Tagged: TechXplore at Science X Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:53 pm on February 1, 2023 Permalink | Reply
    Tags: "New type of solar cell is being tested in space", Alternative to silicon in the future, , , Nanoengineering, , , , TechXplore at Science X   

    From Lund University [Lunds universitet](SE) Via “TechXplore” at “Science X”: “New type of solar cell is being tested in space” 

    From Lund University [Lunds universitet](SE)


    “TechXplore” at “Science X”


    Nanowires in three materials imaged by a scanning electron microscope. A thread is a thousand times thinner than a strand of hair. The red and blue colour shows the direction of the current, and that the nanowires work as a tandem solar cell. Credit: Lund University.

    Physics researchers at Lund University in Sweden recently succeeded in constructing small solar radiation-collecting antennas—nanowires—using three different materials that are a better match for the solar spectrum compared with today’s silicon solar cells. As the nanowires are light and require little material per unit of area, they are now to be installed for tests on satellites, which are powered by solar cells and where efficiency, in combination with low weight, is the most important factor. The new solar cells were sent into space a few days ago.

    A group of nanoengineering researchers at Lund University working on solar cells made a breakthrough last year when they succeeded in building photovoltaic nanowires with three different band gaps. This, in other words, means that one and the same nanowire consists of three different materials that react to different parts of solar light. The results have been published in Materials Today Energy and subsequently in more detail in Nano Research.

    “The big challenge was to get the current to transfer between the materials. It took more than ten years, but it worked in the end,” says Magnus Borgström, professor of solid state physics, who wrote the articles with the then doctoral student Lukas Hrachowina.

    There are some ten research teams around the world who are actively focusing on nanowire solar cells.

    “The challenge has been to combine different band gaps in the solar cells and that door has thus now opened at last,” says Magnus Borgström.

    Alternative to silicon in the future

    Solar cells with different band gaps, known as tandem solar cells, are so far mainly found on satellites and are the subject of intensive research. The aim of the research is to considerably increase efficiency, to perhaps double that of today’s commercial silicon solar cells (around 20%).

    “Silicon solar cells have soon reached their maximum limit for efficiency. Therefore, the focus has now shifted to developing tandem solar cells instead. The variants fitted on satellites are too expensive to put on a roof,” says Magnus Borgström.

    The most common way to build tandem solar cells is to synthesize different semiconducting materials on top of each other, materials that can absorb different parts of the solar spectrum. Silicon-based tandem solar cells are attracting a lot of interest and involve laying thin, semi-transparent films of other light-capturing material on top of the silicon.

    The researchers in Lund use a slightly different approach. They have developed a method in which they build extremely thin rods of semiconducting material on a substrate. The advantage is a small amount of material per unit area, which could reduce production costs and become a more sustainable alternative.

    The nanometer-thick rods consist of three materials that contain different amounts of indium, arsenic, gallium and phosphorus. In the lab, the researchers have so far achieved an efficiency of 16.7%. A colleague, Yang Chen, has shown that the nanowire solar cells have the potential to reach 47% efficiency using the current structure. Achieving even higher efficiency requires more band gaps.

    In the next step, he and his colleagues will optimize the triple diodes by improving the tunnel junctions that connect the different materials in the structure and attempt to reduce the effect of the nanowires’ surface, which is very important on a nanoscale.

    Besides their improved light absorption, the nanowire solar cells are characterized by their durability as they can, for example, withstand the harmful radiation in space better than the corresponding film-based tandem solar cells.

    “A sheet of nanowires can be likened to a very sparse bed of nails. If some aggressive protons came along, which happens now and then, they would probably land between the wires and if they happened to eliminate some wires, it would not matter very much. The damage could be worse if they land on a regular thin film.”

    Testing in space during the spring

    These advantages led to the nanowire solar cells being recently fitted on a research satellite, which was sent into space in the second week of January by the researchers’ collaboration partners at the California Institute of Technology.

    “A lot of our digital communication is controlled by satellites, which in turn are powered by solar cells. Satellites convey GPS, TV transmissions, data traffic, mobile phone calls and weather data.”

    The satellite will be in orbit during the spring, and the results are expected to be received on an ongoing basis.

    Magnus Borgström thinks tandem solar cells will also wind up on Earth in the long term but that, at least initially, silicon-free solar cells will be used in niche applications such as clothes, windows and decor.

    Materials Today Energy

    Nano Research

    See the full article here.

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Lund University [Lunds universitet] (SE) is a prestigious university in Sweden and one of northern Europe’s oldest universities. The university is located in the city of Lund in the province of Scania, Sweden. It traces its roots back to 1425, when a Franciscan studium generale was founded in Lund. After Sweden won Scania from Denmark in the 1658 Treaty of Roskilde, the university was officially founded in 1666 on the location of the old studium generale next to Lund Cathedral.

    Lund University has nine faculties with additional campuses in the cities of Malmö and Helsingborg, with around 44,000 students in 270 different programmes and 1,400 freestanding courses. The university has 640 partner universities in nearly 70 countries and it belongs to the League of European Research Universities (EU) as well as the global Universitas 21 network. Lund University is consistently ranked among the world’s top 100 universities.

    Two major facilities for materials research are in Lund University: MAX IV, a synchrotron radiation laboratory – inaugurated in June 2016, and European Spallation Source (ESS), a new European facility that will provide up to 100 times brighter neutron beams than existing facilities today, to be starting to produce neutrons in 2023.

    The university centers on the Lundagård park adjacent to the Lund Cathedral, with various departments spread in different locations in town, but mostly concentrated in a belt stretching north from the park connecting to the university hospital area and continuing out to the northeastern periphery of the town, where one finds the large campus of the Faculty of Engineering.

    Research centres

    The university is organized into more than 20 institutes and research centres, such as:

    Lund University Centre for Sustainability Studies (LUCSUS)
    Biomedical Centre
    Centre for Biomechanics
    Centre for Chemistry and Chemical Engineering – Kemicentrum
    Centre for East and South-East Asian Studies
    Centre for European Studies
    Centre for Geographical Information Systems (GIS Centrum)
    Centre for Innovation, Research and Competence in the Learning Economy (CIRCLE)
    Center for Middle Eastern Studies at Lund University
    Centre for Molecular Protein Science
    Centre for Risk Analysis and Management (LUCRAM)
    International Institute for Industrial Environmental Economics at Lund University (IIIEE)
    Lund Functional Food Science Centre
    Lund University Diabetes Centre (LUDC)
    MAX lab – Accelerator physics, synchrotron radiation and nuclear physics research
    Pufendorf Institute
    Raoul Wallenberg Institute of Human Rights and Humanitarian Law
    Swedish South Asian Studies Network

  • richardmitnick 2:15 pm on January 10, 2023 Permalink | Reply
    Tags: "A Bayesian machine based on memristors", A memristor is a non-linear two-terminal electrical component relating electric charge and magnetic flux linkage., Artificial intelligence is making major progress today but faces a challenge: its considerable energy consumption., As artificial intelligence uses a lot of data it requires a lot of memory which is costly to access in terms of energy., Over the past few decades the performance of machine learning models on various real-world tasks has improved significantly., Researchers have recently created a so-called Bayesian machine (i.e. an AI approach that performs computations based on Bayes' theorem) using memristors., TechXplore at Science X, The Bayesian machine created by Querlioz and his colleagues integrates memristors with conventional complementary metal-oxide-semiconductor (CMOS) technology., The memristor-based Bayesian machine could help to increase the energy-efficiency of AI models while also potentially inspiring the development of other similar solutions., The new Bayesian machine could recognize specific human gestures using thousands of times less energy than a traditional hardware solution based on a microcontroller.   

    From “TechXplore” at “Science X”: “A Bayesian machine based on memristors” 

    From “TechXplore” at “Science X”

    Ingrid Fadelli

    An optical microscopy image of the complete Bayesian machine. Credit: Damien Querlioz (CNRS/Univ. Paris-Saclay).

    Over the past few decades the performance of machine learning models on various real-world tasks has improved significantly. Training and implementing most of these models, however, still requires vast amounts of energy and computational power.

    Engineers worldwide have thus been trying to develop alternative hardware solutions that can run artificial intelligence models more efficiently, as this could promote their widespread use and increase their sustainability. Some of these solutions are based on memristors, memory devices that can store information without consuming energy.

    Researchers at Université Paris-Saclay- CNRS, Université Grenoble-Alpes-CEA-LETI, HawAI.tech, Sorbonne Université, and Aix-Marseille Université-CNRS have recently created a so-called Bayesian machine (i.e., an AI approach that performs computations based on Bayes’ theorem), using memristors. Their proposed system, introduced in a paper published in Nature Electronics [below], was found to be significantly more energy-efficient than currently employed hardware solutions.

    “Artificial intelligence is making major progress today but faces a challenge: its considerable energy consumption,” Damien Querlioz, one of the researchers who carried out the study, told TechXplore. “It is now well understood that this consumption comes from the separation, in computers, between computation and memory functions. As artificial intelligence uses a lot of data, it requires a lot of memory, which is costly to access in terms of energy. Our brains are much more energy efficient because the memory functions are integrated as close as possible to the computation functions, and we wanted to reproduce this strategy.”

    Memristors are essentially electrical components based on nanodevices that limit or regulate the flow of electrical current in a circuit, while also recording how much energy passed in it beforehand. As they perform both computations and information storage, these devices can better reproduce the human brain’s information processing strategies.

    A zoomed-in optical microscopy image of the Bayesian machine on one of its 16 memristor arrays. Credit: Damien Querlioz (CNRS/Univ. Paris-Saclay).

    “Until recently, memristors were an emerging technology, and we could not realize complete systems with them,” Querlioz explained. “Now, our team built a ‘Bayesian machine,’ a small artificial intelligence with memristors. The prototype comprises 2,048 hafnium oxide memristors and 30,080 silicon transistors (MOSFETs).”

    The Bayesian machine created by Querlioz and his colleagues integrates memristors with conventional complementary metal-oxide-semiconductor (CMOS) technology. The researchers created a prototype of the machine and assessed its performance on a gesture recognition task. Remarkably, they found that it could recognize specific human gestures using thousands of times less energy than a traditional hardware solution based on a microcontroller.

    “Most of the research on memristor-based machine learning aims at implementing deep learning,” Querlioz said. “This is, of course, an extremely important goal, as deep learning is so successful today. However, deep learning has some limitations: its results are not explainable, and it does not perform well when little data is available. Here, we chose to implement Bayesian reasoning, an alternative AI approach that does not do well in big data applications where deep learning works so well, but excels in small data situations, and provides fully explainable results.”

    In the future, the memristor-based Bayesian machine created by this team of researchers could help to increase the energy-efficiency of AI models, while also potentially inspiring the development of other similar solutions. It could be particularly useful for safety-critical applications, such as medical sensors or circuits to monitor the safety of industrial facilities. Hawai.tech, a start-up that contributed to the development of the team’s Bayesian algorithm, is now using the machine to create these sensors.

    “We have designed a considerably scaled-up version of the Bayesian machine, which is currently being fabricated, and we have applied the principles behind the machine to other machine learning approaches as well,” Querlioz added. “As we are scaling our designs in complexity, we are starting to hit the limits of what is possible for an academic group. So, we are simultaneously working on new technologies, the next memristors.”

    Science paper:
    Nature Electronics

    See the full article here.

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    Please help promote STEM in your local schools.

    Stem Education Coalition

  • richardmitnick 4:41 pm on January 4, 2023 Permalink | Reply
    Tags: "Changing shapes at the push of a button", A single piece of material can take the place of entire systems of sensors and regulators and actuators., , Fraunhofer Society for the Advancement of Applied Research ICT, , Materials and microstructuring, Materials can also react to temperature or humidity, Programmable materials are true shapeshifters., TechXplore at Science X   

    From Fraunhofer Society for the Advancement of Applied Research [Fraunhofer Gesellschaft](DE) Via “TechXplore” at “Science X”: “Changing shapes at the push of a button” 

    From Fraunhofer Society for the Advancement of Applied Research [Fraunhofer Gesellschaft](DE)


    “TechXplore” at “Science X”

    Ilka Blauth

    Above: Stiffness and shape change can be locally adjusted by patterning a film. Below: Stacking foils of different heights allows the creation of a programmable material. Credit: Fraunhofer Society for the Advancement of Applied Research ICT.

    Programmable materials are true shapeshifters.

    They can change their characteristics in a controlled and reversible way with the push of a button, independently adapting to fit new conditions. They can be used, for example, to make comfy chairs or mattresses that prevent bedsores. To produce these, the support is formed in such a way that the contact surface is large which, as a result, lowers the pressure on parts of the body.

    This type of programmable material is being developed by researchers at the Fraunhofer Cluster of Excellence Programmable Materials CPM, who plan to bring it to the market with the help of industry partners. One of their goals is to reduce the use of resources.

    Many people across the world are bedridden—be it due to illness, an accident or old age. Because those affected often cannot move or turn over by themselves, they often end up with very painful bedsores. In the future, it should be possible to avoid bedsores with the help of materials that can be programmed to entirely adapt their form and mechanical properties.

    For example, the body support of mattresses made from programmable materials can be adjusted in any given area at the push of a button. Furthermore, the support layer is formed in such a way that strong pressure on one point can be distributed across a wider area. Areas of the bed where pressure is placed are automatically made softer and more elastic. Caregivers can also adjust the ergonomic lying position to best fit their patient.

    Materials and microstructuring

    Materials for applications requiring specific changes to stiffness or shape are being developed by researchers from Fraunhofer CPM, which is formed of six core institutes with the aim of designing and producing programmable materials. So, how can we program materials?

    “Essentially, there are two key areas where adjustments can be made: the base material—thermoplastic polymers in the case of mattresses and metallic alloys for other applications, including shape memory alloys—and, more specifically, the microstructure,” explains Dr. Heiko Andrä, spokesperson on the topic at the Fraunhofer Institute for Industrial Mathematics ITWM, one of the Fraunhofer CPM core institutes.

    “The microstructure of these metamaterials is made up of unit cells that consist of structural elements such as small beams and thin shells.” While the size of each unit cell and its structural elements in conventional cellular materials, like foams, vary randomly, the cells in the programmable materials are also variable—but can be precisely defined, i.e., programmed.

    This programming can be made, for example, in such a way that pressure on a particular position will result in specific changes at other regions of the mattress, i.e., increase the size of the contact surface and provide optimal support to certain areas of the body.

    Materials can also react to temperature or humidity

    The change in shape that the material should exhibit and the stimuli to which it reacts—mechanical stress, heat, moisture or even an electric or magnetic field—can be determined by the choice of material and its microstructure.

    “The programmable materials allow to adapt products to the specific application or person so that they are more multifunctional than before. As such, they do not need to be swapped out as often. It is particularly interesting in the context of material saving and sustainability,” says Franziska Wenz, deputy spokesperson on the topic at the Fraunhofer Institute for Mechanics of Materials IWM, another core institute of Fraunhofer CPM. This can also create added value, whereby products are adapted to the individual needs of the users.

    The journey to application

    A single piece of material can take the place of entire systems of sensors and regulators and actuators. The goal of Fraunhofer CPM is to reduce the complexity of systems by integrating their functionalities into the material and reducing material diversity. “We always have industrial products in mind when developing the programmable materials. As such, we take mass production processes and material fatigue into account, among other things,” says Wenz.

    The initial pilot projects with industry partners are also already underway. The research team expects that initially, programmable materials will act as replacements for components in existing systems or be used in special applications such as medical mattresses, comfortable chairs, variable damping shoe soles and protective clothing. “Gradually, the proportion of programmable materials used will increase,” says Andrä. Ultimately, they can be used everywhere—from medicine and sporting goods to soft robotics and even space research.

    See the full article here.

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Surfaces and films for sustainable products and related production systems are the center of the Fraunhofer Institute for Surface Engineering and Thin Films IST (DE). As an internationally recognized partner in applied research, the institute taps the synergies of process engineering and production technology. Based on the mission statement of sustainability, around 110 employees create systems from the material through the process to the component, from the process chain to the factory, to recycling.

  • richardmitnick 12:37 pm on December 9, 2022 Permalink | Reply
    Tags: "Built to last - Perovskite solar cells tough enough to match mighty silicon", A new way to create stable perovskite solar cells, , , , , TechXplore at Science X,   

    From The University of Oxford (UK) And Monash University (AU) Via “TechXplore” at “Science X”: “Built to last – Perovskite solar cells tough enough to match mighty silicon” 

    U Oxford bloc

    From The University of Oxford (UK)


    Monash Univrsity bloc

    Monash University (AU)


    “TechXplore” at “Science X”


    Solar cells created using the new mechanism displaying less degradation under long term exposure to heat and light. Credit: The University of Oxford.

    Researchers at The University of Oxford and Exciton Science have demonstrated a new way to create stable perovskite solar cells, with fewer defects and the potential to finally rival silicon’s durability.

    By removing the solvent dimethyl-sulfoxide and introducing dimethylammonium chloride as a crystallization agent, the researchers were able to better control the intermediate phases of the perovskite crystallization process, leading to thin films of greater quality, with reduced defects and enhanced stability.

    Large groups of up to 138 sample devices were then subjected to a rigorous accelerated aging and testing process at high temperatures and in real-world conditions.

    Formamidinium-cesium perovskite solar cells created using the new synthesis process significantly outperformed the control group and demonstrated resistance to thermal, humidity and light degradation.

    This is a strong step forward to matching commercial silicon’s stability and makes perovskite-silicon tandem devices a much more realistic candidate for becoming the dominant next-generation solar cell.

    Led by Professor Henry Snaith (The University of Oxford) and Professor Udo Bach (Monash University [AU]), the work has been published in the journal Nature Materials [below].

    Sebastian Fürer and Philippe Holzhey working at Monash University. Credit: Exciton Science.

    The University of Oxford Ph.D. student Philippe Holzhey, a Marie Curie Early Stage Researcher and joint first author on the work, said, “It’s really important that people start shifting to realize there is no value in performance if it’s not a stable performance.

    “If the device lasts for a day or a week or something, there’s not so much value in it. It has to last for years.”

    During testing, the best device operated above the T80 threshold for over 1,400 hours under simulated sunlight at 65°C. T80 is the time it takes for a solar cell to reduce to 80% of its initial efficiency, a common benchmark within the research field.

    Beyond 1,600 hours, the control device fabricated using the conventional dimethyl-sulfoxide approach stopped functioning, while devices fabricated with the new, improved design retained 70% of their original efficiency, under accelerated aging conditions.

    The same degradation study was performed on a group of devices at the very high temperature of 85°C, with the new cells again outperforming the control group.

    Extrapolating from the data, the researchers calculated that the new cells age by a factor of 1.7 for each 10°C increase in the temperature they are exposed to, which is close to the 2-fold increase expected of commercial silicon devices.

    David McMeekin working with a nitrogen glovebox in the Clarendon Laboratory at The University of Oxford. Credit: The University of Oxford.

    Dr. David McMeekin, the corresponding and joint first author on the paper, was an Australian Center for Advanced Photovoltaics (ACAP) Postdoctoral Fellow at Monash University and is now a Marie Skłodowska-Curie Postdoctoral Fellow at The University of Oxford.

    He said, “I think what separates us from other studies is that we’ve done a lot of accelerated aging. We’ve aged the cells at 65°C and 85°C under the whole light spectrum.”

    The number of devices used in the study is also significant, with many other perovskite research projects limited to just one or two prototypes.

    “Most studies only show one curve without any standard deviation or any kind of statistical approach to determine if this design is more stable than the other,” David added.

    The researchers hope their work will encourage a greater focus on the intermediate phase of perovskite crystallization as an important factor in achieving greater stability and commercial viability.

    Philippe Holzhey working at Monash University. Credit: Exciton Science.

    Background: About perovskites

    Artificially synthesized in laboratory conditions, semiconductor thin films made up of perovskite compounds are far cheaper to make than silicon solar cells, with greater flexibility and a tunable band gap.

    They emerged unexpectedly in the last decade and have reached impressive power-conversion efficiencies of over 25%.

    However, too much focus has been placed on creating the most efficient perovskite solar cell, rather than resolving the fundamental problems inhibiting the material from being used in widespread commercial applications.

    Compared to silicon, perovskites can degrade rapidly in real world conditions, with exposure to heat and moisture causing damage and negatively impacting device performance.

    Solving these stability issues is the key challenge for perovskites in their quest to take on, or “boost” silicon via a tandem architecture and take their place in the commercial photovoltaics landscape.

    Nature Materials

    See the full article here.

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Monash U campus

    Monash University (AU) is an Australian public research university based in Melbourne, Australia. Founded in 1958, it is the second oldest university in the State of Victoria. Monash is a member of Australia’s Group of Eight and the ASAIHL, and is the only Australian member of the influential M8 Alliance of Academic Health Centers, Universities and National Academies. Monash is one of two Australian universities to be ranked in the The École des Mines de Paris (Mines ParisTech) ranking on the basis of the number of alumni listed among CEOs in the 500 largest worldwide companies. Monash is in the top 20% in teaching, top 10% in international outlook, top 20% in industry income and top 10% in research in the world in 2016.

    Monash enrolls approximately 47,000 undergraduate and 20,000 graduate students, It also has more applicants than any university in the state of Victoria.

    Monash is home to major research facilities, including the Australian Synchrotron, the Monash Science Technology Research and Innovation Precinct (STRIP), the Australian Stem Cell Centre, 100 research centres and 17 co-operative research centres. In 2011, its total revenue was over $2.1 billion, with external research income around $282 million.

    The university has a number of centres, five of which are in Victoria (Clayton, Caulfield, Berwick, Peninsula, and Parkville), one in Malaysia. Monash also has a research and teaching centre in Prato, Italy, a graduate research school in Mumbai, India and a graduate school in Jiangsu Province, China. Since December 2011, Monash has had a global alliance with the University of Warwick in the United Kingdom. Monash University courses are also delivered at other locations, including South Africa.

    The Clayton campus contains the Robert Blackwood Hall, named after the university’s founding Chancellor Sir Robert Blackwood and designed by Sir Roy Grounds.

    In 2014, the University ceded its Gippsland campus to Federation University. On 7 March 2016, Monash announced that it would be closing the Berwick campus by 2018.

    U Oxford campus

    The University of Oxford

    Universitas Oxoniensis

    The University of Oxford [a.k.a. The Chancellor, Masters and Scholars of the University of Oxford] is a collegiate research university in Oxford, England. There is evidence of teaching as early as 1096, making it the oldest university in the English-speaking world and the world’s second-oldest university in continuous operation. It grew rapidly from 1167 when Henry II banned English students from attending the University of Paris [Université de Paris](FR). After disputes between students and Oxford townsfolk in 1209, some academics fled north-east to Cambridge where they established what became the The University of Cambridge (UK). The two English ancient universities share many common features and are jointly referred to as Oxbridge.

    The university is made up of thirty-nine semi-autonomous constituent colleges, six permanent private halls, and a range of academic departments which are organised into four divisions. All the colleges are self-governing institutions within the university, each controlling its own membership and with its own internal structure and activities. All students are members of a college. It does not have a main campus, and its buildings and facilities are scattered throughout the city centre. Undergraduate teaching at Oxford consists of lectures, small-group tutorials at the colleges and halls, seminars, laboratory work and occasionally further tutorials provided by the central university faculties and departments. Postgraduate teaching is provided predominantly centrally.

    Oxford operates the world’s oldest university museum, as well as the largest university press in the world and the largest academic library system nationwide. In the fiscal year ending 31 July 2019, the university had a total income of £2.45 billion, of which £624.8 million was from research grants and contracts.

    Oxford has educated a wide range of notable alumni, including 28 prime ministers of the United Kingdom and many heads of state and government around the world. As of October 2020, 72 Nobel Prize laureates, 3 Fields Medalists, and 6 Turing Award winners have studied, worked, or held visiting fellowships at the University of Oxford, while its alumni have won 160 Olympic medals. Oxford is the home of numerous scholarships, including the Rhodes Scholarship, one of the oldest international graduate scholarship programmes.

    The University of Oxford’s foundation date is unknown. It is known that teaching at Oxford existed in some form as early as 1096, but it is unclear when a university came into being.

    It grew quickly from 1167 when English students returned from The University of Paris-Sorbonne [Université de Paris-Sorbonne](FR). The historian Gerald of Wales lectured to such scholars in 1188, and the first known foreign scholar, Emo of Friesland, arrived in 1190. The head of the university had the title of chancellor from at least 1201, and the masters were recognised as a universitas or corporation in 1231. The university was granted a royal charter in 1248 during the reign of King Henry III.

    The students associated together on the basis of geographical origins, into two ‘nations’, representing the North (northerners or Boreales, who included the English people from north of the River Trent and the Scots) and the South (southerners or Australes, who included English people from south of the Trent, the Irish and the Welsh). In later centuries, geographical origins continued to influence many students’ affiliations when membership of a college or hall became customary in Oxford. In addition, members of many religious orders, including Dominicans, Franciscans, Carmelites and Augustinians, settled in Oxford in the mid-13th century, gained influence and maintained houses or halls for students. At about the same time, private benefactors established colleges as self-contained scholarly communities. Among the earliest such founders were William of Durham, who in 1249 endowed University College, and John Balliol, father of a future King of Scots; Balliol College bears his name. Another founder, Walter de Merton, a Lord Chancellor of England and afterwards Bishop of Rochester, devised a series of regulations for college life. Merton College thereby became the model for such establishments at Oxford, as well as at the University of Cambridge. Thereafter, an increasing number of students lived in colleges rather than in halls and religious houses.

    In 1333–1334, an attempt by some dissatisfied Oxford scholars to found a new university at Stamford, Lincolnshire, was blocked by the universities of Oxford and Cambridge petitioning King Edward III. Thereafter, until the 1820s, no new universities were allowed to be founded in England, even in London; thus, Oxford and Cambridge had a duopoly, which was unusual in large western European countries.

    The new learning of the Renaissance greatly influenced Oxford from the late 15th century onwards. Among university scholars of the period were William Grocyn, who contributed to the revival of Greek language studies, and John Colet, the noted biblical scholar.

    With the English Reformation and the breaking of communion with the Roman Catholic Church, recusant scholars from Oxford fled to continental Europe, settling especially at the University of Douai. The method of teaching at Oxford was transformed from the medieval scholastic method to Renaissance education, although institutions associated with the university suffered losses of land and revenues. As a centre of learning and scholarship, Oxford’s reputation declined in the Age of Enlightenment; enrollments fell and teaching was neglected.

    In 1636, William Laud, the chancellor and Archbishop of Canterbury, codified the university’s statutes. These, to a large extent, remained its governing regulations until the mid-19th century. Laud was also responsible for the granting of a charter securing privileges for The University Press, and he made significant contributions to the Bodleian Library, the main library of the university. From the beginnings of the Church of England as the established church until 1866, membership of the church was a requirement to receive the BA degree from the university and “dissenters” were only permitted to receive the MA in 1871.

    The university was a centre of the Royalist party during the English Civil War (1642–1649), while the town favoured the opposing Parliamentarian cause. From the mid-18th century onwards, however, the university took little part in political conflicts.

    Wadham College, founded in 1610, was the undergraduate college of Sir Christopher Wren. Wren was part of a brilliant group of experimental scientists at Oxford in the 1650s, the Oxford Philosophical Club, which included Robert Boyle and Robert Hooke. This group held regular meetings at Wadham under the guidance of the college’s Warden, John Wilkins, and the group formed the nucleus that went on to found the Royal Society.

    Before reforms in the early 19th century, the curriculum at Oxford was notoriously narrow and impractical. Sir Spencer Walpole, a historian of contemporary Britain and a senior government official, had not attended any university. He said, “Few medical men, few solicitors, few persons intended for commerce or trade, ever dreamed of passing through a university career.” He quoted the Oxford University Commissioners in 1852 stating: “The education imparted at Oxford was not such as to conduce to the advancement in life of many persons, except those intended for the ministry.” Nevertheless, Walpole argued:

    “Among the many deficiencies attending a university education there was, however, one good thing about it, and that was the education which the undergraduates gave themselves. It was impossible to collect some thousand or twelve hundred of the best young men in England, to give them the opportunity of making acquaintance with one another, and full liberty to live their lives in their own way, without evolving in the best among them, some admirable qualities of loyalty, independence, and self-control. If the average undergraduate carried from university little or no learning, which was of any service to him, he carried from it a knowledge of men and respect for his fellows and himself, a reverence for the past, a code of honour for the present, which could not but be serviceable. He had enjoyed opportunities… of intercourse with men, some of whom were certain to rise to the highest places in the Senate, in the Church, or at the Bar. He might have mixed with them in his sports, in his studies, and perhaps in his debating society; and any associations which he had this formed had been useful to him at the time, and might be a source of satisfaction to him in after life.”

    Out of the students who matriculated in 1840, 65% were sons of professionals (34% were Anglican ministers). After graduation, 87% became professionals (59% as Anglican clergy). Out of the students who matriculated in 1870, 59% were sons of professionals (25% were Anglican ministers). After graduation, 87% became professionals (42% as Anglican clergy).

    M. C. Curthoys and H. S. Jones argue that the rise of organised sport was one of the most remarkable and distinctive features of the history of the universities of Oxford and Cambridge in the late 19th and early 20th centuries. It was carried over from the athleticism prevalent at the public schools such as Eton, Winchester, Shrewsbury, and Harrow.

    All students, regardless of their chosen area of study, were required to spend (at least) their first year preparing for a first-year examination that was heavily focused on classical languages. Science students found this particularly burdensome and supported a separate science degree with Greek language study removed from their required courses. This concept of a Bachelor of Science had been adopted at other European universities (The University of London (UK) had implemented it in 1860) but an 1880 proposal at Oxford to replace the classical requirement with a modern language (like German or French) was unsuccessful. After considerable internal wrangling over the structure of the arts curriculum, in 1886 the “natural science preliminary” was recognized as a qualifying part of the first-year examination.

    At the start of 1914, the university housed about 3,000 undergraduates and about 100 postgraduate students. During the First World War, many undergraduates and fellows joined the armed forces. By 1918 virtually all fellows were in uniform, and the student population in residence was reduced to 12 per cent of the pre-war total. The University Roll of Service records that, in total, 14,792 members of the university served in the war, with 2,716 (18.36%) killed. Not all the members of the university who served in the Great War were on the Allied side; there is a remarkable memorial to members of New College who served in the German armed forces, bearing the inscription, ‘In memory of the men of this college who coming from a foreign land entered into the inheritance of this place and returning fought and died for their country in the war 1914–1918’. During the war years the university buildings became hospitals, cadet schools and military training camps.


    Two parliamentary commissions in 1852 issued recommendations for Oxford and Cambridge. Archibald Campbell Tait, former headmaster of Rugby School, was a key member of the Oxford Commission; he wanted Oxford to follow the German and Scottish model in which the professorship was paramount. The commission’s report envisioned a centralised university run predominantly by professors and faculties, with a much stronger emphasis on research. The professional staff should be strengthened and better paid. For students, restrictions on entry should be dropped, and more opportunities given to poorer families. It called for an enlargement of the curriculum, with honours to be awarded in many new fields. Undergraduate scholarships should be open to all Britons. Graduate fellowships should be opened up to all members of the university. It recommended that fellows be released from an obligation for ordination. Students were to be allowed to save money by boarding in the city, instead of in a college.

    The system of separate honour schools for different subjects began in 1802, with Mathematics and Literae Humaniores. Schools of “Natural Sciences” and “Law, and Modern History” were added in 1853. By 1872, the last of these had split into “Jurisprudence” and “Modern History”. Theology became the sixth honour school. In addition to these B.A. Honours degrees, the postgraduate Bachelor of Civil Law (B.C.L.) was, and still is, offered.

    The mid-19th century saw the impact of the Oxford Movement (1833–1845), led among others by the future Cardinal John Henry Newman. The influence of the reformed model of German universities reached Oxford via key scholars such as Edward Bouverie Pusey, Benjamin Jowett and Max Müller.

    Administrative reforms during the 19th century included the replacement of oral examinations with written entrance tests, greater tolerance for religious dissent, and the establishment of four women’s colleges. Privy Council decisions in the 20th century (e.g. the abolition of compulsory daily worship, dissociation of the Regius Professorship of Hebrew from clerical status, diversion of colleges’ theological bequests to other purposes) loosened the link with traditional belief and practice. Furthermore, although the university’s emphasis had historically been on classical knowledge, its curriculum expanded during the 19th century to include scientific and medical studies. Knowledge of Ancient Greek was required for admission until 1920, and Latin until 1960.

    The University of Oxford began to award doctorates for research in the first third of the 20th century. The first Oxford D.Phil. in mathematics was awarded in 1921.

    The mid-20th century saw many distinguished continental scholars, displaced by Nazism and communism, relocating to Oxford.

    The list of distinguished scholars at the University of Oxford is long and includes many who have made major contributions to politics, the sciences, medicine, and literature. As of October 2020, 72 Nobel laureates and more than 50 world leaders have been affiliated with the University of Oxford.

    To be a member of the university, all students, and most academic staff, must also be a member of a college or hall. There are thirty-nine colleges of the University of Oxford (including Reuben College, planned to admit students in 2021) and six permanent private halls (PPHs), each controlling its membership and with its own internal structure and activities. Not all colleges offer all courses, but they generally cover a broad range of subjects.

    The colleges are:

    All-Souls College
    Balliol College
    Brasenose College
    Christ Church College
    Corpus-Christi College
    Exeter College
    Green-Templeton College
    Harris-Manchester College
    Hertford College
    Jesus College
    Keble College
    Kellogg College
    Linacre College
    Lincoln College
    Magdalen College
    Mansfield College
    Merton College
    New College
    Nuffield College
    Oriel College
    Pembroke College
    Queens College
    Reuben College
    St-Anne’s College
    St-Antony’s College
    St-Catherines College
    St-Cross College
    St-Edmund-Hall College
    St-Hilda’s College
    St-Hughs College
    St-John’s College
    St-Peters College
    Somerville College
    Trinity College
    University College
    Wadham College
    Wolfson College
    Worcester College

    The permanent private halls were founded by different Christian denominations. One difference between a college and a PPH is that whereas colleges are governed by the fellows of the college, the governance of a PPH resides, at least in part, with the corresponding Christian denomination. The six current PPHs are:

    Campion Hall
    Regent’s Park College
    St Benet’s Hall
    St-Stephen’s Hall
    Wycliffe Hall

    The PPHs and colleges join as the Conference of Colleges, which represents the common concerns of the several colleges of the university, to discuss matters of shared interest and to act collectively when necessary, such as in dealings with the central university. The Conference of Colleges was established as a recommendation of the Franks Commission in 1965.

    Teaching members of the colleges (i.e. fellows and tutors) are collectively and familiarly known as dons, although the term is rarely used by the university itself. In addition to residential and dining facilities, the colleges provide social, cultural, and recreational activities for their members. Colleges have responsibility for admitting undergraduates and organizing their tuition; for graduates, this responsibility falls upon the departments. There is no common title for the heads of colleges: the titles used include Warden, Provost, Principal, President, Rector, Master and Dean.

    Oxford is regularly ranked within the top 5 universities in the world and is currently ranked first in the world in the Times Higher Education World University Rankings, as well as the Forbes’s World University Rankings. It held the number one position in The Times Good University Guide for eleven consecutive years, and the medical school has also maintained first place in the “Clinical, Pre-Clinical & Health” table of The Times Higher Education World University Rankings for the past seven consecutive years. In 2021, it ranked sixth among the universities around the world by SCImago Institutions Rankings. The Times Higher Education has also recognised Oxford as one of the world’s “six super brands” on its World Reputation Rankings, along with The University of California-Berkeley, The University of Cambridge (UK), Harvard University, The Massachusetts Institute of Technology, and Stanford University. The university is fifth worldwide on the US News ranking. Its Saïd Business School came 13th in the world in The Financial Times Global MBA Ranking.
    Oxford was ranked ninth in the world in 2015 by The Nature Index, which measures the largest contributors to papers published in 82 leading journals. It is ranked fifth best university worldwide and first in Britain for forming CEOs according to The Professional Ranking World Universities, and first in the UK for the quality of its graduates as chosen by the recruiters of the UK’s major companies.

    In the 2018 Complete University Guide, all 38 subjects offered by Oxford rank within the top 10 nationally meaning Oxford was one of only two multi-faculty universities (along with Cambridge) in the UK to have 100% of their subjects in the top 10. Computer Science, Medicine, Philosophy, Politics and Psychology were ranked first in the UK by the guide.

    According to The QS World University Rankings by Subject, the University of Oxford also ranks as number one in the world for four Humanities disciplines: English Language and Literature, Modern Languages, Geography, and History. It also ranks second globally for Anthropology, Archaeology, Law, Medicine, Politics & International Studies, and Psychology.

  • richardmitnick 11:33 am on December 9, 2022 Permalink | Reply
    Tags: "A transformable robot with an omnidirectional wheel-leg", "OmniWheg": a robotic system that can adapt its configuration while navigating its surrounding environment seamlessly changing from a wheeled to a legged robot., "Whegs": Wheel-legs or wing-legs, , , Quadruped and biped robots have been growing in popularity and the reason for that might be the search for “anthropomorphization” that the general audience commonly engages in., , TechXplore at Science X, The system used an omnidirectional wheel., Worcester Polytechnic Institute   

    From Worcester Polytechnic Institute Via “TechXplore” at “Science X”: “A transformable robot with an omnidirectional wheel-leg” 


    From Worcester Polytechnic Institute


    “TechXplore” at “Science X”


    Credit: Andre Rosendo and Ruixiang Cao.

    Researchers at Worcester Polytechnic Institute recently created “OmniWheg”, a robotic system that can adapt its configuration while navigating its surrounding environment, seamlessly changing from a wheeled to a legged robot. This robot, introduced in an IEEE IROS [below] 2022 paper, is based on an updated version of the so-called “whegs,” a series of mechanisms design to transform a robot’s wheels or wings into legs.

    “Quadruped and biped robots have been growing in popularity, and the reason for that might be the search for ‘anthropomorphization’ that the general audience commonly engages in,” Prof. Andre Rosendo, one of the researchers who developed the robot, told TechXplore. “While ‘being capable of going everywhere we go’ sounds like an exciting appeal, the energetic cost of legs is very high. We humans have legs because that is what evolution gave us, but we wouldn’t dare to create a ‘legged car,’ as we know that this ride wouldn’t be as comfortable or energy efficient as a wheeled car ride.”

    The key idea behind the recent work by Rosendo and his colleagues is that while legs make robots more relatable, giving them a human- or animal-like quality, they are not always the optimal solution to ensure that robots complete tasks quickly and efficiently. Instead of developing a robot with a single locomotion mechanism, the team thus set out to create a system that can switch between different mechanisms.

    OmniWheg: An Omnidirectional Wheel-Leg Transformable Robot.

    “Looking around our homes and workplaces we can see that our environments are 95% flat, with an eventual 5% of uneven terrain that we need to face when ‘transitioning’ between spaces,” Rosendo said. “With this in mind, why not develop a system that performs at a ‘wheel-like’ efficiency in these 95% of cases and specifically transitions to a lower efficiency in the remaining 5%?”

    Rosendo and his colleagues set out to create a wheel that could change its configuration to climb stairs or circumvent other small obstacles. To accomplish this, they explored the concept of “whegs” (i.e., wheel-legs or wing-legs), which has been around for over a decade and has since received considerable attention in the field of robotics.

    Several wheel-leg systems were developed and tested in the past few years. However, most of these systems did not perform particularly well, mainly due to difficulties in coordinating the right and left side of the wheel-leg system, which need to be perfectly aligned when a robot is climbing stairs.

    “To solve the coordination issues commonly associated with wheel-leg mechanisms, we used an omnidirectional wheel,” explained Ruixiang Cao, the leading student behind the creation. “This is the last piece of the puzzle, as it enables the robot to align on-the-fly without rotating its body. Our robot can move forward, backwards, and sideways at a very low energy cost, can remain in a stable position with no energetic cost, and can swiftly climb stairs when needed.”

    To operate correctly, the wheg system created by Rosendo and his colleagues requires the addition of one servo motor per wheel and a simple algorithm. Other than that, its design is basic and straightforward, so it could be easily replicated by other teams worldwide.

    “The advantages of this system are so abundant, and the drawbacks are so few that we can’t help but think that they pose a threat to the ‘legged robot hype’ seen in the robotics field,” Cao said. “Any robot application that has an eventual need to climb stairs could adopt this design, especially if paired with a robot manipulator to manipulate objects when running over the flat ground while shifting its center of gravity when climbing stairs.”

    The researchers evaluated their OmniWheg system in a series of experiments focusing on a multitude of real-world indoor scenarios, such as circumventing obstacles, climbing steps of different heights and turning/moving omnidirectionally. Their results were highly promising, as their wheel-leg robot could successfully overcome all the common obstacles it was tested on, flexibly and efficiently adapting its configuration to effectively tackle individual locomotion challenges.

    In the future, the system created by Rosendo and his colleagues could be integrated in both existing and new robots, to enhance their efficiency in navigating indoor environments. In addition, the team’s work could inspire the development of similar wheg systems based on omnidirectional wheels.

    “Our first design iteration adopted a fairly ‘expensive’ brushless motor, and we now think that a lighter motor, paired with a gear reduction, would have been more effective,” Rosendo added. “We also plan on adding a manipulator to the base of the robot so that we can test the dynamics of ascending and descending stairs with a higher center of gravity.”

    Science paper:

    See the full article here.

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”.


    Please help promote STEM in your local schools.

    Stem Education Coalition

  • richardmitnick 8:58 pm on November 28, 2022 Permalink | Reply
    Tags: "Building a 900-pixel imaging sensor using an atomically thin material", , TechXplore at Science X, , The result of the work was a 30x30 grid [see image] where each of the pixels was its own device.   

    From The Pennsylvania State University Via “TechXplore” at “Science X”: “Building a 900-pixel imaging sensor using an atomically thin material” 

    Penn State Bloc

    From The Pennsylvania State University


    “TechXplore” at “Science X”

    Bob Yirka

    2D APS. a, 3D schematic (left) and optical image (right) of a monolayer MoS2 phototransistor integrated with a programmable gate stack. The local back-gate stacks, comprising atomic layer deposition grown 50 nm Al2O3 on sputter-deposited Pt/TiN, are patterned as islands on top of an Si/SiO2 substrate. The monolayer MoS2 used in this study was grown via an MOCVD technique using carbon-free precursors at 900 °C on an epitaxial sapphire substrate to ensure high film quality. Following the growth, the film was transferred onto the TiN/Pt/Al2O3 back-gate islands and subsequently patterned, etched and contacted to fabricate phototransistors for the multipixel APS platform. b, Optical image of a 900-pixel 2D APS sensor fabricated in a crossbar architecture (left) and the corresponding circuit diagram showing the row and column select lines (right). Credit: Nature Materials (2022).

    A team of researchers at Penn State University has developed a 900-pixel imaging sensor using an atomically thin material. In their paper published in the journal Nature Materials [below], the group describes how they built their new sensor and possible uses for it.

    Sensors that react to light have become very common in the modern world—lights that turn on when the presence of an intruder is detected, for example. Such sensors are typically made of a grid of pixels, each of which are reactive to light. Performance of such sensors are based on measurements of responsivity, and which parts of light they detect.

    Most are designed with certain noise-to-signal constraints. In this new effort, the researchers noted that most such sensors are also very inefficient, using far more electricity than should be the case for such devices.

    To make a sensor that would be more efficient, the researchers looked at the materials that are used to make those now in use—generally a silicon complementary metal oxide semiconductor serves as the backbone. And it was the backbone where the researchers focused their effort. To make a sensor that would be more efficient, they replaced the traditional backbone with one made from molybdenum disulfide, a material that, like graphene, can be grown as a one atom thick sheet.

    In their work, they grew it on a sapphire base via vapor deposition. Then then lifted the finished product from the base and laid it on a base of silicon dioxide that had already been wire etched. They then finished their product by etching additional wiring on the top.

    The result of their work was a 30×30 grid, where each of the pixels was its own device—one that was not only capable of detecting light but could also be drained using an electrode that made it ready for use again after something has been sensed.

    In assessing the characteristics of their sensor, they found it to be far more efficient than those now in use, each pixel used less than a picojoule. They also found it very easy to reset. One shot of voltage across the array did the trick. On the other hand, the researchers found that it responded far slower to light than sensors currently in use. This, they note, suggests it could be used as an all-purpose light sensor, but not as fixture in a camera. They further suggest it could provide an ideal sensing solution in a wide variety of IoT applications.

    Science paper:
    Nature Materials

    See the full article here .

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct. Use “Reply”


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Comments are invited and will be appreciated, especially if the reader finds any errors which I can correct.

    Penn State Campus

    The The Pennsylvania State University is a public state-related land-grant research university with campuses and facilities throughout Pennsylvania. Founded in 1855 as the Farmers’ High School of Pennsylvania, Penn State became the state’s only land-grant university in 1863. Today, Penn State is a major research university which conducts teaching, research, and public service. Its instructional mission includes undergraduate, graduate, professional and continuing education offered through resident instruction and online delivery. In addition to its land-grant designation, it also participates in the sea-grant, space-grant, and sun-grant research consortia; it is one of only four such universities (along with Cornell University, Oregon State University, and University of Hawaiʻi at Mānoa). Its University Park campus, which is the largest and serves as the administrative hub, lies within the Borough of State College and College Township. It has two law schools: Penn State Law, on the school’s University Park campus, and Dickinson Law, in Carlisle. The College of Medicine is in Hershey. Penn State is one university that is geographically distributed throughout Pennsylvania. There are 19 commonwealth campuses and 5 special mission campuses located across the state. The University Park campus has been labeled one of the “Public Ivies,” a publicly funded university considered as providing a quality of education comparable to those of the Ivy League.
    The Pennsylvania State University is a member of The Association of American Universities an organization of American research universities devoted to maintaining a strong system of academic research and education.

    Annual enrollment at the University Park campus totals more than 46,800 graduate and undergraduate students, making it one of the largest universities in the United States. It has the world’s largest dues-paying alumni association. The university offers more than 160 majors among all its campuses.

    Annually, the university hosts the Penn State IFC/Panhellenic Dance Marathon (THON), which is the world’s largest student-run philanthropy. This event is held at the Bryce Jordan Center on the University Park campus. The university’s athletics teams compete in Division I of the NCAA and are collectively known as the Penn State Nittany Lions, competing in the Big Ten Conference for most sports. Penn State students, alumni, faculty and coaches have received a total of 54 Olympic medals.

    Early years

    The school was sponsored by the Pennsylvania State Agricultural Society and founded as a degree-granting institution on February 22, 1855, by Pennsylvania’s state legislature as the Farmers’ High School of Pennsylvania. The use of “college” or “university” was avoided because of local prejudice against such institutions as being impractical in their courses of study. Centre County, Pennsylvania, became the home of the new school when James Irvin of Bellefonte, Pennsylvania, donated 200 acres (0.8 km2) of land – the first of 10,101 acres (41 km^2) the school would eventually acquire. In 1862, the school’s name was changed to the Agricultural College of Pennsylvania, and with the passage of the Morrill Land-Grant Acts, Pennsylvania selected the school in 1863 to be the state’s sole land-grant college. The school’s name changed to the Pennsylvania State College in 1874; enrollment fell to 64 undergraduates the following year as the school tried to balance purely agricultural studies with a more classic education.

    George W. Atherton became president of the school in 1882, and broadened the curriculum. Shortly after he introduced engineering studies, Penn State became one of the ten largest engineering schools in the nation. Atherton also expanded the liberal arts and agriculture programs, for which the school began receiving regular appropriations from the state in 1887. A major road in State College has been named in Atherton’s honor. Additionally, Penn State’s Atherton Hall, a well-furnished and centrally located residence hall, is named not after George Atherton himself, but after his wife, Frances Washburn Atherton. His grave is in front of Schwab Auditorium near Old Main, marked by an engraved marble block in front of his statue.

    Early 20th century

    In the years that followed, Penn State grew significantly, becoming the state’s largest grantor of baccalaureate degrees and reaching an enrollment of 5,000 in 1936. Around that time, a system of commonwealth campuses was started by President Ralph Dorn Hetzel to provide an alternative for Depression-era students who were economically unable to leave home to attend college.

    In 1953, President Milton S. Eisenhower, brother of then-U.S. President Dwight D. Eisenhower, sought and won permission to elevate the school to university status as The Pennsylvania State University. Under his successor Eric A. Walker (1956–1970), the university acquired hundreds of acres of surrounding land, and enrollment nearly tripled. In addition, in 1967, the Penn State Milton S. Hershey Medical Center, a college of medicine and hospital, was established in Hershey with a $50 million gift from the Hershey Trust Company.

    Modern era

    In the 1970s, the university became a state-related institution. As such, it now belongs to the Commonwealth System of Higher Education. In 1975, the lyrics in Penn State’s alma mater song were revised to be gender-neutral in honor of International Women’s Year; the revised lyrics were taken from the posthumously-published autobiography of the writer of the original lyrics, Fred Lewis Pattee, and Professor Patricia Farrell acted as a spokesperson for those who wanted the change.

    In 1989, the Pennsylvania College of Technology in Williamsport joined ranks with the university, and in 2000, so did the Dickinson School of Law. The university is now the largest in Pennsylvania. To offset the lack of funding due to the limited growth in state appropriations to Penn State, the university has concentrated its efforts on philanthropy.


    Penn State is classified among “R1: Doctoral Universities – Very high research activity”. Over 10,000 students are enrolled in the university’s graduate school (including the law and medical schools), and over 70,000 degrees have been awarded since the school was founded in 1922.

    Penn State’s research and development expenditure has been on the rise in recent years. For fiscal year 2013, according to institutional rankings of total research expenditures for science and engineering released by the National Science Foundation , Penn State stood second in the nation, behind only Johns Hopkins University and tied with the Massachusetts Institute of Technology , in the number of fields in which it is ranked in the top ten. Overall, Penn State ranked 17th nationally in total research expenditures across the board. In 12 individual fields, however, the university achieved rankings in the top ten nationally. The fields and sub-fields in which Penn State ranked in the top ten are materials (1st), psychology (2nd), mechanical engineering (3rd), sociology (3rd), electrical engineering (4th), total engineering (5th), aerospace engineering (8th), computer science (8th), agricultural sciences (8th), civil engineering (9th), atmospheric sciences (9th), and earth sciences (9th). Moreover, in eleven of these fields, the university has repeated top-ten status every year since at least 2008. For fiscal year 2011, the National Science Foundation reported that Penn State had spent $794.846 million on R&D and ranked 15th among U.S. universities and colleges in R&D spending.

    For the 2008–2009 fiscal year, Penn State was ranked ninth among U.S. universities by the National Science Foundation, with $753 million in research and development spending for science and engineering. During the 2015–2016 fiscal year, Penn State received $836 million in research expenditures.

    The Applied Research Lab (ARL), located near the University Park campus, has been a research partner with the Department of Defense since 1945 and conducts research primarily in support of the United States Navy. It is the largest component of Penn State’s research efforts statewide, with over 1,000 researchers and other staff members.

    The Materials Research Institute was created to coordinate the highly diverse and growing materials activities across Penn State’s University Park campus. With more than 200 faculty in 15 departments, 4 colleges, and 2 Department of Defense research laboratories, MRI was designed to break down the academic walls that traditionally divide disciplines and enable faculty to collaborate across departmental and even college boundaries. MRI has become a model for this interdisciplinary approach to research, both within and outside the university. Dr. Richard E. Tressler was an international leader in the development of high-temperature materials. He pioneered high-temperature fiber testing and use, advanced instrumentation and test methodologies for thermostructural materials, and design and performance verification of ceramics and composites in high-temperature aerospace, industrial, and energy applications. He was founding director of the Center for Advanced Materials (CAM), which supported many faculty and students from the College of Earth and Mineral Science, the Eberly College of Science, the College of Engineering, the Materials Research Laboratory and the Applied Research Laboratories at Penn State on high-temperature materials. His vision for Interdisciplinary research played a key role in creating the Materials Research Institute, and the establishment of Penn State as an acknowledged leader among major universities in materials education and research.

    The university was one of the founding members of the Worldwide Universities Network (WUN), a partnership that includes 17 research-led universities in the United States, Asia, and Europe. The network provides funding, facilitates collaboration between universities, and coordinates exchanges of faculty members and graduate students among institutions. Former Penn State president Graham Spanier is a former vice-chair of the WUN.

    The Pennsylvania State University Libraries were ranked 14th among research libraries in North America in the 2003–2004 survey released by The Chronicle of Higher Education. The university’s library system began with a 1,500-book library in Old Main. In 2009, its holdings had grown to 5.2 million volumes, in addition to 500,000 maps, five million microforms, and 180,000 films and videos.

    The university’s College of Information Sciences and Technology is the home of CiteSeerX, an open-access repository and search engine for scholarly publications. The university is also the host to the Radiation Science & Engineering Center, which houses the oldest operating university research reactor. Additionally, University Park houses the Graduate Program in Acoustics, the only freestanding acoustics program in the United States. The university also houses the Center for Medieval Studies, a program that was founded to research and study the European Middle Ages, and the Center for the Study of Higher Education (CSHE), one of the first centers established to research postsecondary education.

  • richardmitnick 11:58 am on November 12, 2022 Permalink | Reply
    Tags: "Collaboration achieves record level of radio frequency signal synthesis with quantum-based accuracy", , RF Josephson arbitrary waveform synthesizer, TechXplore at Science X,   

    From The National Institute of Standards and Technology And The University of Colorado-Boulder Via “TechXplore” at “Science X”: “Collaboration achieves record level of radio frequency signal synthesis with quantum-based accuracy” 

    From The National Institute of Standards and Technology


    U Colorado

    The University of Colorado-Boulder


    “TechXplore” at “Science X”


    Credit: National Institute of Standards and Technology.

    NIST, in collaboration with The University of Colorado-Boulder faculty, published a paper titled: RF Josephson Arbitrary Waveform Synthesizer with Integrated Superconducting Diplexers demonstrating results that show a significant step toward a broadband, integrated, quantum-based microwave voltage source with useful power above -30 dBm.

    This milestone creates new opportunities for improving measurements of high-accuracy RF voltage and power for modern high-speed communications components and instruments.

    NIST’s goal is to advance quantum-based standards for RF communications to eliminate costs and overhead in calibration and traceability chain measurements by providing self-calibrated, quantum-based standards and automated measurement capability to communication and instrument manufacturers.

    The team is developing a quantum-defined superconducting programmable voltage source for generating microwave-frequency waveforms. The voltage source is an RF Josephson arbitrary waveform synthesizer (RF-JAWS) that utilizes a superconducting integrated circuit that is cooled to 4 K and is composed of an array of 4,500 Josephson junctions.

    The researchers incorporated on-chip superconducting diplexers and integrated them with the RF-JAWS circuit to achieve an open-circuit signal of 22 mV rms at 1.005 GHz, which is a 25% increase in state-of-the-art. The use of integrated filtering enables 25% larger microwave amplitudes compared to the state-of-the-art thanks to a broader passband and lower loss.

    Measurements of the new circuit showed that it correctly synthesized the RF waveform with a signal amplitude that was based on quantum effects.

    The paper is published in IEEE Transactions on Applied Superconductivity.

    See the full article here.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Colorado Campus

    As the flagship university of the state of Colorado The University of Colorado-Boulder , founded in 1876, five months before Colorado became a state. It is a dynamic community of scholars and learners situated on one of the most spectacular college campuses in the country, and is classified as an R1 University, meaning that it engages in a very high level of research activity. As one of 34 U.S. public institutions belonging to the prestigious Association of American Universities ), a selective group of major research universities in North America, – and the only member in the Rocky Mountain region – we have a proud tradition of academic excellence, with five Nobel laureates and more than 50 members of prestigious academic academies.

    University of Colorado-Boulder has blossomed in size and quality since we opened our doors in 1877 – attracting superb faculty, staff, and students and building strong programs in the sciences, engineering, business, law, arts, humanities, education, music, and many other disciplines.

    Today, with our sights set on becoming the standard for the great comprehensive public research universities of the new century, we strive to serve the people of Colorado and to engage with the world through excellence in our teaching, research, creative work, and service.

    In 2015, the university comprised nine colleges and schools and offered over 150 academic programs and enrolled almost 17,000 students. Five Nobel Laureates, nine MacArthur Fellows, and 20 astronauts have been affiliated with CU Boulder as students; researchers; or faculty members in its history. In 2010, the university received nearly $454 million in sponsored research to fund programs like the Laboratory for Atmospheric and Space Physics and JILA. CU Boulder has been called a Public Ivy, a group of publicly funded universities considered as providing a quality of education comparable to those of the Ivy League.

    The Colorado Buffaloes compete in 17 varsity sports and are members of the NCAA Division I Pac-12 Conference. The Buffaloes have won 28 national championships: 20 in skiing, seven total in men’s and women’s cross country, and one in football. The university has produced a total of ten Olympic medalists. Approximately 900 students participate in 34 intercollegiate club sports annually as well.

    On March 14, 1876, the Colorado territorial legislature passed an amendment to the state constitution that provided money for the establishment of the University of Colorado in Boulder, the Colorado School of Mines in Golden, and the Colorado State University – College of Agricultural Sciences in Fort Collins.

    Two cities competed for the site of the University of Colorado: Boulder and Cañon City. The consolation prize for the losing city was to be home of the new Colorado State Prison. Cañon City was at a disadvantage as it was already the home of the Colorado Territorial Prison. (There are now six prisons in the Cañon City area.)

    The cornerstone of the building that became Old Main was laid on September 20, 1875. The doors of the university opened on September 5, 1877. At the time, there were few high schools in the state that could adequately prepare students for university work, so in addition to the University, a preparatory school was formed on campus. In the fall of 1877, the student body consisted of 15 students in the college proper and 50 students in the preparatory school. There were 38 men and 27 women, and their ages ranged from 12–23 years.

    During World War II, Colorado was one of 131 colleges and universities nationally that took part in the V-12 Navy College Training Program which offered students a path to a navy commission.

    University of Colorado-Boulder hired its first female professor, Mary Rippon, in 1878. It hired its first African-American professor, Charles H. Nilon, in 1956, and its first African-American librarian, Mildred Nilon, in 1962. Its first African American female graduate, Lucile Berkeley Buchanan, received her degree in 1918.

    Research institutes

    University of Colorado-Boulder’s research mission is supported by eleven research institutes within the university. Each research institute supports faculty from multiple academic departments, allowing institutes to conduct truly multidisciplinary research.

    The Institute for Behavioral Genetics (IBG) is a research institute within the Graduate School dedicated to conducting and facilitating research on the genetic and environmental bases of individual differences in behavior. After its founding in 1967 IBG led the resurging interest in genetic influences on behavior. IBG was the first post-World War II research institute dedicated to research in behavioral genetics. IBG remains one of the top research facilities for research in behavioral genetics, including human behavioral genetics, psychiatric genetics, quantitative genetics, statistical genetics, and animal behavioral genetics.

    The Institute of Cognitive Science (ICS) at CU Boulder promotes interdisciplinary research and training in cognitive science. ICS is highly interdisciplinary; its research focuses on education, language processing, emotion, and higher level cognition using experimental methods. It is home to a state-of-the-art fMRI system used to collect neuroimaging data.

    ATLAS Institute is a center for interdisciplinary research and academic study, where engineering, computer science and robotics are blended with design-oriented topics. Part of CU Boulder’s College of Engineering and Applied Science, the institute offers academic programs at the undergraduate, master’s and doctoral levels, and administers research labs, hacker and makerspaces, and a black box experimental performance studio. At the beginning of the 2018–2019 academic year, approximately 1,200 students were enrolled in ATLAS academic programs and the institute sponsored six research labs.[64]

    In addition to IBG, ICS and ATLAS, the university’s other institutes include Biofrontiers Institute, Cooperative Institute for Research in Environmental Sciences, Institute of Arctic & Alpine Research (INSTAAR), Institute of Behavioral Science (IBS), JILA, Laboratory for Atmospheric & Space Physics (LASP), Renewable & Sustainable Energy Institute (RASEI), and the University of Colorado Museum of Natural History.

    NIST Campus, Gaitherberg, MD.

    The National Institute of Standards and Technology‘s Mission, Vision, Core Competencies, and Core Values


    To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

    NIST’s vision

    NIST will be the world’s leader in creating critical measurement solutions and promoting equitable standards. Our efforts stimulate innovation, foster industrial competitiveness, and improve the quality of life.

    NIST’s core competencies

    Measurement science
    Rigorous traceability
    Development and use of standards

    NIST’s core values

    NIST is an organization with strong values, reflected both in our history and our current work. NIST leadership and staff will uphold these values to ensure a high performing environment that is safe and respectful of all.

    Perseverance: We take the long view, planning the future with scientific knowledge and imagination to ensure continued impact and relevance for our stakeholders.
    Integrity: We are ethical, honest, independent, and provide an objective perspective.
    Inclusivity: We work collaboratively to harness the diversity of people and ideas, both inside and outside of NIST, to attain the best solutions to multidisciplinary challenges.
    Excellence: We apply rigor and critical thinking to achieve world-class results and continuous improvement in everything we do.


    The Articles of Confederation, ratified by the colonies in 1781, contained the clause, “The United States in Congress assembled shall also have the sole and exclusive right and power of regulating the alloy and value of coin struck by their own authority, or by that of the respective states—fixing the standards of weights and measures throughout the United States”. Article 1, section 8, of the Constitution of the United States (1789), transferred this power to Congress; “The Congress shall have power…To coin money, regulate the value thereof, and of foreign coin, and fix the standard of weights and measures”.

    In January 1790, President George Washington, in his first annual message to Congress stated that, “Uniformity in the currency, weights, and measures of the United States is an object of great importance, and will, I am persuaded, be duly attended to”, and ordered Secretary of State Thomas Jefferson to prepare a plan for Establishing Uniformity in the Coinage, Weights, and Measures of the United States, afterwards referred to as the Jefferson report. On October 25, 1791, Washington appealed a third time to Congress, “A uniformity of the weights and measures of the country is among the important objects submitted to you by the Constitution and if it can be derived from a standard at once invariable and universal, must be no less honorable to the public council than conducive to the public convenience”, but it was not until 1838, that a uniform set of standards was worked out. In 1821, John Quincy Adams had declared “Weights and measures may be ranked among the necessities of life to every individual of human society”.

    From 1830 until 1901, the role of overseeing weights and measures was carried out by the Office of Standard Weights and Measures, which was part of the U.S. Coast and Geodetic Survey in the Department of the Treasury.

    Bureau of Standards

    In 1901 in response to a bill proposed by Congressman James H. Southard (R- Ohio) the National Bureau of Standards was founded with the mandate to provide standard weights and measures and to serve as the national physical laboratory for the United States. (Southard had previously sponsored a bill for metric conversion of the United States.)

    President Theodore Roosevelt appointed Samuel W. Stratton as the first director. The budget for the first year of operation was $40,000. The Bureau took custody of the copies of the kilogram and meter bars that were the standards for US measures, and set up a program to provide metrology services for United States scientific and commercial users. A laboratory site was constructed in Washington DC (US) and instruments were acquired from the national physical laboratories of Europe. In addition to weights and measures the Bureau developed instruments for electrical units and for measurement of light. In 1905 a meeting was called that would be the first National Conference on Weights and Measures.

    Initially conceived as purely a metrology agency the Bureau of Standards was directed by Herbert Hoover to set up divisions to develop commercial standards for materials and products. Some of these standards were for products intended for government use; but product standards also affected private-sector consumption. Quality standards were developed for products including some types of clothing; automobile brake systems and headlamps; antifreeze; and electrical safety. During World War I, the Bureau worked on multiple problems related to war production even operating its own facility to produce optical glass when European supplies were cut off. Between the wars Harry Diamond of the Bureau developed a blind approach radio aircraft landing system. During World War II military research and development was carried out including development of radio propagation forecast methods; the proximity fuze and the standardized airframe used originally for Project Pigeon; and shortly afterwards the autonomously radar-guided Bat anti-ship guided bomb and the Kingfisher family of torpedo-carrying missiles.

    In 1948, financed by the United States Air Force the Bureau began design and construction of SEAC: the Standards Eastern Automatic Computer. The computer went into operation in May 1950 using a combination of vacuum tubes and solid-state diode logic. About the same time the Standards Western Automatic Computer, was built at the Los Angeles office of the NBS by Harry Huskey and used for research there. A mobile version- DYSEAC- was built for the Signal Corps in 1954.

    Due to a changing mission, the “National Bureau of Standards” became the “ The National Institute of Standards and Technology” in 1988.

    Following September 11, 2001, NIST conducted the official investigation into the collapse of the World Trade Center buildings.


    NIST is headquartered in Gaithersburg, Maryland, and operates a facility in Boulder, Colorado, which was dedicated by President Eisenhower in 1954. NIST’s activities are organized into laboratory programs and extramural programs. Effective October 1, 2010, NIST was realigned by reducing the number of NIST laboratory units from ten to six. NIST Laboratories include:

    Communications Technology Laboratory (CTL)
    Engineering Laboratory (EL)
    Information Technology Laboratory (ITL)
    Center for Neutron Research (NCNR)
    Material Measurement Laboratory (MML)
    Physical Measurement Laboratory (PML)

    Extramural programs include:

    Hollings Manufacturing Extension Partnership (MEP), a nationwide network of centers to assist small and mid-sized manufacturers to create and retain jobs, improve efficiencies, and minimize waste through process improvements and to increase market penetration with innovation and growth strategies;
    Technology Innovation Program (TIP), a grant program where NIST and industry partners cost share the early-stage development of innovative but high-risk technologies;
    Baldrige Performance Excellence Program, which administers the Malcolm Baldrige National Quality Award, the nation’s highest award for performance and business excellence.

    NIST’s Boulder laboratories are best known for NIST‑F1 which houses an atomic clock.

    NIST‑F1 serves as the source of the nation’s official time. From its measurement of the natural resonance frequency of cesium—which defines the second—NIST broadcasts time signals via longwave radio station WWVB near Fort Collins in Colorado, and shortwave radio stations WWV and WWVH, located near Fort Collins and Kekaha in Hawai’i, respectively.

    NIST also operates a neutron science user facility: the NIST Center for Neutron Research (NCNR).

    The NCNR provides scientists access to a variety of neutron scattering instruments which they use in many research fields (materials science; fuel cells; biotechnology etc.).

    The SURF III Synchrotron Ultraviolet Radiation Facility is a source of synchrotron radiation in continuous operation since 1961.

    SURF III now serves as the US national standard for source-based radiometry throughout the generalized optical spectrum. All NASA-borne extreme-ultraviolet observation instruments have been calibrated at SURF since the 1970s, and SURF is used for measurement and characterization of systems for extreme ultraviolet lithography.

    The Center for Nanoscale Science and Technology performs research in nanotechnology, both through internal research efforts and by running a user-accessible cleanroom nanomanufacturing facility.

    This “NanoFab” is equipped with tools for lithographic patterning and imaging (e.g., electron microscopes and atomic force microscopes).

    NIST has seven standing committees:

    Technical Guidelines Development Committee (TGDC)
    Advisory Committee on Earthquake Hazards Reduction (ACEHR)
    National Construction Safety Team Advisory Committee (NCST Advisory Committee)
    Information Security and Privacy Advisory Board (ISPAB)
    Visiting Committee on Advanced Technology (VCAT)
    Board of Overseers for the Malcolm Baldrige National Quality Award (MBNQA Board of Overseers)
    Manufacturing Extension Partnership National Advisory Board (MEPNAB)

    Measurements and standards

    As part of its mission, NIST supplies industry, academia, government, and other users with over 1,300 Standard Reference Materials (SRMs). These artifacts are certified as having specific characteristics or component content, used as calibration standards for measuring equipment and procedures, quality control benchmarks for industrial processes, and experimental control samples.

    Handbook 44

    NIST publishes the Handbook 44 each year after the annual meeting of the National Conference on Weights and Measures (NCWM). Each edition is developed through cooperation of the Committee on Specifications and Tolerances of the NCWM and the Weights and Measures Division (WMD) of the NIST. The purpose of the book is a partial fulfillment of the statutory responsibility for “cooperation with the states in securing uniformity of weights and measures laws and methods of inspection”.

    NIST has been publishing various forms of what is now the Handbook 44 since 1918 and began publication under the current name in 1949. The 2010 edition conforms to the concept of the primary use of the SI (metric) measurements recommended by the Omnibus Foreign Trade and Competitiveness Act of 1988.

  • richardmitnick 8:35 pm on November 2, 2022 Permalink | Reply
    Tags: "Improving the autonomous navigation of mobile robots in crowded spaces using people as sensors", , , , TechXplore at Science X,   

    From Stanford University Via “TechXplore” at “Science X”: “Improving the autonomous navigation of mobile robots in crowded spaces using people as sensors” 

    Stanford University Name

    From Stanford University


    “TechXplore” at “Science X”

    Ingrid Fadelli

    Credit: Mun et al.

    A team of researchers from University of Illinois at Urbana-Champaign and Stanford University led by Prof. Katie Driggs-Campbell, have recently developed a new deep reinforcement learning-based method that could improve the ability of mobile robots to safely navigate crowded spaces. Their method, introduced in a paper pre-published on arXiv [below], is based on the idea of using people in the robot’s surroundings as indicators of potential obstacles.

    “Our paper builds on the ‘people as sensors’ research direction for mapping in the presence of occlusions,” Masha Itkina, one of the researchers who carried out the study, told TechXplore. “The key insight is that we can make spatial inferences about the environment by observing interactive human behaviors, thus treating people as sensors. For example, if we observe a driver brake sharply, we can infer that a pedestrian may have run out on the road in front of that driver.”

    The idea of using people and their interactive behaviors to estimate the presence or absence of occluded obstacles was first introduced by Afolabi et al in 2018 [IEEE Xplore (below)], specifically in the context of self-driving vehicles. In their previous work, Itkina and her colleagues built on this group’s efforts, generalizing the “people as sensors” idea so that it considered multiple observed human drivers, instead of a single driver (as considered by Afolabi’s team’s approach).

    To do this, they developed a “sensor” model for all the different drivers in an autonomous vehicle’s surroundings. Each of these models mapped the driver’s trajectory to an occupancy grid representation of the environment ahead of the driver. Subsequently, these occupancy estimates were incorporated into the autonomous robot’s map, using sensor fusion techniques.

    “In our recent paper, we close the loop by considering occlusion inference within a reinforcement learning pipeline,” Itkina said. “Our aim was to demonstrate that occlusion inference is beneficial to a downstream path planner, particularly when the spatial representation is task-aware. To achieve this objective, we constructed an end-to-end architecture that simultaneously learns to infer occlusions and to output a policy that successfully and safely reaches the goal.”

    Most previously developed models viewing people as sensors are specifically designed to be implemented in urban environments, to increase the safety of autonomous vehicles. The new model, on the other hand, was designed to improve a mobile robot’s ability to navigate crowds of people.

    Crowd navigation tasks are generally more difficult than urban driving tasks for autonomous systems, as human behaviors in crowds are less structured and thus more unpredictable. The researchers decided to tackle these tasks using a deep reinforcement learning model integrated with an occlusion-aware latent space learned by a variational autoencoder (VAE).

    “We first represent the robot’s surrounding environment in a local occupancy grid map, much like a bird’s-eye view or top-down image of the obstacles around the robot,” Ye-Ji Mun, the first author on this study, told TechXplore. “This occupancy grid map allows us to capture rich interactive behaviors within the grid area regardless of the number or size and shape of the objects and people.”

    The researchers’ model includes an occlusion inference module, which was trained to extract observed social behaviors, such as slowing down or turning to avoid collisions from collected sequences of map inputs. Subsequently, it uses this information to predict where occluded objects or agents might be located and encodes this “augmented perception information” into a low dimensional latent representation, using the VAE architecture.

    “As our occlusion inference module is provided with only partial observation of the surrounding human agents, we also have a supervisor model, whose latent vector encodes the spatial location for both the observed and occluded human agents during training,” Mun explained. “By matching the latent space of our occlusion module to that of the supervisor model, we augment the perceptual information by associating the observed social behaviors with the spatial locations of the occluded human agents.”

    The resulting occlusion-aware latent representation is ultimately fed to a deep reinforcement learning framework that encourages the robot to proactively avoid collisions while completing its mission. Itkina, Mun and their colleagues tested their model in a series of experiments, both in a simulated environment and in the real-world, using the mobile robot Turtlebot 2i.

    “We successfully implemented the ‘people as sensors’ concept to augment the limited robot perception and perform occlusion-aware crowd navigation,” Mun said. “We demonstrated that our occlusion-aware policy achieves much better navigation performance (i.e., better collision avoidance and smoother navigation paths) than the limited-view navigation and comparable to the omniscient-view navigation. To the best of our knowledge, this work is the first to use social occlusion inference for crowd navigation.”

    In their tests, Itkina, Mun and their colleagues also found that their model generated imperfect maps, which do not contain the exact locations of both the observed agents and estimated agents. Instead, their module learns to focus on estimating the location of nearby ‘critical agents’ that might be occluded and could block the robot’s path towards a desired location.

    “This result implies that a complete map is not necessarily a better map for navigation in a partially observable, crowded environment but rather focusing on a few potentially dangerous agents is more important,” Mun said.

    The initial findings gathered by this team of researchers are highly promising, as they highlight the potential of their method for reducing a robot’s collisions with obstacles in crowded environments. In the future, their model could be implemented on both existing and newly developed mobile robots designed to navigate malls, airports, offices, and other crowded environments.

    “The main motivation for this work was to capture human-like intuition when navigating around humans, particularly in occluded settings,” Itkina added. “We hope to delve deeper into capturing human insights to improve robot capabilities. Specifically, we are interested in how we can simultaneously make predictions for the environment and infer occlusions as the inputs to both tasks involve historical observations of human behaviors. We are also thinking about how these ideas can transfer to different settings, such as warehouse and assistive robotics.”

    Science papers:
    See this science paper for detailed material with images.
    IEEE Xplore 2018

    See the full article here.

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stanford University campus

    Leland and Jane Stanford founded Stanford University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members.

    Stanford University, officially Leland Stanford Junior University, is a private research university located in Stanford, California. Stanford was founded in 1885 by Leland and Jane Stanford in memory of their only child, Leland Stanford Jr., who had died of typhoid fever at age 15 the previous year. Stanford is consistently ranked as among the most prestigious and top universities in the world by major education publications. It is also one of the top fundraising institutions in the country, becoming the first school to raise more than a billion dollars in a year.

    Leland Stanford was a U.S. senator and former governor of California who made his fortune as a railroad tycoon. The school admitted its first students on October 1, 1891, as a coeducational and non-denominational institution. Stanford University struggled financially after the death of Leland Stanford in 1893 and again after much of the campus was damaged by the 1906 San Francisco earthquake. Following World War II, provost Frederick Terman supported faculty and graduates’ entrepreneurialism to build self-sufficient local industry in what would later be known as Silicon Valley.

    The university is organized around seven schools: three schools consisting of 40 academic departments at the undergraduate level as well as four professional schools that focus on graduate programs in law, medicine, education, and business. All schools are on the same campus. Students compete in 36 varsity sports, and the university is one of two private institutions in the Division I FBS Pac-12 Conference. It has gained 126 NCAA team championships, and Stanford has won the NACDA Directors’ Cup for 24 consecutive years, beginning in 1994–1995. In addition, Stanford students and alumni have won 270 Olympic medals including 139 gold medals.

    As of October 2020, 84 Nobel laureates, 28 Turing Award laureates, and eight Fields Medalists have been affiliated with Stanford as students, alumni, faculty, or staff. In addition, Stanford is particularly noted for its entrepreneurship and is one of the most successful universities in attracting funding for start-ups. Stanford alumni have founded numerous companies, which combined produce more than $2.7 trillion in annual revenue, roughly equivalent to the 7th largest economy in the world (as of 2020). Stanford is the alma mater of one president of the United States (Herbert Hoover), 74 living billionaires, and 17 astronauts. It is also one of the leading producers of Fulbright Scholars, Marshall Scholars, Rhodes Scholars, and members of the United States Congress.

    Stanford University was founded in 1885 by Leland and Jane Stanford, dedicated to Leland Stanford Jr, their only child. The institution opened in 1891 on Stanford’s previous Palo Alto farm.

    Jane and Leland Stanford modeled their university after the great eastern universities, most specifically Cornell University. Stanford opened being called the “Cornell of the West” in 1891 due to faculty being former Cornell affiliates (either professors, alumni, or both) including its first president, David Starr Jordan, and second president, John Casper Branner. Both Cornell and Stanford were among the first to have higher education be accessible, nonsectarian, and open to women as well as to men. Cornell is credited as one of the first American universities to adopt this radical departure from traditional education, and Stanford became an early adopter as well.

    Despite being impacted by earthquakes in both 1906 and 1989, the campus was rebuilt each time. In 1919, The Hoover Institution on War, Revolution and Peace was started by Herbert Hoover to preserve artifacts related to World War I. The Stanford Medical Center, completed in 1959, is a teaching hospital with over 800 beds. The DOE’s SLAC National Accelerator Laboratory (originally named the Stanford Linear Accelerator Center), established in 1962, performs research in particle physics.


    Most of Stanford is on an 8,180-acre (12.8 sq mi; 33.1 km^2) campus, one of the largest in the United States. It is located on the San Francisco Peninsula, in the northwest part of the Santa Clara Valley (Silicon Valley) approximately 37 miles (60 km) southeast of San Francisco and approximately 20 miles (30 km) northwest of San Jose. In 2008, 60% of this land remained undeveloped.

    Stanford’s main campus includes a census-designated place within unincorporated Santa Clara County, although some of the university land (such as the Stanford Shopping Center and the Stanford Research Park) is within the city limits of Palo Alto. The campus also includes much land in unincorporated San Mateo County (including the SLAC National Accelerator Laboratory and the Jasper Ridge Biological Preserve), as well as in the city limits of Menlo Park (Stanford Hills neighborhood), Woodside, and Portola Valley.

    Non-central campus

    Stanford currently operates in various locations outside of its central campus.

    On the founding grant:

    Jasper Ridge Biological Preserve is a 1,200-acre (490 ha) natural reserve south of the central campus owned by the university and used by wildlife biologists for research.

    SLAC National Accelerator Laboratory is a facility west of the central campus operated by the university for the Department of Energy. It contains the longest linear particle accelerator in the world, 2 miles (3.2 km) on 426 acres (172 ha) of land. Golf course and a seasonal lake: The university also has its own golf course and a seasonal lake (Lake Lagunita, actually an irrigation reservoir), both home to the vulnerable California tiger salamander. As of 2012 Lake Lagunita was often dry and the university had no plans to artificially fill it.

    Off the founding grant:

    Hopkins Marine Station, in Pacific Grove, California, is a marine biology research center owned by the university since 1892., in Pacific Grove, California, is a marine biology research center owned by the university since 1892.
    Study abroad locations: unlike typical study abroad programs, Stanford itself operates in several locations around the world; thus, each location has Stanford faculty-in-residence and staff in addition to students, creating a “mini-Stanford”.

    Redwood City campus for many of the university’s administrative offices located in Redwood City, California, a few miles north of the main campus. In 2005, the university purchased a small, 35-acre (14 ha) campus in Midpoint Technology Park intended for staff offices; development was delayed by The Great Recession. In 2015 the university announced a development plan and the Redwood City campus opened in March 2019.

    The Bass Center in Washington, DC provides a base, including housing, for the Stanford in Washington program for undergraduates. It includes a small art gallery open to the public.

    China: Stanford Center at Peking University, housed in the Lee Jung Sen Building, is a small center for researchers and students in collaboration with Beijing University [北京大学](CN) (Kavli Institute for Astronomy and Astrophysics at Peking University(CN) (KIAA-PKU).

    Administration and organization

    Stanford is a private, non-profit university that is administered as a corporate trust governed by a privately appointed board of trustees with a maximum membership of 38. Trustees serve five-year terms (not more than two consecutive terms) and meet five times annually.[83] A new trustee is chosen by the current trustees by ballot. The Stanford trustees also oversee the Stanford Research Park, the Stanford Shopping Center, the Cantor Center for Visual Arts, Stanford University Medical Center, and many associated medical facilities (including the Lucile Packard Children’s Hospital).

    The board appoints a president to serve as the chief executive officer of the university, to prescribe the duties of professors and course of study, to manage financial and business affairs, and to appoint nine vice presidents. The provost is the chief academic and budget officer, to whom the deans of each of the seven schools report. Persis Drell became the 13th provost in February 2017.

    As of 2018, the university was organized into seven academic schools. The schools of Humanities and Sciences (27 departments), Engineering (nine departments), and Earth, Energy & Environmental Sciences (four departments) have both graduate and undergraduate programs while the Schools of Law, Medicine, Education and Business have graduate programs only. The powers and authority of the faculty are vested in the Academic Council, which is made up of tenure and non-tenure line faculty, research faculty, senior fellows in some policy centers and institutes, the president of the university, and some other academic administrators, but most matters are handled by the Faculty Senate, made up of 55 elected representatives of the faculty.

    The Associated Students of Stanford University (ASSU) is the student government for Stanford and all registered students are members. Its elected leadership consists of the Undergraduate Senate elected by the undergraduate students, the Graduate Student Council elected by the graduate students, and the President and Vice President elected as a ticket by the entire student body.

    Stanford is the beneficiary of a special clause in the California Constitution, which explicitly exempts Stanford property from taxation so long as the property is used for educational purposes.

    Endowment and donations

    The university’s endowment, managed by the Stanford Management Company, was valued at $27.7 billion as of August 31, 2019. Payouts from the Stanford endowment covered approximately 21.8% of university expenses in the 2019 fiscal year. In the 2018 NACUBO-TIAA survey of colleges and universities in the United States and Canada, only Harvard University, the University of Texas System, and Yale University had larger endowments than Stanford.

    In 2006, President John L. Hennessy launched a five-year campaign called the Stanford Challenge, which reached its $4.3 billion fundraising goal in 2009, two years ahead of time, but continued fundraising for the duration of the campaign. It concluded on December 31, 2011, having raised a total of $6.23 billion and breaking the previous campaign fundraising record of $3.88 billion held by Yale. Specifically, the campaign raised $253.7 million for undergraduate financial aid, as well as $2.33 billion for its initiative in “Seeking Solutions” to global problems, $1.61 billion for “Educating Leaders” by improving K-12 education, and $2.11 billion for “Foundation of Excellence” aimed at providing academic support for Stanford students and faculty. Funds supported 366 new fellowships for graduate students, 139 new endowed chairs for faculty, and 38 new or renovated buildings. The new funding also enabled the construction of a facility for stem cell research; a new campus for the business school; an expansion of the law school; a new Engineering Quad; a new art and art history building; an on-campus concert hall; a new art museum; and a planned expansion of the medical school, among other things. In 2012, the university raised $1.035 billion, becoming the first school to raise more than a billion dollars in a year.

    Research centers and institutes

    DOE’s SLAC National Accelerator Laboratory
    Stanford Research Institute, a center of innovation to support economic development in the region.
    Hoover Institution, a conservative American public policy institution and research institution that promotes personal and economic liberty, free enterprise, and limited government.
    Hasso Plattner Institute of Design, a multidisciplinary design school in cooperation with the Hasso Plattner Institute of University of Potsdam [Universität Potsdam](DE) that integrates product design, engineering, and business management education).
    Martin Luther King Jr. Research and Education Institute, which grew out of and still contains the Martin Luther King Jr. Papers Project.
    John S. Knight Fellowship for Professional Journalists
    Center for Ocean Solutions
    Together with UC Berkeley and UC San Francisco, Stanford is part of the Biohub, a new medical science research center founded in 2016 by a $600 million commitment from Facebook CEO and founder Mark Zuckerberg and pediatrician Priscilla Chan.

    Discoveries and innovation

    Natural sciences

    Biological synthesis of deoxyribonucleic acid (DNA) – Arthur Kornberg synthesized DNA material and won the Nobel Prize in Physiology or Medicine 1959 for his work at Stanford.
    First Transgenic organism – Stanley Cohen and Herbert Boyer were the first scientists to transplant genes from one living organism to another, a fundamental discovery for genetic engineering. Thousands of products have been developed on the basis of their work, including human growth hormone and hepatitis B vaccine.
    Laser – Arthur Leonard Schawlow shared the 1981 Nobel Prize in Physics with Nicolaas Bloembergen and Kai Siegbahn for his work on lasers.
    Nuclear magnetic resonance – Felix Bloch developed new methods for nuclear magnetic precision measurements, which are the underlying principles of the MRI.

    Computer and applied sciences

    ARPANETStanford Research Institute, formerly part of Stanford but on a separate campus, was the site of one of the four original ARPANET nodes.

    Internet—Stanford was the site where the original design of the Internet was undertaken. Vint Cerf led a research group to elaborate the design of the Transmission Control Protocol (TCP/IP) that he originally co-created with Robert E. Kahn (Bob Kahn) in 1973 and which formed the basis for the architecture of the Internet.

    Frequency modulation synthesis – John Chowning of the Music department invented the FM music synthesis algorithm in 1967, and Stanford later licensed it to Yamaha Corporation.

    Google – Google began in January 1996 as a research project by Larry Page and Sergey Brin when they were both PhD students at Stanford. They were working on the Stanford Digital Library Project (SDLP). The SDLP’s goal was “to develop the enabling technologies for a single, integrated and universal digital library” and it was funded through the National Science Foundation, among other federal agencies.

    Klystron tube – invented by the brothers Russell and Sigurd Varian at Stanford. Their prototype was completed and demonstrated successfully on August 30, 1937. Upon publication in 1939, news of the klystron immediately influenced the work of U.S. and UK researchers working on radar equipment.

    RISCARPA funded VLSI project of microprocessor design. Stanford and University of California- Berkeley are most associated with the popularization of this concept. The Stanford MIPS would go on to be commercialized as the successful MIPS architecture, while Berkeley RISC gave its name to the entire concept, commercialized as the SPARC. Another success from this era were IBM’s efforts that eventually led to the IBM POWER instruction set architecture, PowerPC, and Power ISA. As these projects matured, a wide variety of similar designs flourished in the late 1980s and especially the early 1990s, representing a major force in the Unix workstation market as well as embedded processors in laser printers, routers and similar products.
    SUN workstation – Andy Bechtolsheim designed the SUN workstation for the Stanford University Network communications project as a personal CAD workstation, which led to Sun Microsystems.

    Businesses and entrepreneurship

    Stanford is one of the most successful universities in creating companies and licensing its inventions to existing companies; it is often held up as a model for technology transfer. Stanford’s Office of Technology Licensing is responsible for commercializing university research, intellectual property, and university-developed projects.

    The university is described as having a strong venture culture in which students are encouraged, and often funded, to launch their own companies.

    Companies founded by Stanford alumni generate more than $2.7 trillion in annual revenue, equivalent to the 10th-largest economy in the world.

    Some companies closely associated with Stanford and their connections include:

    Hewlett-Packard, 1939, co-founders William R. Hewlett (B.S, PhD) and David Packard (M.S).
    Silicon Graphics, 1981, co-founders James H. Clark (Associate Professor) and several of his grad students.
    Sun Microsystems, 1982, co-founders Vinod Khosla (M.B.A), Andy Bechtolsheim (PhD) and Scott McNealy (M.B.A).
    Cisco, 1984, founders Leonard Bosack (M.S) and Sandy Lerner (M.S) who were in charge of Stanford Computer Science and Graduate School of Business computer operations groups respectively when the hardware was developed.[163]
    Yahoo!, 1994, co-founders Jerry Yang (B.S, M.S) and David Filo (M.S).
    Google, 1998, co-founders Larry Page (M.S) and Sergey Brin (M.S).
    LinkedIn, 2002, co-founders Reid Hoffman (B.S), Konstantin Guericke (B.S, M.S), Eric Lee (B.S), and Alan Liu (B.S).
    Instagram, 2010, co-founders Kevin Systrom (B.S) and Mike Krieger (B.S).
    Snapchat, 2011, co-founders Evan Spiegel and Bobby Murphy (B.S).
    Coursera, 2012, co-founders Andrew Ng (Associate Professor) and Daphne Koller (Professor, PhD).

    Student body

    Stanford enrolled 6,996 undergraduate and 10,253 graduate students as of the 2019–2020 school year. Women comprised 50.4% of undergraduates and 41.5% of graduate students. In the same academic year, the freshman retention rate was 99%.

    Stanford awarded 1,819 undergraduate degrees, 2,393 master’s degrees, 770 doctoral degrees, and 3270 professional degrees in the 2018–2019 school year. The four-year graduation rate for the class of 2017 cohort was 72.9%, and the six-year rate was 94.4%. The relatively low four-year graduation rate is a function of the university’s coterminal degree (or “coterm”) program, which allows students to earn a master’s degree as a 1-to-2-year extension of their undergraduate program.

    As of 2010, fifteen percent of undergraduates were first-generation students.


    As of 2016 Stanford had 16 male varsity sports and 20 female varsity sports, 19 club sports and about 27 intramural sports. In 1930, following a unanimous vote by the Executive Committee for the Associated Students, the athletic department adopted the mascot “Indian.” The Indian symbol and name were dropped by President Richard Lyman in 1972, after objections from Native American students and a vote by the student senate. The sports teams are now officially referred to as the “Stanford Cardinal,” referring to the deep red color, not the cardinal bird. Stanford is a member of the Pac-12 Conference in most sports, the Mountain Pacific Sports Federation in several other sports, and the America East Conference in field hockey with the participation in the inter-collegiate NCAA’s Division I FBS.

    Its traditional sports rival is the University of California, Berkeley, the neighbor to the north in the East Bay. The winner of the annual “Big Game” between the Cal and Cardinal football teams gains custody of the Stanford Axe.

    Stanford has had at least one NCAA team champion every year since the 1976–77 school year and has earned 126 NCAA national team titles since its establishment, the most among universities, and Stanford has won 522 individual national championships, the most by any university. Stanford has won the award for the top-ranked Division 1 athletic program—the NACDA Directors’ Cup, formerly known as the Sears Cup—annually for the past twenty-four straight years. Stanford athletes have won medals in every Olympic Games since 1912, winning 270 Olympic medals total, 139 of them gold. In the 2008 Summer Olympics, and 2016 Summer Olympics, Stanford won more Olympic medals than any other university in the United States. Stanford athletes won 16 medals at the 2012 Summer Olympics (12 gold, two silver and two bronze), and 27 medals at the 2016 Summer Olympics.


    The unofficial motto of Stanford, selected by President Jordan, is Die Luft der Freiheit weht. Translated from the German language, this quotation from Ulrich von Hutten means, “The wind of freedom blows.” The motto was controversial during World War I, when anything in German was suspect; at that time the university disavowed that this motto was official.
    Hail, Stanford, Hail! is the Stanford Hymn sometimes sung at ceremonies or adapted by the various University singing groups. It was written in 1892 by mechanical engineering professor Albert W. Smith and his wife, Mary Roberts Smith (in 1896 she earned the first Stanford doctorate in Economics and later became associate professor of Sociology), but was not officially adopted until after a performance on campus in March 1902 by the Mormon Tabernacle Choir.
    “Uncommon Man/Uncommon Woman”: Stanford does not award honorary degrees, but in 1953 the degree of “Uncommon Man/Uncommon Woman” was created to recognize individuals who give rare and extraordinary service to the University. Technically, this degree is awarded by the Stanford Associates, a voluntary group that is part of the university’s alumni association. As Stanford’s highest honor, it is not conferred at prescribed intervals, but only when appropriate to recognize extraordinary service. Recipients include Herbert Hoover, Bill Hewlett, Dave Packard, Lucile Packard, and John Gardner.
    Big Game events: The events in the week leading up to the Big Game vs. UC Berkeley, including Gaieties (a musical written, composed, produced, and performed by the students of Ram’s Head Theatrical Society).
    “Viennese Ball”: a formal ball with waltzes that was initially started in the 1970s by students returning from the now-closed Stanford in Vienna overseas program. It is now open to all students.
    “Full Moon on the Quad”: An annual event at Main Quad, where students gather to kiss one another starting at midnight. Typically organized by the Junior class cabinet, the festivities include live entertainment, such as music and dance performances.
    “Band Run”: An annual festivity at the beginning of the school year, where the band picks up freshmen from dorms across campus while stopping to perform at each location, culminating in a finale performance at Main Quad.
    “Mausoleum Party”: An annual Halloween Party at the Stanford Mausoleum, the final resting place of Leland Stanford Jr. and his parents. A 20-year tradition, the “Mausoleum Party” was on hiatus from 2002 to 2005 due to a lack of funding, but was revived in 2006. In 2008, it was hosted in Old Union rather than at the actual Mausoleum, because rain prohibited generators from being rented. In 2009, after fundraising efforts by the Junior Class Presidents and the ASSU Executive, the event was able to return to the Mausoleum despite facing budget cuts earlier in the year.
    Former campus traditions include the “Big Game bonfire” on Lake Lagunita (a seasonal lake usually dry in the fall), which was formally ended in 1997 because of the presence of endangered salamanders in the lake bed.

    Award laureates and scholars

    Stanford’s current community of scholars includes:

    19 Nobel Prize laureates (as of October 2020, 85 affiliates in total)
    171 members of the National Academy of Sciences
    109 members of National Academy of Engineering
    76 members of National Academy of Medicine
    288 members of the American Academy of Arts and Sciences
    19 recipients of the National Medal of Science
    1 recipient of the National Medal of Technology
    4 recipients of the National Humanities Medal
    49 members of American Philosophical Society
    56 fellows of the American Physics Society (since 1995)
    4 Pulitzer Prize winners
    31 MacArthur Fellows
    4 Wolf Foundation Prize winners
    2 ACL Lifetime Achievement Award winners
    14 AAAI fellows
    2 Presidential Medal of Freedom winners

    Stanford University Seal

  • richardmitnick 9:38 am on October 22, 2022 Permalink | Reply
    Tags: "How drones could determine the direction of gravity without accelerometers", , Drones can estimate the direction of gravity by combining visual detection of movement with a model of how they move., Flying insects do not have a specific sense for acceleration. How do they estimate the gravity direction?, , , Scientists have investigated optical flow-that is-how an individual perceives movement relative to their environment., TechXplore at Science X,   

    From The Technical University of Delft [Technische Universiteit Delft] (NL) Via “TechXplore” at “Science X”: “How drones could determine the direction of gravity without accelerometers” 

    From The Technical University of Delft [Technische Universiteit Delft] (NL)


    “TechXplore” at “Science X”


    Flapping-wing robot controlling its attitude using this new principle. It is equipped with an artificial compound eye inspired by insects, which can perceive optical flow at a high frequency. Credit: Christophe De Wagter/TU Delft.

    For proper operation, drones usually use accelerometers to determine the direction of gravity. In a new study published in Nature [below] on October 19, 2022, a team of scientists from Delft University of Technology, the CNRS and Aix-Marseille University has shown that drones can estimate the direction of gravity by combining visual detection of movement with a model of how they move. These results may explain how flying insects determine the direction of gravity and are a major step toward the creation of tiny autonomous drones.

    While drones typically use accelerometers to estimate the direction of gravity, the way flying insects achieve this has been shrouded in mystery until now, as they have no specific sense of acceleration. In this study, a European team of scientists led by the Delft University of Technology in the Netherlands and involving a CNRS researcher has shown that drones can assess gravity using visual motion detection and motion modeling together.

    To develop this new principle, scientists have investigated optical flow, that is, how an individual perceives movement relative to their environment. It is the visual movement that sweeps across our retina when we move. For example, when we are on a train, trees next to the tracks pass by faster than distant mountains. The optical flow alone is not enough for an insect to be able to know the direction of gravity.

    However, the research team discovered that it was possible for them to find this direction by combining this optical flow with a modeling of their movement, i.e., a prediction of how they will move. The conclusions of the article show that with this principle it was possible to find the direction of gravity in almost all situations, except in a few rare and specific cases such as when the subject was completely immobile.

    Drones estimate their attitude with the help of accelerometers. In contrast, flying insects do not have a specific sense for acceleration. How do they estimate the gravity direction? In this video we show drones flying in an insect-like manner – without accelerometers. This video explains the main concepts behind the article “Accommodating unobservability to control flight attitude with optic flow.” Credit: MAVLab TU Delft.

    During such perfect stationary flights, the impossibility of finding the direction of gravity will destabilize the drone for a moment and therefore put it in motion. This means the drone will regain the direction of gravity at the next instant. So these movements generate slight oscillations, reminiscent of insect flight.

    Using this new principle in robotics could meet a major challenge that nature has also faced: How to obtain a fully autonomous system while limiting payload. Future drone prototypes would be lightened by not needing accelerometers, which is very promising for the smallest models of the size of an insect.

    Though this theory may explain how flying insects determine gravity, we still need confirmation that they actually use this mechanism. Specific new biological experiments are needed to prove the existence of these neural processes that are difficult to observe in flight. This publication shows how the synergy between robotics and biology can lead to technological advances and new biological research avenues.

    Science paper:
    See the science paper for detailed material with images.

    See the full article here.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    The University of Technology [Technische Universiteit Delft] (NL), is the oldest and largest Dutch public technological university. Delft University of Technology [Technische Universiteit Delft] (NL) is consistently ranked as the best university in the Netherlands. As of 2020, it is ranked by QS World University Rankings among the top 15 engineering and technology universities in the world.

    With eight faculties and numerous research institutes, it has more than 19,000 students (undergraduate and postgraduate), and employs more than 2,900 scientists and 2,100 support and management staff.

    The university was established on 8 January 1842 by William II of the Netherlands as a Royal Academy, with the primary purpose of training civil servants for work in the Dutch East Indies. The school expanded its research and education curriculum over time, becoming a polytechnic school in 1864 and an institute of technology (making it a full-fledged university) in 1905. It changed its name to Delft University of Technology in 1986.

    Dutch Nobel laureates Jacobus Henricus van ‘t Hoff, Heike Kamerlingh Onnes, and Simon van der Meer have been associated with TU Delft. TU Delft is a member of several university federations, including The IDEA League, CESAER, UNITECH International, and 4TU.


    TU Delft has three officially recognized research institutes: Research Institute for the Built Environment; International Research Centre for Telecommunications-transmission and Radar; and Reactor Institute Delft. In addition to those three institutes, TU Delft hosts numerous smaller research institutes, including the Delft Institute of Microelectronics and Submicron Technology; Kavli Institute of Nanoscience; Materials innovation institute; Astrodynamics and Space Missions; Delft University Wind Energy Research Institute; TU Delft Safety and Security Institute; and the Delft Space Institute. Delft Institute of Applied Mathematics is also an important research institute which connects all engineering departments with respect to research and academia.

  • richardmitnick 7:54 am on October 18, 2022 Permalink | Reply
    Tags: , "The successful integration of a sub-0.5nm dielectric with 2D semiconductors", , , Peking University [北京大学](CN), TechXplore at Science X,   

    From The University of Texas-Austin And Peking University [北京大学](CN) Via “TechXplore” at “Science X”: “The successful integration of a sub-0.5nm dielectric with 2D semiconductors” 

    From The University of Texas-Austin


    Peking University[北京大学](CN)


    TechXplore at Science X

    Ingrid Fadelli

    Synthesis and properties of the single-crystalline native oxide dielectric β-Bi2SeO5. a, Diagram of the UV-assisted intercalative oxidation of 2D Bi2O2Se for single-crystalline native oxide dielectric β-Bi2SeO5. b, Wafer-scale area-selective oxidation for Bi2O2Se/β-Bi2SeO5 heterostructure. c, Atomic structure of Bi2O2Se/β-Bi2SeO5 heterostructure at the intercalative oxidation frontier. d, Comparison of single-crystalline β-Bi2SeO5 and common dielectrics in terms of EOT or ECT (effective capacitance thickness) versus leakage current at 1 V gate voltage. Credit: Zhang et al.

    Field-effect transistors (FETs) are transistors in which the resistance of most of the electrical current can be controlled by a transverse electric field. Over the past decade or so, these devices have proved to be very valuable solutions for controlling the flow of current in semiconductors.

    To further develop FETs, electronics engineers worldwide have recently been trying to reduce their size. While these down-scaling efforts have been found to increase the device’s speed and lower the power consumption, they are also associated with short-channel effects (i.e., unfavorable effects that occur when an FET’s channel length is approximately equal to the space charge regions of source and drain junctions within its substrate).

    These undesirable effects, which include barrier lowering and velocity saturation, could be suppressed by using 2D semiconductor channels with high carrier mobilities and ultrathin high-k dielectrics (i.e., materials with high dielectric constants). Integrating 2D semiconductors with dielectrics with similar oxide thicknesses has been found to be highly challenging.

    Researchers at Peking University and University of Texas at Austin have recently demonstrated the successful integration of a sub-0.5nm dielectric layer with 2D semiconductor-based transistors. Their design, introduced in a paper published in Nature Electronics [below], could ultimately pave the way towards the development of smaller, faster, and more efficient FETs.

    “Previously [Nature Electronics (below)] we have synthesized a poly-crystalline high-κ (dielectric constant) native oxide dielectric of 2D Bi2O2Se and found that its equivalent oxide thickness (EOT) can be scaled down to 0.9 nm, but the leakage current exceeds the low-power limit,” Hailin Peng, one of the researchers who carried out the study, told TechXplore. “Inspired by the layered crystal structure of 2D Bi2O2Se and the intercalation of 2D materials, we designed an intercalative oxidation process to retain the lattice framework of the precursor, to obtain a single-crystalline native oxide with better insulativity for further downscaling.”

    To integrate their dielectric with 2D semiconductors, Peng and his colleagues used a process called UV-assisted intercalative oxidation. Firstly, they decomposed oxygen molecules contained in the air into atomic oxygen using 185 nm ultraviolet (UV) rays emitted from a low-pressure mercury lamp.

    Subsequently, they used the atomic oxygen to oxidize the Se2- layer in the 2D semiconductor Bi2O2Se between the two [Bi2O2]n2n+ layers, without affecting the properties of the [Bi2O2]n2n+ layers. This process led to the formation of a new ‘layered phase,” which inherited the single-crystalline [Bi2O2]n2n+ structure of the original Bi2O2Se sample.

    “The as-synthesized oxide is further confirmed to be a single-crystalline native dielectric and named β-Bi2SeO5,” Peng explained. “The single-crystalline native oxide β-Bi2SeO5 has a thickness-independent high dielectric constant of about 22, ultraflat lattice-matched interface, and excellent insulativity. Even when scaled down to 2.3 nm and the EOT (equivalent oxide thickness, 3.9×thickness/dielectric constant) is as low as 0.41 nm, the leakage current at 1 V gate voltage is still below the low-power limit (0.015 A/cm2), meeting the industrial requirements of dielectrics in next-generation transistors.”

    The initial tests carried out by Peng and his colleagues yielded interesting results. Overall, their findings suggest β-Bi2SeO5, the material they created, could be promising for developing an ultrathin high-κ (dielectric constant) gate dielectric in 2D transistors.

    “The most notable achievement of our study was the successful integration of sub-0.5-nm-EOT dielectrics in top-gated 2D transistors, which meets the benchmarks of dielectric in the 2021 International Roadmap for Devices and Systems,” Peng said. “Thus, one of the challenges for 2D electronics, the integration with sub-0.5-nm-EOT ultrathin high-κ dielectric, has been overcome.”

    This team of researchers demonstrated the possibility of integrating 2D semiconductors with high-k dielectrics. In the future, the material that they created and the method introduced in their paper could be used to create smaller and highly-performing FETs that are not adversely impacted by short-channel effects.

    “We will now further investigate the compatibility of β-Bi2SeO5 with other common 2D materials and metal electrodes,” Peng added. “In addition, a large-scale transfer process of Bi2SeO5 or its precursor Bi2O2Se is also desired for the integration of this ultrathin high-κ dielectric with a broad range of 2D materials.”

    Science papers:
    Nature Electronics
    Nature Electronics (2020)

    See the full article here.


    Please help promote STEM in your local schools.

    Stem Education Coalition

    Peking University[北京大学](CN) is a public research university in Beijing, China. The university is funded by the Ministry of Education.

    Peking University was established as the Imperial University of Peking in 1898 when it received its royal charter by the Guangxu Emperor. A successor of the older Guozijian Imperial College, the university’s romanized name ‘Peking’ retains the older transliteration of ‘Beijing’ that has been superseded in most other contexts. Perennially ranked as one of the top academic institutions in China and the world, as of 2021 Peking University was ranked 16th globally and 1st in the Asia-Pacific & emerging countries by Times Higher Education, while as of 2022 it was ranked 12th globally and 1st in China by QS World University Rankings.

    Throughout its history, Peking University has had an important role “at the center of major intellectual movements” in China. Abolished of its status as a royal institution after the fall of the Qing dynasty and the Xinhai Revolution; from the early 1920s, the university became a center for China’s emerging, progressive, and republican movements. Faculty and students held important roles in originating the New Culture Movement, the May Fourth Movement protests, and other significant cultural and sociopolitical events, to the extent that the university’s history has been closely tied to that of modern China. Peking University has educated and hosted many prominent modern Chinese figures, including Mao Zedong, Lu Xun, Gu Hongming, Hu Shih, Mao Dun, Li Dazhao, Chen Duxiu, and current Premier Li Keqiang.

    Peking University is a member of the C9 League, Double First Class University Plan, former Project 985 and former Project 211. The university library contains over 8 million volumes. The university also operates the PKU Hall, a professional performing arts center, and the Arthur M. Sackler Museum of Arts and Archaeology. The university is also renowned for its campus grounds and the beauty of its traditional Chinese architecture. Additionally, it hosts one of the only undergraduate liberal arts colleges in Asia, and is a Class A institution under the Chinese Double First Class University program. Peking University’s staff include 76 members of the Chinese Academy of Sciences, 19 members of the Chinese Academy of Engineering and 25 members of the World Academy of Sciences.

    In 2000, Beijing Medical University was merged back into Peking University and became the Peking University Health Science Campus. Beijing Medical University, which used to be Medical School of Peking University, was separated from Peking University in 1952. Peking University now has eight affiliated hospitals and 12 teaching hospitals.

    In 2001, Peking University established the Yuanpei Program. It was formalized in 2007 as the Yuanpei College, named in honor of the highly respected former university president Cai Yuanpei. The college hosts an elite undergraduate liberal arts program that allows students to freely choose specializations. In the same year, Peking University set up a satellite campus for graduate students in Shenzhen. The university’s second business school, Peking University HSBC Business School was launched on the Shenzhen campus in 2004.

    In 2014, Peking University established the Yenching Academy, a fully funded global fellowship program designed “to cultivate leaders who will advocate for global progress and cultural understanding.”

    In October 2015, Peking University alumni Professor Tu Youyou was awarded the Nobel Prize in Physiology or Medicine for her discovery of artemisinin. Having saved millions of lives, artemisinin has made significant contributions to global health in regard to the fight against malaria.

    In May 2016, the Peking University Department of Psychology was renamed as Peking University School of Psychological and Cognitive Sciences. On July 5, Peking University and Moscow State University signed the Joint Declaration on the Establishment of the Comprehensive University Alliance between the People’s Republic of China and the Russian Federation, proposing the establishment of the China-Russia Comprehensive University Alliance. On August 29, Peking University signed a memorandum with the Shenzhen Municipal People’s Government to jointly open Peking University Shenzhen Campus. On September 20, Peking University Institute of Humanities and Social Sciences was officially inaugurated.

    On February 20, 2017, the University officially signed a contract with the British Open University to establish the Oxford Campus of Peking University HSBC Business School, Peking University Oxford Center and Shenzhen Oxford Innovation Center. In March, the National Engineering Laboratory for Big Data Analysis and Application Technology was unveiled. In September, Peking University was selected as a national “double first-class” university. On December 13, Peking University School of Advanced Agricultural Sciences was established.

    On May 4, 2018, Peking University held its 120th anniversary meeting at the Khoo Teck Puat Gymnasium. On October 24th, Peking University led the formation of the medical “Double First-Class” (i.e. world-class universities and first-class disciplines) Construction Alliance, which is the first unofficial non-profit medical higher education and medical discipline construction collaboration organization.

    In February 2019, Peking University and the University of Hong Kong signed a cooperation agreement to cooperate in the dual bachelor’s degree program in law; in the same month, Peking University and the Chinese University of Hong Kong signed a cooperation agreement to jointly organize undergraduate double-degree programs of Linguistics and Chinese Language and Literature. In December, it joined the “Belt and Road” Think Tank Cooperation Alliance as a governing unit.

    In May 2019, Peking University and Beijing Geely University signed an agreement. Peking University will build a new campus on the original site of Geely Institute in Changping.

    Several rankings have placed Peking University among the top universities in mainland China. In 2015, the Chinese University Alumni Association in partnership with China Education Center considered it first among all Chinese universities.

    Typically, Peking University is consistently ranked among the top universities in the Asia-Pacific and the world according to major international university rankings. The joint THE-QS World University Rankings 2006 ranked Peking University 1st in the Asia & Oceania region and 14th in the world. In 2014, the U.S. News & World Report ranked Peking University 39th in the world, 2nd in the Asia-Pacific and 1st in China. Peking had topped the newly launched Times Higher Education BRICS & Emerging Economies since its inception in 2014.

    The 2023 QS World University Rankings ranked Peking University 12th in the world , 2nd in Asia and first in China. As of 2022, the Times Higher Education World University Rankings ranked Peking University 16th in the world and 1st in China & the Asia-Pacific, with its teaching and research performance indicators placed at 4th and 9th in the world respectively. Peking University was also ranked 15th in the world and 1st in the Asia-Pacific in The Three University Missions Ranking. Academic Ranking of World Universities, also known as the Shanghai Ranking, placed Peking University 34th in the world, 3rd in Asia, and 2nd in China. The U.S. News & World Report ranked Peking University 45th in the world, 5th in Asia and 2nd in China.

    In the QS Graduate Employability Rankings 2017, an annual ranking of university graduates’ employability, Peking University was ranked 11th in the world and 2nd in Asia. In 2019, the QS World University Rankings ranked the university as one of the world’s top 20 universities for academic reputation where, it ranked 16 globally, and top 10 in the world and first in the Asia-Pacific for employer reputation. Since 2017, Peking has been placed among the world’s top 20 most reputable universities by the Times Higher Education World Reputation Rankings, where it ranked 15 globally in 2021.

    Research Performance and Subjects Rankings

    The 2020 CWTS Leiden Ranking ranked Peking University at 8th in the world based on their publications for the time period 2015–2018. For the high quality of research in natural science and life science, Peking University ranked 10th among the leading institutions, and 6th among the leading universities globally in the Nature Index 2022 Annual Tables by Nature Research. In 2020, it ranked 13th among the universities around the world by SCImago Institutions Rankings.

    As of 2021, it was ranked 8th globally in “Education”, 12th in “Engineering and Technology”, 15th in “Physical Science”, 17th in “Computer Science”, 18th in “Social Science”, 19th in “Life Science”, 21st in “Arts and Humanities”, 22nd in “Business and Economics”, 22nd in “Clinical, pre-clinical and Health” and 45th in “Psychology” by the Times Higher Education Rankings by Subjects.

    University of Texas-Austin

    University of Texas-Austin campus

    The University of Texas-Austin is a public research university in Austin, Texas and the flagship institution of the University of Texas System. Founded in 1883, the University of Texas was inducted into the Association of American Universities in 1929, becoming only the third university in the American South to be elected. The institution has the nation’s seventh-largest single-campus enrollment, with over 50,000 undergraduate and graduate students and over 24,000 faculty and staff.

    A Public Ivy, it is a major center for academic research. The university houses seven museums and seventeen libraries, including the LBJ Presidential Library and the Blanton Museum of Art, and operates various auxiliary research facilities, such as the J. J. Pickle Research Campus and the McDonald Observatory. As of November 2020, 13 Nobel Prize winners, four Pulitzer Prize winners, two Turing Award winners, two Fields medalists, two Wolf Prize winners, and two Abel prize winners have been affiliated with the school as alumni, faculty members or researchers. The university has also been affiliated with three Primetime Emmy Award winners, and has produced a total of 143 Olympic medalists.

    Student-athletes compete as the Texas Longhorns and are members of the Big 12 Conference. Its Longhorn Network is the only sports network featuring the college sports of a single university. The Longhorns have won four NCAA Division I National Football Championships, six NCAA Division I National Baseball Championships, thirteen NCAA Division I National Men’s Swimming and Diving Championships, and has claimed more titles in men’s and women’s sports than any other school in the Big 12 since the league was founded in 1996.


    The first mention of a public university in Texas can be traced to the 1827 constitution for the Mexican state of Coahuila y Tejas. Although Title 6, Article 217 of the Constitution promised to establish public education in the arts and sciences, no action was taken by the Mexican government. After Texas obtained its independence from Mexico in 1836, the Texas Congress adopted the Constitution of the Republic, which, under Section 5 of its General Provisions, stated “It shall be the duty of Congress, as soon as circumstances will permit, to provide, by law, a general system of education.”

    On April 18, 1838, “An Act to Establish the University of Texas” was referred to a special committee of the Texas Congress, but was not reported back for further action. On January 26, 1839, the Texas Congress agreed to set aside fifty leagues of land—approximately 288,000 acres (117,000 ha)—towards the establishment of a publicly funded university. In addition, 40 acres (16 ha) in the new capital of Austin were reserved and designated “College Hill”. (The term “Forty Acres” is colloquially used to refer to the University as a whole. The original 40 acres is the area from Guadalupe to Speedway and 21st Street to 24th Street.)

    In 1845, Texas was annexed into the United States. The state’s Constitution of 1845 failed to mention higher education. On February 11, 1858, the Seventh Texas Legislature approved O.B. 102, an act to establish the University of Texas, which set aside $100,000 in United States bonds toward construction of the state’s first publicly funded university (the $100,000 was an allocation from the $10 million the state received pursuant to the Compromise of 1850 and Texas’s relinquishing claims to lands outside its present boundaries). The legislature also designated land reserved for the encouragement of railroad construction toward the university’s endowment. On January 31, 1860, the state legislature, wanting to avoid raising taxes, passed an act authorizing the money set aside for the University of Texas to be used for frontier defense in west Texas to protect settlers from Indian attacks.

    Texas’s secession from the Union and the American Civil War delayed repayment of the borrowed monies. At the end of the Civil War in 1865, The University of Texas’s endowment was just over $16,000 in warrants and nothing substantive had been done to organize the university’s operations. This effort to establish a University was again mandated by Article 7, Section 10 of the Texas Constitution of 1876 which directed the legislature to “establish, organize and provide for the maintenance, support and direction of a university of the first class, to be located by a vote of the people of this State, and styled “The University of Texas”.

    Additionally, Article 7, Section 11 of the 1876 Constitution established the Permanent University Fund, a sovereign wealth fund managed by the Board of Regents of the University of Texas and dedicated to the maintenance of the university. Because some state legislators perceived an extravagance in the construction of academic buildings of other universities, Article 7, Section 14 of the Constitution expressly prohibited the legislature from using the state’s general revenue to fund construction of university buildings. Funds for constructing university buildings had to come from the university’s endowment or from private gifts to the university, but the university’s operating expenses could come from the state’s general revenues.

    The 1876 Constitution also revoked the endowment of the railroad lands of the Act of 1858, but dedicated 1,000,000 acres (400,000 ha) of land, along with other property appropriated for the university, to the Permanent University Fund. This was greatly to the detriment of the university as the lands the Constitution of 1876 granted the university represented less than 5% of the value of the lands granted to the university under the Act of 1858 (the lands close to the railroads were quite valuable, while the lands granted the university were in far west Texas, distant from sources of transportation and water). The more valuable lands reverted to the fund to support general education in the state (the Special School Fund).

    On April 10, 1883, the legislature supplemented the Permanent University Fund with another 1,000,000 acres (400,000 ha) of land in west Texas granted to the Texas and Pacific Railroad but returned to the state as seemingly too worthless to even survey. The legislature additionally appropriated $256,272.57 to repay the funds taken from the university in 1860 to pay for frontier defense and for transfers to the state’s General Fund in 1861 and 1862. The 1883 grant of land increased the land in the Permanent University Fund to almost 2.2 million acres. Under the Act of 1858, the university was entitled to just over 1,000 acres (400 ha) of land for every mile of railroad built in the state. Had the 1876 Constitution not revoked the original 1858 grant of land, by 1883, the university lands would have totaled 3.2 million acres, so the 1883 grant was to restore lands taken from the university by the 1876 Constitution, not an act of munificence.

    On March 30, 1881, the legislature set forth the university’s structure and organization and called for an election to establish its location. By popular election on September 6, 1881, Austin (with 30,913 votes) was chosen as the site. Galveston, having come in second in the election (with 20,741 votes), was designated the location of the medical department (Houston was third with 12,586 votes). On November 17, 1882, on the original “College Hill,” an official ceremony commemorated the laying of the cornerstone of the Old Main building. University President Ashbel Smith, presiding over the ceremony, prophetically proclaimed “Texas holds embedded in its earth rocks and minerals which now lie idle because unknown, resources of incalculable industrial utility, of wealth and power. Smite the earth, smite the rocks with the rod of knowledge and fountains of unstinted wealth will gush forth.” The University of Texas officially opened its doors on September 15, 1883.

    Expansion and growth

    In 1890, George Washington Brackenridge donated $18,000 for the construction of a three-story brick mess hall known as Brackenridge Hall (affectionately known as “B.Hall”), one of the university’s most storied buildings and one that played an important place in university life until its demolition in 1952.

    The old Victorian-Gothic Main Building served as the central point of the campus’s 40-acre (16 ha) site, and was used for nearly all purposes. But by the 1930s, discussions arose about the need for new library space, and the Main Building was razed in 1934 over the objections of many students and faculty. The modern-day tower and Main Building were constructed in its place.

    In 1910, George Washington Brackenridge again displayed his philanthropy, this time donating 500 acres (200 ha) on the Colorado River to the university. A vote by the regents to move the campus to the donated land was met with outrage, and the land has only been used for auxiliary purposes such as graduate student housing. Part of the tract was sold in the late-1990s for luxury housing, and there are controversial proposals to sell the remainder of the tract. The Brackenridge Field Laboratory was established on 82 acres (33 ha) of the land in 1967.

    In 1916, Gov. James E. Ferguson became involved in a serious quarrel with the University of Texas. The controversy grew out of the board of regents’ refusal to remove certain faculty members whom the governor found objectionable. When Ferguson found he could not have his way, he vetoed practically the entire appropriation for the university. Without sufficient funding, the university would have been forced to close its doors. In the middle of the controversy, Ferguson’s critics brought to light a number of irregularities on the part of the governor. Eventually, the Texas House of Representatives prepared 21 charges against Ferguson, and the Senate convicted him on 10 of them, including misapplication of public funds and receiving $156,000 from an unnamed source. The Texas Senate removed Ferguson as governor and declared him ineligible to hold office.

    In 1921, the legislature appropriated $1.35 million for the purchase of land next to the main campus. However, expansion was hampered by the restriction against using state revenues to fund construction of university buildings as set forth in Article 7, Section 14 of the Constitution. With the completion of Santa Rita No. 1 well and the discovery of oil on university-owned lands in 1923, the university added significantly to its Permanent University Fund. The additional income from Permanent University Fund investments allowed for bond issues in 1931 and 1947, which allowed the legislature to address funding for the university along with the Agricultural and Mechanical College (now known as Texas A&M University). With sufficient funds to finance construction on both campuses, on April 8, 1931, the Forty Second Legislature passed H.B. 368. which dedicated the Agricultural and Mechanical College a 1/3 interest in the Available University Fund, the annual income from Permanent University Fund investments.

    The University of Texas was inducted into The Association of American Universities in 1929. During World War II, the University of Texas was one of 131 colleges and universities nationally that took part in the V-12 Navy College Training Program which offered students a path to a Navy commission.

    In 1950, following Sweatt v. Painter, the University of Texas was the first major university in the South to accept an African-American student. John S. Chase went on to become the first licensed African-American architect in Texas.

    In the fall of 1956, the first black students entered the university’s undergraduate class. Black students were permitted to live in campus dorms, but were barred from campus cafeterias. The University of Texas integrated its facilities and desegregated its dorms in 1965. UT, which had had an open admissions policy, adopted standardized testing for admissions in the mid-1950s at least in part as a conscious strategy to minimize the number of Black undergraduates, given that they were no longer able to simply bar their entry after the Brown decision.

    Following growth in enrollment after World War II, the university unveiled an ambitious master plan in 1960 designed for “10 years of growth” that was intended to “boost the University of Texas into the ranks of the top state universities in the nation.” In 1965, the Texas Legislature granted the university Board of Regents to use eminent domain to purchase additional properties surrounding the original 40 acres (160,000 m^2). The university began buying parcels of land to the north, south, and east of the existing campus, particularly in the Blackland neighborhood to the east and the Brackenridge tract to the southeast, in hopes of using the land to relocate the university’s intramural fields, baseball field, tennis courts, and parking lots.

    On March 6, 1967, the Sixtieth Texas Legislature changed the university’s official name from “The University of Texas” to “The University of Texas at Austin” to reflect the growth of the University of Texas System.

    Recent history

    The first presidential library on a university campus was dedicated on May 22, 1971, with former President Johnson, Lady Bird Johnson and then-President Richard Nixon in attendance. Constructed on the eastern side of the main campus, the Lyndon Baines Johnson Library and Museum is one of 13 presidential libraries administered by the National Archives and Records Administration.

    A statue of Martin Luther King Jr. was unveiled on campus in 1999 and subsequently vandalized. By 2004, John Butler, a professor at the McCombs School of Business suggested moving it to Morehouse College, a historically black college, “a place where he is loved”.

    The University of Texas-Austin has experienced a wave of new construction recently with several significant buildings. On April 30, 2006, the school opened the Blanton Museum of Art. In August 2008, the AT&T Executive Education and Conference Center opened, with the hotel and conference center forming part of a new gateway to the university. Also in 2008, Darrell K Royal-Texas Memorial Stadium was expanded to a seating capacity of 100,119, making it the largest stadium (by capacity) in the state of Texas at the time.

    On January 19, 2011, the university announced the creation of a 24-hour television network in partnership with ESPN, dubbed the Longhorn Network. ESPN agreed to pay a $300 million guaranteed rights fee over 20 years to the university and to IMG College, the school’s multimedia rights partner. The network covers the university’s intercollegiate athletics, music, cultural arts, and academics programs. The channel first aired in September 2011.

Compose new post
Next post/Next comment
Previous post/Previous comment
Show/Hide comments
Go to top
Go to login
Show/Hide help
shift + esc
%d bloggers like this: