ecology and Geography
    Xi’an Branch
    Xi’an Institute of Optics and Precision Mechanics
    National Time Service Center
    Institute of Earth Environment

     
  • richardmitnick 11:40 am on June 18, 2022 Permalink | Reply
    Tags: "Researchers Explore New Method for Glacial Melt Reduction", , , Evaluation of glacier cover efficiency for melt reduction, , Material-covered areas could slow down glacier melting by approximately 29%-56% compared with uncovered areas., The Chinese Academy of Sciences [中国科学院](CN), The nanofiber material (56%) showed higher efficiency than the geotextiles used in the experiment.   

    From The Chinese Academy of Sciences [中国科学院](CN): “Researchers Explore New Method for Glacial Melt Reduction” 

    From The Chinese Academy of Sciences [中国科学院](CN)

    Jun 17, 2022
    WANG Feiteng
    Northwest Institute of Eco-Environment and Resources
    wangfeiteng@lzb.ac.cn

    Glaciers are experiencing fast and significant changes under global warming. Glacier shrinkage significantly impacts global sea level, regional water cycles, ecosystems, and natural hazards.

    Many studies have considered glacier changes and the mechanisms driving such changes. However, few studies have focused on mitigating glacier ablation.

    Recently, a research team from the Northwest Institute of Eco-Environment and Resources of the Chinese Academy of Sciences conducted the evaluation of glacier cover efficiency for melt reduction on the Urumqi Glacier No. 1, Tien Shan, China.

    Related Results were published in Remote Sensing.

    By combining two high-resolution digital elevation models derived from terrestrial laser scanning and unmanned aerial vehicles, albedo, and meteorological data, the researchers quantified the glacier ablation mitigation under three different cover materials.

    The results showed that material-covered areas could slow down glacier melting by approximately 29%-56% compared with uncovered areas.

    Besides, the researchers also found that the nanofiber material (56%) showed higher efficiency than the geotextiles used in the experiment.

    The method of artificial reduction of glacial ice melt provides a scientific and practical basis for decision-making on mitigating and adapting to climate change.

    1
    Fig. 1 Ortho-mosaic on 28 August 2021 (left panel), hillshade generated from the DEM on 28 August 2021 (middle panel), and changes in elevation between 24 June and 28 August 2021 (right panel). Glacier ablation was monitored using ablation stakes (S1–S3). (Image by WANG Feiteng)

    2
    Fig. 2 Effectiveness of the nanofiber material on UG1: 1 July (a), 9 July (b), 25 July (c), and 15 August (d). (Image by WANG Feiteng)

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Chinese Academy of Sciences[中国科学院](CN) is the national academy for the natural sciences of the People’s Republic of China. It has historical origins in the Academia Sinica during the Republican era and was formerly also known by that name. Collectively known as the “Two Academies (两院)” along with the Chinese Academy of Engineering, it functions as the national scientific think tank and academic governing body, providing advisory and appraisal services on issues stemming from the national economy, social development, and science and technology progress. It is headquartered in Xicheng District, Beijing, with branch institutes all over mainland China. It has also created hundreds of commercial enterprises, Lenovo being one of the most famous.

    It is the world’s largest research organization, comprising around 60,000 researchers working in 114 institutes, and has been consistently ranked among the top research organizations around the world. It also holds the University of Science and Technology of China and the University of Chinese Academy of Sciences.

    The Chinese Academy of Sciences has been ranked the No. 1 research institute in the world by Nature Index since the list’s inception in 2016 by Nature Portfolio. It is the most productive institution publishing articles of sustainable development indexed in Web of Science from 1981 to 2018 among all universities and research institutions in the world.

    The Chinese Academy originated in the Academia Sinica founded, in 1928, by the Republic of China. After the Communist Party took control of mainland China in 1949, the residual of Academia Sinica was renamed Chinese Academy of Sciences (CAS), while others relocated to Taiwan.

    The Chinese Academy of Sciences has six academic divisions:

    Chemistry (化学部)
    Information Technological Sciences (信息技术科学部)
    Earth Sciences (地学部)
    Life Sciences and Medical Sciences (生命科学和医学学部)
    Mathematics and Physics (数学物理学部)
    Technological Sciences (技术科学部)

    The CAS has thirteen regional branches, in Beijing, Shenyang, Changchun, Shanghai, Nanjing, Wuhan, Guangzhou, Chengdu, Kunming, Xi’an, Lanzhou, Hefei and Xinjiang. It has over one hundred institutes and four universities (the University of Science and Technology of China at Hefei, Anhui, the University of the Chinese Academy of Sciences in Beijing, ShanghaiTech University, and Shenzhen Institute of Adavanced Technology). Backed by the institutes of CAS, UCAS is headquartered in Beijing, with graduate education bases in Shanghai, Chengdu, Wuhan, Guangzhou and Lanzhou, four Science Libraries of Chinese Academy of Sciences, three technology support centers and two news and publishing units. These CAS branches and offices are located in 20 provinces and municipalities throughout China. CAS has invested in or created over 430 science- and technology-based enterprises in eleven industries, including eight companies listed on stock exchanges.

    Being granted a Fellowship of the Academy represents the highest level of national honor for Chinese scientists. The CAS membership system includes Academicians (院士), Emeritus Academicians (荣誉院士) and Foreign Academicians (外籍院士).

    The Chinese Academy of Sciences was ranked #1 in the 2016, 2017, 2018, 2019, and 2020 Nature Index Annual Tables, which measure the largest contributors to papers published in 82 leading journals.

    Research institutes

    Beijing Branch
    University of the Chinese Academy of Sciences (UCAS)
    Academy of Mathematics and Systems Science
    Institute of Acoustics (IOA)
    Institute of Atmospheric Physics
    Institute of Botany, Chinese Academy of Sciences
    Institute of Physics (IOPCAS)
    Institute of Semiconductors
    Institute of Electrical Engineering (IEE)
    Institute of Information Engineering (IIE)
    Institute of Theoretical Physics
    Institute of High Energy Physics
    Institute of Biophysics
    Institute of Genetics and Developmental Biology
    Institute of Electronics
    National Astronomical Observatories
    Institute of Computing Technology
    Institute of Software
    Institute of Automation
    Beijing Institute of Genomics
    Institute of Geographic Sciences and Natural Resources
    Institute of Geology and Geophysics (IGG)
    Institute of Remote Sensing and Digital Earth
    Institute of Tibetan Plateau Research
    Institute of Vertebrate Paleontology and Paleoanthropology
    National Center for Nanoscience and Technology
    Institute of Policy and Management
    Institute of Psychology
    Institute of Zoology
    Changchun Branch
    Changchun Institute of Optics, Fine Mechanics and Physics
    Changchun Institute of Applied Chemistry
    Northeast Institute of Geography and Agroecology
    Changchun Observatory
    Chengdu Branch
    Institute of Mountain Hazards and Environment
    Chengdu Institute of Biology
    Institute of Optics and Electronics
    Chengdu Institute of Organic Chemistry
    Institute of Computer Application
    Chongqing Institute of Green and Intelligent Technology
    Guangzhou Branch
    South China Botanical Garden
    Shenzhen Institutes of Advanced Technology
    South China Sea Institute of Oceanology
    Guangzhou Institute of Energy Conversion
    Guangzhou Institute of Geochemistry
    Guangzhou Institute of Biomedicine and Health
    Guiyang Branch
    Institute of Geochemistry
    Hefei Branch
    Hefei Institutes of Physical Science
    University of Science and Technology of China
    Kunming Branch
    Kunming Institute of Botany
    Kunming Institute of Zoology
    Xishuangbanna Tropical Botanical Garden
    Institute of Geochemistry
    Yunnan Astronomical Observatory
    Lanzhou Branch
    Institute of Modern Physics
    Lanzhou Institute of Chemical Physics
    Lanzhou Institute of Geology
    Northwest Institute of Plateau Biology
    Northwest Institute of Eco-Environment and Resources
    Qinghai Institute of Salt Lakes Research
    Nanjing Branch
    Purple Mountain Observatory (Zijinshan Astronomical Observatory)
    Institute of Soil Science
    Nanjing Institute of Geology and Palaeontology
    Nanjing Institute of Geography and Limnology
    Nanjing Institute of Astronomical Optics and Technology
    Suzhou Institute of Nano-tech and Nano-bionics (SINANO)
    Suzhou Institute of Biomedical Engineering and Technology (SIBET)
    Nanjing Botanical Garden, Memorial Sun Yat-Sen (Institute of Botany, Jiangsu Province and Chinese Academy of Science)
    University of Chinese Academy of Sciences, Nanjing College
    Shanghai Branch
    Shanghai Astronomical Observatory
    Shanghai Institute of Microsystem and Information Technology
    Shanghai Institute of Technical Physics
    Shanghai Institute of Optics and Fine Mechanics
    Shanghai Institute of Ceramics
    Shanghai Institute of Organic Chemistry
    Shanghai Institute of Applied Physics
    Shanghai Institutes for Biological Sciences
    Shanghai Institute of Materia Medica
    Institut Pasteur of Shanghai
    Shanghai Advanced Research Institute, CAS
    Institute of Neuroscience (ION)
    ShanghaiTech University
    Shenyang Branch
    Institute of Metal Research
    Shenyang Institute of Automation
    Shenyang Institute of Applied Ecology, formerly the Institute of Forestry and Pedology
    Shenyang Institute of Computing Technology
    Dalian Institute of Chemical Physics
    Qingdao Institute of Oceanology
    Qingdao Institute of Bioenergy and Bioprocess Technology
    Yantai Institute of Coastal Zone Research
    Taiyuan Branch
    Shanxi Institute of Coal Chemistry (ICCCAS)
    Wuhan Branch
    Wuhan Institute of Rock and Soil Mechanics
    Wuhan Institute of Physics and Mathematics
    Wuhan Institute of Virology
    Institute of Geodesy and Geophysics
    Institute of Hydrobiology
    Wuhan Botanical Garden
    Xinjiang Branch
    Xinjiang Technical Institute of Physics and Chemistry
    Xinjiang Institute of Ecology and Geography
    Xi’an Branch
    Xi’an Institute of Optics and Precision Mechanics
    National Time Service Center
    Institute of Earth Environment

     
  • richardmitnick 6:30 am on June 11, 2022 Permalink | Reply
    Tags: "LiFeAs", "MZM": Majorana-zero-mode lattice, "Scientists Observe Large-scale and Ordered and Tunable Majorana-zero-mode Lattice", A new pathway towards future topological quantum computation, , , , , , The Chinese Academy of Sciences [中国科学院](CN)   

    From The Chinese Academy of Sciences [中国科学院](CN): “Scientists Observe Large-scale and Ordered and Tunable Majorana-zero-mode Lattice” 

    From The Chinese Academy of Sciences [中国科学院](CN)

    Jun 10, 2022
    GAO Hongjun
    Institute of Physics
    hjgao@iphy.ac.cn

    1
    Fig. 1. Characterization of biaxial CDW region. (Image by Institute of Physics)

    2
    Fig. 2. MZM in vortices. (Image by Institute of Physics)

    3
    Fig. 3. Majorana mechanism in “LiFeAs”. (Image by Institute of Physics)

    4
    Fig. 4. Tuning the MZM lattice with magnetic field. (Image by Institute of Physics)

    In a study published in Nature on June 8, a joint research team led by Prof. GAO Hongjun from the Institute of Physics of the Chinese Academy of Sciences (CAS) has reported observation of a large-scale, ordered and tunable Majorana-zero-mode (MZM) lattice in the iron-based superconductor “LiFeAs”, providing a new pathway towards future topological quantum computation.

    MZMs are zero-energy bound states confined in the topological defects of crystals, such as line defects and magnetic field-induced vortices. They are characterized by scanning tunnelling microscopy/spectroscopy (STM/S) as zero-bias conductance peaks. They obey non-Abelian statistics and are considered building blocks for future topological quantum computation.

    MZMs have been observed in several topologically nontrivial iron-based superconductors, such as Fe (Te0.55Se0.45), (Li0.84Fe0.16)OHFeSe, and CaKFe4As4. However, these materials suffer from issues with alloying-induced disorder, uncontrollable and disordered vortex lattices, and the low yield of topological vortices, all of which hinder their further study and application.

    In this study, the researchers observed the formation of an ordered and tunable MZM lattice in the naturally strained superconductor “LiFeAs”. Using STM/S equipped with magnetic fields, the researchers found that local strain naturally exists in “LiFeAs”. Biaxial charge density wave (CDW) stripes along the Fe-Fe and As-As directions are produced by the strain, with wave vectors of λ1~2.7 nm and λ2~24.3 nm. The CDW with wavevector λ2 shows strong modulation on the superconductivity of “LiFeAs”.

    Under a magnetic field perpendicular to the sample surface, the vortices emerge and are forced to align exclusively along the As-As CDW stripes, forming an ordered lattice. The reduced crystal symmetry leads to a drastic change in the topological band structures at the Fermi level, thus transforming the vortices into topological ones hosting MZMs and forming an ordered MZM lattice. Moreover, the MZM lattice density and geometry are tunable by an external magnetic field. The MZMs start to couple with each other under high magnetic fields.

    This observation of a large-scale, ordered and tunable MZM lattice in “LiFeAs” expands the MZM family found in iron-based superconductors, thus providing a promising platform for manipulating and braiding MZMs in the future, according to the researchers.

    These findings may shed light on the study of topological quantum computation using iron-based superconductors.

    This study was supported by the National Science Foundation of China, the Ministry of Science and Technology of China, and CAS.

    See the full article here.

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Chinese Academy of Sciences[中国科学院](CN) is the national academy for the natural sciences of the People’s Republic of China. It has historical origins in the Academia Sinica during the Republican era and was formerly also known by that name. Collectively known as the “Two Academies (两院)” along with the Chinese Academy of Engineering, it functions as the national scientific think tank and academic governing body, providing advisory and appraisal services on issues stemming from the national economy, social development, and science and technology progress. It is headquartered in Xicheng District, Beijing, with branch institutes all over mainland China. It has also created hundreds of commercial enterprises, Lenovo being one of the most famous.

    It is the world’s largest research organization, comprising around 60,000 researchers working in 114 institutes, and has been consistently ranked among the top research organizations around the world. It also holds the University of Science and Technology of China and the University of Chinese Academy of Sciences.

    The Chinese Academy of Sciences has been ranked the No. 1 research institute in the world by Nature Index since the list’s inception in 2016 by Nature Portfolio. It is the most productive institution publishing articles of sustainable development indexed in Web of Science from 1981 to 2018 among all universities and research institutions in the world.

    The Chinese Academy originated in the Academia Sinica founded, in 1928, by the Republic of China. After the Communist Party took control of mainland China in 1949, the residual of Academia Sinica was renamed Chinese Academy of Sciences (CAS), while others relocated to Taiwan.

    The Chinese Academy of Sciences has six academic divisions:

    Chemistry (化学部)
    Information Technological Sciences (信息技术科学部)
    Earth Sciences (地学部)
    Life Sciences and Medical Sciences (生命科学和医学学部)
    Mathematics and Physics (数学物理学部)
    Technological Sciences (技术科学部)

    The CAS has thirteen regional branches, in Beijing, Shenyang, Changchun, Shanghai, Nanjing, Wuhan, Guangzhou, Chengdu, Kunming, Xi’an, Lanzhou, Hefei and Xinjiang. It has over one hundred institutes and four universities (the University of Science and Technology of China at Hefei, Anhui, the University of the Chinese Academy of Sciences in Beijing, ShanghaiTech University, and Shenzhen Institute of Adavanced Technology). Backed by the institutes of CAS, UCAS is headquartered in Beijing, with graduate education bases in Shanghai, Chengdu, Wuhan, Guangzhou and Lanzhou, four Science Libraries of Chinese Academy of Sciences, three technology support centers and two news and publishing units. These CAS branches and offices are located in 20 provinces and municipalities throughout China. CAS has invested in or created over 430 science- and technology-based enterprises in eleven industries, including eight companies listed on stock exchanges.

    Being granted a Fellowship of the Academy represents the highest level of national honor for Chinese scientists. The CAS membership system includes Academicians (院士), Emeritus Academicians (荣誉院士) and Foreign Academicians (外籍院士).

    The Chinese Academy of Sciences was ranked #1 in the 2016, 2017, 2018, 2019, and 2020 Nature Index Annual Tables, which measure the largest contributors to papers published in 82 leading journals.

    Research institutes

    Beijing Branch
    University of the Chinese Academy of Sciences (UCAS)
    Academy of Mathematics and Systems Science
    Institute of Acoustics (IOA)
    Institute of Atmospheric Physics
    Institute of Botany, Chinese Academy of Sciences
    Institute of Physics (IOPCAS)
    Institute of Semiconductors
    Institute of Electrical Engineering (IEE)
    Institute of Information Engineering (IIE)
    Institute of Theoretical Physics
    Institute of High Energy Physics
    Institute of Biophysics
    Institute of Genetics and Developmental Biology
    Institute of Electronics
    National Astronomical Observatories
    Institute of Computing Technology
    Institute of Software
    Institute of Automation
    Beijing Institute of Genomics
    Institute of Geographic Sciences and Natural Resources
    Institute of Geology and Geophysics (IGG)
    Institute of Remote Sensing and Digital Earth
    Institute of Tibetan Plateau Research
    Institute of Vertebrate Paleontology and Paleoanthropology
    National Center for Nanoscience and Technology
    Institute of Policy and Management
    Institute of Psychology
    Institute of Zoology
    Changchun Branch
    Changchun Institute of Optics, Fine Mechanics and Physics
    Changchun Institute of Applied Chemistry
    Northeast Institute of Geography and Agroecology
    Changchun Observatory
    Chengdu Branch
    Institute of Mountain Hazards and Environment
    Chengdu Institute of Biology
    Institute of Optics and Electronics
    Chengdu Institute of Organic Chemistry
    Institute of Computer Application
    Chongqing Institute of Green and Intelligent Technology
    Guangzhou Branch
    South China Botanical Garden
    Shenzhen Institutes of Advanced Technology
    South China Sea Institute of Oceanology
    Guangzhou Institute of Energy Conversion
    Guangzhou Institute of Geochemistry
    Guangzhou Institute of Biomedicine and Health
    Guiyang Branch
    Institute of Geochemistry
    Hefei Branch
    Hefei Institutes of Physical Science
    University of Science and Technology of China
    Kunming Branch
    Kunming Institute of Botany
    Kunming Institute of Zoology
    Xishuangbanna Tropical Botanical Garden
    Institute of Geochemistry
    Yunnan Astronomical Observatory
    Lanzhou Branch
    Institute of Modern Physics
    Lanzhou Institute of Chemical Physics
    Lanzhou Institute of Geology
    Northwest Institute of Plateau Biology
    Northwest Institute of Eco-Environment and Resources
    Qinghai Institute of Salt Lakes Research
    Nanjing Branch
    Purple Mountain Observatory (Zijinshan Astronomical Observatory)
    Institute of Soil Science
    Nanjing Institute of Geology and Palaeontology
    Nanjing Institute of Geography and Limnology
    Nanjing Institute of Astronomical Optics and Technology
    Suzhou Institute of Nano-tech and Nano-bionics (SINANO)
    Suzhou Institute of Biomedical Engineering and Technology (SIBET)
    Nanjing Botanical Garden, Memorial Sun Yat-Sen (Institute of Botany, Jiangsu Province and Chinese Academy of Science)
    University of Chinese Academy of Sciences, Nanjing College
    Shanghai Branch
    Shanghai Astronomical Observatory
    Shanghai Institute of Microsystem and Information Technology
    Shanghai Institute of Technical Physics
    Shanghai Institute of Optics and Fine Mechanics
    Shanghai Institute of Ceramics
    Shanghai Institute of Organic Chemistry
    Shanghai Institute of Applied Physics
    Shanghai Institutes for Biological Sciences
    Shanghai Institute of Materia Medica
    Institut Pasteur of Shanghai
    Shanghai Advanced Research Institute, CAS
    Institute of Neuroscience (ION)
    ShanghaiTech University
    Shenyang Branch
    Institute of Metal Research
    Shenyang Institute of Automation
    Shenyang Institute of Applied Ecology, formerly the Institute of Forestry and Pedology
    Shenyang Institute of Computing Technology
    Dalian Institute of Chemical Physics
    Qingdao Institute of Oceanology
    Qingdao Institute of Bioenergy and Bioprocess Technology
    Yantai Institute of Coastal Zone Research
    Taiyuan Branch
    Shanxi Institute of Coal Chemistry (ICCCAS)
    Wuhan Branch
    Wuhan Institute of Rock and Soil Mechanics
    Wuhan Institute of Physics and Mathematics
    Wuhan Institute of Virology
    Institute of Geodesy and Geophysics
    Institute of Hydrobiology
    Wuhan Botanical Garden
    Xinjiang Branch
    Xinjiang Technical Institute of Physics and Chemistry
    Xinjiang Institute of Ecology and Geography
    Xi’an Branch
    Xi’an Institute of Optics and Precision Mechanics
    National Time Service Center
    Institute of Earth Environment

     
  • richardmitnick 10:06 am on June 2, 2022 Permalink | Reply
    Tags: "Probing Conjugation and Parity Symmetry with Entangled Double-strange Baryons", , Do matter and antimatter follow different laws of physics?, In particle physics every kind of particle has a corresponding antiparticle., , , Strange baryons consist of three quarks just like protons but contain one or more heavier and unstable strange quarks., The Chinese Academy of Sciences [中国科学院](CN), To explain the dynamic origin of baryon-antibaryon asymmetry the laws of physics must accommodate processes that violate charge conjugation and parity (CP) symmetry.   

    From The Chinese Academy of Sciences [中国科学院](CN): “Probing Conjugation and Parity Symmetry with Entangled Double-strange Baryons” 

    From The Chinese Academy of Sciences [中国科学院](CN)

    6.2.22
    GUO Lijun
    Institute of High Energy Physics
    ljguo@ihep.ac.cn

    The Beijing Spectrometer (BESIII) Collaboration has reported a new method for probing differences between matter and antimatter with extreme sensitivity. Results were published in Nature on June 2.

    In particle physics every kind of particle has a corresponding antiparticle. The standard Big Bang tells us that the Universe should have had the same amount of matter and antimatter at the beginning. However, all the available data point to the fact that the observable Universe is predominantly composed of baryons rather than antibaryons, which has puzzled the scientific community for more than half a century. Do matter and antimatter follow different laws of physics?

    Nowadays, physicists believe that to explain the dynamic origin of baryon-antibaryon asymmetry the laws of physics must accommodate processes that violate charge conjugation and parity (CP) symmetry. In short, CP symmetry means that particles and antiparticles follow the same laws. For example, the decay patterns of particles and antiparticles should be the same. To explain baryon-antibaryon asymmetry, CP symmetry has to be violated to a larger amount than predicted by the hitherto immensely successful Standard Model of particle physics.

    Researchers at the BESIII collaboration have exploited strange baryons to shed light on CP violation. The strange baryons consist of three quarks, just like protons, but contain one or more heavier and unstable strange quarks. By observing the decay of the strange quark, the spin orientation of the baryon can be determined.

    At BESIII, systems of double-strange baryon-antibaryon pairs are created in electrons annihilations with positrons. The new results show that the baryon-antibaryon pairs that are produced have a preferred direction.

    Moreover, the spin direction of the baryon and antibaryon are correlated, due to quantum entanglement. Studying angular distributions of the decay products of such systems allows for a separation of the contribution from CP-violating processes that are described by the nonzero value of the so-called weak phase. This phase had never been directly measured until this result by BESIII as described in the Nature article.

    Although no sign of CP violation was observed in the analyzed data sample, this experimental method can be applied to larger data sets collected at BESIII or at future facilities. The researchers hoped to observe a CP violation signal of a size that either confirms or rules out Standard Model predictions.

    The BESIII experiment is hosted by the Institute of High Energy Physics of the Chinese Academy of Sciences located in Beijing, China and was initiated in 2009. BESIII is an international collaboration consisting of approximately five hundred physicists from seventeen different countries in Asia, Europe and the Americas.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Chinese Academy of Sciences[中国科学院](CN) is the national academy for the natural sciences of the People’s Republic of China. It has historical origins in the Academia Sinica during the Republican era and was formerly also known by that name. Collectively known as the “Two Academies (两院)” along with the Chinese Academy of Engineering, it functions as the national scientific think tank and academic governing body, providing advisory and appraisal services on issues stemming from the national economy, social development, and science and technology progress. It is headquartered in Xicheng District, Beijing, with branch institutes all over mainland China. It has also created hundreds of commercial enterprises, Lenovo being one of the most famous.

    It is the world’s largest research organization, comprising around 60,000 researchers working in 114 institutes, and has been consistently ranked among the top research organizations around the world. It also holds the University of Science and Technology of China and the University of Chinese Academy of Sciences.

    The Chinese Academy of Sciences has been ranked the No. 1 research institute in the world by Nature Index since the list’s inception in 2016 by Nature Portfolio. It is the most productive institution publishing articles of sustainable development indexed in Web of Science from 1981 to 2018 among all universities and research institutions in the world.

    The Chinese Academy originated in the Academia Sinica founded, in 1928, by the Republic of China. After the Communist Party took control of mainland China in 1949, the residual of Academia Sinica was renamed Chinese Academy of Sciences (CAS), while others relocated to Taiwan.

    The Chinese Academy of Sciences has six academic divisions:

    Chemistry (化学部)
    Information Technological Sciences (信息技术科学部)
    Earth Sciences (地学部)
    Life Sciences and Medical Sciences (生命科学和医学学部)
    Mathematics and Physics (数学物理学部)
    Technological Sciences (技术科学部)

    The CAS has thirteen regional branches, in Beijing, Shenyang, Changchun, Shanghai, Nanjing, Wuhan, Guangzhou, Chengdu, Kunming, Xi’an, Lanzhou, Hefei and Xinjiang. It has over one hundred institutes and four universities (the University of Science and Technology of China at Hefei, Anhui, the University of the Chinese Academy of Sciences in Beijing, ShanghaiTech University, and Shenzhen Institute of Adavanced Technology). Backed by the institutes of CAS, UCAS is headquartered in Beijing, with graduate education bases in Shanghai, Chengdu, Wuhan, Guangzhou and Lanzhou, four Science Libraries of Chinese Academy of Sciences, three technology support centers and two news and publishing units. These CAS branches and offices are located in 20 provinces and municipalities throughout China. CAS has invested in or created over 430 science- and technology-based enterprises in eleven industries, including eight companies listed on stock exchanges.

    Being granted a Fellowship of the Academy represents the highest level of national honor for Chinese scientists. The CAS membership system includes Academicians (院士), Emeritus Academicians (荣誉院士) and Foreign Academicians (外籍院士).

    The Chinese Academy of Sciences was ranked #1 in the 2016, 2017, 2018, 2019, and 2020 Nature Index Annual Tables, which measure the largest contributors to papers published in 82 leading journals.

    Research institutes

    Beijing Branch
    University of the Chinese Academy of Sciences (UCAS)
    Academy of Mathematics and Systems Science
    Institute of Acoustics (IOA)
    Institute of Atmospheric Physics
    Institute of Botany, Chinese Academy of Sciences
    Institute of Physics (IOPCAS)
    Institute of Semiconductors
    Institute of Electrical Engineering (IEE)
    Institute of Information Engineering (IIE)
    Institute of Theoretical Physics
    Institute of High Energy Physics
    Institute of Biophysics
    Institute of Genetics and Developmental Biology
    Institute of Electronics
    National Astronomical Observatories
    Institute of Computing Technology
    Institute of Software
    Institute of Automation
    Beijing Institute of Genomics
    Institute of Geographic Sciences and Natural Resources
    Institute of Geology and Geophysics (IGG)
    Institute of Remote Sensing and Digital Earth
    Institute of Tibetan Plateau Research
    Institute of Vertebrate Paleontology and Paleoanthropology
    National Center for Nanoscience and Technology
    Institute of Policy and Management
    Institute of Psychology
    Institute of Zoology
    Changchun Branch
    Changchun Institute of Optics, Fine Mechanics and Physics
    Changchun Institute of Applied Chemistry
    Northeast Institute of Geography and Agroecology
    Changchun Observatory
    Chengdu Branch
    Institute of Mountain Hazards and Environment
    Chengdu Institute of Biology
    Institute of Optics and Electronics
    Chengdu Institute of Organic Chemistry
    Institute of Computer Application
    Chongqing Institute of Green and Intelligent Technology
    Guangzhou Branch
    South China Botanical Garden
    Shenzhen Institutes of Advanced Technology
    South China Sea Institute of Oceanology
    Guangzhou Institute of Energy Conversion
    Guangzhou Institute of Geochemistry
    Guangzhou Institute of Biomedicine and Health
    Guiyang Branch
    Institute of Geochemistry
    Hefei Branch
    Hefei Institutes of Physical Science
    University of Science and Technology of China
    Kunming Branch
    Kunming Institute of Botany
    Kunming Institute of Zoology
    Xishuangbanna Tropical Botanical Garden
    Institute of Geochemistry
    Yunnan Astronomical Observatory
    Lanzhou Branch
    Institute of Modern Physics
    Lanzhou Institute of Chemical Physics
    Lanzhou Institute of Geology
    Northwest Institute of Plateau Biology
    Northwest Institute of Eco-Environment and Resources
    Qinghai Institute of Salt Lakes Research
    Nanjing Branch
    Purple Mountain Observatory (Zijinshan Astronomical Observatory)
    Institute of Soil Science
    Nanjing Institute of Geology and Palaeontology
    Nanjing Institute of Geography and Limnology
    Nanjing Institute of Astronomical Optics and Technology
    Suzhou Institute of Nano-tech and Nano-bionics (SINANO)
    Suzhou Institute of Biomedical Engineering and Technology (SIBET)
    Nanjing Botanical Garden, Memorial Sun Yat-Sen (Institute of Botany, Jiangsu Province and Chinese Academy of Science)
    University of Chinese Academy of Sciences, Nanjing College
    Shanghai Branch
    Shanghai Astronomical Observatory
    Shanghai Institute of Microsystem and Information Technology
    Shanghai Institute of Technical Physics
    Shanghai Institute of Optics and Fine Mechanics
    Shanghai Institute of Ceramics
    Shanghai Institute of Organic Chemistry
    Shanghai Institute of Applied Physics
    Shanghai Institutes for Biological Sciences
    Shanghai Institute of Materia Medica
    Institut Pasteur of Shanghai
    Shanghai Advanced Research Institute, CAS
    Institute of Neuroscience (ION)
    ShanghaiTech University
    Shenyang Branch
    Institute of Metal Research
    Shenyang Institute of Automation
    Shenyang Institute of Applied Ecology, formerly the Institute of Forestry and Pedology
    Shenyang Institute of Computing Technology
    Dalian Institute of Chemical Physics
    Qingdao Institute of Oceanology
    Qingdao Institute of Bioenergy and Bioprocess Technology
    Yantai Institute of Coastal Zone Research
    Taiyuan Branch
    Shanxi Institute of Coal Chemistry (ICCCAS)
    Wuhan Branch
    Wuhan Institute of Rock and Soil Mechanics
    Wuhan Institute of Physics and Mathematics
    Wuhan Institute of Virology
    Institute of Geodesy and Geophysics
    Institute of Hydrobiology
    Wuhan Botanical Garden
    Xinjiang Branch
    Xinjiang Technical Institute of Physics and Chemistry
    Xinjiang Institute of Ecology and Geography
    Xi’an Branch
    Xi’an Institute of Optics and Precision Mechanics
    National Time Service Center
    Institute of Earth Environment

     
  • richardmitnick 12:23 pm on April 28, 2022 Permalink | Reply
    Tags: "Hybrid electro-biosystem upcycles carbon dioxide into energy-rich long-chain compounds", , , Artificial upcycling of carbon dioxide (CO2) into value-added products in a sustainable manner represents an opportunity to tackle environmental issues and realize a circular economy., The Chinese Academy of Sciences [中国科学院](CN)   

    From The Chinese Academy of Sciences [中国科学院](CN) via phys.org: “Hybrid electro-biosystem upcycles carbon dioxide into energy-rich long-chain compounds” 

    From The Chinese Academy of Sciences [中国科学院](CN)

    via

    phys.org

    1
    Schematic diagram of in vitro carbon dioxide synthesis of high energy long chain food molecules. Credit: SIAT.

    Artificial upcycling of carbon dioxide (CO2) into value-added products in a sustainable manner represents an opportunity to tackle environmental issues and realize a circular economy.

    However, compared with easily available C1/C2 products, efficient and sustainable synthesis of energy-rich long-chain compounds from CO2 still remains a huge challenge.

    A joint research team led by Prof. Xia Chuan from the The University of Science and Technology of China [电子科技大学](CN), Prof. Yu Tao from the Shenzhen Institute of Advanced Technology of the Chinese Academy of Sciences, and Prof. Zeng Jie from the University of Science and Technology of China, has developed a hybrid electro-biosystem, coupling spatially separate CO2 electrolysis with yeast fermentation, which efficiently converted CO2 to glucose.

    The results were published in Nature Catalysis on April 28.

    The proposed spatially decoupled electro-biosystem includes CO2 electrolysis and yeast fermentation. It can convert CO2 to glucose or fatty acids with both high titer and high yield.

    “Acetic acid is not only the main component of vinegar, but also one of the excellent biosynthetic carbon sources. It can be transformed into other substances in life, such as glucose. Acetic acid can be obtained by direct electrolysis of CO2, but with ultra-low efficiency. We thus propose a two-step strategy to convert CO2 into acetic acid, with CO as the intermediate,” said Prof. Zeng.

    Accordingly, the researchers first converted CO2 into CO in a membrane electrode assembly using a Ni–N–C single-atom catalyst, and then developed a grain-boundary-rich Cu (GB_Cu) catalyst for acetate production from electrochemical CO reduction.

    1
    The conversion of carbon dioxide and water into long-chain products realized by electrochemically coupled biological fermentation. Credit: SIAT.

    GB_Cu exhibited a high acetate Faradaic efficiency up to 52% at -0.67 V versus a reversible hydrogen electrode in a typical three-electrode flow cell reactor using 1.0 M KOH aqueous electrolyte.

    “However, the acetate produced by conventional electrocatalytic devices is always mixed with electrolyte salts which cannot be directly used for biological fermentation,” said Prof. XIA.

    To tackle this challenge, the researchers developed a porous solid electrolyte reactor equipment with thick anion exchange membranes for pure acetic acid solution separation and purification. It continuously and stably worked for 140 hours under a current density of -250 mA cm-2, which achieved an ultrapure acetic acid solution with a relative purity of ~97% wt.%.

    In the following microbial fermentation, the researchers deleted all defined hexokinase genes (glk1, hxk1, hxk2, YLR446W and emi2) in Saccharomyces cerevisiae to enable microbe growth on pure acetic acid and the efficient release of glucose in vitro.

    The overexpression of heterologous glucose-1-phosphatase further improved the glucose titer. S. cerevisiae was fed with titrated acetate from electrolysis, obtaining an average glucose titer of 1.81 ± 0.14 g·L-1, equivalent to a high yield of 8.9 μmol per gram of yeast per hour. Similar results were observed in S. cerevisiae fed pure acetic acid.

    In addition, an engineered S. cerevisiae for free fatty acids production was fed via titrating acetate from electrolysis, with a total free fatty acids (C8~C18) titer of 500 mg·L-1.

    Pure and concentrated acetic acid from electrochemical CO2 reduction served as the carbon source for S. cerevisiae fermentation. Such a platform for long-chain products is promising for large-scale practical use.

    “This demonstration is a starting point for realizing light-reaction-free artificial synthesis of important organic products from CO2,” said Prof. Yu.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Chinese Academy of Sciences[中国科学院](CN) is the national academy for the natural sciences of the People’s Republic of China. It has historical origins in the Academia Sinica during the Republican era and was formerly also known by that name. Collectively known as the “Two Academies (两院)” along with the Chinese Academy of Engineering, it functions as the national scientific think tank and academic governing body, providing advisory and appraisal services on issues stemming from the national economy, social development, and science and technology progress. It is headquartered in Xicheng District, Beijing, with branch institutes all over mainland China. It has also created hundreds of commercial enterprises, Lenovo being one of the most famous.

    It is the world’s largest research organization, comprising around 60,000 researchers working in 114 institutes, and has been consistently ranked among the top research organizations around the world. It also holds the University of Science and Technology of China and the University of Chinese Academy of Sciences.

    The Chinese Academy of Sciences has been ranked the No. 1 research institute in the world by Nature Index since the list’s inception in 2016 by Nature Portfolio. It is the most productive institution publishing articles of sustainable development indexed in Web of Science from 1981 to 2018 among all universities and research institutions in the world.

    The Chinese Academy originated in the Academia Sinica founded, in 1928, by the Republic of China. After the Communist Party took control of mainland China in 1949, the residual of Academia Sinica was renamed Chinese Academy of Sciences (CAS), while others relocated to Taiwan.

    The Chinese Academy of Sciences has six academic divisions:

    Chemistry (化学部)
    Information Technological Sciences (信息技术科学部)
    Earth Sciences (地学部)
    Life Sciences and Medical Sciences (生命科学和医学学部)
    Mathematics and Physics (数学物理学部)
    Technological Sciences (技术科学部)

    The CAS has thirteen regional branches, in Beijing, Shenyang, Changchun, Shanghai, Nanjing, Wuhan, Guangzhou, Chengdu, Kunming, Xi’an, Lanzhou, Hefei and Xinjiang. It has over one hundred institutes and four universities (the University of Science and Technology of China at Hefei, Anhui, the University of the Chinese Academy of Sciences in Beijing, ShanghaiTech University, and Shenzhen Institute of Adavanced Technology). Backed by the institutes of CAS, UCAS is headquartered in Beijing, with graduate education bases in Shanghai, Chengdu, Wuhan, Guangzhou and Lanzhou, four Science Libraries of Chinese Academy of Sciences, three technology support centers and two news and publishing units. These CAS branches and offices are located in 20 provinces and municipalities throughout China. CAS has invested in or created over 430 science- and technology-based enterprises in eleven industries, including eight companies listed on stock exchanges.

    Being granted a Fellowship of the Academy represents the highest level of national honor for Chinese scientists. The CAS membership system includes Academicians (院士), Emeritus Academicians (荣誉院士) and Foreign Academicians (外籍院士).

    The Chinese Academy of Sciences was ranked #1 in the 2016, 2017, 2018, 2019, and 2020 Nature Index Annual Tables, which measure the largest contributors to papers published in 82 leading journals.

    Research institutes

    Beijing Branch
    University of the Chinese Academy of Sciences (UCAS)
    Academy of Mathematics and Systems Science
    Institute of Acoustics (IOA)
    Institute of Atmospheric Physics
    Institute of Botany, Chinese Academy of Sciences
    Institute of Physics (IOPCAS)
    Institute of Semiconductors
    Institute of Electrical Engineering (IEE)
    Institute of Information Engineering (IIE)
    Institute of Theoretical Physics
    Institute of High Energy Physics
    Institute of Biophysics
    Institute of Genetics and Developmental Biology
    Institute of Electronics
    National Astronomical Observatories
    Institute of Computing Technology
    Institute of Software
    Institute of Automation
    Beijing Institute of Genomics
    Institute of Geographic Sciences and Natural Resources
    Institute of Geology and Geophysics (IGG)
    Institute of Remote Sensing and Digital Earth
    Institute of Tibetan Plateau Research
    Institute of Vertebrate Paleontology and Paleoanthropology
    National Center for Nanoscience and Technology
    Institute of Policy and Management
    Institute of Psychology
    Institute of Zoology
    Changchun Branch
    Changchun Institute of Optics, Fine Mechanics and Physics
    Changchun Institute of Applied Chemistry
    Northeast Institute of Geography and Agroecology
    Changchun Observatory
    Chengdu Branch
    Institute of Mountain Hazards and Environment
    Chengdu Institute of Biology
    Institute of Optics and Electronics
    Chengdu Institute of Organic Chemistry
    Institute of Computer Application
    Chongqing Institute of Green and Intelligent Technology
    Guangzhou Branch
    South China Botanical Garden
    Shenzhen Institutes of Advanced Technology
    South China Sea Institute of Oceanology
    Guangzhou Institute of Energy Conversion
    Guangzhou Institute of Geochemistry
    Guangzhou Institute of Biomedicine and Health
    Guiyang Branch
    Institute of Geochemistry
    Hefei Branch
    Hefei Institutes of Physical Science
    University of Science and Technology of China
    Kunming Branch
    Kunming Institute of Botany
    Kunming Institute of Zoology
    Xishuangbanna Tropical Botanical Garden
    Institute of Geochemistry
    Yunnan Astronomical Observatory
    Lanzhou Branch
    Institute of Modern Physics
    Lanzhou Institute of Chemical Physics
    Lanzhou Institute of Geology
    Northwest Institute of Plateau Biology
    Northwest Institute of Eco-Environment and Resources
    Qinghai Institute of Salt Lakes Research
    Nanjing Branch
    Purple Mountain Observatory (Zijinshan Astronomical Observatory)
    Institute of Soil Science
    Nanjing Institute of Geology and Palaeontology
    Nanjing Institute of Geography and Limnology
    Nanjing Institute of Astronomical Optics and Technology
    Suzhou Institute of Nano-tech and Nano-bionics (SINANO)
    Suzhou Institute of Biomedical Engineering and Technology (SIBET)
    Nanjing Botanical Garden, Memorial Sun Yat-Sen (Institute of Botany, Jiangsu Province and Chinese Academy of Science)
    University of Chinese Academy of Sciences, Nanjing College
    Shanghai Branch
    Shanghai Astronomical Observatory
    Shanghai Institute of Microsystem and Information Technology
    Shanghai Institute of Technical Physics
    Shanghai Institute of Optics and Fine Mechanics
    Shanghai Institute of Ceramics
    Shanghai Institute of Organic Chemistry
    Shanghai Institute of Applied Physics
    Shanghai Institutes for Biological Sciences
    Shanghai Institute of Materia Medica
    Institut Pasteur of Shanghai
    Shanghai Advanced Research Institute, CAS
    Institute of Neuroscience (ION)
    ShanghaiTech University
    Shenyang Branch
    Institute of Metal Research
    Shenyang Institute of Automation
    Shenyang Institute of Applied Ecology, formerly the Institute of Forestry and Pedology
    Shenyang Institute of Computing Technology
    Dalian Institute of Chemical Physics
    Qingdao Institute of Oceanology
    Qingdao Institute of Bioenergy and Bioprocess Technology
    Yantai Institute of Coastal Zone Research
    Taiyuan Branch
    Shanxi Institute of Coal Chemistry (ICCCAS)
    Wuhan Branch
    Wuhan Institute of Rock and Soil Mechanics
    Wuhan Institute of Physics and Mathematics
    Wuhan Institute of Virology
    Institute of Geodesy and Geophysics
    Institute of Hydrobiology
    Wuhan Botanical Garden
    Xinjiang Branch
    Xinjiang Technical Institute of Physics and Chemistry
    Xinjiang Institute of Ecology and Geography
    Xi’an Branch
    Xi’an Institute of Optics and Precision Mechanics
    National Time Service Center
    Institute of Earth Environment

     
  • richardmitnick 1:17 pm on April 20, 2022 Permalink | Reply
    Tags: "Multifunctional graphene-based composites oriented by roles of graphene in photocatalysis", , Also in environmental purification; carbon dioxide reduction and selective organic synthesis to provide a viable and sustainable strategy to the problems of energy shortage and environmental crisis., , In some specific photocatalytic systems GR also is able to act as the macromolecular photosensitizer to generate photoelectrons by itself., Multifunctional GR-based photocatalysts such as GR-semiconductor; GR-metal and GR-organics have been widely employed in photocatalytic water splitting., The Chinese Academy of Sciences [中国科学院](CN)   

    From The Chinese Academy of Sciences [中国科学院](CN) via phys.org: “Multifunctional graphene-based composites oriented by roles of graphene in photocatalysis” 

    From The Chinese Academy of Sciences [中国科学院](CN)

    via

    phys.org

    1
    This review overviews optimizing strategies and synthesis of graphene-based composite photocatalysts oriented by the fundamental manifold roles of graphene in photocatalysis and proposes the key challenges and future perspectives for further investigations of graphene-based photocatalysts. Credit: Chinese Journal of Catalysis.

    Graphene (GR), a single-layer carbon sheet with a hexagonal packed lattice structure, has displayed attractive potential in artificial photocatalysis due to its enchanting properties in enhancing light absorption, electron transfer dynamics, and surface reactions. Nowadays, multifunctional GR-based photocatalysts such as GR-semiconductor; GR-metal and GR-organics have been widely employed in photocatalytic water splitting, environmental purification, carbon dioxide reduction, and selective organic synthesis to provide a viable and sustainable strategy to the problems of energy shortage and environmental crisis. Owing to the unique and fascinating features of ideal GR, including 2D flat structure, high theoretical specific surface area, superior optical transmittance, excellent electron conductivity, and good chemical stability, GR has been considered as a promising cocatalyst to enhance the conversion efficiency of solar energy of artificial photosynthesis systems. Besides, in some specific photocatalytic systems GR also is able to act as the macromolecular photosensitizer to generate photoelectrons by itself.

    As is well known, choosing appropriate synthesis method plays a significant role in tailoring the properties of GR-based composites, such as morphology, size, defect structure, and surface/interface properties, which are closely linked to their photocatalytic performance. Hence, enormous efforts have been devoted to exploring and optimizing synthesis methods, such as hydrothermal/solvothermal method, combustion treatment, low-temperature oil bath method, sol-gel approach, ultrasonication-assisted deposition, microwave-assisted synthesis, photo-assisted reduction, electrochemical deposition to construct high-efficiency GR-based composites with desirable architecture.

    Recently, a research team led by Prof. Yi-Jun Xu from Fuzhou University, China critically overviewed the optimization strategies and synthesis of multifunctional GR-based composite photocatalysts. The optimization strategies of GR-based composites are firstly introduced, such as decreasing the defect density of GR, chemical doping, optimizing the dimensionality of GR and photoactive components, depositing cocatalysts to construct dual- or multi- cocatalysts systems and optimizing interfacial parameters of GR-based composites. Then, the synthesis of GR-based composites is discussed from a new perspective, which is oriented by the roles of GR in photocatalysis, containing photoelectron mediator and acceptor, improving adsorption capacity, tailoring light absorption range and intensity and macromolecular photosensitizer. Beyond that, a brief outlook on the challenges and potential evolution strategies for enhancing the solar energy conversion efficiency of GR-based composites are proposed. The review was published in Chinese Journal of Catalysis.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Chinese Academy of Sciences[中国科学院](CN) is the national academy for the natural sciences of the People’s Republic of China. It has historical origins in the Academia Sinica during the Republican era and was formerly also known by that name. Collectively known as the “Two Academies (两院)” along with the Chinese Academy of Engineering, it functions as the national scientific think tank and academic governing body, providing advisory and appraisal services on issues stemming from the national economy, social development, and science and technology progress. It is headquartered in Xicheng District, Beijing, with branch institutes all over mainland China. It has also created hundreds of commercial enterprises, Lenovo being one of the most famous.

    It is the world’s largest research organization, comprising around 60,000 researchers working in 114 institutes, and has been consistently ranked among the top research organizations around the world. It also holds the University of Science and Technology of China and the University of Chinese Academy of Sciences.

    The Chinese Academy of Sciences has been ranked the No. 1 research institute in the world by Nature Index since the list’s inception in 2016 by Nature Portfolio. It is the most productive institution publishing articles of sustainable development indexed in Web of Science from 1981 to 2018 among all universities and research institutions in the world.

    The Chinese Academy originated in the Academia Sinica founded, in 1928, by the Republic of China. After the Communist Party took control of mainland China in 1949, the residual of Academia Sinica was renamed Chinese Academy of Sciences (CAS), while others relocated to Taiwan.

    The Chinese Academy of Sciences has six academic divisions:

    Chemistry (化学部)
    Information Technological Sciences (信息技术科学部)
    Earth Sciences (地学部)
    Life Sciences and Medical Sciences (生命科学和医学学部)
    Mathematics and Physics (数学物理学部)
    Technological Sciences (技术科学部)

    The CAS has thirteen regional branches, in Beijing, Shenyang, Changchun, Shanghai, Nanjing, Wuhan, Guangzhou, Chengdu, Kunming, Xi’an, Lanzhou, Hefei and Xinjiang. It has over one hundred institutes and four universities (the University of Science and Technology of China at Hefei, Anhui, the University of the Chinese Academy of Sciences in Beijing, ShanghaiTech University, and Shenzhen Institute of Adavanced Technology). Backed by the institutes of CAS, UCAS is headquartered in Beijing, with graduate education bases in Shanghai, Chengdu, Wuhan, Guangzhou and Lanzhou, four Science Libraries of Chinese Academy of Sciences, three technology support centers and two news and publishing units. These CAS branches and offices are located in 20 provinces and municipalities throughout China. CAS has invested in or created over 430 science- and technology-based enterprises in eleven industries, including eight companies listed on stock exchanges.

    Being granted a Fellowship of the Academy represents the highest level of national honor for Chinese scientists. The CAS membership system includes Academicians (院士), Emeritus Academicians (荣誉院士) and Foreign Academicians (外籍院士).

    The Chinese Academy of Sciences was ranked #1 in the 2016, 2017, 2018, 2019, and 2020 Nature Index Annual Tables, which measure the largest contributors to papers published in 82 leading journals.

    Research institutes

    Beijing Branch
    University of the Chinese Academy of Sciences (UCAS)
    Academy of Mathematics and Systems Science
    Institute of Acoustics (IOA)
    Institute of Atmospheric Physics
    Institute of Botany, Chinese Academy of Sciences
    Institute of Physics (IOPCAS)
    Institute of Semiconductors
    Institute of Electrical Engineering (IEE)
    Institute of Information Engineering (IIE)
    Institute of Theoretical Physics
    Institute of High Energy Physics
    Institute of Biophysics
    Institute of Genetics and Developmental Biology
    Institute of Electronics
    National Astronomical Observatories
    Institute of Computing Technology
    Institute of Software
    Institute of Automation
    Beijing Institute of Genomics
    Institute of Geographic Sciences and Natural Resources
    Institute of Geology and Geophysics (IGG)
    Institute of Remote Sensing and Digital Earth
    Institute of Tibetan Plateau Research
    Institute of Vertebrate Paleontology and Paleoanthropology
    National Center for Nanoscience and Technology
    Institute of Policy and Management
    Institute of Psychology
    Institute of Zoology
    Changchun Branch
    Changchun Institute of Optics, Fine Mechanics and Physics
    Changchun Institute of Applied Chemistry
    Northeast Institute of Geography and Agroecology
    Changchun Observatory
    Chengdu Branch
    Institute of Mountain Hazards and Environment
    Chengdu Institute of Biology
    Institute of Optics and Electronics
    Chengdu Institute of Organic Chemistry
    Institute of Computer Application
    Chongqing Institute of Green and Intelligent Technology
    Guangzhou Branch
    South China Botanical Garden
    Shenzhen Institutes of Advanced Technology
    South China Sea Institute of Oceanology
    Guangzhou Institute of Energy Conversion
    Guangzhou Institute of Geochemistry
    Guangzhou Institute of Biomedicine and Health
    Guiyang Branch
    Institute of Geochemistry
    Hefei Branch
    Hefei Institutes of Physical Science
    University of Science and Technology of China
    Kunming Branch
    Kunming Institute of Botany
    Kunming Institute of Zoology
    Xishuangbanna Tropical Botanical Garden
    Institute of Geochemistry
    Yunnan Astronomical Observatory
    Lanzhou Branch
    Institute of Modern Physics
    Lanzhou Institute of Chemical Physics
    Lanzhou Institute of Geology
    Northwest Institute of Plateau Biology
    Northwest Institute of Eco-Environment and Resources
    Qinghai Institute of Salt Lakes Research
    Nanjing Branch
    Purple Mountain Observatory (Zijinshan Astronomical Observatory)
    Institute of Soil Science
    Nanjing Institute of Geology and Palaeontology
    Nanjing Institute of Geography and Limnology
    Nanjing Institute of Astronomical Optics and Technology
    Suzhou Institute of Nano-tech and Nano-bionics (SINANO)
    Suzhou Institute of Biomedical Engineering and Technology (SIBET)
    Nanjing Botanical Garden, Memorial Sun Yat-Sen (Institute of Botany, Jiangsu Province and Chinese Academy of Science)
    University of Chinese Academy of Sciences, Nanjing College
    Shanghai Branch
    Shanghai Astronomical Observatory
    Shanghai Institute of Microsystem and Information Technology
    Shanghai Institute of Technical Physics
    Shanghai Institute of Optics and Fine Mechanics
    Shanghai Institute of Ceramics
    Shanghai Institute of Organic Chemistry
    Shanghai Institute of Applied Physics
    Shanghai Institutes for Biological Sciences
    Shanghai Institute of Materia Medica
    Institut Pasteur of Shanghai
    Shanghai Advanced Research Institute, CAS
    Institute of Neuroscience (ION)
    ShanghaiTech University
    Shenyang Branch
    Institute of Metal Research
    Shenyang Institute of Automation
    Shenyang Institute of Applied Ecology, formerly the Institute of Forestry and Pedology
    Shenyang Institute of Computing Technology
    Dalian Institute of Chemical Physics
    Qingdao Institute of Oceanology
    Qingdao Institute of Bioenergy and Bioprocess Technology
    Yantai Institute of Coastal Zone Research
    Taiyuan Branch
    Shanxi Institute of Coal Chemistry (ICCCAS)
    Wuhan Branch
    Wuhan Institute of Rock and Soil Mechanics
    Wuhan Institute of Physics and Mathematics
    Wuhan Institute of Virology
    Institute of Geodesy and Geophysics
    Institute of Hydrobiology
    Wuhan Botanical Garden
    Xinjiang Branch
    Xinjiang Technical Institute of Physics and Chemistry
    Xinjiang Institute of Ecology and Geography
    Xi’an Branch
    Xi’an Institute of Optics and Precision Mechanics
    National Time Service Center
    Institute of Earth Environment

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: