Tagged: temblor Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 6:13 pm on November 25, 2022 Permalink | Reply
    Tags: "Three earthquakes strike near the western US-Mexico border"; "Shallow and deadly earthquake strikes Indonesia"; "Detecting smaller earthquakes", , , , , temblor   

    From “temblor” : Three articles – “Three earthquakes strike near the western US-Mexico border”; “Shallow and deadly earthquake strikes Indonesia”; “Detecting smaller earthquakes” 

    1

    From “temblor”

    Three earthquakes strike near the western US-Mexico border

    11.23.22

    Hector Gonzalez-Huizar, Ph.D., Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE)
     

    Three unrelated magnitude-6-plus earthquakes shook Baja California in three weeks, on three different faults.

    1
    View of the Pacific Ocean and volcanoes of the San Quintin volcanic field, near the epicenter of the Nov. 22, 2022, magnitude-6.2 earthquake in Baja California. Credit: Luis A. Yegres Herrera.

    When a magnitude-6.2 earthquake struck Baja California (Mexico) on Nov. 22, it marked the third quake larger than magnitude 6 to be felt in the region in less than three weeks. Within a period of only 20 days, three large earthquakes were felt by people in Baja California (Mexico) and Southern California (United States). The first quake, a magnitude-6.0 event, occurred on Nov. 2, with an epicenter located in the Pacific Ocean, some 950 miles (about 1,500 kilometers) west of San Diego, California. The second quake, a magnitude-6.1, occurred in the Gulf of California, in Mexico, on Nov. 4. The epicenter of the third one was near the town of San Quintin, in Baja California. Fortunately, there are no reports of significant damage caused by these three events. However, they are a reminder that this region along the western U.S.-Mexico border is surrounded by faults capable of generating large, damaging earthquakes.

    The three earthquakes were felt in many cities near the U.S.-Mexico border, including San Diego and Tijuana, according to the reports of the USGS Did You Feel It? website. Yesterday’s quake was felt as far as Los Angeles, California, and Phoenix, Arizona, around 250 and 350 miles (400 and 560 kilometers) from the epicenter, respectively.

    2
    Red circles on the map mark the location of the epicenters of the three recent earthquakes. The three earthquakes were felt in some parts of California (CA) in the U.S. and Baja California (BC) in Mexico. GoC stands for the Gulf of California. The blue line represents the tectonic boundary between the North American and Pacific tectonic plates.

    The three quakes’ epicenters

    The first quake, the magnitude 6.0, occurred in a region where large earthquakes are rare. The epicenter is far from any tectonic boundary (that is, the limit between two tectonic plates, where most earthquakes worldwide are generated).

    The second event, the magnitude 6.1, occurred along the tectonic boundary between the Pacific Plate and the North American Plate in the Gulf of California. The system of faults that defines the plate boundary in this region connects to the north with the San Andreas Fault system in California (Castro et al., 2021). The epicenter of this earthquake is located close to 70 miles (about 110 kilometers) from the epicenter of a magnitude-7.0 earthquake that occurred in 2012. The USGS earthquake catalog reports that 15 earthquakes of magnitude 6 or larger have occurred along the Gulf of California since 2007, meaning on average, one of these events has occurred per year. However, it is important to mention that these numbers are slightly higher than what is reported in the catalog of the CICESE Seismic Network, which monitors the seismicity in this part of Mexico—one of the most seismically active regions in the country.

    Yesterday’s quake, the magnitude-6.2 event, was located near the town of San Quintin, in Baja California, around 125 miles (200 kilometers) south of San Diego. The earthquake can be attributed to motion along the large San Clemente Fault system. This large strike-slip fault system can be considered as part of a broader North American-Pacific Plate boundary (Walton et al., 2020), which includes the San Andreas Fault Zone that gave us the 1857 magnitude-7.9 Ft.Tejon quake and the 1906 magnitude-7.8 San Francisco quake. The San Clemente Fault can be thought of as the westernmost strand, or sliver, of the San Andreas Fault Zone.

    The San Clemente Fault extends for 200 to 300 miles (400 to 500 kilometers) offshore, where it could generate earthquakes up to a magnitude 8.0. Within 24 hours of the magnitude-6.2 quake, more than 100 aftershocks have been detected, the largest with a magnitude of 4.5.

    Even though the three earthquakes occurred in the seafloor, no tsunamis were produced. The three earthquakes were generated by faults in which the blocks of rocks have moved mostly horizontally, known as strike-slip faulting. In these kind of quakes, the vertical displacement of the seafloor during the movement is expected to be small. Thus, no big sea waves are generated, and tsunamis are less likely to occur.

    3
    Map showing the location of the most recent of the three earthquakes and the large San Clemente Fault.

     References:

    Castro, R., Carciumaru, D., Collin, M., Vetel, W., Gonzalez-Huizar, H., Mendoza, A., et al. (2021), Seismicity in the Gulf of California, Mexico, in the period 1901–2018, J. South Am. Earth Sci. 106, 103087, doi: 10.1016/j.jsames.2020.103087.

    Gonzalez-Huizar, H., Fletcher, J. M., (2020), Baja quakes highlight seismic risk in northern Mexico, Temblor, http://doi.org/10.32858/temblor.116

    Walton, M.A.L., Brothers, D.S., Conrad, J.E., Maier, K.L., Roland, E.C., Kluesner, J.W., and Dartnell, P., (2020), Morphology, structure, and kinematics of the San Clemente and Catalina faults based on high-resolution marine geophysical data, southern California Inner Continental Borderland (USA): Geo- sphere, v. 16, no. 5, p. 1312–1335, https://doi.org/10 .1130/GES02187.1.
    _____________________________________________________________________

    Shallow, deadly earthquake strikes Indonesia

    11.21.22

    At 1:21 p.m. local time on Nov. 21 (06:21 UTC Nov. 21), a shallow magnitude-5.6 earthquake shook the Cianjur region in West Java, Indonesia, which lies about 80 kilometers (50 miles) southeast of Jakarta. News reports suggest 268 people have already been reported dead, 151 missing, more than 1,000 injured and thousands more displaced. The missing may still be trapped in collapsed buildings. Hospitals have been treating victims in parking lots because of damages and loss of power, and for fear of further collapse.

    4
    Location of magnitude-5.6 earthquake that struck West Java, Indonesia.

    The quake was particularly damaging because it ruptured a mere 10 kilometers (about 6 miles) below the surface. Severe shaking (VIII on the Modified Mercalli Intensity Scale) occurred nearest the epicenter, affecting some 232,000 people. Some 514,000 were expected to have felt very strong shaking, with an additional 3-plus million people likely feeling moderate to strong shaking, according to the U.S. Geological Survey (USGS). “Significant casualties and damage are likely and the disaster is potentially widespread,” according to the USGS. Damaged roads and landslides are hampering disaster relief efforts.

    “Earthquakes like this are such a marker of a nation’s wealth and resolve,” says geophysicist Ross Stein, CEO of Temblor (publisher of TEN). “A quake of the same size struck the Southern California city of Claremont in 1990. Some 30 people were injured and there was $12 million in damage. But on Java — the most populated island on Earth — yesterday’s quake, at the same depth, was devastating for families, buildings, and the fabric of the the community.”

    The quake appears to be the result of strike-slip faulting (the same kind as occurs on the San Andreas) within the crust of the Sunda Plate in Indonesia, based on the USGS moment tensor solution. (Confused about moment tensor solutions? See this video for more information.) About 260 kilometers (about 160 miles) southwest of the epicenter of this quake lies the Sunda Trench, a subduction zone where the Australian Plate dives beneath the Sunda Plate; far larger quakes can occur on subduction zones than typically occur on strike-slip faults, a prime example being the 2004 Sumatra-Andaman magnitude-9.1 quake.

    This region is no stranger to strong earthquakes. On Feb. 9, a magnitude-6.6 quake struck offshore West Java, but didn’t cause much damage (see “Intraslab earthquake shakes (half of) Java, Indonesia, again” for more on that event). It was offshore and deeper than today’s quake, which struck on land.

    Since 2007, four earthquake larger than magnitude-6.5 have struck within a couple hundred kilometers of today’s quake. Some occur on the Sunda Plate, some on the Australian, and some at the boundary between the two.

    Aftershocks are still rocking the region and are expected to continue.

    If you were in the region and felt shaking (or even if you didn’t), consider reporting it to the USGS’s “Did You Feel It?” citizen science project.
    _____________________________________________________________________

    Detecting smaller earthquakes could improve forecasting of larger temblors

    11.18.22
    Laura Fattaruso, Simpson Strong Tie Fellow (@labtalk_laura)

    Using machine learning techniques on ten years of seismic data from Oklahoma and Kansas, researchers identified faults that could generate large earthquakes.

    5
    Oil pump in Hanna, Oklahoma. Credit: meganjean, CC BY 2.0, via Wikimedia Commons.

    Advances in machine learning have helped seismologists find more, smaller earthquakes than ever before. With improved re-location of exactly where these small earthquakes come from, researchers are now able to see previously hidden faults which could initiate bigger, more damaging earthquakes. A recent study in The Seismic Record showed how researchers using these techniques identified 80% of the faults that had hosted magnitude-4.0 or greater earthquakes in Oklahoma and Kansas from 2010 to 2019.

    “If we could find these small earthquakes, could that pre-illuminate the fault structures that later hosted larger earthquakes?” asks Yongsoo Park, the lead author of the study, which he worked on as a doctoral student at Stanford University. “If that’s the case, maybe larger earthquakes wouldn’t have to be a complete surprise like they used to be.”

    Park and co-authors evaluated data from 420 seismic stations in Oklahoma and Kansas. Using new computational methods that automatically detect quakes in seismic data, they found many times more temblors than previously observed. For example, in one region, they identified and relocated 13,231 earthquakes from 2010-2016, a major increase from previous research. Studies in 2017 and 2019 had found just 880 and 3,141 quakes over the same time span.

    6
    Precise detection of more, smaller earthquakes enabled researchers to find hidden fault structures in Oklahoma and Kansas. The same region in Oklahoma is shown with data analyzed in 2017 (left), 2019 (middle), and 2022 (right) showing how advances in earthquake detection have led to better definition of fault zones. (Adapted from Park et al., 2022)

    The increased number of detected earthquakes allowed researchers to see connected fault structures where previously the data had appeared scattered and disconnected. Larger faults can host larger earthquakes and the new connections brought many of these potential regional hazards to light.

    “The key message here is that monitoring small earthquakes is important,” says Park.

    According to Park, almost all the notable earthquakes in the region occurred on previously unmapped faults. Of the 60 faults that hosted greater than magnitude-4.0 earthquakes over the past decade, 48 could have been imaged from the tiny earthquakes that occurred prior to the big quake.

    “[The study] is a creative way of integrating machine learning with what we know about relationships between fault size and earthquake magnitude. You cannot nucleate a magntidue-6.0 earthquake on a one-kilometer-long fault,” explains Folarin Kolawole, a structural geologist at Columbia’s Lamont-Doherty Earth Observatory, who was not involved in the study.

    Monitoring small quakes for signs of larger ones

    Oklahoma and Kansas have experienced “unprecedented seismic activity” due to hydrofracking and related wastewater injection, according to the study authors. Hydrofracking is used to tap into unconventional petroleum resources — natural gas trapped in the small pore spaces of shales. Extracting the gas requires large volumes of water mixed with sand and chemicals, which is pumped deep below the surface to force open that pore space. After the extraction process, operators are left with wastewater, which is stored in the now empty pore space. Injection of large volumes of wastewater into deep wells puts pressure on pre-existing, unmapped faults, sometimes triggering earthquakes.

    In 2011, Oklahoma experienced one such event, a magnitude-5.7 earthquake, the most powerful quake ever recorded in the state up to that point, until they were struck by a magnitude-5.8 quake in 2016. Both earthquakes resulted in lawsuits against the petroleum industry, which had been operating in the area at the time.

    To avoid inducing more of these larger earthquakes, wastewater injection operations have utilized a “stoplight” system based on the rate of detected earthquakes. When the number of earthquakes that strike in a given time period begins to increase, the stoplight changes from green to yellow or red. Operators will then throttle wastewater injection.
    Park suggests that based on his research, the industry and the regulators should consider the size of the illuminated faults in addition to observed earthquake magnitudes when analyzing seismic hazards.

    The method could also hold potential for better forecasting of earthquakes in other regions, but relies on having a lot of data. That’s what made Oklahoma and Kansas ideal settings for testing it — the large number of smaller induced earthquakes, as well as the large number of monitoring stations. In most places, collecting data on so many earthquakes will take a much longer time, Kolawole explains. “If you don’t have enough events, you don’t have enough data to work with. [This method] can be applied to other places, but instrumentation will be critical.”

    See the full articles here, here, and here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct.

    ___________________________________________________________________

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network projectEarthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    QuakeAlertUSA

    1

    About Early Warning Labs, LLC

    Early Warning Labs, LLC (EWL) is an Earthquake Early Warning technology developer and integrator located in Santa Monica, CA. EWL is partnered with industry leading GIS provider ESRI, Inc. and is collaborating with the US Government and university partners.

    EWL is investing millions of dollars over the next 36 months to complete the final integration and delivery of Earthquake Early Warning to individual consumers, government entities, and commercial users.

    EWL’s mission is to improve, expand, and lower the costs of the existing earthquake early warning systems.

    EWL is developing a robust cloud server environment to handle low-cost mass distribution of these warnings. In addition, Early Warning Labs is researching and developing automated response standards and systems that allow public and private users to take pre-defined automated actions to protect lives and assets.

    EWL has an existing beta R&D test system installed at one of the largest studios in Southern California. The goal of this system is to stress test EWL’s hardware, software, and alert signals while improving latency and reliability.

    Earthquake Early Warning Introduction

    The United States Geological Survey (USGS), in collaboration with state agencies, university partners, and private industry, is developing an earthquake early warning system (EEW) for the West Coast of the United States called ShakeAlert. The USGS Earthquake Hazards Program aims to mitigate earthquake losses in the United States. Citizens, first responders, and engineers rely on the USGS for accurate and timely information about where earthquakes occur, the ground shaking intensity in different locations, and the likelihood is of future significant ground shaking.

    The ShakeAlert Earthquake Early Warning System recently entered its first phase of operations. The USGS working in partnership with the California Governor’s Office of Emergency Services (Cal OES) is now allowing for the testing of public alerting via apps, Wireless Emergency Alerts, and by other means throughout California.

    ShakeAlert partners in Oregon and Washington are working with the USGS to test public alerting in those states sometime in 2020.

    ShakeAlert has demonstrated the feasibility of earthquake early warning, from event detection to producing USGS issued ShakeAlerts ® and will continue to undergo testing and will improve over time. In particular, robust and reliable alert delivery pathways for automated actions are currently being developed and implemented by private industry partners for use in California, Oregon, and Washington.

    Earthquake Early Warning Background

    The objective of an earthquake early warning system is to rapidly detect the initiation of an earthquake, estimate the level of ground shaking intensity to be expected, and issue a warning before significant ground shaking starts. A network of seismic sensors detects the first energy to radiate from an earthquake, the P-wave energy, and the location and the magnitude of the earthquake is rapidly determined. Then, the anticipated ground shaking across the region to be affected is estimated. The system can provide warning before the S-wave arrives, which brings the strong shaking that usually causes most of the damage. Warnings will be distributed to local and state public emergency response officials, critical infrastructure, private businesses, and the public. EEW systems have been successfully implemented in Japan, Taiwan, Mexico, and other nations with varying degrees of sophistication and coverage.

    Earthquake early warning can provide enough time to:

    Instruct students and employees to take a protective action such as Drop, Cover, and Hold On
    Initiate mass notification procedures
    Open fire-house doors and notify local first responders
    Slow and stop trains and taxiing planes
    Install measures to prevent/limit additional cars from going on bridges, entering tunnels, and being on freeway overpasses before the shaking starts
    Move people away from dangerous machines or chemicals in work environments
    Shut down gas lines, water treatment plants, or nuclear reactors
    Automatically shut down and isolate industrial systems

    However, earthquake warning notifications must be transmitted without requiring human review and response action must be automated, as the total warning times are short depending on geographic distance and varying soil densities from the epicenter.

     
  • richardmitnick 8:25 am on September 27, 2022 Permalink | Reply
    Tags: "Taiwan earthquake sequence may signal future shocks", , , , , , temblor   

    From “temblor” : “Taiwan earthquake sequence may signal future shocks” 

    1

    From “temblor”

    9.26.22
    Shinji Toda, Ph.D., IRIDeS, Tohoku University
    Ross S. Stein, Ph.D., Temblor, Inc.

    The east coast of Taiwan is among the most seismically active sites in the world. Fifteen events of magnitude 6.5 or larger that have struck in the past 85 years, several of which occurred as sequences. On Sept. 17, a magnitude-6.5 quake struck, followed 17 hours later by a magnitude-6.9 quake 10 kilometers (6 miles) away. In retrospect, we can say that the 6.5 event was a large foreshock. Together, these events have loaded adjacent faults, and so the sequence may not be over.

    A foreshock strikes adjacent fault

    As always, we don’t know a quake is a foreshock until a larger one strikes soon thereafter. There was nothing about the magnitude 6.5 that marked it for future greatness. In this way, one can think of the mainshock as an “over-achieving aftershock,” in that it was larger than its mainshock —in this case, four times larger.

    These two earthquakes don’t appear to have struck the same fault, which may mean that the foreshock brought the adjacent fault closer to failure. The foreshock appears to have slipped a patch of the Longitudinal Valley Fault, which is inclined to the east, whereas the mainshock appears to have slipped the Central Range Structure Fault, inclined to the west. The Longitudinal Valley Fault, and perhaps both, partially creep, and so only a portion of their slip is accommodated by earthquakes (Hsu and Bürgmann, 2006).

    1
    Aftershocks during the first three days of the earthquake sequence, with the Longitudinal Valley Fault strands in red (left panel). The USGS model of where the slip was concentrated is shown in the right panel, along with slip in the 2003 magnitude-6.8 shock from Thomas et al. (2014).

    These faults are a product of the rapid western convergence of the Philippine Sea Plate with the island of Taiwan (part of the Eurasian Plate). Both faults have high slip rates and, based on their lengths and earthquake history, both are capable of still larger shocks than those that occurred on September 17 (Chan et al., 2020).

    2
    Taiwan is caught in a plate tectonic vice, with the Philippine Sea Plate colliding with Taiwan along the Longitudinal Valley Fault and the Eurasian Plate colliding with the island on its west coast (from Thomas et al., 2014).

    How likely is a magnitude-6.9 shock here?

    The answer is “very.” Temblor’s Global Earthquake Activity Rate (T-GEAR) model provides an answer. T-GEAR is a blend of strain rate measured from GPS and the past 117 years of quakes. One sees that the 2022 event struck in the most seismically active part of Taiwan, where quakes of this size have a return period or recurrence interval (the typical time between events) of about 25 years. In 1951, Taiwan suffered a storm of quakes along its east coast, with a half dozen magnitude-7.0 or larger quakes spread out over 150 kilometers (Chen et al., 2008). One also sees that a magnitude-6.8 event struck in 2003 very close to the current sequence.

    3
    The return period (the average time between quakes) for magnitude-6.9 quakes in Taiwan reveals the east coast to be the most seismically active on the island, consistent with the region’s history of large shocks (Chan et al. 2020) and its high strain rate as measured by GPS.

    Could the M 6.9 also be a foreshock?

    Foreshocks are rare; progressive mainshocks are more common (as in 1951), and aftershocks are ubiquitous. So, forecasting the distribution of aftershocks is tractable and valuable, even if they end up being smaller than the mainshock or the foreshock. We can calculate where the chances of subsequent shocks have increased as a result of the magnitude 6.9, and where they have decreased, using the theory of Coulomb stress transfer (Toda et al., 2011).

    3
    Faults brought closer to failure by the magnitude-6.9 rupture turn red (left panel). Faults are represented by the focal mechanisms (“beachballs”) of past magnitude-3.9 or larger earthquakes from the Taiwan BATS catalog (Institute of Earth Sciences, 1996). These stress changes, along with the background seismicity from 1996-2020, are used to forecast the number and distribution of magnitude-5 or larger earthquakes in the 30-day period beginning on Sept. 20, 2022 (right panel). We expect aftershocks to be concentrated along the coastal region adjacent to and along the Longitudinal Valley Fault system.

    Temblor forecasts about 14 magnitude-5 or larger shocks in the next month. We use Realtime Risk (Toda and Stein, 2020) to calculate the Coulomb stress imparted by the mainshock to surrounding faults, and how the stress changes the quake rates over time. For this, we use the past seismicity and focal mechanisms from the BATS network (Institute of Earth Sciences, Academia Sinica, 1996). About one magnitude-5 or larger shock occurred in the past decade, whereas we forecast about 12 in the next 30 days, and perhaps one quake larger than magnitude 6. The quakes are expected near the epicenters of the magnitude-6.5 and -6.9 shocks, and also 60-75 kilometers to the north, at the northern edge of the magnitude-6.9 rupture. This might mean a re-rupturing of the fault or faults that slipped in the 1951 sequence. Given the ~25-year repeat time of magnitude-7 quakes in this region, the 70 years that has elapsed since 1951 would seem sufficient to recharge those faults and create conditions for subsequent events.

    Bottom Line

    Further mainshocks are, by no means, a certainty, but we can say this: They are more likely now than they were before September 17, and the region has a history of progressive earthquake sequences.

    Acknowledgments

    We thank our colleagues at E-DREaM, the Earthquake Disaster & Risk Evaluation and Management Center, National Central University, and the Institute of Earth Sciences, Academia Sinica, Taiwan, with whom we have collaborated for more than 20 years.

    References

    Chung-Han Chan, Kuo-Fong Ma, J Bruce H Shyu, Ya-Ting Lee, Yu-Ju Wang, Jia-Cian Gao, Yin-Tung Yen, Ruey-Juin Rau; Probabilistic seismic hazard assessment for Taiwan: TEM PSHA2020. Earthquake Spectra2020;; 36 (1_suppl): 137–159. doi: https://doi.org/10.1177/8755293020951587

    Chen, K. H., Toda, S., andRau, R. -J. (2008), A leaping, triggered sequence along a segmented fault: The 1951 ML 7.3 Hualien-Taitung earthquake sequence in eastern Taiwan, J. Geophys. Res., 113, B02304, doi:10.1029/2007JB005048.

    Hsu, L., and Bürgmann, R. (2006), Surface creep along the Longitudinal Valley fault, Taiwan from InSAR measurements, Geophys. Res. Lett., 33, L06312, doi:10.1029/2005GL024624.

    Institute of Earth Sciences, Academia Sinica, Taiwan (1996): Broadband Array in Taiwan for Seismology. Institute of Earth Sciences, Academia Sinica, Taiwan. Other/Seismic Network. doi:10.7914/SN/TW

    Shinji Toda, Ross S. Stein; Long‐ and Short‐Term Stress Interaction of the 2019 Ridgecrest Sequence and Coulomb‐Based Earthquake Forecasts. Bulletin of the Seismological Society of America 2020; 110 (4): 1765–1780. doi: https://doi.org/10.1785/0120200169

    Thomas, M. Y., Avouac, J.-P., Champenois, J., Lee, J.-C., and Kuo, L.-C. (2014), Spatiotemporal evolution of seismic and aseismic slip on the Longitudinal Valley Fault, Taiwan, J. Geophys. Res. Solid Earth, 119, 5114– 5139, doi:10.1002/2013JB010603.

    Toda, Shinji, Stein, R.S., Sevilgen, Volkan, and Lin, Jian, 2011, Coulomb 3.3 Graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching—user guide: U.S. Geological Survey Open-File Report 2011–1060, 63 p., available at https://pubs.usgs.gov/of/2011/1060/.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ___________________________________________________________________

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network projectEarthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    QuakeAlertUSA

    1

    About Early Warning Labs, LLC

    Early Warning Labs, LLC (EWL) is an Earthquake Early Warning technology developer and integrator located in Santa Monica, CA. EWL is partnered with industry leading GIS provider ESRI, Inc. and is collaborating with the US Government and university partners.

    EWL is investing millions of dollars over the next 36 months to complete the final integration and delivery of Earthquake Early Warning to individual consumers, government entities, and commercial users.

    EWL’s mission is to improve, expand, and lower the costs of the existing earthquake early warning systems.

    EWL is developing a robust cloud server environment to handle low-cost mass distribution of these warnings. In addition, Early Warning Labs is researching and developing automated response standards and systems that allow public and private users to take pre-defined automated actions to protect lives and assets.

    EWL has an existing beta R&D test system installed at one of the largest studios in Southern California. The goal of this system is to stress test EWL’s hardware, software, and alert signals while improving latency and reliability.

    Earthquake Early Warning Introduction

    The United States Geological Survey (USGS), in collaboration with state agencies, university partners, and private industry, is developing an earthquake early warning system (EEW) for the West Coast of the United States called ShakeAlert. The USGS Earthquake Hazards Program aims to mitigate earthquake losses in the United States. Citizens, first responders, and engineers rely on the USGS for accurate and timely information about where earthquakes occur, the ground shaking intensity in different locations, and the likelihood is of future significant ground shaking.

    The ShakeAlert Earthquake Early Warning System recently entered its first phase of operations. The USGS working in partnership with the California Governor’s Office of Emergency Services (Cal OES) is now allowing for the testing of public alerting via apps, Wireless Emergency Alerts, and by other means throughout California.

    ShakeAlert partners in Oregon and Washington are working with the USGS to test public alerting in those states sometime in 2020.

    ShakeAlert has demonstrated the feasibility of earthquake early warning, from event detection to producing USGS issued ShakeAlerts ® and will continue to undergo testing and will improve over time. In particular, robust and reliable alert delivery pathways for automated actions are currently being developed and implemented by private industry partners for use in California, Oregon, and Washington.

    Earthquake Early Warning Background

    The objective of an earthquake early warning system is to rapidly detect the initiation of an earthquake, estimate the level of ground shaking intensity to be expected, and issue a warning before significant ground shaking starts. A network of seismic sensors detects the first energy to radiate from an earthquake, the P-wave energy, and the location and the magnitude of the earthquake is rapidly determined. Then, the anticipated ground shaking across the region to be affected is estimated. The system can provide warning before the S-wave arrives, which brings the strong shaking that usually causes most of the damage. Warnings will be distributed to local and state public emergency response officials, critical infrastructure, private businesses, and the public. EEW systems have been successfully implemented in Japan, Taiwan, Mexico, and other nations with varying degrees of sophistication and coverage.

    Earthquake early warning can provide enough time to:

    Instruct students and employees to take a protective action such as Drop, Cover, and Hold On
    Initiate mass notification procedures
    Open fire-house doors and notify local first responders
    Slow and stop trains and taxiing planes
    Install measures to prevent/limit additional cars from going on bridges, entering tunnels, and being on freeway overpasses before the shaking starts
    Move people away from dangerous machines or chemicals in work environments
    Shut down gas lines, water treatment plants, or nuclear reactors
    Automatically shut down and isolate industrial systems

    However, earthquake warning notifications must be transmitted without requiring human review and response action must be automated, as the total warning times are short depending on geographic distance and varying soil densities from the epicenter.

     
  • richardmitnick 7:47 pm on September 19, 2022 Permalink | Reply
    Tags: "Magnitude-7.6 earthquake shakes coastal Mexico", , , , , , temblor   

    From “temblor” : “Magnitude-7.6 earthquake shakes coastal Mexico” 

    1

    From “temblor”

    9.19.22

    A magnitude-7.6 quake struck along the western coast of Central Mexico at 1:05 p.m. local time on Monday. Photos of damage are filtering in.

    1
    Monday’s earthquake struck along the west coast.

    Coincidentally, the quake fell on the anniversary of two other large earthquakes in the region: the 2017 Puebla earthquake and the 1985 Mexico City earthquake. It also came less than an hour after the country performed a memorial earthquake drill. Though many people may find the coincidence rather curious — that three intense earthquakes shook this region on September 19 of various years — there is no scientific significance to the date.

    The likelihood of such a large earthquake striking is “totally independent of the month or the date,” says Hector Gonzales-Huizar, a seismologist at the Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California. “Similar earthquakes have occurred in Mexico during different dates of the year.”

    2
    Two other earthquakes have struck in the recent past on Sept 19th. Scientists assure that the date is a coincidence.

    The temblor likely occurred on a thrust fault, according to U.S. Geological survey calculations. Given the estimated depth of the event, which was relatively shallow at 23.5 kilometers (14.6 miles), it could have struck along the megathrust that separates the subducting Cocos tectonic plate from the North American Plate. Seismologists examining the event will provide more detail on the exact location of the quake in the coming days.

    Earthquakes of this magnitude are not uncommon along Mexico’s tectonically active west coast.

    3
    Mexico is prone to strong shaking from earthquakes.

    Tsunami waves are possible along coastal regions near the epicenter, according to the U.S. Tsunami Warning system. No threat is expected for areas farther out. Small tsunami waves are impacting coastal Mexico, and surges will likely continue for several hours. Any populations in the region should avoid the coast during that time.

    This is a developing story.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    _____________________________________________________________________________________

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network projectEarthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    QuakeAlertUSA

    1

    About Early Warning Labs, LLC

    Early Warning Labs, LLC (EWL) is an Earthquake Early Warning technology developer and integrator located in Santa Monica, CA. EWL is partnered with industry leading GIS provider ESRI, Inc. and is collaborating with the US Government and university partners.

    EWL is investing millions of dollars over the next 36 months to complete the final integration and delivery of Earthquake Early Warning to individual consumers, government entities, and commercial users.

    EWL’s mission is to improve, expand, and lower the costs of the existing earthquake early warning systems.

    EWL is developing a robust cloud server environment to handle low-cost mass distribution of these warnings. In addition, Early Warning Labs is researching and developing automated response standards and systems that allow public and private users to take pre-defined automated actions to protect lives and assets.

    EWL has an existing beta R&D test system installed at one of the largest studios in Southern California. The goal of this system is to stress test EWL’s hardware, software, and alert signals while improving latency and reliability.

    Earthquake Early Warning Introduction

    The United States Geological Survey (USGS), in collaboration with state agencies, university partners, and private industry, is developing an earthquake early warning system (EEW) for the West Coast of the United States called ShakeAlert. The USGS Earthquake Hazards Program aims to mitigate earthquake losses in the United States. Citizens, first responders, and engineers rely on the USGS for accurate and timely information about where earthquakes occur, the ground shaking intensity in different locations, and the likelihood is of future significant ground shaking.

    The ShakeAlert Earthquake Early Warning System recently entered its first phase of operations. The USGS working in partnership with the California Governor’s Office of Emergency Services (Cal OES) is now allowing for the testing of public alerting via apps, Wireless Emergency Alerts, and by other means throughout California.

    ShakeAlert partners in Oregon and Washington are working with the USGS to test public alerting in those states sometime in 2020.

    ShakeAlert has demonstrated the feasibility of earthquake early warning, from event detection to producing USGS issued ShakeAlerts ® and will continue to undergo testing and will improve over time. In particular, robust and reliable alert delivery pathways for automated actions are currently being developed and implemented by private industry partners for use in California, Oregon, and Washington.

    Earthquake Early Warning Background

    The objective of an earthquake early warning system is to rapidly detect the initiation of an earthquake, estimate the level of ground shaking intensity to be expected, and issue a warning before significant ground shaking starts. A network of seismic sensors detects the first energy to radiate from an earthquake, the P-wave energy, and the location and the magnitude of the earthquake is rapidly determined. Then, the anticipated ground shaking across the region to be affected is estimated. The system can provide warning before the S-wave arrives, which brings the strong shaking that usually causes most of the damage. Warnings will be distributed to local and state public emergency response officials, critical infrastructure, private businesses, and the public. EEW systems have been successfully implemented in Japan, Taiwan, Mexico, and other nations with varying degrees of sophistication and coverage.

    Earthquake early warning can provide enough time to:

    Instruct students and employees to take a protective action such as Drop, Cover, and Hold On
    Initiate mass notification procedures
    Open fire-house doors and notify local first responders
    Slow and stop trains and taxiing planes
    Install measures to prevent/limit additional cars from going on bridges, entering tunnels, and being on freeway overpasses before the shaking starts
    Move people away from dangerous machines or chemicals in work environments
    Shut down gas lines, water treatment plants, or nuclear reactors
    Automatically shut down and isolate industrial systems

    However, earthquake warning notifications must be transmitted without requiring human review and response action must be automated, as the total warning times are short depending on geographic distance and varying soil densities from the epicenter.

     
  • richardmitnick 9:27 am on September 10, 2022 Permalink | Reply
    Tags: "Faults underneath Seattle could trigger 33-foot tsunami wave", A new report warns that Seattle waterfront and other low-lying areas could be inundated by a tsunami wave within minutes of a Seattle Fault earthquake., , , , , , , temblor   

    From temblor : “Faults underneath Seattle could trigger 33-foot tsunami wave” 

    1

    From temblor

    8.17.22
    Laura Fattaruso | The University of Massachusettes-Amherst

    A new report warns that Seattle waterfront and other low-lying areas could be inundated by a tsunami wave within minutes of a Seattle Fault earthquake.

    1
    Waterfront homes on Puget Sound’s Bainbridge Island sit at water level. Credit: Ryan Wu via Unsplash.

    Just over a thousand years ago, a fault running east-west under Puget Sound ruptured, throwing parts of Bainbridge Island skyward as much as 23 feet (seven meters), and dropping West Point, Seattle, down three feet (one meter). These abrupt land surface changes were accompanied by an approximately magnitude-7.3 earthquake that triggered a tsunami wave, which left deposits throughout Puget Sound, as far as Everett, about 30 miles (50 kilometers) north of Seattle.

    New computer simulations reveal that the first wave probably hit within just three minutes of the earthquake. The research, released in a report by the Washington State Department of Natural Resources (DNR) [below], highlights areas at risk for a future event.

    “Right under your feet”

    Researchers used records of the historic earthquake, found in the natural landscape, to re-create the land surface changes and resulting tsunami wave. Land south of the fault moved up, whereas land north of the rupture moved down. The resulting displacement of water in the Puget Sound produced a tsunami wave 33 feet (10 meters) high, moving as fast as 25 knots (13 meters/second). Though the first wave would hit Elliot Bay in downtown Seattle within about 3 minutes of the first ground shaking, inundation throughout different parts of Puget Sound continued for more than three hours. The oral history of the native Salish people in the region affirms the geologic observations of the catastrophic event.


    Tsunami wave simulation for Seattle–Bainbridge Island, Wash.
    Credit: Washington State Department of Natural Resources

    Tsunami wave simulation for the Seattle and Bainbridge Island waterfronts, Washington, from a hypothetical large Seattle Fault earthquake scenario. Developed by Washington Geological Survey hazard geologists.

    “Everyone thinks about the big one — the Cascadia megathrust rupture…

    …but there are local sources of hazard in the Puget Sound region that can cause cascading issues like landslides and tsunamis,” says Gabriel Lotto, a geophysicist at the Pacific Northwest Seismic Network who was not involved with the new research. “Those can be just as damaging locally as a really big one, because the source is right under your feet.”

    The last strong earthquake in the region — the magnitude-6.8 Nisqually earthquake in 2001 — struck 31 miles (50 kilometers) underground, beneath the southern Puget Sound. That quake occurred on the Pacific tectonic plate, which is subducting beneath the North American plate. Although it produced significant shaking and damage in Seattle, the section of the fault that slipped in the quake was so deep that it did not trigger a tsunami. Earthquakes on shallow, surface-rupturing faults such as those running through Puget Sound, are a different story.

    The Seattle Fault — the source of the shock modeled in the DNR report — is made up of a series of roughly parallel fault traces that run east-west through the metro’s southern suburbs and dissect Mercer and Bainbridge islands.

    2
    The Seattle Fault Zone (SFZ) — a group of parallel faults collectively known as the Seattle Fault — cuts through Puget Sound. The Olympia earthquake is also known as the 2001 Nisqually earthquake. Credit: Washington State Department of Natural Resources.

    Long-lasting effects

    An earthquake on the Seattle Fault would not just have a short-term impact, says Alexander Dolcimascolo, a tsunami geologist at the Washington State Department of Natural Resources and lead author of the report. “Once the floodwaters recede, there will be a new shoreline due to land level changes.” A new coast could see land that was one always dry and habitable, be flooded twice a day due to tides, he says.

    “If you have waterfront property in that subsidence zone, there’s a chance that your home could be lost,” Dolcimascolo says. The Bainbridge Island Ferry Terminal, for example, dropped below the average high-water line during the earthquake modeled in the report.

    The scenario, though alarming, has a low probability — less than a one percent chance — of happening in the next 50 years. What is more probable, though, is a somewhat smaller earthquake, between a magnitude 6.5 and 7.0, on any one of the shallow crustal faults in the Puget Sound. The study simulated the historic earthquake on the Seattle Fault, but the Tacoma Fault Zone to the south, and the South Whidbey Island fault zone in the north, could also trigger shaking and tsunami waves in the Puget Sound.

    3
    A white, sandy layer in a stream near Cultus Bay on Whidbey Island was deposited during the tsunami. Credit: Washington State Department of Natural Resources.

    Current estimates give a 15% chance of a magnitude-6.5 event on one of these faults in the next 50 years, but as our knowledge about these faults improves, that probability could change. The exact hazard faced by any one region will depend on many factors — the magnitude of the earthquake, its timing relative to the tides and currents, the distance from the epicenter, the intensity of land surface changes. The scenario in this report is one of many possibilities. “Take it seriously, but not literally,” says Lotto.

    The ShakeAlert Earthquake Early Warning [below] system offers one way to mitigate some risks. The system can automatically respond to the first signs of shaking by shutting off certain water and gas lines, and delivers automated alerts to people in affected areas.

    Bill Steele of the Pacific Northwest Seismic Network, who was not involved with the report, says he hopes this study will motivate wider use of the ShakeAlert system. “This study is a reminder that we can always be doing more to prepare for hazards,” he says. “Looking at scenarios like this reminds us that we don’t have time, when there’s only a few minutes before a wave arrives on the coast, to be getting humans to make the right decisions and push the right buttons. It’s just not enough time.”

    Science report:
    Washington State Department of Natural Resources (DNR)

    References:

    Dolcimascolo, Alexander; Eungard, D. W.; Allen, Corina; LeVeque, R. J.; Adams, L. M.; Arcas, Diego; Titov, V. V.; González, F. I.; Moore, Christopher, 2022, Tsunami inundation, current speeds, and arrival times simulated from a large Seattle Fault earthquake scenario for Puget Sound and other parts of the Salish Sea: Washington Geological Survey Map Series 2022-03, 16 sheets, scale 1:48,000, 51 p. text.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    _____________________________________________________________________________________

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network projectEarthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    QuakeAlertUSA

    1

    About Early Warning Labs, LLC

    Early Warning Labs, LLC (EWL) is an Earthquake Early Warning technology developer and integrator located in Santa Monica, CA. EWL is partnered with industry leading GIS provider ESRI, Inc. and is collaborating with the US Government and university partners.

    EWL is investing millions of dollars over the next 36 months to complete the final integration and delivery of Earthquake Early Warning to individual consumers, government entities, and commercial users.

    EWL’s mission is to improve, expand, and lower the costs of the existing earthquake early warning systems.

    EWL is developing a robust cloud server environment to handle low-cost mass distribution of these warnings. In addition, Early Warning Labs is researching and developing automated response standards and systems that allow public and private users to take pre-defined automated actions to protect lives and assets.

    EWL has an existing beta R&D test system installed at one of the largest studios in Southern California. The goal of this system is to stress test EWL’s hardware, software, and alert signals while improving latency and reliability.

    Earthquake Early Warning Introduction

    The United States Geological Survey (USGS), in collaboration with state agencies, university partners, and private industry, is developing an earthquake early warning system (EEW) for the West Coast of the United States called ShakeAlert. The USGS Earthquake Hazards Program aims to mitigate earthquake losses in the United States. Citizens, first responders, and engineers rely on the USGS for accurate and timely information about where earthquakes occur, the ground shaking intensity in different locations, and the likelihood is of future significant ground shaking.

    The ShakeAlert Earthquake Early Warning System recently entered its first phase of operations. The USGS working in partnership with the California Governor’s Office of Emergency Services (Cal OES) is now allowing for the testing of public alerting via apps, Wireless Emergency Alerts, and by other means throughout California.

    ShakeAlert partners in Oregon and Washington are working with the USGS to test public alerting in those states sometime in 2020.

    ShakeAlert has demonstrated the feasibility of earthquake early warning, from event detection to producing USGS issued ShakeAlerts ® and will continue to undergo testing and will improve over time. In particular, robust and reliable alert delivery pathways for automated actions are currently being developed and implemented by private industry partners for use in California, Oregon, and Washington.

    Earthquake Early Warning Background

    The objective of an earthquake early warning system is to rapidly detect the initiation of an earthquake, estimate the level of ground shaking intensity to be expected, and issue a warning before significant ground shaking starts. A network of seismic sensors detects the first energy to radiate from an earthquake, the P-wave energy, and the location and the magnitude of the earthquake is rapidly determined. Then, the anticipated ground shaking across the region to be affected is estimated. The system can provide warning before the S-wave arrives, which brings the strong shaking that usually causes most of the damage. Warnings will be distributed to local and state public emergency response officials, critical infrastructure, private businesses, and the public. EEW systems have been successfully implemented in Japan, Taiwan, Mexico, and other nations with varying degrees of sophistication and coverage.

    Earthquake early warning can provide enough time to:

    Instruct students and employees to take a protective action such as Drop, Cover, and Hold On
    Initiate mass notification procedures
    Open fire-house doors and notify local first responders
    Slow and stop trains and taxiing planes
    Install measures to prevent/limit additional cars from going on bridges, entering tunnels, and being on freeway overpasses before the shaking starts
    Move people away from dangerous machines or chemicals in work environments
    Shut down gas lines, water treatment plants, or nuclear reactors
    Automatically shut down and isolate industrial systems

    However, earthquake warning notifications must be transmitted without requiring human review and response action must be automated, as the total warning times are short depending on geographic distance and varying soil densities from the epicenter.

     
  • richardmitnick 8:28 pm on August 4, 2022 Permalink | Reply
    Tags: "New eruption at Fagradalsfjall Volcano follows days of seismic swarms", , , , , temblor,   

    From temblor : “New eruption at Fagradalsfjall Volcano follows days of seismic swarms” 

    1

    From temblor

    8.4.22

    Melissa Scruggs, Ph.D.

    1
    Eruption at Fagradasfjall. Credit: Edward Marshall.

    After days of elevated earthquake activity on the Reykjanes Peninsula, Iceland’s Fagradalsfjall volcano began erupting at 1:18 p.m. Wednesday afternoon, local time. Roughly 5,000 earthquakes have been detected on the peninsula since July 30, according to the Icelandic Meteorological Office — including a magnitude-5.4 event felt in Reykjavik on July 31. These earthquakes accompanied ground deformation near the site of last year’s eruption, indicating magma movement toward the surface.

    Currently, small lava fountains are erupting from a 300-meter-long (1,000-foot), northeast-southwest trending crack on the northern edge of the 2021 lava flow, according to researchers from the University of Iceland and Icelandic Meteorological Office who surveyed the new eruption. Lava is steadily erupting between five and ten times faster than the lava that erupted at the start of the 2021 eruption. Already, along the fissure, ridges of solidified lava have started to form.


    Fagradalsfjall volcano
    Time11.12.27

    Why is Iceland so volcanically active?

    Iceland is home to 34 active volcanoes, averaging one eruption every four years. Volcanoes are so common in Iceland because of its unique tectonic setting; it is located above a mantle plume — a hot, buoyant bit of Earth’s mantle that rises upwards, bringing magma to the surface — and on top of the plate boundary where the North American and Eurasian plates incrementally inch apart. As the plates move away from each other, hot, less dense mantle rock rises upwards to fill the space in between the plates. High pressures deep in the Earth keep the mantle solid, but at the shallow depths underneath spreading ridges, lower pressures force hot mantle rocks to melt, generating basaltic magma. This process is called decompression melting. The new, buoyant magma ascends through the thin crust, often erupting at linear vents called fissures and creating new land.

    Eruptions at Icelandic volcanoes are generally not explosive. Typically, flows of hot, runny basaltic lava pour out of fissures or fountain toward the sky in what’s called an effusive eruption. Although effusive eruptions are not as violent as their explosive counterparts, lava flows can still damage infrastructure, and large quantities of volcanic gases can affect air quality for nearby populations.

    2
    The 2021 fissure eruption of Fagradalsfjall produced spectacular lava flows, lava fountains and built-up spatter cones along a linear fissure for the first time in roughly six thousand years. A similar eruption is now underway. Credit: Courtesy A. Shevchenko and E. Zorn (GFZ Germany).

    An unsurprising spectacle

    This week’s eruption was not entirely unexpected by scientists monitoring the volcano, as heightened earthquake activity and uplift in the ground surface can indicate magma moving beneath a volcano. As magma travels toward the surface via underground conduits called dikes, the leading tip of the dike can cause the crust to fracture as it tunnels forward, triggering earthquakes.


    Volcano Monitoring—Earthquake signals (educational)

    Similar earthquakes and significant ground deformation occurred in the months before the 2021 eruption of Fagradalsfjall, as a nine kilometer (about five and a half miles) long, narrow body of magma intruded into the rift zone. The dike responsible for this new eruption is located only one kilometer (about half a mile) below the surface, says Magnús Tumi Guðmundsson, a geophysicist at the University of Iceland.

    What can we expect next from Fagradalsfjall?

    Though predicting exactly what a volcano will do in the future is not possible, scientists often use past eruptions to anticipate future eruptive behavior. With few exceptions, Icelandic volcanoes erupt effusively, producing spectacular basaltic lava fountains and flows, along with large quantities of dangerous volcanic gases. Scientists cannot predict exactly when an eruption will begin or end, but instead forecast what might happen, based on changes in volcanic activity.

    In addition to monitoring earthquakes and volcanic gases, scientists are examining lava chemistry to get a better idea of how the magma is changing as the eruption progresses, says Frances Deegan, a volcanologist at the Swedish Research Council. This new batch of magma could have the same origins as the magma involved in last year’s eruption, says Deegan, but scientists will need to compare newly collected samples to the 2021 lavas [above] to determine if there have been significant changes to the magma plumbing system in the past eight months.

    The Icelandic Meteorologic Office expects no damage to infrastructure at the moment, and the Icelandic Civil Defense lowered its Public Safety Level to reflect the lower threat posed by the volcano. For now, the primary problem appears to be negative air quality, which the Icelandic Meteorological Office is monitoring.

    Fagradalsfjall captured the attention of the world last year with its spectacular cones and lavafalls, lava fountains and flows. It seems that in 2022 it is poised to do the same.

    References

    Flis, A. (2022, August 1). A strong burst of nearly 4000 earthquakes occurs in Iceland, causing an increased risk of a new volcanic eruption as we head into August. Severe Weather Europe. https://www.severe-weather.eu/news/powerful-earthquake-swarm-volcano-iceland-seismic-activity-2022-fa/

    Gudmundsson, A., Bazargan, M., Hobé, A., Selek, B., & Tryggvason, A. (2021) Dike-Segment Propagation, Arrest, and Eruption at Fagradalsfjall, Iceland. Presented at the AGU 2021 Fall Meeting, New Orleans, LA and virtual. https://doi.org/10.1002/essoar.10508827.3

    Heimisson, E., & Segall, P. (2020) Physically consistent modeling of dike-induced deformation and seismicity: application to the 2014 Bardarbunga Dike, Iceland. Journal of Geophysical Research Solid Earth. https://doi.org/10.1029/2019JB018141

    Jonsdottir, K., Cubuk Sabuncu, Y., Geirsson, H., Klaasen, S., Caudron, C., Lecocq, T., Barsotti, S., Barnie, T., Sigmundsson, F., Oddsson, B., Gudmundsson, M., Parks, M., Fichtner, A., Thrastarson, S., & Paitz, P. (2021) Seismic Monitoring of the 2021 Fagradalsfjall Eruption, SW Iceland. Presented at the AGU 2021 Fall Meeting, New Orleans, LA and virtual. https://ui.adsabs.harvard.edu/abs/2021AGUFM.V23B..05J/abstract

    Further Reading

    Larsen, G. & Guðmundsson, M.T. (2016 March 7). Katla. In: Oladottir, B., Larsen, G. & Guðmundsson, M. T. Catalogue of Icelandic Volcanoes. IMO, UI and CPD-NCIP. Retrieved from http://icelandicvolcanoes.is/?volcano=KRY

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    _____________________________________________________________________________________

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network projectEarthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    QuakeAlertUSA

    1

    About Early Warning Labs, LLC

    Early Warning Labs, LLC (EWL) is an Earthquake Early Warning technology developer and integrator located in Santa Monica, CA. EWL is partnered with industry leading GIS provider ESRI, Inc. and is collaborating with the US Government and university partners.

    EWL is investing millions of dollars over the next 36 months to complete the final integration and delivery of Earthquake Early Warning to individual consumers, government entities, and commercial users.

    EWL’s mission is to improve, expand, and lower the costs of the existing earthquake early warning systems.

    EWL is developing a robust cloud server environment to handle low-cost mass distribution of these warnings. In addition, Early Warning Labs is researching and developing automated response standards and systems that allow public and private users to take pre-defined automated actions to protect lives and assets.

    EWL has an existing beta R&D test system installed at one of the largest studios in Southern California. The goal of this system is to stress test EWL’s hardware, software, and alert signals while improving latency and reliability.

    Earthquake Early Warning Introduction

    The United States Geological Survey (USGS), in collaboration with state agencies, university partners, and private industry, is developing an earthquake early warning system (EEW) for the West Coast of the United States called ShakeAlert. The USGS Earthquake Hazards Program aims to mitigate earthquake losses in the United States. Citizens, first responders, and engineers rely on the USGS for accurate and timely information about where earthquakes occur, the ground shaking intensity in different locations, and the likelihood is of future significant ground shaking.

    The ShakeAlert Earthquake Early Warning System recently entered its first phase of operations. The USGS working in partnership with the California Governor’s Office of Emergency Services (Cal OES) is now allowing for the testing of public alerting via apps, Wireless Emergency Alerts, and by other means throughout California.

    ShakeAlert partners in Oregon and Washington are working with the USGS to test public alerting in those states sometime in 2020.

    ShakeAlert has demonstrated the feasibility of earthquake early warning, from event detection to producing USGS issued ShakeAlerts ® and will continue to undergo testing and will improve over time. In particular, robust and reliable alert delivery pathways for automated actions are currently being developed and implemented by private industry partners for use in California, Oregon, and Washington.

    Earthquake Early Warning Background

    The objective of an earthquake early warning system is to rapidly detect the initiation of an earthquake, estimate the level of ground shaking intensity to be expected, and issue a warning before significant ground shaking starts. A network of seismic sensors detects the first energy to radiate from an earthquake, the P-wave energy, and the location and the magnitude of the earthquake is rapidly determined. Then, the anticipated ground shaking across the region to be affected is estimated. The system can provide warning before the S-wave arrives, which brings the strong shaking that usually causes most of the damage. Warnings will be distributed to local and state public emergency response officials, critical infrastructure, private businesses, and the public. EEW systems have been successfully implemented in Japan, Taiwan, Mexico, and other nations with varying degrees of sophistication and coverage.

    Earthquake early warning can provide enough time to:

    Instruct students and employees to take a protective action such as Drop, Cover, and Hold On
    Initiate mass notification procedures
    Open fire-house doors and notify local first responders
    Slow and stop trains and taxiing planes
    Install measures to prevent/limit additional cars from going on bridges, entering tunnels, and being on freeway overpasses before the shaking starts
    Move people away from dangerous machines or chemicals in work environments
    Shut down gas lines, water treatment plants, or nuclear reactors
    Automatically shut down and isolate industrial systems

    However, earthquake warning notifications must be transmitted without requiring human review and response action must be automated, as the total warning times are short depending on geographic distance and varying soil densities from the epicenter.

     
  • richardmitnick 4:47 pm on June 30, 2022 Permalink | Reply
    Tags: "A landslide and a tsunami and then a flood:: the massive hazard cascade that shook the world", A signal comparable to a magnitude-5.0 earthquake emanated from deep within the southern Coast Mountains of British Columbia., , , British Columbia’s mountainous terrain is no stranger to landslides or floods and tsunamis., , , , New research reveals the intensity of British Columbia’s 2020 hazard cascade as members of the Homalco First Nation continue to pick up the pieces., , Recovery could take decades., temblor, The fifth largest landslide on record in British Columbia., The sheer scale of the cascade can be hard to comprehend even when viewing the valley from a helicopter.,   

    From temblor : “A landslide and a tsunami and then a flood:: the massive hazard cascade that shook the world” 

    1

    From temblor

    June 30, 2022
    Lauren A. Koenig, Ph.D.

    New research reveals the intensity of British Columbia’s 2020 hazard cascade as members of the Homalco First Nation continue to pick up the pieces.

    In late November, 2020 a geological mystery appeared on seismographs around the world. A signal comparable to a magnitude-5.0 earthquake emanated from deep within the southern Coast Mountains of British Columbia (B.C.), Canada.

    The cause of this ground-shaking event remained unknown for two weeks, until forestry workers passing through traditional territory of the Homalco First Nation happened upon its aftermath in the Elliot Creek watershed. The glacier-carved valley, narrowly framed by mile-high rocky walls, was decimated by a massive hazard cascade — a chain reaction of geological events — involving a landslide, tsunami, outburst flood and sediment plume. What was once a verdant environment for the region’s famed salmon is now an ashen alley that fans out into a sea of debris.

    The sheer scale of the cascade can be hard to comprehend even when viewing the valley from a helicopter, said Marten Geertsema, a research geomorphologist with the B.C. Ministry of Forests and the lead author of a new study that describes the events [Geophysical Research Letters].


    British Columbia 2020 hazard cascade aftermath.

    “It’s staggering when you just stand there,” said Geertsema. “It’s kind of hard to wrap your head around how powerful that all was.”

    Homalco First Nation and researchers from the B.C.-based Hakai Institute are assessing the long-term ecological impacts on the region, especially for fisheries. Ongoing unstable conditions in the valley suggest that recovery could take decades. Moreover, Elliot Creek has erratically changed course numerous times in the past year, which can make restoration plans irrelevant essentially overnight.

    “If we get a massive rain event like last year, the whole river could change again and it’s not money well spent,” said Erik Blaney, an environmental technical of the Tla’amin Nation who was contracted by the Homalco Nation to lead assessment and recovery efforts. “You’re playing with mother nature.”

    A cascade of unfortunate events

    The hazard cascade began with the fifth largest landslide on record in British Columbia, involving, according to study co-author Göran Ekström, the equivalent of the combined mass of Canada’s 25 million cars. Ekström is a seismologist at Columbia University. Nearly half of the debris crashed onto the toe of West Grenville glacier, near the base of the valley. The rest ran up the opposite wall of the valley before gravity carried it down once again. Traveling at more than 100 miles per hour (170 kilometers per hour), the landslide plunged into an alpine lake left behind by the glacier during its retreat over the last century.

    Like the splash after a jump off a high-dive, the landslide’s impact was fast and violent: the rockfall catapulted enough water out of the lake to reduce its area by nearly 20%, creating islands in its newly shallow depths. In just over a minute, a tsunami wave towering more than 330 feet (100 meters) high sped across the lake before cresting the opposite shore, creating what is known as a glacial lake outburst flood.

    2
    The view down valley showing the eroded creek bed and lack of vegetation. Credit: Briar Stewart/CBC.

    The water was then forcefully channeled down the confines of the valley like a marble in a Rube Goldberg machine. Though it generally takes millennia for water to steadily erode deep ravines, the flood gouged out a groove 160 feet (50 meters) deep in the stream bed within minutes.

    As the creek bank gave way and trees were mowed down, the flood became a thick soup of debris that left an enormous fan of sand, mud and wood extending from the mouth of the valley. It contaminated local fresh and marine waterways, creating a sediment plume — suspended organic materials — that destroyed water quality.

    “You need certain elements in place to create these massive domino effects,” said Geerstema. “This goes to show us the damaging footprint of these events when you have water in the right place.”

    Looking with LiDAR

    The landslide’s remote location meant that fortunately no one was around when the hazard cascade took place. To map out what happened, Geertsema, who regularly scours satellite imagery for evidence of landslides in high-mountain areas, worked with members of Canada’s First Nations, the Hakai Institute and other institutions around the world to simulate the events using numerical modeling and LiDAR — a survey method that pulses lasers from an airplane to create 3D representations of the surface.

    Geertsema, who compared post-landslide images with those taken only one year prior, said the team was very lucky to have such detailed imagery. “We wouldn’t have been able to produce these models without that input data,” he said.

    3
    The view of the lake looking towards West Grenville glacier and the sheer vertical slide face. Credit: Brian Menounos.

    Fewer glaciers, more hazards

    British Columbia’s mountainous terrain is no stranger to landslides or floods and tsunamis. Climate change, however, has exacerbated the impacts and frequency of these hazards — especially as warming temperatures cause ground-stabilizing permafrost and glaciers to melt away.

    As glaciers retreat, weak bedrock loses the support that prevents its collapse, said Tom Millard, a research geomorphologist with the B.C. Ministry of Forests and co-author of the study. The meltwater lakes left in their wake, such as at Elliot Creek, also tend to get larger, which ratchets up the hazard of a potential tsunami or outburst flood.

    Living with the consequences

    The chain reaction of geological events created a cascade of ecological effects that will linger for decades. The flood destroyed most of the salmon population, as well as the spawning habitat that they return to each year. The fish are unable to survive current turbidity levels, which remain more than 25 times higher than normal (especially after a rainstorm), said Blaney.

    More than food, salmon are an important part of the Homalco First Nation’s culture and livelihood. Grizzly bears’ annual feasting on salmon draws in tourism that helps the community thrive. But this past year, low salmon numbers meant the bears went hungry.

    As recovery effort coordinator, Blaney has ideas for sustainable ways to help the ecosystem return to some semblance of normal. One solution is to prune crab apple trees as another source of food for the bears.

    “It’s something that our people did before,” said Blaney.

    Blaney is also considering installing a platform that would provide a safer way for researchers to monitor the salmon population, diverting the creek through a more stable area with remaining trees, and planting native vegetation to control for erosion.

    Finding funding for these projects, however, is only one obstacle that is part of an even greater challenge: living with the increasingly stark effects of climate change. Severe wildfires in summer 2021 burned across B.C., and the Coast Mountains are experiencing some of the highest rates of glacier loss on earth, meaning hazard cascades like the one at Elliot Creek could become more frequent.

    “I don’t think the average person living in a city can really understand or see the changes that we’re seeing and the devastation that they’re having on salmon and other important pieces of our survival and our culture,” said Blaney. “We’re seeing change, and it’s happening fast and it’s beyond any scope we could have imagined.”

    Further Reading

    For the full multimedia feature by the Hakai Institute — which includes video, interactive maps, and more — click here.

    Geertsema, M., Menounos, B., Bullard, G., Carrivick, J. L., Clague, J. J., Dai, C., … & Sharp, M. A. (2022). The 28 November 2020 landslide, tsunami, and outburst flood–a hazard cascade associated with rapid deglaciation at Elliot Creek, British Columbia, Canada. Geophysical research letters, 49(6), e2021GL096716.

    Menounos, B., Hugonnet, R., Shean, D., Gardner, A., Howat, I., Berthier, E., … & Dehecq, A. (2019). Heterogeneous changes in western North American glaciers linked to decadal variability in zonal wind strength. Geophysical Research Letters, 46(1), 200-209.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    _____________________________________________________________________________________

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network projectEarthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    QuakeAlertUSA

    1

    About Early Warning Labs, LLC

    Early Warning Labs, LLC (EWL) is an Earthquake Early Warning technology developer and integrator located in Santa Monica, CA. EWL is partnered with industry leading GIS provider ESRI, Inc. and is collaborating with the US Government and university partners.

    EWL is investing millions of dollars over the next 36 months to complete the final integration and delivery of Earthquake Early Warning to individual consumers, government entities, and commercial users.

    EWL’s mission is to improve, expand, and lower the costs of the existing earthquake early warning systems.

    EWL is developing a robust cloud server environment to handle low-cost mass distribution of these warnings. In addition, Early Warning Labs is researching and developing automated response standards and systems that allow public and private users to take pre-defined automated actions to protect lives and assets.

    EWL has an existing beta R&D test system installed at one of the largest studios in Southern California. The goal of this system is to stress test EWL’s hardware, software, and alert signals while improving latency and reliability.

    Earthquake Early Warning Introduction

    The United States Geological Survey (USGS), in collaboration with state agencies, university partners, and private industry, is developing an earthquake early warning system (EEW) for the West Coast of the United States called ShakeAlert. The USGS Earthquake Hazards Program aims to mitigate earthquake losses in the United States. Citizens, first responders, and engineers rely on the USGS for accurate and timely information about where earthquakes occur, the ground shaking intensity in different locations, and the likelihood is of future significant ground shaking.

    The ShakeAlert Earthquake Early Warning System recently entered its first phase of operations. The USGS working in partnership with the California Governor’s Office of Emergency Services (Cal OES) is now allowing for the testing of public alerting via apps, Wireless Emergency Alerts, and by other means throughout California.

    ShakeAlert partners in Oregon and Washington are working with the USGS to test public alerting in those states sometime in 2020.

    ShakeAlert has demonstrated the feasibility of earthquake early warning, from event detection to producing USGS issued ShakeAlerts ® and will continue to undergo testing and will improve over time. In particular, robust and reliable alert delivery pathways for automated actions are currently being developed and implemented by private industry partners for use in California, Oregon, and Washington.

    Earthquake Early Warning Background

    The objective of an earthquake early warning system is to rapidly detect the initiation of an earthquake, estimate the level of ground shaking intensity to be expected, and issue a warning before significant ground shaking starts. A network of seismic sensors detects the first energy to radiate from an earthquake, the P-wave energy, and the location and the magnitude of the earthquake is rapidly determined. Then, the anticipated ground shaking across the region to be affected is estimated. The system can provide warning before the S-wave arrives, which brings the strong shaking that usually causes most of the damage. Warnings will be distributed to local and state public emergency response officials, critical infrastructure, private businesses, and the public. EEW systems have been successfully implemented in Japan, Taiwan, Mexico, and other nations with varying degrees of sophistication and coverage.

    Earthquake early warning can provide enough time to:

    Instruct students and employees to take a protective action such as Drop, Cover, and Hold On
    Initiate mass notification procedures
    Open fire-house doors and notify local first responders
    Slow and stop trains and taxiing planes
    Install measures to prevent/limit additional cars from going on bridges, entering tunnels, and being on freeway overpasses before the shaking starts
    Move people away from dangerous machines or chemicals in work environments
    Shut down gas lines, water treatment plants, or nuclear reactors
    Automatically shut down and isolate industrial systems

    However, earthquake warning notifications must be transmitted without requiring human review and response action must be automated, as the total warning times are short depending on geographic distance and varying soil densities from the epicenter.

     
  • richardmitnick 8:30 pm on June 13, 2022 Permalink | Reply
    Tags: "Megathrust earthquakes impact surrounding seismicity for centuries", , , , , , , temblor   

    From temblor : “Megathrust earthquakes impact surrounding seismicity for centuries” 

    1

    From temblor

    June 13, 2022
    Ross S. Stein, Ph.D.
    Temblor, Inc.

    Shinji Toda, Ph.D.
    International Research Institute of Disaster Science
    Tohoku University (JP)

    Subduction zones spawn the planet’s largest earthquakes, termed ‘megathrusts’ once they reach magnitude-9.

    Cascadia is projected to unleash a 9+ earthquake event at some point in the future.

    Such shocks release one thousand times the energy of a magnitude-7 event, and thus play a dominant role in the global seismic energy release. However, they occur at a rate only one hundredth of a magnitude-7. On average, there are about five megathrust shocks per century (Kagan and Jackson 2013). The largest instrumentally recorded megathrust was the 1960 Valdivia, Chile, magnitude-9.5 event.

    Most seismic hazard assessments attempt to reflect the long term earthquake rates, which are assumed to slowly change as stress builds on faults. But there is abundant evidence that megathrusts and other very large earthquakes abruptly and profoundly alter the hazard to depart, leading to damaging aftershocks and progressive mainshocks.

    In a study published last week in Nature Geoscience, we argue that after a megathrust earthquake, aftershocks on the rupture surface quickly shut down. At the same time, large aftershocks light up the surrounding area, menacing coastal population centers.

    Aftershock core and corona

    Within five years of each megathrust shock that struck since 1960, aftershocks on the high-slip portions of the rupture surface had shut down. This includes the 1960 magnitrude-9.5 Valdivia, 1964 magnitude-9.2 Prince William Sound, 2004 magnitude-9.2 Sumatra and 2011 magnitude-9.0 Tohoku earthquakes. It is probably also the case for the somewhat smaller 2010 magnitude-8.8 Maule, Chile, quake. In these “cores,” seismicity rates dropped well below the rate observed in the decades before the megathrusts. Immediately after each of these events, a surrounding “corona” of seismicity was activated, and continues to be active today — up to 60 years later. Owning to Japan’s unsurpassed seismic monitoring network, the best recorded of these is the 2011 magnitude-9.0 Tohoku shock.

    2
    During the first several years after the Tohoku mainshock, there were abundant aftershocks in the core and surrounding corona (left panel), but five years later, while the corona remained active, the core had all but shut down (middle panel). Whether the corona extends to Tokyo is uncertain, so is indicated by a light dashed contour (right panel).

    Coulomb stress transfer can explain these observations

    These observations can be explained by the transfer of stress during an earthquake — known as Coulomb stress transfer. Earthquakes generally release the built up stress on the fault that slipped, transferring it to surrounding faults. In the Coulomb hypothesis, both an increase in shear stress and unclamping of a fault promote failure, whereas reducing the shear stress or clamping the fault inhibit failure. These stresses cause seismicity, the rate of which evolves through time (Dieterich, 1994; Stein, 1999). Most corona aftershocks occurred because the faults on which they struck were brought immediately closer to Coulomb failure by the mainshock rupture, suggesting that the corona is a product of stress transfer from the rupture to surrounding faults. In contrast, in the core, the Coulomb stress inhibited most aftershocks. Some faults within the core experience a stress increase, causing a sudden rise in seismicity rate. But these sites are rapidly consumed as aftershocks release this stress, resulting in a delayed shutdown.

    3
    In our model of seismicity evolution, immediately after the mainshocks, the aftershock rate is high in the core (blue), but it drops to a level below the pre-mainshock seismicity rate within several years. In contrast, the corona (red) activates immediately, slowly decaying to (but not below) the pre-mainshock rate over 30-60 years.

    Implications for seismic hazard

    Because the corona is as much as ten times larger than the core, there is a net hazard increase after a megathrust that lasts for about half a century, typically spanning the trench to the coast. Most hazard models, including the “seismic gap theory,” instead assume that the hazard drops after a megathrust. Four roughly magnitude-7 earthquakes struck along the Tohoku coast in 2021-2022 — more than a decade after the mainshock — all in corona areas. We regard these as Tohoku aftershocks, rather than run-of-the-mill earthquakes. In support of this interpretation, there were 22 magnitude-6.7 and greater shocks in the decade after the Tohoku mainshock, but only 4-5 in the same area in the decade beforehand — a four-fold rate increase. In addition, at the site of the magnitude-7 shocks, the rate of small (magnitude-3 and larger) shocks is five times higher today than it was before the 2011 shock. So, in our view, the model exhibits a forecast skill that could be used to improve hazard assessments. In addition to Japan, Chile and Indonesia also suffered megathrusts, which strongly alter their seismic hazard today.

    A new way to hunt for prehistoric megathrusts

    If our model is correct and the core shutdown persists for 300 or so years, then we should be able to find sites of pre-instrumental and prehistoric megathrust earthquakes by searching for current holes in subduction zone seismicity. All four of the megathrusts since 1960 are visible today as seismicity holes, as are the still older 1868 magnitude-9.1 Arica (Peru-Chile), 1762 magnitude-8.8 Arakan (Myanmar) and 1700 magnitude-9.0 Cascadia (US-Canada) earthquakes. Candidate prehistoric megathrust ruptures include a 200-mile-long (300-kilometer) hole along the western Makran Trench and 400-mile-long (700-kilometer) hole along the Commander section of the northwest Aleutian arc.

    4
    Four seismicity holes, several of which correspond to megathrusts that struck more than 250 years ago. The lack of Cascadia seismicity (left panel) has been attributed by others to complete healing and locking of the megathrust (Obana et al. 2014), we believe it could instead be in a post-mainshock shutdown. Sites of megathrusts or very large earthquakes in 1765 and 1762 also appear today as holes (middle and right panels).

    This view is opposite to what most researchers have assumed. Holes have been interpreted as aseismic sections of subduction zones, where megathrusts are not possible. But where aseismic slip, known as “creep,” is independently documented from GPS measurements, it is generally accompanied by moderate seismicity, so these are not seismicity holes. In fact, the Juan de Fuca Trench off the Pacific Northwest was assumed to be permanently aseismic until Brian Atwater and Kenji Satake discovered evidence for the 1700 Cascadia tsunami (Atwater et al. 2016).

    What about the San Andreas?

    Whether seismicity holes might also mark the sites of historic and prehistoric magnitude-8 transform fault ruptures is uncertain. Tantalizingly, the sites of the great 1857 magnitude-7.9 southern San Andreas and 1906 magnitude-7.7 northern San Andreas earthquakes are holes today (Scholz 1988). But because these transform (strike-slip) earthquakes are so much smaller than megathrusts, the seismicity data needed to demonstrate this case worldwide is impoverished, and so the answer remains clouded.

    References

    Atwater, B.F., Musumi-Rokkaku, S., Satake, K., Tsuji, Y., Ueda, K. and D.K. Yamaguchi (2016), The orphan tsunami of 1700: Japanese clues to a parent earthquake in North America. University of Washington Press (USGS Prof. Paper 1707).

    Dieterich, J. H. (1994), A constitutive law for the rate of earthquake production and its application to earthquake clustering. J. Geophys. Res. 99, 2601-2618, https://doi.org/10.1029/93JB02581

    Kagan, Y. Y., and D. D. Jackson (2013), Tohoku Earthquake: A Surprise? Bull. Seismol. Soc. Am. 103, 1181–1194. doi: https://doi.org/10.1785/0120120110

    Obana, K., M. Scherwath, Y. Yamamoto, S. Kodaira, K. Wang, G. Spence, M. Riedel, H. Kao (2014), Earthquake activity in northern Cascadia subduction zone off Vancouver Island revealed by ocean‐bottom seismograph observations. Bull. Seismol. Soc. Am. 105, 489–495. doi: https://doi.org/10.1785/0120140095

    Toda, S. and R. S. Stein (2022), Central shutdown and surrounding activation of aftershocks from megathrust earthquake stress transfer, Nature Geoscience, doi: https://www.nature.com/articles/s41561-022-00954-x. Or freely available from ShareIt https://rdcu.be/cPoHx

    Scholz, C.H. (1988), Mechanisms of seismic quiescences. Pure Appl. Geophys. 126, 701-718, https://doi.org/10.1007/BF00879016

    Stein, R. S. (1999), The role of stress transfer in earthquake occurrence, Nature 402, 605-609, https://doi.org/10.1038/45144

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    _____________________________________________________________________________________

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network projectEarthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    QuakeAlertUSA

    1

    About Early Warning Labs, LLC

    Early Warning Labs, LLC (EWL) is an Earthquake Early Warning technology developer and integrator located in Santa Monica, CA. EWL is partnered with industry leading GIS provider ESRI, Inc. and is collaborating with the US Government and university partners.

    EWL is investing millions of dollars over the next 36 months to complete the final integration and delivery of Earthquake Early Warning to individual consumers, government entities, and commercial users.

    EWL’s mission is to improve, expand, and lower the costs of the existing earthquake early warning systems.

    EWL is developing a robust cloud server environment to handle low-cost mass distribution of these warnings. In addition, Early Warning Labs is researching and developing automated response standards and systems that allow public and private users to take pre-defined automated actions to protect lives and assets.

    EWL has an existing beta R&D test system installed at one of the largest studios in Southern California. The goal of this system is to stress test EWL’s hardware, software, and alert signals while improving latency and reliability.

    Earthquake Early Warning Introduction

    The United States Geological Survey (USGS), in collaboration with state agencies, university partners, and private industry, is developing an earthquake early warning system (EEW) for the West Coast of the United States called ShakeAlert. The USGS Earthquake Hazards Program aims to mitigate earthquake losses in the United States. Citizens, first responders, and engineers rely on the USGS for accurate and timely information about where earthquakes occur, the ground shaking intensity in different locations, and the likelihood is of future significant ground shaking.

    The ShakeAlert Earthquake Early Warning System recently entered its first phase of operations. The USGS working in partnership with the California Governor’s Office of Emergency Services (Cal OES) is now allowing for the testing of public alerting via apps, Wireless Emergency Alerts, and by other means throughout California.

    ShakeAlert partners in Oregon and Washington are working with the USGS to test public alerting in those states sometime in 2020.

    ShakeAlert has demonstrated the feasibility of earthquake early warning, from event detection to producing USGS issued ShakeAlerts ® and will continue to undergo testing and will improve over time. In particular, robust and reliable alert delivery pathways for automated actions are currently being developed and implemented by private industry partners for use in California, Oregon, and Washington.

    Earthquake Early Warning Background

    The objective of an earthquake early warning system is to rapidly detect the initiation of an earthquake, estimate the level of ground shaking intensity to be expected, and issue a warning before significant ground shaking starts. A network of seismic sensors detects the first energy to radiate from an earthquake, the P-wave energy, and the location and the magnitude of the earthquake is rapidly determined. Then, the anticipated ground shaking across the region to be affected is estimated. The system can provide warning before the S-wave arrives, which brings the strong shaking that usually causes most of the damage. Warnings will be distributed to local and state public emergency response officials, critical infrastructure, private businesses, and the public. EEW systems have been successfully implemented in Japan, Taiwan, Mexico, and other nations with varying degrees of sophistication and coverage.

    Earthquake early warning can provide enough time to:

    Instruct students and employees to take a protective action such as Drop, Cover, and Hold On
    Initiate mass notification procedures
    Open fire-house doors and notify local first responders
    Slow and stop trains and taxiing planes
    Install measures to prevent/limit additional cars from going on bridges, entering tunnels, and being on freeway overpasses before the shaking starts
    Move people away from dangerous machines or chemicals in work environments
    Shut down gas lines, water treatment plants, or nuclear reactors
    Automatically shut down and isolate industrial systems

    However, earthquake warning notifications must be transmitted without requiring human review and response action must be automated, as the total warning times are short depending on geographic distance and varying soil densities from the epicenter.

     
  • richardmitnick 10:18 am on March 21, 2022 Permalink | Reply
    Tags: " ‘Triplet’ earthquakes strike near Tohoku in Japan but a rupture gap remains", , , , , temblor   

    From temblor: ” ‘Triplet’ earthquakes strike near Tohoku in Japan but a rupture gap remains” 

    1

    From temblor

    March 19, 2022

    Shinji Toda, Ph.D., IRIDeS, Tohoku University (東北大学](JP)
    Ross S. Stein, Ph.D., Temblor, Inc.

    Wednesday’s magnitude-7.3 quake, which shook large parts of Honshu and knocked out power to Tokyo, is the latest in a series of large aftershocks from the 2011 Tohoku earthquake.

    On Wednesday, March 16, 2022, a magnitude-7.3 shock struck 40 kilometers (25 miles) off the Tohoku Prefecture coast, causing strong shaking and damage to infrastructure and buildings. Three people were killed and 180 injured. Strong shaking reached Sendai and the Tohoku coastal cities, and power was knocked out for roughly 12 hours across Kanto, 330 kilometers (200 miles) away. A Tohoku Shinkansen bullet train with about 80 passengers on board derailed, fortunately with no loss of life.

    This quake is just one of a series of large shocks to strike the Honshu coast in the last decade. These events are signs that Earth’s crust is readjusting itself after the magnitude-9.0 Great Tohoku earthquake in 2011.

    Twin quakes rupture

    Wednesday’s quake struck just 7 kilometers (12 miles) southwest of a magnitude-7.1 that struck a year before, on February 12, 2021. The 2021 event ruptured mostly southward, along a 45-kilometer (27-mile) section of fault within the subducting Pacific tectonic plate.

    1
    Map of the Pacific plate
    4 May 2015
    Alataristarion

    Wednesday’s event ruptured at a similar depth, but propagated to the north. The ruptured patches of these two quakes partially overlap. Wednesday’s earthquake essentially doubled the length of fault that ruptured in 2021 (the combined extent of blue and magenta shocks in figure below). Earthquakes that strike near one another in space and time — so called “twin” or “doublet” earthquakes — are surprisingly common worldwide (Kagan and Jackson, 1999). They likely occur when faults re-rupture after a previous quake failed to relieve all the accumulated stress.

    2
    he first 24 hours of aftershocks for three large intra-slab quakes that have struck the Tohoku coast since the Great Tohoku magnitude-9.0 shock in 2011, whose rupture surface lies to the right (east) of this map.

    Earthquakes in the subducting Pacific plate

    Both the 2021 and 2022 earthquakes occurred along faults within the Pacific plate, where it descends beneath the main Japanese island of Honshu. These faults are either tears that formed as the Pacific plate is bent downwards, or old faults in the ocean crust that are reactivated as the plate is compressed during subduction. Earthquakes that strike along these faults are called ‘intra-slab’ events and they occur in subduction zones around the world. Events can be as large as magnitude-8.0. Although they often are not as devastating as the largest megathrust earthquakes, they can cause tsunamis and widespread damage.

    In contrast, the 2011 magnitude-9.1 Tohoku event was a “megathrust” earthquake, which struck 120 kilometers (70 miles) to the northeast of Wednesday’s epicenter. During the 2011 event, the Pacific plate slid under Honshu about 30 meters (100 feet) in the span of 200 seconds.

    Triplets leave a rupture gap

    But there’s more to the story, because a month after the 2011 Tohoku earthquake, a magnitude-7.1 intra-slab earthquake struck, 60 kilometers (36 miles) north of Wednesday’s epicenter (Ohta et al, 2011). That event ruptured a 30-km tear in the Pacific plate. The southern end of that rupture ends about 30 kilometers (20 miles) north of the ruptured area of Wednesday’s quake. Between these sections that has not ruptured in a major way in recent history.

    Earthquakes are promoted when a nearby shock deforms the surrounding crust in such a matter as to either unclamp a fault, or increases its shear stress; this is called the Coulomb hypothesis. When we calculate the areas in which stress increased following these three recent earthquakes, the gap lights up in red: It has been brought significantly closer to failure, and so is a likely candidate for a future earthquake in this sequence. But there are also other areas, such as to the north of the 2011 M 7.1 shock, where failure is also promoted.

    3
    The Coulomb stress imparted by the three intra-slab events since 2011. The imparted stress is very high in the apparent gap between the 2011 and 2022 events, but it is also high surrounding these ruptures. This is an idealized view of the surrounding faults, which assumes they are all roughly parallel to the three past ruptures.

    But we know that faults are not simple, parallel surfaces as assumed in the figure above. Where we have the best data and field evidence, faults have a diversity of lengths and orientations on many scales, and are even sometimes described as a fractal distribution. So, how can we capture this natural complexity in our forecast models? We do so by using past shocks, even tiny ones, to tell us where faults are, and how they are oriented.

    We show a messier — but we believe more accurate — picture of the stress imparted on faults by the three intra-slab earthquakes in the figure below. We represent the orientation of faults on which past earthquakes have occurred by beachballs. Red beachballs indicate faults were brought closer to failure — the point at which an earthquake occurs. Blue beachballs indicate faults inhibited from failure (Toda and Stein, 2021). A group of red beachballs to the north of Wednesday’s event is apparent, reinforcing our view that this gap is the most likely candidate for the next shock in the sequence, should it continue. But there is plenty of red to the southeast of the 2021 and 2022 ruptures as well. Fortunately, if an earthquake were to strike in the areas southeast of the recent ruptures, shaking in coastal communities would be less than if a quake closer.

    4
    The stress imparted by the three intra-slab quakes on the surrounding faults, as identified by past earthquake focal mechanisms (beachballs). Red beachballs are likely sites for subsequent shocks.

    Shaking reproducibility

    The three recent intra-slab shocks, each about 50 kilometers (30 miles) offshore and about 60 kilometers (35 miles) deep, provide a rare natural experiment on the reproducibility of strong shaking from one quake to the next. The Japan Meteorological Agency [気象庁](JP) operates a dense network of shaking intensity sensors throughout the country. The intensity records of the three events, shown below, are remarkably consistent, with a similar distribution of shaking and roughly the same number of peak shaking records (JMA Intensity 6+, which corresponds to a peak ground acceleration of about 0.5 g, the level at which major damage is expected). This means that we can forecast the shaking with some confidence. Of course, had these shocks been shallower or closer to the coast, the shaking and damage would have been much higher.

    But there is a catch. The intensity meters measure the peak shaking, not how long it lasts. The shaking intensities recorded by the 2011 magnitude-9.1 Tohoku earthquake are greater than for the 2021-2022 shocks, but only by about 15-50%, even though the magnitude-9.1 was almost 1,000 times larger than the recent event. The difference lies in the duration of strong shaking, which lasted for about three minutes in the Tohoku quake, and just 15 seconds for the magnitude-7 shocks. Bend a paper clip once, and it will be fine. Bend it back and forth ten times, and it breaks: long durations cause buildings to fatigue.

    4
    The shaking intensities for the three M 7.1-7.3 shocks, each about 50 km offshore and about 60 kilometers deep, are all very similar to each other. This is good news for our ability to model and forecast shaking and the damage it causes.

    Why the flurry of shocks?

    Although it seems remarkable that the Tohoku coastal region has been hit by three large shocks since the 2011 quake, in our view, they are all aftershocks of the Tohoku earthquake (we show evidence for this in Toda and Stein, 2021). In our judgment, more quakes are likely, albeit at a decreasing rate, for decades.

    References

    Y. Y. Kagan and D. D. Jackson (1999), Worldwide doublets of large shallow earthquakes, Bull. Seismol. Soc. Amer., 89, 1147-1155.

    Yusaku Ohta, Satoshi Miura, Mako Ohzono, Saeko Kita, Takeshi Iinuma, Tomotsugu Demachi, Kenji Tachibana, Takashi Nakayama, Satoshi Hirahara, Syuichi Suzuki, Toshiya Sato, Naoki Uchida, Akira Hasegawa, and Norihito Umino (2011), Large intraslab earthquake (2011 April 7, M 7.1) after the 2011 off the Pacific coast of Tohoku Earthquake (M 9.0): Coseismic fault model based on the dense GPS network data, Earth Planets Space, 63, 1207–1211.

    Toda, S., Stein, R.S. (2021), Recent large Japan quakes are aftershocks of the 2011 Tohoku Earthquake, Temblor, http://doi.org/10.32858/temblor.175

    See the full article https://temblor.net/earthquake-insights/triplet-earthquakes-strike-near-tohoku-japan-but-a-rupture-gap-remains-13983/ .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    _____________________________________________________________________________________

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network projectEarthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    QuakeAlertUSA

    1

    About Early Warning Labs, LLC

    Early Warning Labs, LLC (EWL) is an Earthquake Early Warning technology developer and integrator located in Santa Monica, CA. EWL is partnered with industry leading GIS provider ESRI, Inc. and is collaborating with the US Government and university partners.

    EWL is investing millions of dollars over the next 36 months to complete the final integration and delivery of Earthquake Early Warning to individual consumers, government entities, and commercial users.

    EWL’s mission is to improve, expand, and lower the costs of the existing earthquake early warning systems.

    EWL is developing a robust cloud server environment to handle low-cost mass distribution of these warnings. In addition, Early Warning Labs is researching and developing automated response standards and systems that allow public and private users to take pre-defined automated actions to protect lives and assets.

    EWL has an existing beta R&D test system installed at one of the largest studios in Southern California. The goal of this system is to stress test EWL’s hardware, software, and alert signals while improving latency and reliability.

    Earthquake Early Warning Introduction

    The United States Geological Survey (USGS), in collaboration with state agencies, university partners, and private industry, is developing an earthquake early warning system (EEW) for the West Coast of the United States called ShakeAlert. The USGS Earthquake Hazards Program aims to mitigate earthquake losses in the United States. Citizens, first responders, and engineers rely on the USGS for accurate and timely information about where earthquakes occur, the ground shaking intensity in different locations, and the likelihood is of future significant ground shaking.

    The ShakeAlert Earthquake Early Warning System recently entered its first phase of operations. The USGS working in partnership with the California Governor’s Office of Emergency Services (Cal OES) is now allowing for the testing of public alerting via apps, Wireless Emergency Alerts, and by other means throughout California.

    ShakeAlert partners in Oregon and Washington are working with the USGS to test public alerting in those states sometime in 2020.

    ShakeAlert has demonstrated the feasibility of earthquake early warning, from event detection to producing USGS issued ShakeAlerts ® and will continue to undergo testing and will improve over time. In particular, robust and reliable alert delivery pathways for automated actions are currently being developed and implemented by private industry partners for use in California, Oregon, and Washington.

    Earthquake Early Warning Background

    The objective of an earthquake early warning system is to rapidly detect the initiation of an earthquake, estimate the level of ground shaking intensity to be expected, and issue a warning before significant ground shaking starts. A network of seismic sensors detects the first energy to radiate from an earthquake, the P-wave energy, and the location and the magnitude of the earthquake is rapidly determined. Then, the anticipated ground shaking across the region to be affected is estimated. The system can provide warning before the S-wave arrives, which brings the strong shaking that usually causes most of the damage. Warnings will be distributed to local and state public emergency response officials, critical infrastructure, private businesses, and the public. EEW systems have been successfully implemented in Japan, Taiwan, Mexico, and other nations with varying degrees of sophistication and coverage.

    Earthquake early warning can provide enough time to:

    Instruct students and employees to take a protective action such as Drop, Cover, and Hold On
    Initiate mass notification procedures
    Open fire-house doors and notify local first responders
    Slow and stop trains and taxiing planes
    Install measures to prevent/limit additional cars from going on bridges, entering tunnels, and being on freeway overpasses before the shaking starts
    Move people away from dangerous machines or chemicals in work environments
    Shut down gas lines, water treatment plants, or nuclear reactors
    Automatically shut down and isolate industrial systems

    However, earthquake warning notifications must be transmitted without requiring human review and response action must be automated, as the total warning times are short depending on geographic distance and varying soil densities from the epicenter.

     
  • richardmitnick 10:35 pm on January 26, 2022 Permalink | Reply
    Tags: "Northern Taiwan starts the new year with a jolt", , , , , , temblor   

    From temblor: “Northern Taiwan starts the new year with a jolt” 

    1

    From temblor

    January 26, 2022
    Wei-An Chen, B.S.
    Chung-Han Chan, Ph.D.
    Earthquake Disaster & Risk Evaluation and Management Center (E-DREaM)

    An offshore magnitude-6.0 earthquake on January 3 rattled the Taipei metropolitan area, but cities closer to the epicenter felt only light shaking.

    A magnitude-6.0 earthquake struck off the east coast of Taiwan on January 3, 2022, showing that faults are not going to take a break even for new year holidays.

    Shaking was felt throughout the island’s northern cities, reminding Taiwanese that they are living on a seismically active island. Scientists are constantly working to better understand earthquakes to help mitigate losses from strong shaking.

    January’s earthquake took place in the Ryukyu subduction system, where the Philippine Sea Plate subducts to the North, beneath the Eurasia Plate. The earthquake struck 19.4 kilometers below the surface, on the southernmost segment of the interface between these plates. The region is seismically active; more than 10 magnitude-6.0 and greater events have struck nearby in the past three decades.

    Patchy shaking patterns

    Ground shaking intensity usually decays with the distance from the origin of an earthquake. In the case of January’s earthquake, however, shaking was patchy. For instance, Taipei City — 130 kilometers away from the epicenter — experienced ground shaking up to 30.6 gal (Modified Mercalli intensity IV). Yet, in Hualien City, only 58 kilometers (36 miles) away from the earthquake, shaking reached only around 7.9 gal.

    1
    The distribution of peak ground acceleration (PGA) during the January 3 earthquake. The epicenter is denoted as a blue star. Stronger ground shaking was observed in northern Taiwan than to the south.

    This pattern is related to the ground beneath Taipei City, which is made up of soft sediments surrounded by hills made of stiff soil. Such “basins” trap seismic and amplify ground shaking, like a bowl of jelly. Similar effects were observed during the magnitude-7.1 Hualien earthquake in 2002. Despite striking far from Taipei City, this event caused high ground shaking intensity, resulting in significant damage; Hundreds of buildings were damaged and a tower crane working on Taipei 101 collapsed.

    Strong shaking was not restricted to Taipei. Shaking was significant throughout northern Taiwan, whereas in areas to the south, close to the epicenter, the effect was minimal. Such heterogeneous distribution could also be attributed to the earthquake itself. Earthquakes happen when a section of a fault slips. Such a “rupture” generally starts at a point and propagates along the boundary, as the area the slipped grows. The seismic waves traveling in the same direction as the propagating rupture are compressed and amplified, intensifying shaking. This phenomenon is also known as the “Doppler effect.” During the January 3 earthquake, slip on the fault propagated to the northwest with maximum slip of 26 centimeters (10 inches). The waves traveling towards northern Taiwan were therefore amplified.

    Seismologists noticed a similar effect during the magnitude-6.4 Meinong earthquake, which struck southern Taiwan in 2016. This event ruptured westward from the nucleation point, below the epicenter, causing stronger ground shaking and damage in that direction.

    Ryukyu Trench could host an even bigger earthquake

    GPS data collected on the northeast coast of Taiwan indicate that the Ryukyu subduction zone is locked, according to an analysis by Ya-Ju Hsu, a seismologist at the Institute of Earth Sciences, Academia Sinica, Taiwan. Along the boundary, frictional resistance is greater than the stress of the plates moving past one another. An earthquake occurs when that force overcomes friction.

    Seismological and geodetic evidence suggests that enough stress has built on the boundary to generate a magnitude-8.0 or larger megathrust earthquake. Such an earthquake could cause widespread damage from violent shaking and a major tsunami.

    Although earthquakes around magnitude 6.0, such as the one on January 3, sometimes take place in the subduction zone, the energy they release is negligible compared to that of a magnitude-8.0 event. After a smaller magnitude-6.0 event, there is still enough stress on the boundary for a magnitude-8.0 earthquake.

    2
    Shake map from a magnitude-8.0 scenario in the Ryukyu subduction zone. The maximum ground shaking might impact central Hualien County.

    To quantify the seismic hazard and risk from the subduction zone, scientists from National Central University [國立中央大學](TW), Sinotech Engineering Consultants, Inc., National Science and Technology Center for Disaster Reduction [ 國家災害防救科技中心](TW) and National Center for Research on Earthquake Engineering [國家地震工程研究中心](TW) worked together to simulate a ground shaking scenario for a future magnitude-8.0 earthquake along the Ryukyu subduction interface. The resulting shake map [above] shows that ground shaking would be severe in central Hualien County, due to its proximity to the interface. By further considering the distribution of buildings, population and infrastructure, researchers could take this analysis further and calculate losses from such an event, including the distribution of building, road, bridge and cell tower damage, fatalities, fires, electricity interruption and requirement of sheltering. This scenario became the basis for the drill on National Disaster Preparedness Day in September 2021.

    There is no doubt that the Ryukyu subduction system is one of the major threats to Taiwan. An event at the southernmost segment in this system could result in significant ground shaking along the eastern coast Taiwan and even the Taipei metropolitan area. Thus, it is crucial to boost awareness and fortify communities against major damage by enhancing buildings that are vulnerable to earthquake damage.

    References

    Hsu, Y. J., Ando, M., Yu, S. B., & Simons, M. (2012). The potential for a great earthquake along the southernmost Ryukyu subduction zone. Geophysical research letters, 39(14).
    Wu, Y. M., Liang, W. T., Mittal, H., Chao, W. A., Lin, C. H., Huang, B. S., & Lin, C. M. (2016). Performance of a low-cost earthquake early warning system (P-alert) during the 2016 ML 6.4 Meinong (Taiwan) earthquake. Seismological Research Letters, 87(5), 1050-1059.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    _____________________________________________________________________________________

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    QuakeAlertUSA

    1

    About Early Warning Labs, LLC

    Early Warning Labs, LLC (EWL) is an Earthquake Early Warning technology developer and integrator located in Santa Monica, CA. EWL is partnered with industry leading GIS provider ESRI, Inc. and is collaborating with the US Government and university partners.

    EWL is investing millions of dollars over the next 36 months to complete the final integration and delivery of Earthquake Early Warning to individual consumers, government entities, and commercial users.

    EWL’s mission is to improve, expand, and lower the costs of the existing earthquake early warning systems.

    EWL is developing a robust cloud server environment to handle low-cost mass distribution of these warnings. In addition, Early Warning Labs is researching and developing automated response standards and systems that allow public and private users to take pre-defined automated actions to protect lives and assets.

    EWL has an existing beta R&D test system installed at one of the largest studios in Southern California. The goal of this system is to stress test EWL’s hardware, software, and alert signals while improving latency and reliability.

    Earthquake Early Warning Introduction

    The United States Geological Survey (USGS), in collaboration with state agencies, university partners, and private industry, is developing an earthquake early warning system (EEW) for the West Coast of the United States called ShakeAlert. The USGS Earthquake Hazards Program aims to mitigate earthquake losses in the United States. Citizens, first responders, and engineers rely on the USGS for accurate and timely information about where earthquakes occur, the ground shaking intensity in different locations, and the likelihood is of future significant ground shaking.

    The ShakeAlert Earthquake Early Warning System recently entered its first phase of operations. The USGS working in partnership with the California Governor’s Office of Emergency Services (Cal OES) is now allowing for the testing of public alerting via apps, Wireless Emergency Alerts, and by other means throughout California.

    ShakeAlert partners in Oregon and Washington are working with the USGS to test public alerting in those states sometime in 2020.

    ShakeAlert has demonstrated the feasibility of earthquake early warning, from event detection to producing USGS issued ShakeAlerts ® and will continue to undergo testing and will improve over time. In particular, robust and reliable alert delivery pathways for automated actions are currently being developed and implemented by private industry partners for use in California, Oregon, and Washington.

    Earthquake Early Warning Background

    The objective of an earthquake early warning system is to rapidly detect the initiation of an earthquake, estimate the level of ground shaking intensity to be expected, and issue a warning before significant ground shaking starts. A network of seismic sensors detects the first energy to radiate from an earthquake, the P-wave energy, and the location and the magnitude of the earthquake is rapidly determined. Then, the anticipated ground shaking across the region to be affected is estimated. The system can provide warning before the S-wave arrives, which brings the strong shaking that usually causes most of the damage. Warnings will be distributed to local and state public emergency response officials, critical infrastructure, private businesses, and the public. EEW systems have been successfully implemented in Japan, Taiwan, Mexico, and other nations with varying degrees of sophistication and coverage.

    Earthquake early warning can provide enough time to:

    Instruct students and employees to take a protective action such as Drop, Cover, and Hold On
    Initiate mass notification procedures
    Open fire-house doors and notify local first responders
    Slow and stop trains and taxiing planes
    Install measures to prevent/limit additional cars from going on bridges, entering tunnels, and being on freeway overpasses before the shaking starts
    Move people away from dangerous machines or chemicals in work environments
    Shut down gas lines, water treatment plants, or nuclear reactors
    Automatically shut down and isolate industrial systems

    However, earthquake warning notifications must be transmitted without requiring human review and response action must be automated, as the total warning times are short depending on geographic distance and varying soil densities from the epicenter.

     
  • richardmitnick 11:06 am on January 20, 2022 Permalink | Reply
    Tags: "Hunga-Tonga-Hunga-Ha’apai in the south Pacific erupts violently", , , , temblor,   

    From temblor: “Hunga-Tonga-Hunga-Ha’apai in the south Pacific erupts violently” 

    1

    From temblor

    January 18, 2022
    Marie Edmonds, Ph.D., The University of Cambridge (UK)

    The Hunga-Tonga-Hunga-Ha’apai volcano, 40 miles (65 kilometers) north of Tongatapu, Tonga, erupted on January 15 at 5:14 p.m. local time, triggering tsunami waves that swept across the Pacific. The energy released in the eruption was equivalent to a magnitude-5.8 earthquake at the surface, according to the U.S. Geological Survey. The powerful eruption was captured on satellite images, which show a shock wave and a rapidly expanding ash cloud that reached 12 miles (20 kilometers) into the atmosphere.

    1
    The expanding ash cloud from the eruption of the Hunga-Tonga-Hunga-Ha’apai volcano on January 15. Credit: The National Oceanic and Atmospheric Administration (US), Public Domain, via Wikimedia Commons.

    News of the immediate impact of the eruption on the Tongan islands has been slow to emerge because internet communications have been entirely cut off by the eruption. It is likely, however, that the islands have experienced many inches of ash fall as well as damage from the tsunami, which inundated coastal areas and reached a height of 2.7 feet (83 centimetres) in Nuku’alofa, according to The Pacific Tsunami Warning Center (US).

    2
    The island of Tongatapu and the nearby smaller islands – all part of the Kingdom of Tonga archipelago in the southern Pacific Ocean – are pictured in this Sentinel-2A image from May 23, 2016. Contains modified Copernicus Sentinel data (2016), processed by ESA,CC BY-SA 3.0 IGO, via Wikimedia Commons

    ESA Copernicus Sentinel-2.

    Tsunami waves reached 3.6 feet (1.1 meters) along the northeastern coastline of Japan at a port in Kuji, Iwate (Source: Japan Meteorological Agency) and up to 3.6 feet (1.1 meters) in Port San Luis, California (Source: NOAA). In northern Peru, two people drowned when waves inundated a beach in the Lambayeque region.

    Explosion detected on the other side of the world

    The eruption was heard in New Zealand. The shock wave was violent enough to shake houses in Fiji, more than 450 miles (720 kilometers) away from Tonga.

    Pressure surges from the atmospheric perturbation caused by the eruption were felt right across the world. Atmospheric pressure fluctuations have been reported in New Zealand, the U.S., Brazil, Japan and Europe. More than 14 hours after the eruption, The Meteorological Office (UK) picked up several pressure waves, more than 10,000 miles away from the volcano. The agency described the waves as “like dropping a pebble in a still pond and seeing the ripples.”

    The eruption was so powerful it destroyed the subaerial part of the volcano that had been built up in successive eruptions since 2015, according to the Smithsonian’s Global Volcanism Program. Radar images of the island acquired by The European Space Agency [La Agencia Espacial Europea] [Agence spatiale européenne][Europäische Weltraumorganisation](EU)’s Sentinel-2 satellite show that the island has largely disappeared following the eruption; only the far southwestern and northeastern tips of the island remain.

    3
    Before (left) and after (right) radar images of the Hunga Tonga-Hunga Haapai Volcano, Tonga, January 2 and 17, 2022. Credit: Copernicus/ESA/Sentinal Hub.

    Long-term climate impacts unlikely

    The ash produced by the eruption has now dispersed from the caldera, but the finest particles are likely still aloft high in the atmosphere and will remain there for months or even years.

    The eruption also produced around 0.4 teragrams of sulfur dioxide (SO2), according to spectrometer data from ESA’s Sentinel 5P satellite.

    ESA Copernicus Sentinel-5P.

    Past large explosive eruptions have typically been associated with global cooling. SO2 injected into the stratosphere — the second layer of the atmosphere — forms sulfate aerosol when it reacts with water, which absorbs and scatters incoming radiation from the sun, thereby cooling the Earth’s surface.

    The 1991 eruption of Pinatubo Volcano in the Philippines emitted around 18-19 teragrams of SO2, which caused cooling of a few tenths of a degree for a few years. It is unlikely that the SO2 emitted from the Hunga-Tonga-Hunga-Ha’apai eruption will significantly impact the climate.

    One volcano in a chain

    The Hunga-Tonga-Hunga-Ha’apai volcano lies along the Tonga-Kermedec Arc, where two tectonic plates in the southwest Pacific converge. This volcano is one of a chain of largely submarine volcanoes that extend all the way from New Zealand in the southwest to Fiji in the north-northeast. Here, the Pacific plate subducts beneath the Indo-Australian plate. As it sinks, the Pacific Plate heats up, releasing fluids into the overlying rocks, which causes them to melt. The magma rises into the overlying crust and some erupts at the surface. Eruptions from subduction zone volcanoes are notoriously explosive because magmas there are sticky and contain large quantities of dissolved water from the mantle, which is the explosion’s “fuel.”

    4
    Map of the Kermadec and Tonga subduction trench. Credit: Nwbeeson, CC BY-SA 4.0, via Wikimedia Commons.

    For submarine volcanic eruptions however, there is an added ingredient that causes them to be extra-violent. During large volcanic eruptions a caldera, or large depression on the surface, can form due to the void left in the ground by the erupted magma. Calderas that form on the seafloor can cause tsunamis and large earthquakes when large rock masses sink during the eruption.

    Seawater can flow into the faults and fractures that form around the edges of the caldera. If water comes into contact with hot magma, it flash boils into steam, which expands rapidly, adding to the explosive power of an eruption. Such eruptions are termed “hydrovolcanic.” They generate powerful base surges — or pyroclastic flows — that expand out from the base of the eruption column, and can travel long distances. A famous example is the 1883 eruption of Krakatoa Volcano in Indonesia. The sound of the explosion was heard 1,800 miles (3,000 kilometers) away. Large tsunami waves and pyroclastic surges that travelled 25 miles (40 kilometers) over the surface of the sea killed more than 36,000 people.

    Geologists studying the Hunga-Tonga-Hunga-Ha’apai volcano have uncovered its few-thousand-year-long history of eruptions just like the one that occurred on January 15. The volcano erupted explosively in 2009 and in 2014-2015, producing ‘Surtseyan’ eruptions — a smaller magnitude explosive eruption produced by the interaction of magma and seawater. The precise magnitude of this latest eruption will be known once the height of the eruption column as well as the volume of erupted material is estimated, but it is certainly one of the most significant eruptions of the 21st century thus far.

    5
    NASA’s Terra satellite on December 29, 2014, showing a white plume rising over the undersea volcano Hunga Ha’apai, near Hunga Tonga in the South Pacific. Discolored water suggests an underwater release of gases and rock by the eruption. Credit: NASA, CC0, via Wikimedia Commons.

    National Aeronautics Space Agency (US)Terra satellite.

    Answers still to come

    There are many questions to be answered over the coming weeks and months about the mechanisms and impacts of this eruption. Immediate questions concern the fate of the residents of Tonga, who are contending with the enormous challenges of the aftermath of the eruption and tsunami, including missing loved ones, enormous infrastructure damage, thick ash cover, contaminated drinking supplies and a lack of basic medical and communication services.

    There will be detailed studies of the geophysical signals accompanying the eruption and the period leading up to it to better understand how the eruption was triggered and its magnitude. Scientists will be particularly interested in infrasound, satellite-based data and eventually will study the volcanic deposits and landforms produced. In particular, scientists will seek to understand the geological sequence of events that led to the simultaneous explosion and tsunami that had such wide-ranging effects across the Pacific Ocean.

    References

    Guo, S., Bluth, G. J., Rose, W. I., Watson, I. M., & Prata, A. J. (2004). Re‐evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite sensors. Geochemistry, Geophysics, Geosystems, 5(4).

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    _____________________________________________________________________________________

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network project Earthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan

    QuakeAlertUSA

    1

    About Early Warning Labs, LLC

    Early Warning Labs, LLC (EWL) is an Earthquake Early Warning technology developer and integrator located in Santa Monica, CA. EWL is partnered with industry leading GIS provider ESRI, Inc. and is collaborating with the US Government and university partners.

    EWL is investing millions of dollars over the next 36 months to complete the final integration and delivery of Earthquake Early Warning to individual consumers, government entities, and commercial users.

    EWL’s mission is to improve, expand, and lower the costs of the existing earthquake early warning systems.

    EWL is developing a robust cloud server environment to handle low-cost mass distribution of these warnings. In addition, Early Warning Labs is researching and developing automated response standards and systems that allow public and private users to take pre-defined automated actions to protect lives and assets.

    EWL has an existing beta R&D test system installed at one of the largest studios in Southern California. The goal of this system is to stress test EWL’s hardware, software, and alert signals while improving latency and reliability.

    Earthquake Early Warning Introduction

    The United States Geological Survey (USGS), in collaboration with state agencies, university partners, and private industry, is developing an earthquake early warning system (EEW) for the West Coast of the United States called ShakeAlert. The USGS Earthquake Hazards Program aims to mitigate earthquake losses in the United States. Citizens, first responders, and engineers rely on the USGS for accurate and timely information about where earthquakes occur, the ground shaking intensity in different locations, and the likelihood is of future significant ground shaking.

    The ShakeAlert Earthquake Early Warning System recently entered its first phase of operations. The USGS working in partnership with the California Governor’s Office of Emergency Services (Cal OES) is now allowing for the testing of public alerting via apps, Wireless Emergency Alerts, and by other means throughout California.

    ShakeAlert partners in Oregon and Washington are working with the USGS to test public alerting in those states sometime in 2020.

    ShakeAlert has demonstrated the feasibility of earthquake early warning, from event detection to producing USGS issued ShakeAlerts ® and will continue to undergo testing and will improve over time. In particular, robust and reliable alert delivery pathways for automated actions are currently being developed and implemented by private industry partners for use in California, Oregon, and Washington.

    Earthquake Early Warning Background

    The objective of an earthquake early warning system is to rapidly detect the initiation of an earthquake, estimate the level of ground shaking intensity to be expected, and issue a warning before significant ground shaking starts. A network of seismic sensors detects the first energy to radiate from an earthquake, the P-wave energy, and the location and the magnitude of the earthquake is rapidly determined. Then, the anticipated ground shaking across the region to be affected is estimated. The system can provide warning before the S-wave arrives, which brings the strong shaking that usually causes most of the damage. Warnings will be distributed to local and state public emergency response officials, critical infrastructure, private businesses, and the public. EEW systems have been successfully implemented in Japan, Taiwan, Mexico, and other nations with varying degrees of sophistication and coverage.

    Earthquake early warning can provide enough time to:

    Instruct students and employees to take a protective action such as Drop, Cover, and Hold On
    Initiate mass notification procedures
    Open fire-house doors and notify local first responders
    Slow and stop trains and taxiing planes
    Install measures to prevent/limit additional cars from going on bridges, entering tunnels, and being on freeway overpasses before the shaking starts
    Move people away from dangerous machines or chemicals in work environments
    Shut down gas lines, water treatment plants, or nuclear reactors
    Automatically shut down and isolate industrial systems

    However, earthquake warning notifications must be transmitted without requiring human review and response action must be automated, as the total warning times are short depending on geographic distance and varying soil densities from the epicenter.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: