From Southwest Research Institute (US) : “SwRI-led team produces a new Earth bombardment model” 

SwRI bloc

From Southwest Research Institute (US)

October 21, 2021

A team led by Southwest Research Institute has updated its asteroid bombardment model of the Earth with the latest geologic evidence of ancient, large collisions. These models have been used to understand how impacts may have affected oxygen levels in the Earth’s atmosphere in the Archean eon, 2.5 to 4 billion years ago.

1
This artistic conception illustrates large asteroids penetrating Earth’s oxygen-poor atmosphere. Courtesy of Dan Durda and Simone Marchi/SwRI.

2
An SwRI-led study updated bombardment models based on small glassy particles, known as impact spherules, that populate multiple thin, discrete layers in the Earth’s crust, ranging in age from about 2.4 to 3.5 billion years old. Spherule layers — such as the one shown in this 5-centimeter, 2.6-billion-year-old sample from Australia — are markers of ancient collisions. Courtesy of Scott Hassler- The University of California-Los Angeles (US) and Bruce Simonson-Oberlin College and Conservatory (US).

When large asteroids or comets struck early Earth the energy released melted and vaporized rocky materials in the Earth’s crust. The small droplets of molten rock in the impact plume would condense, solidify and fall back to Earth, creating round, globally distributed sand-size particles. Known as impact spherules, these glassy particles populated multiple thin, discrete layers in the Earth’s crust, ranging in age from about 2.4 to 3.5 billion years old. These Archean spherule layers are markers of ancient collisions. “In recent years, a number of new spherule layers have been identified in drill cores and outcrops, increasing the total number of known impact events during the early Earth,” said Dr. Nadja Drabon, a professor at Harvard University (US) and a co-author of the paper.

“Current bombardment models underestimate the number of late Archean spherule layers suggesting that the impactor flux at that time was up to 10 times higher than previously thought,” said SwRI’s Dr. Simone Marchi, lead author of a paper about this research in Nature Geoscience. “What’s more, we find that the cumulative impactor mass delivered to the early Earth was an important ‘sink’ of oxygen, suggesting that early bombardment could have delayed oxidation of Earth’s atmosphere.”

The abundance of oxygen in Earth’s atmosphere is due to a balance of production and removal processes. These new findings correspond to the geological record, which shows that oxygen levels in the atmosphere varied but stayed relatively low in the early Archean eon. Impacts by bodies larger than six miles (10 km) in diameter may have contributed to its scarcity, as limited oxygen present in the atmosphere of early Earth would have been chemically consumed by impact vapors, further reducing its abundance in the atmosphere.

“Late Archean bombardment by objects over six miles in diameter would have produced enough reactive gases to completely consume low levels of atmospheric oxygen,” said Dr. Laura Schaefer, a professor at Stanford University (US) and a co-author of the paper. “This pattern was consistent with evidence for so-called ‘whiffs’ of oxygen, relatively steep but transient increases in atmospheric oxygen that occurred around 2.5 billion years ago. We think that the whiffs were broken up by impacts that removed the oxygen from the atmosphere. This is consistent with large impacts recorded by spherule layers in Australia’s Bee Gorge and Dales Gorge.”

SwRI’s results indicate that the Earth was subject to substantial numbers of large impacts throughout the late Archean era. Around 2.4 billion years ago, during the tail end of this bombardment, the Earth went through a major shift in surface chemistry triggered by the rise of atmospheric oxygen, dubbed the Great Oxidation Event (GOE), which is attributed to changes in the oxygen production-sink balance. Among the proposed scenarios are a presumed increase in oxygen production and decrease in gases capable of removing oxygen, either from volcanic sources or through their gradual loss to space.

“Impact vapors caused episodic low oxygen levels for large spans of time preceding the GOE,” said Marchi, who also recently published a book about colliding worlds. “As time went on, collisions become progressively less frequent and too small to be able to significantly alter post-GOE oxygen levels. The Earth was on its course to become the current planet.”

For more information, visit Planetary Science or contact Joanna Carver, +1 210 522 2073, Communications Department, Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238-5166.

See the full article here .

See also from Harvard Gazette here.

five-ways-keep-your-child-safe-school-shootings

Please help promote STEM in your local schools.

Stem Education Coalition

SwRI Campus

Southwest Research Institute (SwRI) (US) is an independent, nonprofit applied research and development organization. The staff of nearly 2,800 specializes in the creation and transfer of technology in engineering and the physical sciences. SwRI’s technical divisions offer a wide range of technical expertise and services in such areas as engine design and development, emissions certification testing, fuels and lubricants evaluation, chemistry, space science, nondestructive evaluation, automation, mechanical engineering, electronics, and more.

Southwest Research Institute (SwRI), headquartered in San Antonio, Texas, is one of the oldest and largest independent, nonprofit, applied research and development (R&D) organizations in the United States. Founded in 1947 by oil businessman Tom Slick, SwRI provides contract research and development services to government and industrial clients.

The institute consists of nine technical divisions that offer multidisciplinary, problem-solving services in a variety of areas in engineering and the physical sciences. The Center for Nuclear Waste Regulatory Analyses, a federally funded research and development center sponsored by the U.S. Nuclear Regulatory Commission, also operates on the SwRI grounds. More than 4,000 projects are active at the institute at any given time. These projects are funded almost equally between the government and commercial sectors. At the close of fiscal year 2019, the staff numbered approximately 3,000 employees and research volume was almost $674 million. The institute provided more than $8.7 million to fund innovative research through its internally sponsored R&D program.

A partial listing of research areas includes space science and engineering; automation; robotics and intelligent systems; avionics and support systems; bioengineering; chemistry and chemical engineering; corrosion and electrochemistry; earth and planetary sciences; emissions research; engineering mechanics; fire technology; fluid systems and machinery dynamics; and fuels and lubricants. Additional areas include geochemistry and mining engineering; hydrology and geohydrology; materials sciences and fracture mechanics; modeling and simulation; nondestructive evaluation; oil and gas exploration; pipeline technology; surface modification and coatings; and vehicle, engine, and powertrain design, research and development. In 2019, staff members published 673 papers in the technical literature; made 618 presentations at technical conferences, seminars and symposia around the world; submitted 48 invention disclosures; filed 33 patent applications; and received 41 U.S. patent awards.

SwRI research scientists have led several National Aeronautics Space Agency(USA) missions, including the New Horizons mission to Pluto; the Juno mission to Jupiter; and the Magnetospheric Multiscale Mission(US) to study the Earth’s magnetosphere.

SwRI initiates contracts with clients based on consultations and prepares a formal proposal outlining the scope of work. Subject to client wishes, programs are kept confidential. As part of a long-held tradition, patent rights arising from sponsored research are often assigned to the client. SwRI generally retains the rights to institute-funded advancements.

The institute’s headquarters occupy more than 2.3 million square feet of office and laboratory space on more than 1,200 acres in San Antonio. SwRI has technical offices and laboratories in Boulder, Colorado; Ann Arbor, Michigan; Warner-Robins, Georgia; Ogden, Utah; Oklahoma City, Oklahoma; Rockville, Maryland; Minneapolis, Minnesota; Beijing, China; and other locations.

Technology Today, SwRI’s technical magazine, is published three times each year to spotlight the research and development projects currently underway. A complementary Technology Today podcast offers a new way to listen and learn about the technology, science, engineering, and research impacting lives and changing our world.