Tagged: temblor Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:45 am on July 10, 2019 Permalink | Reply
    Tags: "The Ridgecrest earthquakes: Torn ground; nested foreshocks; Garlock shocks; and Temblor’s forecast", , , , temblor   

    From temblor: “The Ridgecrest earthquakes: Torn ground, nested foreshocks, Garlock shocks, and Temblor’s forecast” 

    1

    From temblor

    July 9, 2019
    Chris Rollins, Ph.D.; Michigan State University

    By Chris Rollins, Ph.D., Michigan State University; Ross S. Stein, Ph.D., Temblor; Guoqing Lin, Ph.D., Professor of Geophysics, University of Miami; and Deborah Kilb, Ph.D., Project Scientist, Scripps Institution of Oceanography, University of California San Diego

    A new image of the ground deformation, a rich and enigmatic foreshock sequence, aftershock trends we can explain, and others that are more elusive. This is also the time see how Temblor app’s hazard forecast for Ridgecrest fared.

    Citation: Chris Rollins, Ross S. Stein, Guoqing Lin, and Deborah Kilb (2019), The Ridgecrest earthquakes: Torn ground, nested foreshocks, Garlock shocks, and Temblor’s forecast, Temblor, http://doi.org/10.32858/temblor.039

    Ground Deformation from Space

    The Advanced Rapid Imaging and Analysis (ARIA) team at NASA JPL and Caltech just released this Interferometric Synthetic Aperture Radar (InSAR) image that shows how the fault slip in the 4 July M 6.4 and 5 July M 7.1 earthquakes warped the earth’s surface. We have annotated the map to highlight its remarkable features: knife-edge faulting in the south, and a widely distributed band of secondary faults and shear in the north. That broad pattern of deformation may explain why geologists had missed the fault in the first place: it masquerades as hundreds of small, discontinuous tears at the surface. By using this image and others like it that will come in as more radar satellites pass over the Ridgecrest area, we can study how the slip in these earthquakes was distributed at depth, why the fault may have slipped that way, and what that might mean for how earthquakes occur in general.

    2
    The interferogram is derived from the ALOS-2 satellite, operated by the Japan Aerospace Exploration Agency (JAXA), with images taken before (16 April 2018) and after (8 July 2019) the earthquakes. Each color cycle represents 11.45 cm (4.5 inches) of ground displacement in the radar line-of-sight (28° from vertical and roughly east).

    JAXA ALOS-2 satellite aka DAICH-2

    Foreshocks of foreshocks

    When we look how the earthquake sequence unfolded in time, we see what we might call ‘nested foreshocks.’ First, a M 4.0 struck 30 min before the M 6.4 mainshock in virtually the same location. Rare, but not unprecedented. About 18 hours into the M 6.4 aftershock sequence, the largest aftershock, a M 5.3 event struck. Then, about 16 hours later, the M 7.1 ruptured less than 3 km from the site of the M 5.3. That’s also rare. But while fascinating, we don’t see much that marks those little shocks for future greatness.

    3
    Here are the quakes in time. This plot is preliminary, as the locations will ultimately be improved, and many of the small quakes that struck soon after the mainshocks will be recovered. Thinking about this sequence was inspired by Derek Watkins from the New York Times.

    Aftershocks in the Coso Volcanic Field and on the Garlock Fault: Cause for concern?

    The Coso Volcanic Field, an area northwest of the earthquake with a history of seismic swarms, has lit up in earthquakes since the 7.1 quake. Over the past 48 hours, aftershocks have also begun to show up along parts of the Garlock Fault to the southwest. Can we explain these observations?

    3
    One can see 8-10 small shocks on the Garlock Fault (lower left), and a large cluster at Coso Volcanic Field (upper left).

    When an earthquake ruptures a fault, it warps the surrounding earth (as captured by the satellite image above) and therefore changes the state of stress in the earth around it, including along nearby faults. These stress changes can push some faults closer to failure and pull others further from it, depending on where they are with respect to the earthquake. In the plot below, we calculated what the M 7.1 shock might have done to the major mapped faults in the region and others oriented like them. All else being equal, we would expect aftershocks to be more numerous around faults brought closer to failure by the stress changes in the M 7.1 shock (the red zones below), and less prevalent along faults inhibited from failure (the blue ‘stress shadows’).

    5
    Faults in the red lobes are calculated to be brought closer to failure; those in the blue ‘stress shadows’ are inhibited from failure. The calculation estimates what the dominant fault orientations are around the earthquakes by interpolating between major mapped faults (shown in red lines). So, we would expect strong stressing in the Coso Volcanic Field to the north (where the aftershocks lie), and along the Garlock Fault to the south (but not where most of them lie).

    We see that the the 7.1 quake likely brought faults in the Coso Volcanic Field closer to failure, consistent with the abundant aftershocks there. But although the quake also strongly increased the Coulomb stress on a 30-km (20-mile) stretch of the Garlock, most of the aftershocks along the Garlock have in fact appeared in a blue zone to the southwest. Satellite radar imagery spanning several years before these quakes suggests the Garlock may be slowly creeping in the blue zone [Tong et al., 2013], which if real could play into seismicity there, but that signal is within the noise level of the dataset. Satellite radar imagery and other geodetic (surface deformation) data and field observations will help piece together what has been going on, not only near the Garlock but everywhere in and around the Ridgecrest sequence.

    6
    This calculation differs from the one above in that the stress changes are calculated on faults that are perfectly oriented for failure under the regional stress direction, which is north-south compression and east-west extension.

    It is also possible that some of those aftershocks to the southwest didn’t actually occur on the Garlock, but instead on smaller nearby faults that are more optimally oriented for failure under the current tectonic stressing that drives the Eastern California Shear Zone. (The Garlock, for its part, has been rotated severely out of alignment with the regional stress direction, so exactly how much and how often it still slips is a topic of ongoing research.) The above plot shows that faults with this more optimal orientation would have in fact been slightly promoted for failure by the Ridgecrest quake down around where those aftershocks are occurring. We see that faults oriented like this in the Coso region would also have been in

    7
    Time history at Coso shows a mystery: The M 6.4 shock had no effect, but the M 7.1 produced abundant shocks.

    A closer look at Coso shows that, intriguingly, it was quiet after the M 6.4 4th of July earthquake, but began to light up in earthquakes as soon as the M 7.1 hit on July 5. That might be because the 7.1 was a much larger earthquake and induced larger Coulomb stress changes there; it might alternatively (or also) be because the throughgoing seismic waves from the 7.1 shook Coso harder. We note that a M 7.5 earthquake in Ecuador earlier this year may have also been correlated with a temporary uptick in seismicity in Coso, but two other large remote earthquakes don’t look like they were. This effect, called remote triggering, has been observed in various parts of the world following several large earthquakes in the past 25 years, but studies differ on whether it is characteristic of the Coso region [Castro et al., 2017; Zhang et al., 2017]. Nevertheless, with more in-depth research, we can use the Ridgecrest sequence and Coso aftershocks as a natural experiment that helps shed light on what controls earthquake behavior there – and therefore what may control it in general.

    How useful was Temblor in offering guidance to Ridgecrest residents?

    Temblor gives three condensed forecasts in one screen. Here it is, slightly annotated:

    8
    Temblor app screen for Ridgecrest, California (app.temblor.net/)

    – Earthquake Score is 40, which is based on the most current ‘probabilistic’ USGS model. A score of 100 means probable damage of 20% of the replacement cost of a home in 30 years. The score factors in all quakes large and small, near and far, and the amplification of shaking in basins. For comparison, the score is 65 in downtown Los Angeles, and 95 in San Bernardino.

    – Lifetime quake is M 6.4. This is the earthquake magnitude that has a 1% chance per year of occurring within 60 mi (100 km); that’s a 60% chance of occurring if you live to 90. It was certainly exceeded, and this tells us that a M 7.1 here is rare. The lifetime quake is M 6.7 for L.A., and M 6.8 for San Bernardino.

    – Possible quake is M 6.9. Temblor finds the USGS ‘scenario’ earthquake that produces the strongest shaking at your location and reports its magnitude, fault, and the shaking. Temblor then estimates the cost of repairing the damage to your home in this quake, based on your home’s characteristics. For L.A., it is M 7.0, and for San Bernardino, it is M 7.7. Although the shaking estimate is for a nearby fault with a lower magnitude, it turns out to be spot on: The forecast peak shaking was 55% g (55% of the force of gravity) and the observed was 57%.

    Why do we give you two quake magnitudes? (in this case, M 6.4 and M 6.9). The first is the quake size you will more likely than not experience in your lifetime, the second is the largest that the USGS considers possible at your location. On July 5, both were exceeded, but the forecasted shaking nevertheless turned out to be prescient.

    In short, while earthquakes will continue to surprise us, their shaking doesn’t have to. Take this opportunity and understand your risk.

    References

    Castro, R. R., Clayton, R., Hauksson, E., & Stock, J. (2017). Observations of remotely triggered seismicity in Salton Sea and Coso geothermal regions, Southern California, USA, after big (MW> 7.8) teleseismic earthquakes. Geofísica internacional, 56(3), 269-286.

    Tong, X., Sandwell, D. T., & Smith‐Konter, B. (2013). High‐resolution interseismic velocity data along the San Andreas fault from GPS and InSAR. Journal of Geophysical Research: Solid Earth, 118(1), 369-389

    Zhang, Q., Lin, G., Zhan, Z., Chen, X., Qin, Y., and Wdowinski, S. (2017). Absence of remote earthquake triggering within the Coso and Salton Sea geothermal production fields. Geophys. Res. Lett., doi:10.1002/2016GL071964.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project

    Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States
    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 10:38 am on July 6, 2019 Permalink | Reply
    Tags: "Magnitude 7.1 earthquake rips northwest from the M6.4 just 34 hours later", , temblor, The M 6.4 quake on July 4 can now be regarded as a foreshock of the M 7.1 quake.   

    From temblor: “Magnitude 7.1 earthquake rips northwest from the M6.4 just 34 hours later” 

    1

    From temblor

    July 6, 2019
    Tiegan Hobbs

    The M 6.4 earthquake loaded the site where the M 7.1 shock nucleated. Now, the M 7.1 has extended the original rupture to the northwest, as well as to the southeast, where it kisses the major Garlock Fault.

    Citation: Ross S. Stein, Tiegan Hobbs, Chris Rollins, Geoffrey Ely, Volkan Sevilgen, and Shinji Toda, (2019), Magnitude 7.1 earthquake rips northwest from the M6.4 just 34 hours later, Temblor, http://doi.org/10.32858/temblor.037

    Rupture of a Previously Unknown Fault

    The town of Ridgecrest was not done shaking after a magnitude 6.4 earthquake on the morning of July 4. An M=7.1 shock ruptured for at least 35 km (20 mi) from the 4 July 2019 epicenter, towards the northwest, and perhaps also for 25 km to the southeast. It is astonishing that there is no continuous mapped fault at the ground surface, despite the near absence of vegetation that can otherwise hide faults. Numerous other faults have been mapped in this region, trending predominantly in a north-south direction, somewhat different than this earthquake. The aftershock alignment, however, is very straight in a northwest-southeast trend, suggesting that beneath the surface must lie a continuous fault. We strongly suspect that the rupture is right-lateral (whichever side you are on, the other moves to the right). The trend is parallel to the San Andreas Fault, but has a strike (or compass orientation) more westerly than most of the nearby surrounding faults.

    1
    Map of the past 40 hours of earthquakes from the USGS (ANSS) catalog, with the inferred sense of fault slip represented by the gray half-arrow pairs. This gives the impression of a northwestward rupture of perhaps 30 km length, which is very short for such a large shock. Because the USGS website is experiencing problems, this might be an incomplete portrayal.

    Did the Rupture Unzip to the Northwest Only, or Also to the Southeast?

    Without knowing about this fault, there was no reason to suspect that such a large earthquake could occur to the north of the July 4 rupture. Fortunately, this is a remote location, with even fewer people living to the northwest of the mainshock than the south.

    While much of the seismicity in the last 48 hours has fallen along two nearly linear faults, aftershocks of this magnitude 7.1 earthquake have formed a cluster to the northwest of the main rupture fault. This cluster, near Little Lake, CA, is approximately 15 km (9 miles) south of the Coso Geothermal Area. That geothermal region is home to abundant seismicity [Hauksson & Unruh, 2007] which is often clustered in swarms at its periphery. All events in this swarm, as of midnight local time on July 5th, are shallower than 10 km depth, consistent with previous swarms in this area.

    2
    This Temblor app map with another 2 hours of events gives a different impression of the M 7.1 aftershocks than the initial USGS map, suggesting that the rupture does not simply extend to the northwest. Based on these aftershocks it appears ‘bilateral’, meaning that the fault unzipped both to the northwest and southwest, for a total length of up to 55 km. This would be more consistent with its magnitude, as a strike-slip M 7.1 typically has a length of about 50 km. If this is correct, then parts of the Garlock Fault might also be brought closer to failure.

    Chain Reaction

    In retrospect, the M 6.4 quake on July 4 can now be regarded as a foreshock of the M 7.1. While generally uncommon, there are many recent examples of occurrences similar to this. The 14 April 2016 M 6.0 Kumamoto shock was followed 28 hours later by a M 7.0 quake on 15 April 2016 that ruptured two major faults that were brought closer to failure by the first event. The 3 November 2002 M 7.9 Denali earthquake on the Denali Fault was preceded by a M 6.7 shock on the Fault on 23 October 2002, 11 days beforehand.

    The epicenter of the M 7.1 was Loaded by the M 6.4 Earthquake

    Preliminary Coulomb stress transfer calculations reveal that the epicenter of the M 7.1 shock was brought 2 bars closer to failure by the M 6.4 shock. In other words, the 4 July event stoked the fire for the 5 July magnitude 7.1 earthquake. This large stress jump very likely played a role in the triggering of the second event. In fact, it would not be incorrect to say that the M 7.1 was an unusually large aftershock of the M 6.4, rather than the M 6.4 being a foreshock of the M 7.1.

    3
    Coulomb stress changes on nearby faults, as a result of the 4 July 2019 M=6.4 earthquake near Ridgecrest. The approximate location of the 5 July M=7.1 earthquake is indicated by the purple star, near the northwesterly extension of the fault that ruptured on the 4th of July. Stress in the region of the M=7.1 event was increased by roughly 2 bars following the M=6.4 earthquake.

    Aftershocks Propagating Towards the Garlock Fault

    Seismicity between the M=7.1 at 8:19pm and midnight (local) has continued to the northwest and southeast. At the time of writing, 12:10am (local) the closest aftershock is within a few kilometers of the nearby Garlock Fault, which runs east-west between the Eastern California Shear Zone and the San Andreas Fault. Changes in stress on this major fault can have major implications for the nearby city of Los Angeles, and so will be closely monitored in the coming days. At this time, the USGS has forecasted that in the next week there is only a 9% chance of an aftershock which is equal to or larger than this M=7.1 event.

    References

    Hauksson, E., & Unruh, J. (2007). Regional tectonics of the Coso geothermal area along the intracontinental plate boundary in central eastern California: Three‐dimensional Vp and Vp/Vs models, spatial‐temporal seismicity patterns, and seismogenic deformation. Journal of Geophysical Research: Solid Earth, 112(B6).

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project

    Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States
    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 11:21 am on July 5, 2019 Permalink | Reply
    Tags: "Southern California M 6.4 earthquake stressed by two large historic ruptures", , , , temblor   

    From temblor: “Southern California M 6.4 earthquake stressed by two large historic ruptures” 

    1

    From temblor

    July 4, 2019
    Ross S. Stein, Ph.D., and Volkan Sevilgen, M.Sc., Temblor, Inc.

    The site of the 4th of July shock was stressed by the great 1872 Owens Valley quake and the 1992 Landers quake. Their overlapping stress lobes may have raised the stakes for this region.

    Citation: Stein, R. S., and Sevilgen, V., (2019), Southern California M 6.4 earthquake stressed by two large historic ruptures, Temblor, http://doi.org/10.32858/temblor.034

    A Magnitude 6.4 earthquake struck the remote southern California high desert today, a region which has been the site of several moderate earthquakes over the past 30 years (Hauksson and Unruh, 2007), and tends to exhibit swarm-like behavior. Based on its aftershocks, the quake appears to have ruptured two perpendicular faults, one right-lateral (whichever side you are on, the other moves to the right), and the other left lateral, as shown below.

    1
    Temblor app map of the mainshock and its first two hours of aftershock suggests that two orthogonal faults have ruptured together. The inferred sense of slip is represented by the half arrows.

    The Eastern California Shear Zone lights up

    The quake lies west of Searles Valley and east of Ridgecrest, near the Naval Air Warfare Center on China Lake. This is a region of diffuse shear and extension, as indicated by the myriad of small distributed faults, and is part of the so-called ‘Eastern California Shear Zone.’ It also lies close to a geothermally active region that heats and locally thins the crust. While the San Andreas is the major fault system that accommodates the Pacific-North America plate motion, the Eastern California Shear Zone plays a secondary role, and so, in fact, the plate boundary spans the entire girth of California.

    2
    The ‘Eastern California Shear Zone,’ within which the 4th July shock struck, rivals the San Andreas for great quakes, producing an M~7.6 shock in 1872, an M=7.3 shock in 1992, and an M=7.1 shock in 1999.

    Two quakes gang up in Ridgecrest

    We calculate that two large earthquakes, the 26 March 1872 M~7.6 Owens Valley shock, and the 29 June 1992 M=7.3 Landers shock, permanently imparted stress to the site of today’s shock, perhaps increasing the likelihood of earthquakes in this region over others.

    3
    The site of the July 4th shock was likely brought closer to failure in the 1872 M~7.6 shock. Notice that the (red) stress trigger zones of the this 148-year-old quake are all seismically active today, whereas the (blue) stress shadows are generally devoid of shocks.

    The more recent 1992 M 7.3 Landers shock was followed by the Ridgecrest earthquakes of M 5.4 in August 1995, and an M 5.8 in September 1995 (Hauksson et al., 1995). These earthquakes perhaps indicate that stress imparted by the Landers earthquake immediately brought this area closer to failure, and so the 1995 events might be regarded as remote aftershocks.

    4
    The 4th July earthquake lies at the northern edge of a stress trigger lobe of the 1992 Landers shock. Together, the 1872 and 1992 earthquakes increased the stress at the 4th July epicenter by about 0.25 bars, a small but significant amount.

    In 2005, Shinji Toda and his colleagues used the 1992 Landers stress changes and the pattern of seismicity to make a retrospective forecast of seismicity, below. The forecast is in red, the observed quakes that struck are in blue. Because of its voluminous background seismicity and the imparted stress, one can see that the site of the 4th July shock was indeed forecast for a high quake rate.

    5
    The 4th July quake struck where the background rate of shocks is high, and where stress was transferred by the 1992 earthquake.

    What’s Next?

    Our preliminary calculation, below, suggests that parts of the Garlock, Black Mountain, and Panamint Valley Faults were brought closer to failure by the 4th July quake. Fortunately, all of these are in remote, lightly populated regions.

    6
    Coulomb 3.3 calculation of stress transferred by the 4th July shock to the surrounding region and major faults. Here we use a simple source based on the moment tensor (geometry, sense of slip, and size) of the earthquake, as determined by the USGS.

    Citation: Stein, R. S., and Sevilgen, V., (2019), Southern California M 6.4 earthquake stressed by two large historic ruptures, Temblor, http://doi.org/10.32858/temblor.034

    References

    Egill Hauksson, Kate Hutton, Hiroo Kanamori, Lucile Jones, James Mori, Susan Hough, and Glenn Roquemore (1995), Preliminary Report on the 1995 Ridgecrest Earthquake Sequence in Eastern California, Seismological Research Letters, 66 (6), 54-60, doi.org/10.1785/gssrl.66.6.54

    Hauksson, E., and J. Unruh (2007), Regional tectonics of the Coso geothermal area along the intracontinental plate boundary in central eastern California: Three-dimensional Vp and Vp /Vs models, spatial-temporal seismicity patterns, and seismogenic deformation, J. Geophys. Res., 112, B06309, doi:10.1029/2006JB004721.

    Stein, R.S., Earthquake Conversations, Scientific American, vol. 288, 72-79, January issue, 2003. Republished in: Our Ever Changing Earth, Scientific American, Special Edition, v. 15 (2), 82-89, 2005.

    Toda, S., Stein, R. S., Richards-Dinger, K. & Bozkurt, S. Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer. J. Geophys. Res. 110, B05S16 (2005) https://doi.org/10.1029/2004JB003415

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project

    Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States
    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 1:38 pm on June 25, 2019 Permalink | Reply
    Tags: "Large earthquake on Japan’s west coast points to a profound shortcoming in the national seismic hazard model", , , , temblor   

    From temblor: “Large earthquake on Japan’s west coast points to a profound shortcoming in the national seismic hazard model” 

    1

    From temblor

    June 24, 2019
    Sara E. Pratt, M.A., M.S.
    @Geosciencesara

    On Tuesday, June 18, 2019, a magnitude-6.4 quake struck the west coast of Honshu along the eastern Sea of Japan. The quake was shallow — 12 kilometers (7.5 miles) deep — and only 6 kilometers (3.7 kilometers) offshore, according to the U.S. Geological Survey. Its proximity to the cities of Tsuruoka and Sakata, both of which have populations of about 100,000, meant many were exposed to shaking. No one was killed, 21 people were injured, and despite the shallow depth, infrastructure damage was minimal. But the quake was a reminder that this region has experienced several large inland quakes over the last 15 years, and could again. In fact, two magnitude-6.8 earthquakes struck near the hypocenter of this week’s quake in Niigata in 2004 and 2007. The 2004 Niigata-Chuetsu quake killed 40 people, injured 3,000 and damaged more than 6,000 homes, and the 2007 Niigata quake killed seven people, injured more than 830 and destroyed 500 houses.

    1
    In the hours that followed the June 18 Tsuruoka quake, aftershocks ranging from magnitude-2.7 to magnitude-4.1 were recorded around Yamagata and Niigata. Credit: HI-Net/NIED

    “The tectonic situation, epicenter offshore near the coast, and the size of the quakes are quite similar,” says Prof. Shinji Toda, a geophysicist at the International Research Institute of Disaster Science at Tohoku University who studies inland quakes.

    Crucially, the hazard of large earthquakes striking off the coasts of Yamagata and Niigata prefectures is being underestimated by Japan’s national earthquake hazard models, according to some seismologists.

    “The government is underestimating the probability of magnitude-7.5 to -7.8 events along the eastern Sea of Japan,” says Prof. Toda. “It misleads the general public [that] we will not have any large events near the coast of Yamagata and Niigata.”

    The June 18 thrust fault rupture (where the crust is being compressed horizontally) occurred on the eastern margin of the Sea of Japan in a seismic zone where numerous active faults accommodate the strain of east-west crustal shortening transmitted from the subduction of the Pacific Plate, says Prof. Toda.

    During the past 5-25 million years (the Miocene epoch), this region underwent ‘backarc’ extension (stretching), opening what is now the eastern Sea of Japan. Those tensional faults have now been reactivated, with their sense of slip reversed, as thrust faults. Thus, “the hazard of inland large quakes is always high,” Prof. Toda says.

    Although the country’s east coast, where the Pacific Plate subducts beneath the North American and Eurasian plates in the Japan Trench, is more prone to large thrust quakes like the March 2011 magnitude-9 Tohoku megathrust quake, the west coast of Japan also is quite seismically active, a fact that is not being adequately accounted for in Japan’s earthquake hazard model, says geophysicist and Temblor CEO Ross Stein.

    2
    When compared to Japan’s national earthquake model, the GEAR model indicates a higher rate of earthquake activity on the eastern margin of the Sea of Japan, with a significant lifetime likelihood of experiencing a magnitude-7 or -7.5 quake.

    Japan’s earthquake hazard models are released by the Japan Seismic Hazard Information Station (J-SHIS). The J-SHIS model uses inputs based on known faults, historical quakes and assumes fairly regular recurrence intervals. It has been criticized for underestimating the hazard of future the Tohoku quake, whose tsunami killed more than 18,000 people.

    Scientists and officials in “Japan have done their very best to create a model that they think reflects future earthquake occurrence based on the expectation of regularity in the size and recurrence behavior of earthquakes. They have also built in the expectation that the longer it’s been since the last large earthquake, the more likely the next one is,” Stein says.

    The J-SHIS model thus anticipates a strong likelihood that the next megaquake will occur in the Nankai Trough, off the southeast coast of Honshu, where two deadly magnitude-8.1 quakes struck in the 1940s. The 1944 Tōnankai and the 1946 Nankaidō quakes both triggered tsunamis and killed more than 1,200 and 1,400 people, respectively. “The Japanese model is putting all of its weight on this area, southeast of Tokyo and Nagoya,” Stein says.

    Another model, the Global Earthquake Activity Rate (GEAR) forecast, that was developed by a team from UCLA, University of Nevada Reno, and Temblor, and is used in the Temblor app, indicates that quakes on the west coast of Honshu could likely reach magnitude-7 or magnitude-7.5 in the typical resident’s lifetime.

    Unlike traditional earthquake hazard models, GEAR does not include active faults or historical earthquakes, which are not uniformly available around the globe. Instead, GEAR takes a global approach that uses only two factors: the stress that drives quakes (measured by GPS) and the events that release that stress, represented in the model by a complete global record of all quakes greater than magnitude-5.7 that have occurred over the past 40 years (from the Global CMT catalog).

    “What the GEAR model says is that the Tohoku coast is a lot more likely to produce a large earthquake than the Japan Sea side, but the Japan Sea side is still quite active,” Stein says. “It should produce large earthquakes and has.”

    Significant historical earthquakes in the shear zone along the eastern Sea of Japan include the 1964 magnitude-7.5 Niigata earthquake, the 1983 magnitude-7.7 Nihonkai-Chubu earthquake and the 1993 magnitude-7.8 Hokkaido-Nansei-Oki earthquake.

    References

    USGS Event Pages – https://earthquake.usgs.gov/earthquakes/eventpage/us600042fx/executive

    https://earthquake.usgs.gov/earthquakes/eventpage/us600042fx/pager

    Bird, P., D. D. Jackson, Y. Y. Kagan, C. Kreemer, and R. S. Stein (2015). GEAR1: A global earthquake activity rate model constructed from geodetic strain rates and smoothed seismicity, Bull. Seismol. Soc. Am. 105, no. 5, 2538–2554.

    Toda and Enescu, (2011). Rate/state Coulomb stress transfer model for the CSEP Japan seismicity forecast. Earth, Planetary and Science, 63: 2. https://doi.org/10.5047/eps.2011.01.004 https://link.springer.com/article/10.5047/eps.2011.01.004

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project

    Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States
    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 10:48 am on June 6, 2019 Permalink | Reply
    Tags: A unique opportunity to drill and instrument the seismogenic zone of large megathrust earthquakes, , , , , , , temblor   

    From temblor: “Osa Peninsula, Costa Rica: A unique opportunity to drill and instrument the seismogenic zone of large megathrust earthquakes” 

    1

    From temblor

    June 4, 2019
    Jason Patton

    1
    The past month of earthquakes in Costa Rica with boundaries show that the Osa peninsula is unusually close to the Middle America Trench, and has a very high quake rate.

    A unique opportunity exists on the Osa peninsula, in southern Costa Rica to drill and instrument a locked but mature segment of the Middle America Subduction Zone. This section of the Middle America Subduction Zone has suffered large (Mw=7.2-7.4) earthquakes in 1853, 1904, 1941 and 1983. With an average recurrence interval of roughly 40 years, the timing is now right to drill, instrument and record data of unrivalled importance before, during and after the next megathrust earthquake in this region. Because the subduction of young, rejuvenated and thickened lithosphere, the megathrust surface is unusually shallow. As a consequence, the plate interface beneath the peninsula lies just 4-8 km beneath land. This shallow depth and record of large quakes makes drilling possible and instrumentation fruitful.

    2
    Cross-section with no vertical exaggeration showing the close proximity of the Osa peninsula to the megathrust surface of the Cocos Plate.

    Geodetic observations indicate that the subduction interface is locked beneath the peninsula (Kobayashi et al., 2014) (Figure 3). The surface geology has been mapped to a large extent based on continuous shoreline exposures and observations in bedrock rivers that incise in response to rapid uplift. These uplift rates have been quantified for the Quaternary (the past million years) using marine terraces and their associated sedimentary cover. A series of trench-parallel, landward-dipping reverse faults have been mapped on the peninsula, which could represent splay faults and fluid conduits, similar to those imaged offshore Nankai, Japan, site of a great earthquake sequence in 1944-1946. All of this makes the Osa Peninsula an ideal site to compare with very important results that are currently obtained in the Nankai Trough. Since the trench is only 15-30 km from the SW coastline of Osa Peninsula, submarine cables with seafloor instrumentation, power and data transmission can be deployed and tight to borehole instrumentation, at a much lower cost than in other subduction zones.

    Drilling and instrumenting the hole with seismometers, strainmeters, tiltmeters, fluid samplers and fluid flow meters, among other instruments, would establish the relationship between surface geology, subsurface, upper plate structure, surface deformation and the characteristics of the locked interface. We noted that there are signals only detectable by borehole observatories. The integration of these datasets would be an unprecedented opportunity to relate continuous processes such as strain accumulation and seismic slip with the longer-term evolution of the margin that manifests as upper plate deformation, and permanent uplift. This will be a chance to contribute to the international efforts carried out all over the world, as part of a global network of observatories to understand the genesis of large and destructive earthquakes, to help estimate the seismic hazards and therefore contribute to the reduction of their potential damage.

    Large efforts have been invested in trying to drill to the source of large subduction earthquakes. Since most of these seismogenic zones are located offshore and deeper than current ‘non-riser’ and ‘riser’ drilling technology, very few subduction zone candidates exist where this goal can be achieved. Even at these offshore locations, the cost and time required to drill them are extremely large. Furthermore, strong ocean currents can cause an interruption in drilling operations for a large part of the year and therefore require the drilling vessel to transit to the site many times, which further increases the cost. On the other hand, drilling a 6-8 km hole on land would cost roughly $10-$30 million USD and could be completed in less than 6 months.

    We welcome inquiries from scientists and institutions for such an ambitious yet discounted project. Resources from ICDP, national funding agencies, and potentially other foundations could be leveraged to take advantage of this unique tectonic and temporal opportunity.

    References:

    Bangs, N. L., K. D. McIntosh, E. A. Silver, J. W. Kluesner, and C. R. Ranero (2015), Fluid accumulation along the Costa Rica subduction thrust and development of the seismogenic zone, J. Geophys. Res. Solid Earth, 120, 67–86, doi:10.1002/2014JB011265.

    Kobayashi, D., P. LaFemina, H. Geirsson, E. Chichaco, A. A. Abrego, H. Mora, and E. Camacho (2014), Kinematics of the western Caribbean: Collision of the Cocos Ridge and upper plate deformation, Geochem. Geophys. Geosyst., 15, 1671–1683, doi:10.1002/2014GC005234.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project

    Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States
    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 10:15 am on June 3, 2019 Permalink | Reply
    Tags: "El Salvador Earthquake: A Moderate Event in An Area of Extreme Seismic Risk", , , , , , temblor   

    From temblor: “El Salvador Earthquake: A Moderate Event in An Area of Extreme Seismic Risk” 

    1

    From temblor

    Posted on June 1, 2019 by Tiegan Hobbs
    Tiegan Hobbs, Ph.D., Postdoctoral Hazard Scientist (@THobbsGeo), and Ross S. Stein, Ph.D., Temblor, Inc.

    Because of its offshore location and moderate depth, Thursday’s shock did little damage. But many indications suggest that El Salvador will not stay so lucky for long. This event also highlights the increasing number of large extensional earthquakes: a global trend with important hazard implications.

    1
    A photo by Twitter user Daniel (@dfvegacom) showing the calm after the earthquake in El Salvador.

    At 03:03 am local time on Thursday morning, a strong earthquake ruptured off the west coast of El Salvador on the Pacific side of Central America. It was felt in southern Mexico, Guatemala, Honduras, Nicaragua, and Costa Rica, with a maximum reported intensity of about Level VI (strong shaking). The quake awakened many residents of the nearby city of La Libertad, less than an hour’s drive south of the capital city of San Salvador. But fortunately, the shaking is likely to damage only poorly built structures. Because of its moderate depth and offshore location, no tsunami was produced and little liquefaction or land-sliding is expected.

    2
    Thursday’s M 6.6 earthquake just off the coast of El Salvador was felt in surrounding countries: Mexico, Guatemala, Nicaragua, and Costa Rica.

    Waiting For El Salvador’s ‘Big One’ in the Red Zone

    While this event has no reported damage or injuries so far, El Salvador has among the highest seismic risks in the world. What does that mean, exactly? Hazard refers to the probability of earthquakes occurring, but risk refers to the likelihood of suffering losses from that hazardous event. Both El Salvador and Guatemala are recognized by the Global Earthquake Model Foundation as having a very high potential for losses due to a high likelihood of earthquakes occurring compounded by buildings and population centers that are highly susceptible to damage. So, this week’s earthquake was a gentle reminder of what could be in store for this small country.

    3
    The Global Earthquake Model Foundation assesses seismic risk around the world. El Salvador and Guatemala are both ominously high. (Silva et al., 2018)

    Two Deep Tensional Earthquakes in One Week

    As with the M=8.0 Peru earthquake from earlier this week, Thursday’s M=6.6 El Salvador earthquake was also a relatively deep tensional rupture. That means it occurs within the subducting slab, rather than on the interface between the slab and the over-riding continental plate. In this part of Central America, tensional events occur relatively frequently at this depth range (Correa-Mora et al., 2009). This includes a M=7.3 in 1982 and M=7.7 in 2001, which, combined, killed almost 2,000 people.

    Conflicting views of seismic hazard in Central America

    Although the GEM model and the Global Earthquake Activity Rate model (Bird et al., 2015), used by Temblor and shown in the first figure, both suggest high risk for El Salvador and Guatemala, Correa-Mora et al., (2009) argue that the subduction zone in this region may be too ‘weak’ (slippery) to generate large megathrust earthquakes. These are the kinds of events that are usually associated with great damage, and which can generate tsunami if they occur near the ocean floor. Correa-Mora and coauthors suggested that although there is a great deal of energy being released through earthquakes in the subduction zone region here, they are probably mostly from these tensional events. Nevertheless, earthquakes can be deadly regardless of their mechanism. The 1556 Huaxian earthquake in China occurred in an extensional rift environment, and yet it is the single deadliest earthquake on record, claiming 830,000 lives (Liu et al., 2011).

    Is the Rate of Large Global Tensional Earthquakes Growing?

    In addition to this week’s two major extensional (also called ‘normal’ or tensional) earthquakes, the last couple of years have seen other strong tensional events: the September 2017 M=7.1 Puebla earthquake in Mexico City, the November 2018 M=7.1 Anchorage earthquake in Alaska, and the February 2019 M=7.5 Ecuador earthquake. But is the apparent increase in extensional events real?

    4
    A map of tensional earthquakes with magnitude 7 and above, since 2005. They are distributed mainly in the ‘Ring of Fire, around the Pacific Ocean. Mapped using GeoMapApp.

    Generally speaking, we detect more earthquakes with time because networks, detection algorithms, and computing power are all improving. However, the number of large extensional events appears to increase with time at a greater rate than either thrust events or combined thrust and strike-slip events. The rate of increase is 0.01 magnitude units per year when normalized to all non-extensional earthquakes, and 0.02 when compared to only thrust events. This means that (1) there are more large tensional earthquakes than there were before, and (2) the occurrence of thrust events is actually decreasing slightly.

    6
    9

    The proportion of normal events is increasing with time. The ratio of extensional events to all other types of events (top) and to only thrust events (bottom), inclusive from 1976-2018 (Global CMT Project). Only M>7 earthquakes considered. The lines show a linear regression (fitting), with the corresponding equations and regression coefficients in the top left. A clear upward trend is observed, although a larger increase is occurring relative to thrust events. This means that the rate of large thrust events is actually decreasing with time.

    It’s possible that, because extensional earthquakes are sometimes quite deep, this apparent increased frequency of extensional events is just due to improved seismic networks. Additional work will be required to determine how compelling this result is. However, if it is real then it is astounding! These events occur because the subducting slab is being pulled apart as it is dragged into the mantle by suction. Is that suction force increasing with time, or does it oscillate? We know that great megathrust earthquakes (Ben-Naim et al., 2013) and strike-slip events (Pollitz et al., 2012) can tend to be clustered in time – perhaps the same is true for extensional intraslab events?

    Aftershocks in Unexpected Places

    7
    The initial aftershocks of the M=6.6 event lie 30-40 km southwest of the mainshock.

    Although Thursday’s M=6.6 earthquake off El Salvador was too far away to have been caused by Sunday’s M=8.0 event in Peru, the El Salvador event did produce its own remarkable aftershock sequence. Early aftershocks are concentrated to the southwest of the mainshock, roughly 30 km away, at a depth of about 35 km. Usually, aftershocks are distributed around the edge of the region that slipped during the mainshock, rather than being clustered in only one direction. This may be due to the rupture propagating (unzipping) towards the southwest, concentrating seismic energy in that direction, or possibly related to a tear or bump in the subducting slab that makes this region more susceptible. By studying cases like this one, scientists can better understand where and when aftershocks will strike in the aftermath of much larger earthquakes.

    References

    Ben‐Naim, E., Daub, E. G., & Johnson, P. A. (2013). Recurrence statistics of great earthquakes. Geophysical Research Letters, 40(12), 3021-3025.

    Bird, P., Jackson, D. D., Kagan, Y. Y., Kreemer, C. & Stein, R. S. (2015). GEAR1: A Global Earthquake Activity Rate Model Constructed from Geodetic Strain Rates and Smoothed Seismicity. Bull Seis. Soc. Am.105(5), 2538-2554.

    Correa-Mora, F., DeMets, C., Alvarado, D., Turner, H. L., Mattioli, G., Hernandez, D., … & Tenorio, C. (2009). GPS-derived coupling estimates for the Central America subduction zone and volcanic arc faults: El Salvador, Honduras and Nicaragua. Geophysical Journal International, 179(3), 1279-1291.

    Liu, M., Stein, S., & Wang, H. (2011). 2000 years of migrating earthquakes in North China: How earthquakes in midcontinents differ from those at plate boundaries. Lithosphere, 3(2), 128-132.

    Pollitz, F. F., Stein, R. S., Sevilgen, V., & Bürgmann, R. (2012). The 11 April 2012 east Indian Ocean earthquake triggered large aftershocks worldwide. Nature, 490(7419), 250.

    V. Silva, D. Amo-Oduro, A. Calderon, J. Dabbeek, V. Despotaki, L. Martins, A. Rao, M. Simionato, D. Viganò, C. Yepes, A. Acevedo, N. Horspool, H. Crowley, K. Jaiswal, M. Journeay, M. Pittore (2018). Global Earthquake Model (GEM) Seismic Risk Map (version 2018.1). DOI: 10.13117/GEM-GLOBAL-SEISMIC-RISK-MAP-2018.1, https://maps.openquake.org/map/global-seismic-risk-map/

    GEM Profile for El Salvador: https://downloads.openquake.org/countryprofiles/SLV.pdf

    USGS Event Pages

    https://earthquake.usgs.gov/earthquakes/eventpage/us70003t2n

    https://earthquake.usgs.gov/earthquakes/eventpage/us2000ar20/

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project

    Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States
    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 9:17 am on May 29, 2019 Permalink | Reply
    Tags: A magnitude-8.0 quake shook deep below the Amazon Rainforest in Peru causing extensive liquefaction and shaking from Colombia to Chile., , , , temblor   

    From temblor: “Deep earthquake in Peru is felt along the length of South America: More to follow?” 

    1

    From temblor

    May 28, 2019
    Tiegan Hobbs, Ph.D., Postdoctoral Seismic Risk Scientist (@THobbsGeo)

    A magnitude-8.0 quake shook deep below the Amazon Rainforest in Peru, causing extensive liquefaction and shaking from Colombia to Chile.

    A powerful Mw 8.0 earthquake shook Peru at 2:41 a.m. local time on Sunday, May 26, 2019, from an epicenter within the Reserva Nacional Pacaya-Samiria of the Amazon Rainforest. Although it was felt from Colombia to Chile, this deep event (about 110 kilometers) did not generate a tsunami and only two casualties have been reported (AP). At least 26 people are injured in Peru and Ecuador. Casualties were limited due to the remote location of the epicenter and the depth of the quake.

    1
    The 26 May 2019 M=8.0 event was slightly larger and about 440 kilometers to the southeast of a M=7.5 earthquake that occurred in Ecuador on 22 Feb 2019.

    Damage and liquefaction expected in the Amazon.

    2
    This map, produced by the United States Geological Survey, shows estimated Mercalli shaking intensity (colored contour lines from maximum of orange level VIII) and liquefaction probability (colored contours with maximum dark purple representing a greater than 20% chance of liquefaction).

    The United States Geological Survey (USGS) now routinely produces maps of probable landslide and liquefaction. According to the shaking and topography of the area, this event is predicted to cause widespread and/or severe liquefaction affecting approximately 74,000 people. It is not predicted to cause an extensive landslide, though aerial surveys showed at least one landslide in the jungle.

    3
    Road damage in the Cajamarca Region from Twitter (@Crisanris).

    Peru resident Cristina Andrade (@crisanris) reported road damage due to ground displacements from this event and aerial photography shows a landslide in the lush jungles of this region (Reuters). Little information has emerged about the extent of the destruction, despite incoming footage from the firefighters of Peru (@BomberosPE) showing rubble lining the streets of Yurimaguas, the town nearest the epicenter, in Alto Amazonas. Emergency teams and politicians have been converging on the affected areas to lead the response.

    4
    Landslide as a result of Sunday’s earthquake, as reported to Reuters (@Univ_inenglish).

    Not the first deep earthquake in this area

    Events like this one, which occur deep within Earth’s crust and rupture under extensional forces, are different than usual subduction zone earthquakes. This earthquake occurred entirely within the subducting Nazca Plate, which is being pulled apart as it is sucked deeper into Earth’s mantle. We call this type of earthquake an “intraplate event: occurring within the plate. More often, subduction zone earthquakes are “interplate” events, in which earthquakes occur on the boundary between two plates. These events, like the 2016 M=7.8 earthquake in Pedernales, Ecuador (http://temblor.net/earthquake-insights/ecuador-earthquakes-what-happened-and-what-is-next-986/), tend to be shallower and therefore are closer to population centers and the ocean floor. They’re thus more likely to cause tsunamis and significant damage.

    5
    This figure, modified from Leyton et al., 2009, shows the difference between interplate events, which occur between two plates, and intraplate events, like Sunday’s Mw 8.0 event in Peru.

    Questions may arise as to whether Sunday’s Mw 8.0 earthquake in Peru was related to a February Mw 7.5 event in Ecuador. That event was also a deep, extensional intraplate quake. While these two earthquakes were very similar and happened within a few months of one another, they were upwards of 400 kilometers apart. Therefore, the static stress change from the February event was too small to have triggered Sunday’s event.

    Sunday’s quake, like most deep earthquakes, is likely to be relatively depleted in aftershocks [e.g. Wiens & McGuire, 1995]. So far, no events with magnitude greater than 2.5 have been reported by the USGS for that area.

    References

    pic.twitter.com/miV5ak8Gf6

    pic.twitter.com/3bFW9JqfE9

    USGS Event Pages

    https://earthquake.usgs.gov/earthquakes/eventpage/us60003sc0/executive

    (https://earthquake.usgs.gov/earthquakes/eventpage/us60003sc0/ground-failure/summary

    https://earthquake.usgs.gov/earthquakes/eventpage/us2000jlfv/executive

    Leyton, F., Ruiz, J., Campos, J., & Kausel, E. (2009). Intraplate and interplate earthquakes in Chilean subduction zone: A theoretical and observational comparison. Physics of the Earth and Planetary interiors, 175(1-2), 37-46.

    Wiens, D. A., & McGuire, J. J. (1995). The 1994 Bolivia and Tonga events: Fundamentally different types of deep earthquakes?. Geophysical research letters, 22(16), 2245-2248.

    Other News Sources

    https://www.eluniversal.com.mx/english/magnitude-8-earthquake-hits-peru (Reuters)

    https://www.apnews.com/3b12f5abea604f19a5ad36d700d090b1 (AP)

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project

    Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States
    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 1:47 pm on May 20, 2019 Permalink | Reply
    Tags: , Large Earthquake in Papua New Guinea re-ruptures major fault in just 19 years: More to follow?, , , temblor   

    From temblor: “Large Earthquake in Papua New Guinea re-ruptures major fault in just 19 years: More to follow?” 

    1

    From temblor

    May 19, 2019
    Tiegan Hobbs, Ph.D., Postdoctoral Seismic Risk Scientist at Natural Resources Canada (@THobbsGeo)

    A magnitude-7.5 quake broke the same fault that produced a magnitude-8.0 quake in 2000, an extraordinarily short recurrence time that also broke all our rules.

    A major earthquake struck eastern Papua New Guinea (PNG) on Tuesday, May 14th at 22:58 local time. No injuries have been reported, although shaking from this Mw 7.5 earthquake was felt up to 250 km (150 mi) away from the epicenter. The maximum shaking intensity (the so-called ‘Modified Mercalli level VII’) would have been sufficient to cause considerable damage in poorly built houses which are common in the region.

    1
    Map showing the location of the 14 May 2019 Mw 7.5 Papua New Guinea Earthquake, as well as the M=7.1 quake on the other side of the country, which struck just a week beforehand.

    According to Dr. Baptiste Gombert, postdoctoral researcher at Oxford University, the event “occurred on the left-lateral Weitin fault [WF in the map below], a major structure of the New Ireland”. ‘Left-lateral’ means that whatever side you are on, the other side moved to the left. This fault marks the boundary between the North and South Bismarck microplates.

    Beyond the Weitin Fault, this region has “every type of plate boundary” according to Dr. Jason Patton from the California Geological Survey and Adjunct Professor at Humboldt State University. For example, compression and shear between the Pacific and Australian Plates results in subduction along the New Britain Trench, rifting in the Woodlark Basin in addition to the observed strike-slip activity in the area of Tuesday’s quake.

    2
    Modified from Holm et al., [2019], this map shows the regional tectonics. Looking like broken shards of glass, there is a complex interaction of possibly inactive subduction from the north and south, along with rifting, subduction, thrusting, and strike slip faults in between. The USGS moment tensor (beachball) from Tuesday’s Mw 7.5 event (blue star) suggests left-lateral motion on the Weitin Fault between the North and South Bismarck Plates. The event rattled residents of New Ireland (NI), the elongate island through which the Weitin Fault runs.

    First Ever Measurement of Onshore Repeated Rupture

    What makes this event so exciting, though, is that it’s not the first major earthquake in this location. A Mw 8.0 event in the year 2000 resulted in up to 11 m of slip along a 275-km-long (165 mi) fault, with 20 aftershocks with magnitude greater than 5 [Tregoning et al., 2001]. The proximity of this week’s hypocenter to the larger quake 19 years ago had Dr. Sotiris Valkaniotis, geological consultant, wondering if they ruptured the same portion of the fault. With some quick work processing satellite imagery, Dr. Valkaniotis produced what is believed to be the first recording of repeated on-land rupture of a fault.

    ________________________________________

    And we have slip! Co-seismic displacement on Weitin Fault, New Ireland, #PNG after the strong M7.5 May 15 2019 #earthquake. Displacement analysis from optical image correlation using #Sentinel2 images from @CopernicusEU and #MicMac. Repeat rupture on the same fault as 2000! pic.twitter.com/5PFZdfOdPj

    — Sotiris Valkaniotis (@SotisValkan) May 16, 2019
    ________________________________________

    The figure in the above tweet, reproduced below, shows several meters of offset across the fault for both earthquakes. It’s preliminary, but it suggests that this fault is extremely active. For reference, Dr. Gombert describes the Weitin Fault as having a strain rate that is approximately 4 times that of the San Andreas in California. That’s important, because it presents a rare opportunity to study an entire seismic cycle from one large earthquake to the next in under 20 years—which appears to be unprecedented. These observations could help answer important questions about whether earthquakes repeatedly rupture the same patch, and what tends to initiate these events. In many places, such as the Cascadia Subduction Zone with its roughly 500-year recurrence period, this is simply not possible.

    3
    Surface displacements in the North-South direction for the most recent Mw 7.5 event and the 2000 Mw 8.0 event on the Weitin Fault. Measurements made using optical correlation of Sentinel-2 and Landsat-7 satellite data.

    2000 Mw 8.0 Event Triggered Large Nearby Earthquakes

    Within 40 hours of the 16 November 2000 earthquake on the Weitin Fault, which was itself preceded by a 29 October 2000 Mw 6.8 foreshock, two events of magnitude 7.4 and 7.5 were recorded nearby [Park & Mori, 2007]. The events were found to be consistent with static stress triggering from the mainshock, and with a previous observation of Lay and Kanamori [1980] that earthquakes in this part of the world tend to occur in doublets: two large mainshocks that are close in space and time rather than the typical mainshock-aftershock sequence. It begs the question “will there be more?”

    Triggering of Aftershocks From This Sequence?

    Three strong aftershocks have so far struck near the mainshock: two Mw 5.0 events on Tuesday May 14th and Thursday May 16th, and a Mw 6.0 on Friday May 17th. Although we don’t yet know the type of faulting that occurred in these events, we can evaluate how the Mw 7.5 mainshock may have promoted them. A Coulomb Stress calculation shows that the epicentral locations of these events experienced stress loading of 112, 4, and 2 bars, respectively, assuming a similar fault geometry. This is well in excess of a 1 bar triggering threshold, suggesting that all three of these fault locations were brought closer to failure by the mainshock. In the map below, regions of red shading indicate areas prone to aftershocks – extending along an over 100 km swath of New Ireland. Given that the previous event in 2000 was able to trigger relatively large earthquakes on the Weitin [Geist and Parsons, 2005], the coming days and weeks could bring more large events to the region.

    Without doubt, the data from this earthquake sequence will illuminate the stress evolution of this rapidly straining strike-slip fault and serve as a helpful natural laboratory for understanding similar strike-slip systems which are slower to reveal their mysteries.

    5
    Stress change caused by the 14 May 2019 mainshock (green star), for faults with similar orientation. Red indicates areas of positive Coulomb stress change (up to 5 bars), and cyan shows regions with negative stress change (to -5 bars). The two Mw 5.0 and one Mw 6.0 aftershocks (white diamonds) experienced Coulomb stress loading upwards of the triggering threshold.

    Tsunami Warnings for Papua New Guinea and the Solomon Islands

    Strike-slip faults, like the Weitin and the San Andreas in California, generate dominantly horizontal motions, and so are fortunately unlikely to launch large tsunami unless they trigger undersea landslides. Some 9 minutes after the earthquake started, the Pacific Tsunami Warning Center assessed a tsunami threat for regions within 1000 km of the quake: mainly Papua New Guinea and the Solomon Islands. The threat was called off within about an hour and a half, with wave heights reaching less than 0.3 m (about a foot).

    It is important to remember in the coming days and weeks, however, that aftershocks are also capable of producing dangerous tsunami. Following the Mw 8.0 New Ireland earthquake on the same fault in 2000, runups from the mainshock and triggered aftershocks were greater than 3 meters (9 feet) in some locations [Geist and Parsons, 2005]. This was partly due to the thrust mechanism of the aftershocks, which causes greater vertical displacement and therefore larger potential for tsunami. Because many populations in this region live close to the coast, the safest strategy is self-evacuation. This means that if you feel shaking that is strong or long, head to high ground without waiting to be told.

    Read More:

    USGS reports

    https://earthquake.usgs.gov/earthquakes/eventpage/us70003kyy/executive

    https://earthquake.usgs.gov/earthquakes/eventpage/us70003l05/executive

    https://earthquake.usgs.gov/earthquakes/eventpage/usd000a1im/executive

    https://earthquake.usgs.gov/earthquakes/eventpage/us70003mus/executive

    Tsunami warnings

    https://www.tsunami.gov/events/PHEB/2019/05/14/19134000/1/WEPA40/WEPA40.txt

    https://www.tsunami.gov/events/PHEB/2019/05/14/19134000/3/WEPA40/WEPA40.txt

    Social Media:

    https://twitter.com/SotisValkan/status/1129069849131401216 (imagery based surface displacement measurement comparison)

    Geist, E. L., & Parsons, T. (2005). Triggering of tsunamigenic aftershocks from large strike‐slip earthquakes: Analysis of the November 2000 New Ireland earthquake sequence. Geochemistry, Geophysics, Geosystems, 6(10).

    Holm, R. J., Tapster, S., Jelsma, H. A., Rosenbaum, G., & Mark, D. F. (2019). Tectonic evolution and copper-gold metallogenesis of the Papua New Guinea and Solomon Islands region. Ore Geology Reviews, 104, 208-226.

    Lay, T., & Kanamori, H. (1980). Earthquake doublets in the Solomon Islands. Physics of the Earth and Planetary Interiors, 21(4), 283-304.

    Park, S. C., & Mori, J. (2007). Triggering of earthquakes during the 2000 Papua New Guinea earthquake sequence. Journal of Geophysical Research: Solid Earth, 112(B3).

    Tregoning, P., McQueen, H., Lambeck, K., Stanaway, R., Saunders, S., Itikarai, I., Nohou, J., Curley, B., Suat, J. (2001). Progress Report on Geodetic Monitoring of the November 16, 2000 – New Ireland Earthquake. Australian National University, Research School of Earth Sciences, Special Report 2001/3. http://rses.anu.edu.au/geodynamics/tregoning/RSES_SR_2001-3.pdf

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project

    Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States
    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 10:58 am on May 15, 2019 Permalink | Reply
    Tags: "Two damaging tremors highlight the Philippines’ coast-to-coast earthquake problem", 100% of the Philippines is earthquake country., A tragedy and a success story that followed, , , , temblor, The first quake was a near-miss of Manilla, The mysterious Philippine Trench, Unlike California   

    From temblor: “Two damaging tremors highlight the Philippines’ coast-to-coast earthquake problem” 

    1

    From temblor

    May 9, 2019
    Chris Rollins, Ph.D.
    Michigan State University

    Unlike California, 100% of the Philippines is earthquake country. Two damaging and deadly earthquakes late last month served as a reminder of this.
    1
    The 22 and 23 April 2019 Philippines earthquakes against a backdrop of the past month of M≥4.5 shocks, which strike on the many active faults that lace—and formed—the archipelago. At the locations of last month’s quakes, the earthquake magnitude likely in one’s lifetime is over M=7, or about 10-20 times larger than the quakes recently experienced.

    The first quake was a near-miss of Manilla

    On April 22 just after 5 PM local time, a magnitude 6.1 earthquake struck less than 85 km (50 mi) from the Philippine capital of Manila, in the provinces of Zambales and Pampanga on the northern island of Luzon. In footage that went viral around the world (link), the shaking ejected water out of a rooftop swimming pool atop a Manila skyscraper. But back on Earth, the earthquake killed 18 people and caused widespread damage in the epicentral region. Although the epicenter was in Zambales, shaking intensities and damage were worse in neighboring Pampanga, much of which sits on soft sediments that amplify shaking, as reported by the Philippine Institute of Volcanology and Seismology (PHIVOLCS). This is a recurring theme in earthquake hazard: we typically settle near water, often on unconsolidated sediments recently deposited by water flow. This is a good call except when an earthquake strikes.

    2
    Damage in the April 22 M=6.1 earthquake. Photo courtesy of Al Jazeera.

    Luzon is no stranger to earthquakes, as it is surrounded on the west and east by subduction trenches and sliced down the middle by the Philippine Fault, a major left-lateral strike-slip fault (whichever side you are on, the other side has moved to the left), with about the same character and slip rate as the San Andreas Fault. The fault likely partners with the subduction zones to accommodate different components of the regional tectonic strain in a “slip partitioning” system.

    3
    The left-lateral Philippine Fault and right-lateral San Andreas Fault are remarkably similar. They have the same slip rate (~25 mm/yr or 1 in/yr), length, straightness, secondary faults, and each has a history of strong, damaging earthquakes. The Temblor Earthquake Score for San Francisco is 77; in Manila, the Philippine capital, it is 88. Manila is the most densely populated city in the world (12 million residents in the metropolitan area, 22 million in the greater urban area).

    A tragedy and a success story that followed

    In 1990, the Philippine Fault ruptured in a M=7.7 strike-slip earthquake that killed over 1,600 people on Luzon. That earthquake – which provides a possible parallel for future earthquakes on the San Andreas and other strike-slip faults around the world – also appears to have squeezed the magma chamber feeding nearby Mt. Pinatubo and hastened its catastrophic 1991 eruption, the second largest of the 20th century. The volcano reawakened immediately after the M=7.7 shock, and then steadily increased in seismicity and steam eruptions until PHIVOLCS and the USGS jointly announced a likely eruption and called for imminent evacuations. Twelve hours later, Pinatubo erupted, with the warning having saved thousands of lives. This was one of science, collaboration, and diplomacy’s finest hours. It is an ideal we continue to strive for today.

    4
    Many of the famous photos of the 1991 Pinatubo eruption show a textbook mushroom cloud – and are actually from a comparatively minor eruption three days before the cataclysmic VEI 6 finale. This photo, courtesy USGS, is of the finale.

    For its part, the earthquake on April 22 appears to have struck on a strike-slip fault parallel to, but well to the west of, the Philippine Fault. It did strike only 15 km (10 mi) from Pinatubo, so it could conceivably have been influenced by magmatic activity there. The reverse is unlikely, however: PHIVOLCS reported no sign of increased activity at Pinatubo after April 22.

    The mysterious Philippine Trench

    That’s more than enough tectonic unrest for one country (particularly one undergoing rapid development in the early 21st century), but it’s only one piece of the story in the Philippines. On the east side of the country lies the Philippine Trench, along which the Philippine Sea Plate is subducting westward beneath the archipelago. The Philippine Sea Plate’s motion is notoriously difficult to constrain because it is a fully “oceanic plate” with few islands on which to place GPS receivers to track its motion. Further, all of its boundaries are subduction zones, a rarity. But the convergence rate along the Philippine Trench probably exceeds 10 cm/yr (4 in/yr), faster than those in Japan and Alaska, and about three times faster than the Cascadia subduction zone in the Pacific Northwest. This means that the earthquake loading process is very rapid, and so great quakes should be frequent.

    5
    Damage in the April 23 M=6.5 Visayas earthquake, courtesy of CNN.

    The Philippine Trench has produced a handful of M>7 earthquakes in the 20th century, and on April 23, it ruptured in a M=6.4 thrust earthquake beneath the island of Samar. This followed on the heels of the April 22 quake in Luzon by less than 24 hours, and although 48 people were injured, fortunately no one was killed. The April 23 quake occurred at around 45 kilometers (25 miles) depth, which may have resulted in milder shaking than had it struck closer to the surface. (This may also have been true in the 2018 M=7.1 Anchorage, Alaska earthquake, which was a different kind but also occurred at 45 km depth and resulted in no deaths).

    Was the second quake triggered by the first?

    With two M>6 earthquakes striking in less than 24 hours, were they connected in some way? There are two ways this could work: 1) static stress transfer, via the bending of the Earth in the April 22 event, or 2) dynamic triggering, where the waves from the April 22 M=6.1 event bump the April 23 fault towards failure. We can rule out static stress transfer: the two earthquakes occurred 575 km apart (350 miles, the distance from LA to San Francisco), well outside the range of significant stress change from a M=6.1 earthquake. Dynamic triggering is more elusive: the waves from the April 22 event were not felt more than 100 km (60 miles) away, one-sixth of the interevent distance; but the 1992 M=7.3 Landers, California earthquake and the 2002 M=7.9 Denali Fault earthquake did trigger seismicity at much greater distances.

    A ‘smoking gun’ for this case would be if there was an uptick in seismicity or creep on the April 23 fault immediately after the waves from the April 22 event passed. This is difficult to pin down both because the April 23 event was rather deep and because it struck beneath the rugged and sparsely populated center of Samar, where the growing PHIVOLCS seismic network is understandably still sparse. Remember, though, that the April 23 event occurred in a stress regime featuring a subducting plate coming in faster than those in Japan and Alaska. That could generate an earthquake anytime, especially a M=6.4, and history shows that it does.

    The pair is reminiscent of the much larger recent pair in Mexico: The 2017 M=8.2 Tehuantepec shock was followed 12 days later and 600 km away by the M=7.2 Puebla shock, which felled 38 buildings in Mexico City. In previous work, we found that it is unlikely that the two were causally related. The time difference in the Philippines case is much shorter, but quake rates there are much higher, and so the probability of a link seems similarly low. PHIVOLCS came to the same conclusion, and in a timely manner, immediately after the second quake.

    6
    Earthquakes and faults line all sides of the Philippines. Figure from Wong et al. [2014].

    More to come

    These two earthquakes served as a reminder that the tectonic strain and the seismic hazard in the Philippines come from all sides, and fast. The Cotabato Trench to the south produced the Philippines’ deadliest earthquake in 1976, and the Manila Trench to the northwest poses a tsunami hazard to southeast Asia, coastal China and Hong Kong. The country is at risk.

    References

    Bautista, B.C., Bautista, L.P., Barcelona, E.S., Punongbayan, R.S., Laguerta, E.P., Rasdas, A.R., Ambubuyong, G., Amin, E.Q., and Stein, R.S. (1996), Relationship of regional and local structures to Mount Pinatubo activity, in R. S. Punongbayan and C. G. Newhall (Eds.), The 1991-1992 eruption of mount Pinatubo, Philippines, 351-370.

    Hill, D.P., et al. (1993), Seismicity Remotely Triggered by the Magnitude 7.3 Landers, California Earthquake, Science 260(5114), https://science.sciencemag.org/content/260/5114/1617.

    Prejean, S.G., Hill, D.P., Brodsky, E.E., Hough, S.E., Johnston, M.J.S., Malone, S.D., Oppenheimer, D.H., Pitt, A.M., and Richards-Dinger, K. B. (2004), Remotely Triggered Seismicity on the United States West Coast Following the Mw7.9 Denali Fault Earthquake, Bull. Seis. Soc. Am., 94(6B), https://doi.org/10.1785/0120040610.

    Smoczyk, G., Hayes, G., Hamburger, M., Benz, H., Villasenor, A., and Furlong, K. (2010), Seismicity of the Earth 1900-2012: Philippine Sea Plate and Vicinity, USGS Open-File Report 2010-1083, https://doi.org/10.3133/ofr20101083M.

    Wong, I., Dawson, T., and Dober, M. (2014), Evaluating the Seismic Hazards in Metro Manila, Philippines, 14th World Conference on Earthquake Engineering (14WCEE).

    Ye, L., Lay, T., and Kanamori, H. (2012), Intraplate and interplate faulting interactions during the August 31, 2012, Philippine Trench earthquake (Mw 7.6) sequence, Geophys. Res. Lett., 39, L24310, doi:10.1029/2012GL054164.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project

    Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States
    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
  • richardmitnick 9:15 am on April 30, 2019 Permalink | Reply
    Tags: "Ten times more earthquakes now detected in Southern California", , , , , , temblor   

    From temblor: “Ten times more earthquakes now detected in Southern California” 

    1

    From temblor

    April 29, 2019
    Ross S. Stein, Ph.D., Temblor

    What did they do?

    In a study published this month in Science, Zachary Ross and Egill Hauksson (both from Caltech), Daniel Trugman (Los Alamos National Laboratory) and Peter Shearer (Scripps Institution of Oceanography) were able to increase the number of recorded southern California earthquakes during 2010-2017 from 180,000 to 1.8 million. They did this by recovering all the quakes that stuck down to a magnitude of 0.29, whereas in the original catalog, only quakes larger than magnitude 1.7 had been reliably recovered. The relationship between earthquake size and frequency obeys a ‘power-law distribution,’ which means that when you drop down one magnitude unit, you get 10 times more quakes.

    How did they do it?

    They employed a method called ‘template matching’. Template matching takes advantage of the similar waveforms recorded at seismometers for quakes located very close together. Each quake was compared to 248,000 template earthquakes, making this is an enormously computer-intensive process. So, they harnessed an array of 200 NVIDIA graphic processing units. NVIDIA’s are designed for video gaming and for self-driving cars, so this is a special kind of scientific dividend. Then, they more precisely located all the earthquakes using a method called ‘double-difference relocation.’ Both methods have been used for a decade or so, but never on so large a data set. The new catalog is now freely available to all researchers (scedc.caltech.edu), a great gift to seismologists around the world.

    2
    Here is an example of the dazzling detail of the relocated seismicity (colored by depth) in the new catalog, which I annotated. Because most of the seismicity at depth lies to the northeast of the fault at the ground surface, the faults must be inclined 8-9° to the northeast, consistent with earlier studies (Fattaruso et al, 2014).

    Did they discover remote aftershocks of an M=7.2 mainshock up to 300 km (180 mi) away?

    In the panel on the right below, sites where the quake rate is higher in the week after the 2010 M=7.2 El Mayor-Cucapah (Baja California) earthquake are red, while sites where the rate is lower are white. The authors declare these are aftershocks, but in fact, their job is to prove it. This would not be unprecedented, as remote triggering following other large shocks has been widely reported (Hill et al., 1993; Brodsky et al., 2000; Prejean et al., 2004; Velasco et al., 2008; Pollitz et al., 2012). But the difference is that the new study bases its findings exclusively on very small (Magnitude<1.0) quakes.

    3
    The ‘Noise’ plot was kindly provided by the authors; the ‘Signal’ plot comes from their paper, with the blue aftershock zone boundary added here. Sites with no reliable rate change are grey.

    On the left panel above is another ‘week after vs. week before’ comparison provided by Zachry Ross, but not centered in the earthquake, so presumably this is just random quake rate variability. I’ve inscribed a blue line around the apparent (mostly red) aftershock zone, which extends twice as far from the mainshock as had been visible before their new catalog was created. Aftershocks promoted by the permanent stress changes in the earth should extend to about 100-135 km, and so the authors ascribe the more distant shocks to dynamic triggering carried by the seismic waves, which reach 300 km away within about 2 minutes from the time the quake begins; within about an hour, those waves will have encircled the globe and will have dissipated, if not disappeared, in southern California.

    Here, below, is another figure in their paper that I have annotated, showing the quake rate relative to the preceding year collapsed on to a line with distance from the epicenter. The quakes within about 135 km or twice the fault length, are consistent with static stress triggering. But for the next 100 km, the quake rate does not decay, which is not what one would expect if they were caused by the seismic wave propagation, which diminishes in amplitude as it propagates away from the rupture, just as ripples diminish in amplitude and spread out as they expand after one throws a stone into a pond. If there is a decay, it is obscured by noise.

    4
    The aftershocks the authors attribute to remote dynamically triggered events exhibit a rate 2-4 times higher in the week after the mainshock than in the preceding year.

    In the next figure below, I compare the authors’ aftershock plot with their plot of seismicity density for the entire catalog period, 2008-2017. If the red quakes are indeed aftershocks, then they should not be correlated with the event density. That’s because aftershock locations should be most influenced by the epicenter and fault rupture. But here, instead, the aftershocks locate just where the long-term seismic rate is highest. It’s almost as if the location of the mainshock doesn’t matter. How could that be so?

    5
    Annotated versions of the figures in Ross et al. (2019). The seismicity density (the number of quakes in each 2 km x km cell) is on the left, and the elevated quake rate after the 2010 mainshock is on the right.

    Here are two possible explanations for this conundrum:

    • Since the event density plot contains the 2010 aftershocks, the two plots are not independent. An event density plot with the first week, or year, after the M=7.2 shock removed would make them nearly independent. I asked the authors if they could provide it, but they chose not to. Irrespective, the highest aftershock density will be near the (yellow) fault rupture, from the U.S.-Mexico border to the south. But the correlation extends ~200 km northwest of that, so I suspect the correlation will remain regardless.

    • If the correlation between longterm event density and aftershocks is real, it would mean that the places which preferentially respond to dynamic triggering are those with very high local seismicity rates, not those with a particular fault geometry or distance from the epicenter. The amplitude and character of the seismic waves would be less important than the sensitivity of certain fault locations to shaking. This would be new and exciting new.

    So, are the remote aftershocks a discovery or a mirage?

    Here is what the authors, or any researchers, would need to do to prove that these events are aftershocks: At least some aftershocks should be triggered as the seismic waves move past those locations in the first few minutes, and no aftershocks at all can strike until the surface waves arrive. Further, the one attribute that distinguishes aftershocks from all other shocks is that their occurrence rate decreases with time in a very particular way: the quake rate decays with 1/time (e.g., 10 hr after the mainshock, the quake rate is 1/10th of its rate in the first hour, 100 hr after the mainshock, the quake rate is 1/100th of its rate in the first hour, etc.). This is called Omori decay in honor of its discovery in 1894 by the Japanese seismologist, Fusakichi Omori, who also came to San Francisco to study the great 1906 earthquake. If the red quakes do not exhibit Omori decay, they are not aftershocks. Another case of tiny, dynamically triggered earthquakes were falsified by these tests (Felzer and Brodsky, 2006; Richards-Dinger et al., 2010).

    If these really are aftershocks, and if they really are correlated with the background seismicity rate, we are going to learn something new and important about how the Earth works.

    References

    Emily E. Brodsky, Vassilis Karakostas, and Hiroo Kanamori, A New Observation of Dynamically Triggered Regional Seismicity: Earthquakes in Greece Following the August, 1999 Izmit, Turkey Earthquake, Geophys. Res. Let., 27, 2741-2744.

    Laura A. Fattaruso, Michele L. Cooke, and Rebecca J. Dorsey (2014), Sensitivity of uplift patterns to dip of the San Andreas fault in the Coachella Valley, California, Geosphere, 10, 1235–1246, doi:10.1130/GES01050.1

    Karen R. Felzer & E. E. Brodsky (2006), Decay of aftershock density with distance indicates triggering by dynamic stress, Nature, 441, 735–738, doi:10.1038/nature04799

    David P. Hill, P. A. Reasenberg, A. Michael, W. J. Arabaz, G. Beroza, D. Brumbaugh4, J. N. Brune, R. Castro, S. Davis, D. dePolo, W. L. Ellsworth, J. Gomberg, S. Harmsen, L. House, S. M. Jackson, M. J. S. Johnston, L. Jones, R. Keller, S. Malone, L. Munguia, S. Nava, J. C. Pechmann, A. Sanford, R. W. Simpson, R. B. Smith, M. Stark, M. Stickney, A. Vidal, S. Walter, V. Wong, J. Zollweg (1993), Seismicity remotely triggered by the Magnitude 7.3 Landers, California, earthquake, Science, 260, doi: 10.1126/science.260.5114.1617

    Stephanie K. Prejean, Hill, D. P., Brodsky, E. E., Hough, S. E., Johnston, M. J. S., Malone, S. D., Oppenheimer, D. H., Pitt, A. M., and Richards-Dinger, K. B. (2004), Remotely triggered seismicity on the United States west coast following the Mw 7.9 Denali Fault earthquake, Bull. Seism. Soc. Am., 94, S348-S359.

    Keith Richards-Dinger, R.S. Stein, R.S., and S. Toda (2010), Decay of aftershock density with distance does not indicate triggering by dynamic stress, Nature, 467, 583-586, doi:10.1038/nature0940

    Zachary E. Ross, Daniel T. Trugman, Egill Hauksson, and Peter M. Shearer (2019), Searching for hidden earthquakes in southern California, Science 10.1126/science.aaw6888.

    Velasco, Aron A., Hernandez, S., Parsons, T., and Pankow, K. (2008). Global ubiquity of dynamic earthquake triggering, Nature Geoscience, 1, 375-379.

    Fred F. Pollitz, R. S. Stein, V. Sevilgen, and R. Bürgmann (2012). The 11 April 2012 East Indian Ocean earthquake triggered large aftershocks worldwide, Nature, 490, 250-253.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project

    Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States
    1

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: