Tagged: SwRI Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 12:51 pm on January 8, 2019 Permalink | Reply
    Tags: , , , , , , SwRI   

    From Southwest Research Institute: “Juno mission captures images of volcanic plumes on Jupiter’s moon Io” 

    SwRI bloc

    From Southwest Research Institute

    Dec. 31, 2018

    A team of space scientists has captured new images of a volcanic plume on Jupiter’s moon Io during the Juno mission’s 17th flyby of the gas giant.

    NASA/Juno

    4
    A volcanic eruption on Io seen by the Galileo spacecraft in 1997. Image via NASA/JPL/DLR.

    On Dec. 21, during winter solstice, four of Juno’s cameras captured images of the Jovian moon Io, the most volcanic body in our solar system.

    2
    Meet Io, Jupiter’s innermost large moon. The red dots – nicknamed the “fires of Io” – are active volcanoes. December 2018 image via NASA’s Juno spacecraft (NASA/JPL-Caltech/SwRI/INAF)

    JunoCam, the Stellar Reference Unit (SRU), the Jovian Infrared Auroral Mapper (JIRAM) and the Ultraviolet Imaging Spectrograph (UVS) observed Io for over an hour, providing a glimpse of the moon’s polar regions as well as evidence of an active eruption.

    “We knew we were breaking new ground with a multi-spectral campaign to view Io’s polar region, but no one expected we would get so lucky as to see an active volcanic plume shooting material off the moon’s surface,” said Scott Bolton, principal investigator of the Juno mission and an associate vice president of Southwest Research Institute’s Space Science and Engineering Division. “This is quite a New Year’s present showing us that Juno has the ability to clearly see plumes.”

    JunoCam acquired the first images on Dec. 21 at 12:00, 12:15 and 12:20 coordinated universal time (UTC) before Io entered Jupiter’s shadow. The Images show the moon half-illuminated with a bright spot seen just beyond the terminator, the day-night boundary.

    “The ground is already in shadow, but the height of the plume allows it to reflect sunlight, much like the way mountaintops or clouds on the Earth continue to be lit after the sun has set,” explained Candice Hansen-Koharcheck, the JunoCam lead from the Planetary Science Institute.

    At 12:40 UTC, after Io had passed into the darkness of total eclipse behind Jupiter, sunlight reflecting off nearby moon Europa helped to illuminate Io and its plume. SRU images released by SwRI depict Io softly illuminated by moonlight from Europa. The brightest feature on Io in the image is thought to be a penetrating radiation signature, a reminder of this satellite’s role in feeding Jupiter’s radiation belts, while other features show the glow of activity from several volcanoes. “As a low-light camera designed to track the stars, the SRU can only observe Io under very dimly lit conditions. Dec. 21 gave us a unique opportunity to observe Io’s volcanic activity with the SRU using only Europa’s moonlight as our lightbulb,” said Heidi Becker, lead of Juno’s Radiation Monitoring Investigation, at NASA’s Jet Propulsion Laboratory.

    Sensing heat at long wavelengths, the JIRAM instrument detects hotspots in the daylight and at night.

    “Though Jupiter’s moons are not JIRAM’s primary objectives, every time we pass close enough to one of them, we take advantage of the opportunity for an observation,” said Alberto Adriani, a researcher at Italy’s National Institute of Astrophysics. “The instrument is sensitive to infrared wavelengths, which are perfect to study the volcanism of Io. This is one of the best images of Io that JIRAM has been able to collect so far.”

    The latest images can lead to new insights into the gas giant’s interactions with its five moons, causing phenomena such as Io’s volcanic activity or freezing of the moon’s atmosphere during eclipse, added Bolton. JIRAM recently documented Io’s volcanic activity before and after eclipse. Io’s volcanoes were discovered by NASA’s Voyager spacecraft in 1979. Io’s gravitational interaction with Jupiter drives the moon’s volcanoes, which emit umbrella-like plumes of SO2 gas and produce extensive basaltic lava fields.

    The recent Io images were captured at the halfway point of the mission, which is scheduled to complete a map of Jupiter in July 2021. Launched in 2011, Juno arrived at Jupiter in 2016. The spacecraft orbits Jupiter every 53 days, studying its auroras, atmosphere and magnetosphere.

    The solar-powered Juno features eight scientific instruments designed to study Jupiter’s interior structure, atmosphere and magnetosphere. NASA’s Jet Propulsion Laboratory manages the Juno mission for Bolton. Juno is part of the New Frontiers Program, which is managed at Marshall Space Flight Center in Huntsville, Alabama, for NASA’s Science Mission Directorate. Lockheed Martin Space built the spacecraft, and SwRI provided two Juno instruments to study the massive Jovian aurora.

    For more information, visit Space Science or contact Robert Crowe, +1 210 522 4630, Communications Department, Southwest Research Institute, PO Drawer 28510, San Antonio, TX 78228-0510.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    SwRI Campus

    Southwest Research Institute (SwRI) is an independent, nonprofit applied research and development organization. The staff of nearly 2,800 specializes in the creation and transfer of technology in engineering and the physical sciences. SwRI’s technical divisions offer a wide range of technical expertise and services in such areas as engine design and development, emissions certification testing, fuels and lubricants evaluation, chemistry, space science, nondestructive evaluation, automation, mechanical engineering, electronics, and more.

     
  • richardmitnick 10:26 am on December 27, 2018 Permalink | Reply
    Tags: , , , , , , SwRI, What does Ceres’ carbon mean?   

    From EarthSky and SwRI: “What does Ceres’ carbon mean?” 

    1

    From EarthSky

    December 27, 2018
    Paul Scott Anderson

    Earlier this month, scientists announced that dwarf planet Ceres has more carbon-rich organics than previously thought, both on and below its surface. Here’s why that’s exciting.

    1
    False-color image of dwarf planet Ceres – largest body in the asteroid belt – from the Dawn spacecraft. The image shows Ceres’ famous bright spots, and the false color highlights differences in surface materials. Image via NASA PhotoJournal.

    Carbon is one of the most common elements in the universe and is the basis of organic biology on Earth. It can be found throughout the solar system, even in meteorites that bounce to Earth’s surface from other parts of space. Now scientists have found that another body in the solar system – the dwarf planet Ceres – is much richer in carbon that previously thought. Those results were published in a peer-reviewed article in Nature Astronomy on December 10, 2018.

    Astronomer Simone Marchi at Southwest Research Institute (SwRI) was the lead author of the new paper. He said:

    “Ceres is like a chemical factory. Among inner solar system bodies, Ceres has a unique mineralogy, which appears to contain up to 20 percent carbon by mass in its near surface. Our analysis shows that carbon-rich compounds are intimately mixed with products of rock-water interactions, such as clays.”

    2
    The interior structure of Ceres as scientists now understand it. Image via NASA/JPL-Caltech/UCLA/MPS/DLR/IDA.

    Why is the presence of carbon so intriguing? Carbon isn’t by itself necessarily the product of or connected to life, although it does serve as the basis for organic chemistry and biology on Earth. When combined with oxygen and hydrogen, carbon can form many groups of important biological compounds including sugars, alcohols and fats. Its presence on Ceres is evidence that the basic ingredients for life – including carbon – can be found in many different places, not only in our solar system but throughout the universe.

    More specifically, the new findings show that Ceres was, and still is, rich in amorphous carbon – a carbon-rich organic material – which is significant in terms of how carbon is distributed throughout the solar system. (Organic materials are any molecules that contain carbon – they can be formed on their own without life but are also building blocks of life). The new data suggests that Ceres contains several times more amorphous carbon on its surface and in its subsurface than even the most carbon-rich meteorites.

    While Ceres contains more carbon than meteorites, the study also shows that 50 to 60 percent of Ceres’ upper crust may have a composition similar to primitive carbonaceous chondrite meteorites – some of the most complex of all meteorites.

    3
    Close-up view inside Urvara crater on Ceres. The 6,500-foot (1981-meter) central ridge is made from materials uplifted from deep below the surface, which experienced rock-water chemical interactions. Image via NASA/JPL-Caltech/UCLA/MPS/DLR/IDA.

    As Marchi explained:

    “Our results imply that either Ceres accreted ultra-carbon-rich materials or that carbon was concentrated in its crust. Both potential scenarios are important, because Ceres’ mineralogical composition indicates a global-scale event of rock-water alteration, which could provide conditions favorable to organic chemistry.”

    In other words, the carbon on Ceres may originate from when Ceres first formed or from incoming impacts of other asteroids. Scientists don’t know yet which scenario is correct. But regardless, the evidence for chemical reactions with water is intriguing, since that can eventually lead to the formation of the building blocks of life, even if not life itself.

    Ceres is classified as a dwarf planet but is also the largest asteroid in the main asteroid belt between Mars and Jupiter. NASA’s Dawn spacecraft recently finished its mission at Ceres on November 1, 2018, studying its geology and sending back incredible high-resolution images of its surface from orbit.

    NASA Dawn Spacescraft

    One big surprise was the “bright spots” – light-colored deposits, now determined to be sodium carbonate salts – on the darker rocky surface. Scientists think they were formed when when water came up to the surface from deeper below and then evaporated in Ceres’ extremely tenuous and sporadic water vapor “atmosphere.”

    The best-known bright spots are those in Occator Crater, which stand out starkly against the darker rocky surface.

    4
    High-resolution view of Cerealia Facula – a sodium carbonate (salt) deposit – in Occator Crater. Image via NASA/JPL-Caltech/UCLA/MPS/DLR/IDA/Roman Tkachenko.

    Whether Ceres ever had conditions suitable for life to evolve is still unknown, although there is also evidence that it has, or at least once had, water below the surface – maybe even a subsurface ocean. This water produced chemical reactions when it came in contact with minerals in rocks. There is also evidence for past cryovolcanic activity – cryovolcanoes, which erupt water, ammonia or methane rather than molten rock. It’s even possible that the subsurface environment was once warm and wet enough for basic biological chemistry to actually begin, although no direct signs of that have been discovered yet.

    Bottom line: As the largest object in the asteroid belt, Ceres is a fascinating world, and has been more geologically active than previously thought. The fact that Ceres is rich in organic carbon is a big part of its geological history and now scientists are beginning to understand what that means not only for the widespread presence of carbon in the solar system but also how organic chemistry can – at least sometimes – lead to the development of life itself.

    See the full EarthSky article here .

    From SwRI: “SwRI-led team finds evidence for carbon-rich surface on Ceres”

    December 10, 2018

    A team led by Southwest Research Institute has concluded that the surface of dwarf planet Ceres is rich in organic matter. Data from NASA’s Dawn spacecraft indicate that Ceres’ surface may contain several times the concentration of carbon than is present in the most carbon-rich, primitive meteorites found on Earth.

    “Ceres is like a chemical factory,” said SwRI’s Dr. Simone Marchi, a principal scientist who was the lead author of research published in Nature Astronomy today. “Among inner solar system bodies, Ceres has a unique mineralogy, which appears to contain up to 20 percent carbon by mass in its near surface. Our analysis shows that carbon-rich compounds are intimately mixed with products of rock-water interactions, such as clays.”

    Ceres is believed to have originated about 4.6 billion years ago at the dawn of our solar system. Dawn data previously revealed the presence of water and other volatiles, such as ammonium derived from ammonia, and now a high concentration of carbon. This chemistry suggests Ceres formed in a cold environment, perhaps outside the orbit of Jupiter. An ensuing shakeup in the orbits of the large planets would have pushed Ceres to its current location in the main asteroid belt, between the orbits of Mars and Jupiter.

    “With these findings, Ceres has gained a pivotal role in assessing the origin, evolution and distribution of organic species across the inner solar system,” Marchi said. “One has to wonder about how this world may have driven organic chemistry pathways, and how these processes may have affected the make-up of larger planets like the Earth.”

    Geophysical, compositional and collisional models based on Dawn data revealed that Ceres’ partially differentiated interior has been altered by fluid processes. Dawn’s Visible and Infrared Mapping Spectrometer has shown that the overall low albedo of Ceres’ surface is a combination of rock-water interaction products such as phyllosilicates and carbonates and a significant amount of spectrally neutral darkening agents, such as an iron oxide called magnetite.

    Because Dawn’s Gamma Ray and Neutron Detector limits magnetite to only a few percent by mass, the data point to the presence of an additional darkening agent, probably amorphous carbon, a carbon-rich organic material. Interestingly, specific organic compounds have also been detected near a 31-mile-wide impact crater named Ernutet, giving further support to the widespread presence of organics in Ceres’ shallow subsurface.

    The new study also finds that 50-60 percent of Ceres’ upper crust may have a composition similar to primitive carbonaceous chondrite meteorites. This material is compatible with contamination from infalling carbonaceous asteroids, a possibility supported by Ceres’ battered surface.

    “Our results imply that either Ceres accreted ultra-carbon-rich materials or that carbon was concentrated in its crust,” Marchi said. “Both potential scenarios are important, because Ceres’ mineralogical composition indicates a global-scale event of rock-water alteration, which could provide conditions favorable to organic chemistry.”

    The paper “An aqueously altered carbon-rich Ceres” was published on December 10 in Nature Astronomy. The Dawn mission is managed by JPL for NASA’s Science Mission Directorate in Washington. Dawn is a project of the directorate’s Discovery Program, managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama. JPL is responsible for overall Dawn mission science. Northrop Grumman in Dulles, Virginia, designed and built the spacecraft. The German Aerospace Center, Max Planck Institute for Solar System Research, Italian Space Agency and Italian National Astrophysical Institute are international partners on the mission team.

    For more information visit Planetary Science or contact Deb Schmid, (210) 522-2254, Communications Department, Southwest Research Institute, PO Drawer 28510, San Antonio, TX 78228-0510.

    See the full SwRI article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Deborah Byrd created the EarthSky radio series in 1991 and founded EarthSky.orgin 1994. Today, she serves as Editor-in-Chief of this website. She has won a galaxy of awards from the broadcasting and science communities, including having an asteroid named 3505 Byrd in her honor. A science communicator and educator since 1976, Byrd believes in science as a force for good in the world and a vital tool for the 21st century. “Being an EarthSky editor is like hosting a big global party for cool nature-lovers,” she says.

     
    • stewarthoughblog 10:35 pm on December 27, 2018 Permalink | Reply

      Some very interesting science here, but “but also how organic chemistry can – at least sometimes – lead to the development of life itself.” is faith based speculation, not objective science. There is no viable evidence that organic chemistry ever formed sufficiently to posit that any serious biochemical compounds ever formed anything remotely complex that could be considered anything relevant to anything living.

      Like

  • richardmitnick 6:00 pm on October 27, 2018 Permalink | Reply
    Tags: , , , SwRI,   

    From Spaceflight Insider: “New Horizons team previews Ultima Thule flyby” 

    1

    From Spaceflight Insider

    October 27th, 2018
    Laurel Kornfeld

    1
    An artist’s illustration of New Horizons flying by the Kuiper Belt Object Ultima Thule. Image Credit NASA / JPL / JHUAPL

    In an Oct. 24 online press conference broadcast from the American Astronomical Society (AAS) Division for Planetary Sciences (DPS) 50th Annual Meeting in Knoxville, Tennessee, four members of NASA’s New Horizons team presented a preview of the spacecraft’s Jan. 1, 2019, flyby of Kuiper Belt Object (KBO) Ultima Thule, now just 10 weeks away.

    The presenting speakers included principal investigator Alan Stern of the Southwest Research Institute (SwRI), science team collaborator Carey Lisse of the Johns Hopkins University Applied Physics Laboratory (JHUAPL), project scientist Hal Weaver, also of JHUAPL, and co-investigator Kelsi Singer, also of SwRI.

    1
    Because Ultima Thule is so far away, details cannot yet be resolved and are not expected to be until about a day before the closest approach. Image Credit: NASA/JHUAPL/SwRI

    Stern said this flyby will be more challenging than New Horizons’ Pluto flyby in July 2015 because Ultima Thule is located a billion miles beyond Pluto and much about it remains unknown. Mission scientists are still uncertain about its exact position and the presence of any potentially hazardous rings or moons. The spacecraft is older than it was at Pluto and has less battery power now while light levels are lower at such a great distance from the Sun.

    Additionally, communication between Earth and the spacecraft takes six hours one way, as opposed to four-and-a-half hours to Pluto.

    “New Horizons is going to have the capacity, in the space of one week, the first week of January 2019, to confirm or refute the very models [of solar system formation] presented here at the Division of Planetary Sciences meeting,” Stern said.

    Ultima Thule is estimated to be about 23 miles (37 kilometers) wide, much smaller than Pluto, which has a diameter of 1,477 miles (2,377 kilometers). For this reason, pre-flyby images 10 weeks before closest approach reveal just a dot rather than the increasing level of detail seen on Pluto during the same time frame. Details on the KBO will not be resolved until about one day before closest approach, Stern said.

    In addition to being the most distant object ever explored by a spacecraft, Ultima Thule, which is about ten times as wide and 1,000 times as massive as Comet 67P/Churyumov-Gerasimenko, which was orbited by the Rosetta spacecraft, is set to be the most primitive object studied by a spacecraft.

    ESA/Rosetta spacecraft


    ESA Rosetta Philae Lander

    To preview what the KBO’s surface might look like, Lisse presented images of Comet Wild 2, Saturn’s moon Phoebe, Saturn’s moon Hyperion, and Comet 67P.

    All seven instruments aboard New Horizons will study Ultima Thule. Between now and the flyby, mission scientists will prepare by monitoring changes in the KBO’s brightness to determine its size, shape, and rotation speed, search for moons and other potential hazards to the spacecraft, and refine navigation if hazards are found, Weaver explained.

    Diversion from the optimal closest approach of 2,170 miles (3,500 kilometers) can be made as late as Dec. 16 if hazards are discovered. An alternate, safer approach would bring New Horizons within 6,200 miles (10,000 kilometers) of Ultima Thule. Image resolution will be better than that obtained at Pluto because of the closer approach.

    2
    Possible Shapes of Ultima Thule. Image Credit: NASA/JHUAPL/SwRI.

    Singer outlined the mission’s goals as mapping the KBO’s geology and morphology and mapping its color and composition. Specifically, scientists will look for craters and grooves and various ices, including ammonia, carbon monoxide, methane, and water ice. They will also determine whether Ultima Thule is a binary or contact binary object or a double-lobed object like Comet 67P.

    Because KBOs are composed of pristine materials left over from the formation of the solar system, studying Ultima Thule’s ices will give scientists insight into the materials from which Earth and the solar system’s other planets were built.

    Mission scientists also hope to find answers as to why Ultima Thule, a very dark object, is slightly brighter than expected. They do not expect to find active geology or an atmosphere on such a small object.

    “This will be our first ground truth, our first close look at what makes these [Kuiper Belt] objects dark and red,” Singer said.

    Kuiper Belt. Minor Planet Center

    As done at Pluto, New Horizons will return a final image of Ultima Thule just before closest approach, then remain out of contact with Earth, instead focusing on data collection. Between 10 a.m. and 10:30 a.m. EST (15:00-15:30 GMT) Jan. 1, a signal from the probe is expected to arrive, confirming it survived the flyby.

    New Horizons will continue to study the KBO and its environment for a short time after closest approach. Return of the data collected will continue through late 2020.

    3
    Ultima Thule Timeline Overview. Image Credit: NASA/JHUAPL/SwRI

    Laurel Kornfeld is an amateur astronomer and freelance writer from Highland Park, NJ, who enjoys writing about astronomy and planetary science.

    HPHS Owls

    She studied journalism at Douglass College, Rutgers University, and earned a Graduate Certificate of Science from Swinburne University’s Astronomy Online program.

    Her writings have been published online in The Atlantic, Astronomy magazine’s guest blog section, the UK Space Conference, the 2009 IAU General Assembly newspaper, The Space Reporter, and newsletters of various astronomy clubs. She is a member of the Cranford, NJ-based Amateur Astronomers, Inc. Especially interested in the outer solar system, Laurel gave a brief presentation at the 2008 Great Planet Debate held at the Johns Hopkins University Applied Physics Lab in Laurel, MD.

    [Sorry folks, I could not resist the references to my home town and my university]

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    SpaceFlight Insiderreports on events taking place within the aerospace industry. With our team of writers and photographers, we provide an “insider’s” view of all aspects of space exploration efforts. We go so far as to take their questions directly to those officials within NASA and other space-related organizations. At SpaceFlight Insider, the “insider” is not anyone on our team, but our readers.

    Our team has decades of experience covering the space program and we are focused on providing you with the absolute latest on all things space. SpaceFlight Insider is comprised of individuals located in the United States, Europe, South America and Canada. Most of them are volunteers, hard-working space enthusiasts who freely give their time to share the thrill of space exploration with the world.

     
  • richardmitnick 9:46 am on July 19, 2018 Permalink | Reply
    Tags: , , Occulting disc, , , , SwRI   

    From Southwest Research Institute via Science Alert: “Never-Before-Seen Structures Have Been Detected in Our Sun’s Corona” 

    SwRI bloc

    From Southwest Research Institute

    via

    ScienceAlert

    Science Alert

    19 JUL 2018
    MICHELLE STARR

    1
    DeForest et al./The Astrophysical Journal

    Using longer exposures and sophisticated processing techniques, scientists have taken extraordinarily high-fidelity pictures of the Sun’s outer atmosphere – what we call the corona – and discovered fine details that have never been detected before.

    The Sun is a complex object, and with the soon-to-be-launched Parker Solar Probe we’re on the verge of learning so much more about it.

    NASA Parker Solar Probe Plus

    But there’s still a lot we can do with our current technology, as scientists from the Southwest Research Institute (SwRI) have just demonstrated.

    The team used the COR-2 coronagraph instrument on NASA’s Solar and Terrestrial Relations Observatory-A (STEREO-A) to study details in the Sun’s outer atmosphere.

    NASA/STEREO spacecraft

    This instrument takes images of the atmosphere by using what is known as an occulting disc – a disc placed in front of the lens that blocks out the actual Sun from the image, and therefore the light that would overwhelm the fine details in the plasma of the Sun’s atmosphere.

    The corona is extremely hot, much hotter than the inner photosphere’s 5,800 Kelvin, coming in at between 1 and 3 million Kelvin. It’s also the source of solar wind – the constant stream of charged particles that flows out from the Sun in all directions.

    When measurements of the solar wind are taken near Earth, the magnetic fields embedded therein are complex and interwoven, but it’s unclear when this turbulence occurs.

    “In deep space, the solar wind is turbulent and gusty,” says solar physicist Craig DeForest of the SwRI.

    “But how did it get that way? Did it leave the Sun smooth, and become turbulent as it crossed the solar system, or are the gusts telling us about the Sun itself?”

    If the turbulence was occurring at the source of the solar wind – the Sun – then we should have been able to see complex structures in the corona as the cause of it, but previous observations showed no such structures.

    Instead, they showed the corona as a smooth, laminar structure. Except, as it turns out, that wasn’t the case. The structures were there, but we hadn’t been able to obtain a high enough image resolution to see them.

    2
    NASA/SwRI/STEREO

    “Using new techniques to improve image fidelity, we realised that the corona is not smooth, but structured and dynamic,” DeForest explains. “Every structure that we thought we understood turns out to be made of smaller ones, and to be more dynamic than we thought.”

    To obtain the images, the research team ran a special three-day campaign wherein the instrument took more frequent and longer-exposure images than it usually does, allowing more time for light from faint sources to be detected by the coronagraph. But that was only part of the process.

    Although the occulting disc does a great job at filtering out the bright light from the Sun, there’s still a great deal of noise in the resulting images, both from the surrounding space and the instrument.

    Obviously, since STEREO-A is in space, altering the hardware isn’t an option, so DeForest and his team worked out a technique for identifying and removing that noise, vastly improving the data’s signal-to-noise ratio.

    They developed new filtering algorithms to separate the corona from noise, and adjust brightness. And, perhaps more challengingly, correct for the blur caused by the motion of the solar wind.

    They discovered that the coronal loops known as streamers – which can erupt into the coronal mass ejections that send plasma and particles shooting out into space – are not one single structure.

    “There is no such thing as a single streamer,” DeForest said. “The streamers themselves are composed of myriad fine strands that, together, average to produce a brighter feature.”

    They also found there’s no such thing as the Alfvén surface – a theoretical, sheet-like boundary where the solar wind starts moving forward faster than waves can travel backwards through it, and it disconnects from the Sun, moving beyond its influence.

    Instead, DeForest said, “There’s a wide ‘no-man’s land’ or ‘Alfvén zone’ where the solar wind gradually disconnects from the Sun, rather than a single clear boundary.”

    But the research also presented a new mystery to probe, as well. At a distance of about 10 solar radii the solar wind suddenly changes character. But it returns to normal farther out from the Sun, indicating that there’s some interesting physics happening at 10 solar radii.

    Figuring out what that is may require some help from Parker, for which this research is key. Parker is due to launch in August.

    Meanwhile, the team’s research has been published in The Astrophysical Journal.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    SwRI Campus

    Southwest Research Institute (SwRI) is an independent, nonprofit applied research and development organization. The staff of nearly 2,800 specializes in the creation and transfer of technology in engineering and the physical sciences. SwRI’s technical divisions offer a wide range of technical expertise and services in such areas as engine design and development, emissions certification testing, fuels and lubricants evaluation, chemistry, space science, nondestructive evaluation, automation, mechanical engineering, electronics, and more.

     
  • richardmitnick 8:34 am on March 15, 2018 Permalink | Reply
    Tags: , , , , , , , , SwRI,   

    From JHUAPL via EarthSky: “Pluto craft’s next target is Ultima Thule” 

    Johns Hopkins
    Johns Hopkins University

    Johns Hopkins Applied Physics Lab bloc
    JHU Applied Physics Lab

    EarthSky

    March 14, 2018
    Deborah Byrd

    NASA/New Horizons spacecraft

    passed Pluto in 2015.

    With public input, the mission team has nicknamed the spacecraft’s next target – on the fringes of our solar system – Ultima Thule.

    3
    This image shows New Horizons’ current position along its full planned trajectory toward MU69, now nicknamed Ultima Thule. The green segment of the line shows where the spacecraft has traveled since launch; the red indicates the spacecraft’s future path. Image via Johns Hopkins University Applied Physics Laboratory.

    Some 115,000 people from around the world recently suggested some 34,000 possible nicknames for the distant object 2014 MU69, the next target of the New Horizons spacecraft, whose historic sweep past Pluto took place in July 2015. The New Horizons mission team announced on March 13, 2018, it has selected the name Ultima Thule – pronounced ultima thoo-lee – for New Horizon’s next target, a Kuiper Belt object officially named 2014 MU69. New Horizons will sweep closest to Ultima Thule on January 1, 2019. The mission team describes the object as:

    “… the most primitive world ever observed by spacecraft, in the farthest planetary encounter in history….”

    In a statement, the team explained their reasons for their choice:

    “Thule was a mythical, far-northern island in medieval literature and cartography. Ultima Thule means “beyond Thule” – beyond the borders of the known world – symbolizing the exploration of the distant Kuiper Belt and Kuiper Belt objects that New Horizons is performing, something never before done.”

    Alan Stern of Southwest Research Institute in Boulder, Colorado, is New Horizons’ principal investigator. He said:

    “MU69 is humanity’s next Ultima Thule. Our spacecraft is heading beyond the limits of the known worlds, to what will be this mission’s next achievement. Since this will be the farthest exploration of any object in space in history, I like to call our flyby target Ultima, for short, symbolizing this ultimate exploration by NASA and our team.”

    6
    Artist’s conception of NASA’s New Horizons spacecraft encountering 2014 MU69 – now nicknamed Ultima Thule – on January 1, 2019. This object orbits a billion miles (1.6 billion km) beyond Pluto. Evidence gathered from Earth suggests it might be a binary (double) or multiple object. Image via NASA/ Johns Hopkins University Applied Physics Laboratory/ SwRI/ Steve Gribben.

    NASA and the New Horizons team launched the nickname campaign in early November. Hosted by the SETI Institute of Mountain View, California, and led by Mark Showalter, an institute fellow and member of the New Horizons science team, the online contest sought nominations from the public and stipulated that a nickname would be chosen from among the top vote-getters.

    SETI Institute


    The campaign wrapped up on December 6, after a five-day extension to accommodate more voting. Of the 34,000 names suggested, 37 reached the ballot for voting and were evaluated for popularity. This included eight names suggested by the New Horizons team and 29 nominated by the public.

    The team then narrowed its selection to the 29 publicly nominated names and gave preference to names near the top of the polls. Names suggested included Abeona, Pharos, Pangu, Rubicon, Olympus, Pinnacle and Tiramisu. Final tallies in the naming contest posted here.

    About 40 members of the public nominated the name Ultima Thule. This name was one of the highest vote-getters among all name nominees. Showalter said:

    “We are grateful to those who proposed such an interesting and inspirational nickname. They deserve credit for capturing the true spirit of exploration that New Horizons embodies.”

    After the flyby, NASA and the New Horizons team say they’ll choose a formal name to submit to the International Astronomical Union, based in part on whether MU69 is found to be a single body, a binary pair, or perhaps a system of multiple objects.

    Learn more about New Horizons, NASA’s mission to Pluto and the Kuiper Belt, at http://www.nasa.gov/newhorizons and http://pluto.jhuapl.edu.

    7
    New Horizons mission team members during the 2015 Pluto encounter. Expect more excitement to come when New Horizons encounters Ultima Thule on January 1, 2019!

    Bottom line: With public input, the New Horizons mission team has given the nickname Ultima Thule to the spacecraft’s next target, Kuiper Belt Object 2014 MU69.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Johns Hopkins Applied Physics Lab Campus

    Founded on March 10, 1942—just three months after the United States entered World War II—APL was created as part of a federal government effort to mobilize scientific resources to address wartime challenges.

    APL was assigned the task of finding a more effective way for ships to defend themselves against enemy air attacks. The Laboratory designed, built, and tested a radar proximity fuze (known as the VT fuze) that significantly increased the effectiveness of anti-aircraft shells in the Pacific—and, later, ground artillery during the invasion of Europe. The product of the Laboratory’s intense development effort was later judged to be, along with the atomic bomb and radar, one of the three most valuable technology developments of the war.

    On the basis of that successful collaboration, the government, The Johns Hopkins University, and APL made a commitment to continue their strategic relationship. The Laboratory rapidly became a major contributor to advances in guided missiles and submarine technologies. Today, more than seven decades later, the Laboratory’s numerous and diverse achievements continue to strengthen our nation.

    APL continues to relentlessly pursue the mission it has followed since its first day: to make critical contributions to critical challenges for our nation.

    Johns Hopkins Campus

    The Johns Hopkins University opened in 1876, with the inauguration of its first president, Daniel Coit Gilman. “What are we aiming at?” Gilman asked in his installation address. “The encouragement of research … and the advancement of individual scholars, who by their excellence will advance the sciences they pursue, and the society where they dwell.”

    The mission laid out by Gilman remains the university’s mission today, summed up in a simple but powerful restatement of Gilman’s own words: “Knowledge for the world.”

    What Gilman created was a research university, dedicated to advancing both students’ knowledge and the state of human knowledge through research and scholarship. Gilman believed that teaching and research are interdependent, that success in one depends on success in the other. A modern university, he believed, must do both well. The realization of Gilman’s philosophy at Johns Hopkins, and at other institutions that later attracted Johns Hopkins-trained scholars, revolutionized higher education in America, leading to the research university system as it exists today.

     
  • richardmitnick 7:36 am on January 30, 2018 Permalink | Reply
    Tags: Asteroid bombardment, , , , , , Life may have been possible in Earth’s earliest, most hellish eon, , SwRI   

    From ScienceNews: “Life may have been possible in Earth’s earliest, most hellish eon” 


    ScienceNews

    January 26, 2018
    Carolyn Gramling

    New analyses suggest heat caused by asteroid bombardment didn’t sterilize the planet.

    1
    FIERY MYTH Scientists have long thought that Earth was a sterile hellscape during its earliest eon (illustrated), due to asteroid bombardment. But the heat from those impacts wasn’t too much for life to exist, new research indicates. SwRI/Dan Durda

    Maybe Earth’s early years weren’t so hellish after all.

    Asteroid strikes repeatedly bombarded the planet during its first eon, but the heat released by those hits wasn’t as sterilizing as once thought, new research suggests. Simulations indicate that after the first few hundred million years of bombardment, the heat from the impacts had dissipated enough that 10 to 75 percent of the top kilometer of the subsurface was habitable for mesophiles — microbes that live in temperatures of 20° to 50° Celsius. If so, the planet may have been habitable much earlier than previously believed.

    Earth’s earliest eon, the Hadean, spans the period from about 4.6 billion years ago, when the planet was born, to 4 billion years ago. The name, for the Greek god of the underworld, reflects the original conception of the age: dark and hellish and inhospitable to life. But little direct evidence of Hadean asteroid impacts still exists, limiting scientists’ understanding of how those collisions affected the planet’s habitability.

    “There has been an assumption that the Hadean was mostly an uninteresting slag heap until the sky stopped falling and life could take hold,” says Stephen Mojzsis, a geologist at the University of Colorado Boulder. That’s not to say that all of the Hadean was pleasant; the first 150 million years of Earth’s history, which included the giant whack that formed the moon, were pretty dramatic. But after that, things settled down considerably, says Mojzsis, who was not an author of the new study.

    For example, scientists have found signs of liquid water and even faint hints of possible life in zircon crystals dating back 4.1 billion years (SN: 11/28/15, p. 16). Other researchers have contested the idea that Earth was continually bombarded by asteroids through much of the Hadean, or that a last barrage of asteroids shelled the planet 3.9 billion years ago in what has been called the Late Heavy Bombardment, killing any incipient life (SN Online: 9/12/16).

    2
    QUIET INTERVAL A new study suggests that the planet was mostly peaceful after the first 150 million years of its existence (illustrated). Rather than repeatedly sterilizing the planet, the intense heat from asteroid impacts dissipated relatively rapidly, the researchers suggest. As a result, habitable zones in the subsurface of the planet grew larger over the next billion years. SwRI/Dan Durda

    In the new study, geophysicist Robert Grimm and planetary scientist Simone Marchi, both of the Southwest Research Institute in Boulder, Colo., estimated how hot it would have been just a few kilometers beneath the planet’s surface during the Hadean. The scientists used an estimated rate of asteroid bombardment, as well as how much heat the projectiles would have added to the subsurface and how much that heat would have dissipated over time to simulate how hot it got — and whether microbial life could have withstood those conditions. The research built on earlier work, including Marchi’s 2014 finding that asteroid impacts became smaller and less frequent with time (SN: 8/23/14, p. 13).

    Asteroid impacts did heat the subsurface, according to the simulations, but even the heaviest bombardment scenarios were not intense enough to sterilize the planet, the researchers report March 1 in Earth and Planetary Science Letters. And if the rate of bombardment did decrease as the eon progressed, the heat the asteroids delivered to Earth’s subsurface would also have had time to dissipate. As a result, that habitable zone would have increased over time.

    A Late Heavy Bombardment, if it occurred, would have been tougher for the microbes, because the heat wouldn’t have had time to dissipate with such a rapid barrage. But that just would have meant the habitable zone didn’t increase, the team reports; mesophiles could still have inhabited at least 20 percent of the top kilometer of subsurface.

    Mojzsis says he’s come to similar conclusions in his own work. “For a long time people said, with absolutely no data, that there could be no biosphere before 3.9 billion years ago,” he says. But “after the solar system settled down, the biosphere could have started on Earth 4.4 billion years ago.”

    That’s not to say that there was definitely life, Grimm notes. Although the heat from impacts may not have been a limiting factor for life, asteroid bombardment introduced numerous other challenges, affecting the climate, surface or even convection of the mantle. Still, the picture of Earth’s earliest days is undergoing a sea change. As Grimm says, “An average day in the Hadean did not spell doom.”

    See the full article here .

    Science News is edited for an educated readership of professionals, scientists and other science enthusiasts. Written by a staff of experienced science journalists, it treats science as news, reporting accurately and placing findings in perspective. Science News and its writers have won many awards for their work; here’s a list of many of them.

    Published since 1922, the biweekly print publication reaches about 90,000 dedicated subscribers and is available via the Science News app on Android, Apple and Kindle Fire devices. Updated continuously online, the Science News website attracted over 12 million unique online viewers in 2016.

    Science News is published by the Society for Science & the Public, a nonprofit 501(c) (3) organization dedicated to the public engagement in scientific research and education.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
    • stewarthoughblog 9:31 pm on January 30, 2018 Permalink | Reply

      Any proposition that the Hadean was not so Hadeanish is interesting science given what has been postulated previously, but it is not geochemically relevant to the intractable issues of any and all naturalistic stories about the origin of life. If no prospect for the origin of life is plausible even in the intelligently designed lab conditions of the labs being used to try to produce even simple biochemical processes and assembly formation, then any change in the Hadean conditions is a moot point.

      Like

  • richardmitnick 2:38 pm on December 5, 2017 Permalink | Reply
    Tags: , , , , Earth and the Moon, , SwRI   

    From SwRI: “Collisions after Moon formation remodeled early Earth” 

    SwRI bloc

    Southwest Research Institute

    Dec. 4, 2017
    Jonathan O’Callahan

    1
    SwRI scientists modeled the protracted period of bombardment after the Moon formed, determining that impactor metals may have descended into Earth’s core. This artistic rendering illustrates a large impactor crashing into the young Earth. Light brown and gray particles indicate the projectile’s mantle (silicate) and core (metal) material, respectively. Courtesy of Southwest Research Institute.

    A study has suggested that the young Earth was repeatedly pounded by objects the size of the Moon, which may explain the composition of rocks on our planet.

    Published in Nature Geoscience, scientists from the Southwest Research Institute in Texas looked at the period after a Mars-sized body hit Earth and formed the Moon about 4.5 billion years ago, known as the giant-impact hypothesis. That impactor was thought to be at least 6,000 kilometers (3,700 miles) across.

    Some of the pieces of rock from that collision, known as planetesimals, coalesced into the Moon. Others, we had thought, stayed in Earth orbit for about 100 million years before breaking apart or being scattered by gravity.

    However, this study suggests a much more dramatic process took place. The researchers say their model hints at “multiple subsequent impacts with the Earth by 1,500- to 3,000-km-diameter [930- to 1,860-mile] projectiles”, they write in their paper.

    “This is more violent than thought,” the study’s lead author, Dr Simone Marchi, told IFLScience. “Some of these planetesimals may have exceeded 1,000 kilometers [620 miles] in diameter, some were perhaps as large as the Moon itself.”

    We’d previously thought about 0.5 percent of our planet’s mass was made up of material from these planetesimals. However, the researchers suggest this may be two to five times greater than previous calculations.

    It all stems around something called siderophile elements. These are things that get absorbed into iron like gold, platinum, and iridium. Some of these were delivered to our planet after the Moon was formed, while others were either absorbed into our core or ejected into space.

    In order to explain the amount we observe today, we need more collisions. Thus, this paper points to the period after the Moon’s formation as the culprit, with more large planetesimals hitting Earth.

    2
    Animation of a Moon-sized object hitting our planet. Southwest Research Institute

    “We modeled the massive collisions and how metals and silicates were integrated into Earth during this ‘late accretion stage,’ which lasted for hundreds of millions of years after the Moon formed,” Dr Marchi said in a statement. “Based on our simulations, the late accretion mass delivered to Earth may be significantly greater than previously thought, with important consequences for the earliest evolution of our planet.”

    This also helps solve another quandary. Namely, the presence of isotopic anomalies in some rocks on Earth had suggested that our mantle was mixed more than we thought after the Moon formed. This latest research could explain how that mixing occurred, as our planet was repeatedly hit by other impactors.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SwRI Campus

    Southwest Research Institute (SwRI) is an independent, nonprofit applied research and development organization. The staff of nearly 2,800 specializes in the creation and transfer of technology in engineering and the physical sciences. SwRI’s technical divisions offer a wide range of technical expertise and services in such areas as engine design and development, emissions certification testing, fuels and lubricants evaluation, chemistry, space science, nondestructive evaluation, automation, mechanical engineering, electronics, and more.

     
  • richardmitnick 9:21 am on April 25, 2017 Permalink | Reply
    Tags: , , , , SwRI, SwRI-led team discovers lull in Mars’ giant impact history   

    From SwRI: “SwRI-led team discovers lull in Mars’ giant impact history” 

    SwRI bloc

    Southwest Research Institute

    April 25, 2017
    No writer credit

    1
    Mars bears the scars of five giant impacts, including the ancient giant Borealis basin (top of globe), Hellas (bottom right), and Argyre (bottom left). An SwRI-led team discovered that Mars experienced a 400-million-year lull in impacts between the formation of Borealis and the younger basins. Image Courtesy of University of Arizona/LPL/Southwest Research Institute

    From the earliest days of our solar system’s history, collisions between astronomical objects have shaped the planets and changed the course of their evolution. Studying the early bombardment history of Mars, scientists at Southwest Research Institute (SwRI) and the University of Arizona have discovered a 400-million-year lull in large impacts early in Martian history.

    This discovery is published in the latest issue of Nature Geoscience in a paper titled, “A post-accretionary lull in large impacts on early Mars.” SwRI’s Dr. Bill Bottke, who serves as principal investigator of the Institute for the Science of Exploration Targets (ISET) within NASA’s Solar System Exploration Research Virtual Institute (SSERVI), is the lead author of the paper. Dr. Jeff Andrews-Hanna, from the Lunar and Planetary Laboratory in the University of Arizona, is the paper’s coauthor.

    “The new results reveal that Mars’ impact history closely parallels the bombardment histories we’ve inferred for the Moon, the asteroid belt, and the planet Mercury,” Bottke said. “We refer to the period for the later impacts as the ‘Late Heavy Bombardment.’ The new results add credence to this somewhat controversial theory. However, the lull itself is an important period in the evolution of Mars and other planets. We like to refer to this lull as the ‘doldrums.’”

    The early impact bombardment of Mars has been linked to the bombardment history of the inner solar system as a whole. Borealis, the largest and most ancient basin on Mars, is nearly 6,000 miles wide and covers most of the planet’s northern hemisphere. New analysis found that the rim of Borealis was excavated by only one later impact crater, known as Isidis. This sets strong statistical limits on the number of large basins that could have formed on Mars after Borealis. Moreover, the preservation states of four youngest large basins — Hellas, Isidis, Argyre, and the now-buried Utopia — are strikingly similar to that of the larger, older Borealis basin. The similar preservation states of Borealis and these younger craters indicate that any basins formed in-between should be similarly preserved. No other impact basins pass this test.

    “Previous studies estimated the ages of Hellas, Isidis, and Argyre to be 3.8 to 4.1 billion years old,” Bottke said. “We argue the age of Borealis can be deduced from impact fragments from Mars that ultimately arrived on Earth. These Martian meteorites reveal Borealis to be nearly 4.5 billion years old — almost as old as the planet itself.”

    The new results reveal a surprising bombardment history for the red planet. A giant impact carved out the northern lowlands 4.5 billion years ago, followed by a lull of approximately 400 million years. Then another period of bombardment produced giant impact basins between 4.1 and 3.8 billion years ago. The age of the impact basins requires two separate populations of objects striking Mars. The first wave of impacts was associated with formation of the inner planets, followed by a second wave striking the Martian surface much later.

    SSERVI is a virtual institute headquartered at NASA’s Ames Research Center in Mountain View, California. Its members are distributed among universities and research institutes across the United States and around the world. SSERVI is working to address fundamental science questions and issues that can help further human exploration of the solar system.

    For more information, contact Deb Schmid, (210) 522-2254, Communications Department, Southwest Research Institute, PO Drawer 28510, San Antonio, TX 78228-0510.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SwRI Campus

    Southwest Research Institute (SwRI) is an independent, nonprofit applied research and development organization. The staff of nearly 2,800 specializes in the creation and transfer of technology in engineering and the physical sciences. SwRI’s technical divisions offer a wide range of technical expertise and services in such areas as engine design and development, emissions certification testing, fuels and lubricants evaluation, chemistry, space science, nondestructive evaluation, automation, mechanical engineering, electronics, and more.

     
  • richardmitnick 12:37 pm on December 16, 2016 Permalink | Reply
    Tags: After Multiple Attempts NASA Launches Satellites With San Antonio Roots, , SwRI, Texas Standard   

    From SwRI via Texas Standard: “After Multiple Attempts, NASA Launches Satellites With San Antonio Roots” 

    SwRI bloc

    Southwest Research Institute

    1

    Texas Standard

    Dec 15, 2016
    Paul Flahive

    1
    NASA

    This Morning NASA launched the first satellite designed and fabricated by San Antonio-based Southwest Research Institute. When the Orbital ATK l-1011 “Stargazer” released a Pegasus XL rocket this morning it took a big step in the field of hurricane analysis scientists say. It also marked the beginning of a new field for San Antonio-based Southwest Research Institute, who built the eight micro-satellites that made up todays payload.

    The Southwest Research Institute plans to double the 22 million dollars in research dollars it uses for space science based on its spacecraft research over the next ten years. According to the executive director of SwRI’s Space System Directorate Mike McLelland, CYGNSS’ launch marks a new path for the organization,

    “In fact this institution is an institution of firsts in space systems. We were the first Med-X mission. We were the P.I. for the first ‘New Frontiers’ with Pluto fast flyby. So we pride ourselves on being first, and tackling those tough problems.”

    Southwest Research is bidding on 22 more small satellite projects. Small satellites make up anything from 10 kilograms to 250 kilograms in weight. They won’t be building traditional satellite projects in the near future, but ones more akin to today’s CYGNSS launch, which were in the 60 pound range.

    All eight satellites that made up CYGNSS along with the launch cost $150 million. By comparison the GOES-R mission that launched last month was a billion dollars just for the one traditional space satellite, which was the size of a couple of cars. McLelland says small satellites are the future of the industry.

    “There’s 3600 satellites scheduled to launch in the next decade, small satellites, that’s almost a 362 percent increase from the last decade.”

    McLelland believes SwRI’s expertise in space systems will allow them to make a mark in small satellites especially in the medium-earth orbit field where high radiation rules out off-the-shelf solutions. SwRI can manufacture those solutions where others might not have the knowledge.

    This plan has been developing for more than a decade, McLelland says,

    “We have been working on expanding for at least 15 years. We worked on CYGNSS, or the bus that makes up CYGNSS for ten years before we got that first contract.”

    SwRI will next build a cubesat, or a even smaller satellite, for the National Science Foundation. It is called the CuSP, launches in two years, and will measure solar particles.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SwRI Campus

    Southwest Research Institute (SwRI) is an independent, nonprofit applied research and development organization. The staff of nearly 2,800 specializes in the creation and transfer of technology in engineering and the physical sciences. SwRI’s technical divisions offer a wide range of technical expertise and services in such areas as engine design and development, emissions certification testing, fuels and lubricants evaluation, chemistry, space science, nondestructive evaluation, automation, mechanical engineering, electronics, and more.

     
  • richardmitnick 12:30 pm on August 29, 2016 Permalink | Reply
    Tags: , , , SwRI, SwRI Solar Instrument Pointing Platform (SSIPP)   

    From SwRI: “SwRI to demonstrate low-cost miniature solar observatory” 

    SwRI bloc

    Southwest Research Institute

    August 29, 2016
    Deb Schmid
    (210) 522-2254

    1
    The SwRI Solar Instrument Pointing Platform (SSIPP) is a miniature, low-cost solar observatory designed to conduct solar research from the near-space environment. SwRI hang tested the SSIPP payload, which will be demonstrated in August carried aloft by a stratospheric balloon.
    Image Courtesy of Southwest Research Institute

    Southwest Research Institute will flight test a miniature solar observatory on a six-hour high-altitude balloon mission scheduled for the end of August. The SwRI Solar Instrument Pointing Platform (SSIPP) is a complete, high-precision solar observatory about the size of a mini fridge and weighing 160 pounds.

    “This novel, low-cost prototype was developed for less than $1 million, which is one-tenth the cost of other comparable balloon-borne observatories,” said Principal Investigator Dr. Craig DeForest, a principal scientist in SwRI’s Space Science and Engineering Division. “Funded by NASA’s Game-Changing Technologies program, SSIPP is a reusable, optical table-based platform. This novel approach breaks down barriers to science by allowing low-cost solar research.”

    SSIPP collects solar data using infrared, ultraviolet, or visible light instruments on an optical table, similar to those used in ground-based observatories but from a near-space environment. This arcsecond-class observatory provides optical precision equivalent to imaging a dime from a mile away. Originally conceived to fly aboard a commercial suborbital rocket, SSIPP has now been adapted for balloon flight. Collecting data from the edge of space — around 20 miles above the Earth’s surface — avoids image distortions caused by looking through the atmosphere.

    “SSIPP could support the development of a range of new instruments for the near-space environment at relatively low cost,” DeForest said. “Using a standard optical table platform increases flexibility, allowing scientists to try new things and develop new technologies without designing a custom observatory.”

    During the demonstration, scientists will spend two hours commissioning the observatory and searching for visible signatures of “high-frequency” solar soundwaves, which are actually some eight octaves below the deepest audible notes. By contrast, the most studied sound waves in the Sun (the solar “P-modes” used to probe the solar interior) are five octaves deeper still.

    The surface of the Sun is covered with granular convection cells analogous to a pot of water at a rolling boil. Continuously, every 5 minutes, a million of these cells erupt, creating sound waves at a range of frequencies. SSIPP will image the solar atmosphere to understand their heat and noise properties. The comparatively high frequency of the “solar ultrasound” waves makes them undetectable by ground-based observatories.

    “The transfer of heat to the surface of our star is a violent and tremendously loud process,” DeForest said. “Soundwaves heat the solar atmosphere to extremely high temperatures, but it’s a poorly understood process. Existing measurements of the solar infrasound cannot account for all the energy required.”

    SSIPP will launch aboard a World View stratospheric balloon, funded by NASA’s Flight Opportunities Program under the Space Technology Mission Directorate. The program is managed by NASA’s Armstrong Flight Research Center in Edwards, California.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    SwRI Campus

    Southwest Research Institute (SwRI) is an independent, nonprofit applied research and development organization. The staff of nearly 2,800 specializes in the creation and transfer of technology in engineering and the physical sciences. SwRI’s technical divisions offer a wide range of technical expertise and services in such areas as engine design and development, emissions certification testing, fuels and lubricants evaluation, chemistry, space science, nondestructive evaluation, automation, mechanical engineering, electronics, and more.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: