Tagged: Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:44 pm on November 23, 2021 Permalink | Reply
    Tags: "Robots build new hanging gardens", A delicate dance for the highest precision, A symbol of collaboration, AI proposes a clever design., Architecture and Digital Fabrication, ETH architecture professors Fabio Gramazio and Matthias Kohler are creating a green architectural sculpture for the Tech Cluster Zug., In the Immersive Design Lab-an augmented reality laboratory on the Hönggerberg campus the researchers were able to explore the designs in three dimensions and fine-​tune them together in real time., Robotic prefabrication is currently running at full speed., SDSC - The Swiss Data Science Center [Schweizerisches Data Science Center][Centre suisse de la science des données](CH), Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH), The structure will consist of five geometrically complex wooden pods that are slightly offset from each other and supported by eight thin steel pillars., Using artificial intelligence and four collaborative robots   

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH): “Robots build new hanging gardens” 

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)

    23.11.2021

    Contact
    Vanessa Bleich
    Media Relations
    ETH Zurich
    Phone +41 44 632 41 41
    medienstelle@hk.ethz.ch

    Professor Matthias Kohler
    Chair of Architecture and Digital Fabrication
    Gramazio Kohler Research
    ETH Zurich
    Phone +41 44 633 49 06
    kohler@arch.ethz.ch

    With the help of artificial intelligence and four collaborative robots, researchers at ETH Zürich are designing and fabricating a 22.5-​metre-tall green architectural sculpture.

    1
    During the creation of the sculpture, four robotic arms pick up wooden boards in unison and place them in space according to the computer design. (Image: Pascal Bach / Gramazio Kohler Research, ETH Zürich)

    Working with Müller Illien Landscape Architects, Timbatec and other partners from industry and research, researchers from the group led by ETH architecture professors Fabio Gramazio and Matthias Kohler are creating a green architectural sculpture for the Tech Cluster Zug. Soaring to a height of 22.5 metres, the structure will consist of five geometrically complex wooden pods that are slightly offset from each other and supported by eight thin steel pillars. The sculpture, named after the Babylonian queen to whom the ancient Hanging Gardens of Babylon have been attributed, is being designed and built using innovative digital methods that were developed as part of the project.

    AI proposes a clever design

    In the conventional design process for projects like this, architects try to take the different requirements of a building or structure into account in its design, and then adjust that design until all the requirements are met in the best way possible. Not so with Semiramis: a custom machine learning algorithm, developed in collaboration with SDSC – The Swiss Data Science Center [Schweizerisches Data Science Center][Centre suisse de la science des données](CH), presented the researchers with sophisticated design options. The proposals differed as to the shapes of the pods and their spatial arrangement relative to each other. They also highlighted how each design affected individual target variables, such as irrigation for the pods. “The computer model lets us reverse the conventional design process and explore the full design scope for a project. This leads to new, often surprising geometries,” says Matthias Kohler, Professor of Architecture and Digital Fabrication at ETH Zürich.

    In the Immersive Design Lab-an augmented reality laboratory on the Hönggerberg campus the researchers were able to explore the designs in three dimensions and fine-​tune them together in real time. Software developed jointly with ETH’s Computational Robotics Lab makes adapting the designs of the wooden pods easy: for example, if the scientists move a single point within the geometry of one of the pods, which are composed of about 70 wooden panels, the software adjusts the entire geometry. At the same time, the software takes into account the relevant manufacturing parameters, such as a panel’s maximum possible weight, meaning it always generates the most efficient and most load-​bearing configuration.

    A delicate dance for the highest precision

    The best design is currently being manufactured in the Robotic Fabrication Laboratory at ETH Zürich. Always in sync, four suspended robotic arms each pick up the wooden panel assigned to them, perform a high-​precision dance and finally put the panels into place according to the computer design. An algorithm calculates the movements of the robots in such a way that no collisions occur during execution. Once the machines have placed their four panels next to each other, craftspeople first temporarily join them before gluing them together with a special casting resin. Each of Semiramis’s five wooden pods comprises between 51 and 88 of these wooden panels.


    Robots build new Hanging Gardens.
    Video: ETH Zürich

    In contrast to traditional wood construction, robotic manufacturing has several advantages: for one thing, the robots relieve humans of the heavy lifting and precise positioning; for another, the assembly process requires no costly, resource-​intensive substructures.

    A symbol of collaboration

    Robotic prefabrication is currently running at full speed. Individual pod segments are being shipped to Zug by lorry on a regular basis, where the architectural sculpture will be erected and finally planted out in spring 2022. Starting that summer, people will be able to view the wooden structure from the ground or from nearby buildings and catch a glimpse of the greenery in the pods.

    For Kohler, meanwhile, the project has already proven its value: “Semiramis has been a beacon project for architectural research, bringing together people inside and outside ETH and advancing the key research topics of the present, such as interactive architectural design and digital fabrication,” he says.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ETH Zurich campus
    Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) is a public research university in the city of Zürich, Switzerland. Founded by the Swiss Federal Government in 1854 with the stated mission to educate engineers and scientists, the school focuses exclusively on science, technology, engineering and mathematics. Like its sister institution Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH) , it is part of the Swiss Federal Institutes of Technology Domain (ETH Domain)) , part of the Swiss Federal Department of Economic Affairs, Education and Research [EAER][Eidgenössisches Departement für Wirtschaft, Bildung und Forschung] [Département fédéral de l’économie, de la formation et de la recherche] (CH).

    The university is an attractive destination for international students thanks to low tuition fees of 809 CHF per semester, PhD and graduate salaries that are amongst the world’s highest, and a world-class reputation in academia and industry. There are currently 22,200 students from over 120 countries, of which 4,180 are pursuing doctoral degrees. In the 2021 edition of the QS World University Rankings ETH Zürich is ranked 6th in the world and 8th by the Times Higher Education World Rankings 2020. In the 2020 QS World University Rankings by subject it is ranked 4th in the world for engineering and technology (2nd in Europe) and 1st for earth & marine science.

    As of November 2019, 21 Nobel laureates, 2 Fields Medalists, 2 Pritzker Prize winners, and 1 Turing Award winner have been affiliated with the Institute, including Albert Einstein. Other notable alumni include John von Neumann and Santiago Calatrava. It is a founding member of the IDEA League and the International Alliance of Research Universities (IARU) and a member of the CESAER network.

    ETH Zürich was founded on 7 February 1854 by the Swiss Confederation and began giving its first lectures on 16 October 1855 as a polytechnic institute (eidgenössische polytechnische Schule) at various sites throughout the city of Zurich. It was initially composed of six faculties: architecture, civil engineering, mechanical engineering, chemistry, forestry, and an integrated department for the fields of mathematics, natural sciences, literature, and social and political sciences.

    It is locally still known as Polytechnikum, or simply as Poly, derived from the original name eidgenössische polytechnische Schule, which translates to “federal polytechnic school”.

    ETH Zürich is a federal institute (i.e., under direct administration by the Swiss government), whereas the University of Zürich [Universität Zürich ] (CH) is a cantonal institution. The decision for a new federal university was heavily disputed at the time; the liberals pressed for a “federal university”, while the conservative forces wanted all universities to remain under cantonal control, worried that the liberals would gain more political power than they already had. In the beginning, both universities were co-located in the buildings of the University of Zürich.

    From 1905 to 1908, under the presidency of Jérôme Franel, the course program of ETH Zürich was restructured to that of a real university and ETH Zürich was granted the right to award doctorates. In 1909 the first doctorates were awarded. In 1911, it was given its current name, Eidgenössische Technische Hochschule. In 1924, another reorganization structured the university in 12 departments. However, it now has 16 departments.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), and four associated research institutes form the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    Reputation and ranking

    ETH Zürich is ranked among the top universities in the world. Typically, popular rankings place the institution as the best university in continental Europe and ETH Zürich is consistently ranked among the top 1-5 universities in Europe, and among the top 3-10 best universities of the world.

    Historically, ETH Zürich has achieved its reputation particularly in the fields of chemistry, mathematics and physics. There are 32 Nobel laureates who are associated with ETH Zürich, the most recent of whom is Richard F. Heck, awarded the Nobel Prize in chemistry in 2010. Albert Einstein is perhaps its most famous alumnus.

    In 2018, the QS World University Rankings placed ETH Zürich at 7th overall in the world. In 2015, ETH Zürich was ranked 5th in the world in Engineering, Science and Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US) and University of Cambridge(UK). In 2015, ETH Zürich also ranked 6th in the world in Natural Sciences, and in 2016 ranked 1st in the world for Earth & Marine Sciences for the second consecutive year.

    In 2016, Times Higher Education World University Rankings ranked ETH Zürich 9th overall in the world and 8th in the world in the field of Engineering & Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US), California Institute of Technology(US), Princeton University(US), University of Cambridge(UK), Imperial College London(UK) and University of Oxford(UK) .

    In a comparison of Swiss universities by swissUP Ranking and in rankings published by CHE comparing the universities of German-speaking countries, ETH Zürich traditionally is ranked first in natural sciences, computer science and engineering sciences.

    In the survey CHE ExcellenceRanking on the quality of Western European graduate school programs in the fields of biology, chemistry, physics and mathematics, ETH Zürich was assessed as one of the three institutions to have excellent programs in all the considered fields, the other two being Imperial College London(UK) and the University of Cambridge(UK), respectively.

     
  • richardmitnick 12:22 pm on November 3, 2021 Permalink | Reply
    Tags: "Technical feasibility of sustainable fuels production demonstrated", , , Researchers at ETH Zürich have developed the process technology that can produce carbon-​neutral transportation fuels from sunlight and air., Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)   

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH): “Technical feasibility of sustainable fuels production demonstrated” 

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)

    03.11.2021
    Peter Rüegg

    Researchers at ETH Zürich have developed the process technology that can produce carbon-​neutral transportation fuels from sunlight and air. Now, in a Nature publication, they demonstrate the stable and reliable operation of the solar mini-​refinery under real on-​sun conditions. And they show a way to introduce solar fuels to the market without additional carbon taxes.

    1
    The solar mini-​refinery at ETH Zürich has proven itself in two years of test operations. Photograph: Alessandro Della Bella / ETH Zürich.

    For the past two years, researchers led by Aldo Steinfeld, Professor of Renewable Energy Carriers at ETH Zürich, have been operating a solar mini-​refinery on the roof of the Machine Laboratory in the centre of Zürich. This unique system can produce liquid transportation fuels, such as methanol or kerosene, from sunlight and air in a multi-​stage thermochemical process.

    In an interview, project architect Steinfeld and study co-​author Anthony Patt, a professor in ETH’s Department of Environmental Systems Science, explain what the experiments revealed, where optimisation is needed and how solar kerosene can succeed in entering the market.

    The solar mini-​refinery on the roof of an ETH building has now been in operation for two years. How would you sum up this work?
    Aldo Steinfeld: We have successfully demonstrated the technical viability of the entire thermochemical process chain for converting sunlight and ambient air into drop-​in transportation fuels. The overall integrated system achieves stable operation under real conditions of intermittent solar radiation and serves as a unique platform for further research and development.

    In the title of your paper in Nature you refer to “drop-​in fuels”. What do you mean by that?
    Aldo Steinfeld: Drop-​in fuels are synthetic alternatives for petroleum-​derived liquid hydrocarbon fuels such as kerosene and gasoline, which are fully compatible with the existing infrastructures for storage, distribution, and utilisation of transportation fuels. These synthetic fuels can help in particular to make long-​haul aviation sustainable.

    Are these carbon-​neutral fuels?
    Aldo Steinfeld: Yes, they are carbon neutral because solar energy is used for their production and because they release only as much CO2 during their combustion as was previously extracted from the air for their production. The solar fuel production chain’s life-​cycle assessment indicates 80 percent avoidance of greenhouse gas emissions with respect to fossil jet fuel and approaching 100 percent, or zero emissions, when construction materials (e.g. steel, glass) are manufactured using renewable energy.

    A refinery that produces fuels from sunlight and air…it sounds like science fiction. How does it work?
    Aldo Steinfeld: This is no science fiction; it is based on pure thermodynamics. The solar refinery consists of three thermochemical conversion units integrated in series: First, the direct air capture unit, which co-​extracts CO2 and H2O directly from ambient air. Second, the solar redox unit, which converts CO2 and H2O into a specific mixture of CO and H2 so-​called syngas. And third, the gas-​to-liquid synthesis unit, which finally converts the syngas into liquid hydrocarbons.


    Solarreaktor Animation EN. Here is an animation explaining the entire process chain of the mini solar refinery. Video: ETH Zürich.

    How was the yield of syngas / methanol?
    Aldo Steinfeld: Our solar mini-​refinery is indeed a “mini” system for research purposes. And although we produced relatively small quantities of fuel, we did it under real field conditions with the not-​so-optimal solar irradiation of Zürich. For example, during a representative day run, the amount of syngas produced is about 100 standard litres, which can be processed into about half a decilitre of pure methanol. Several components of the production chain are not yet optimised. Optimisation is the next phase.

    What went well, and what was not so optimal?
    Aldo Steinfeld: What went exceptionally well is that we obtained total selectivity for the splitting of H2O to H2 and ½ O2, and of CO2 to CO and ½ O2, that is, no undesired by-​products of the thermochemical reactions. Further, and crucial to process integration, we were able to tailor the syngas composition for either methanol or kerosene synthesis. However, the energy efficiency is still too low. To date, the highest efficiency value that we measured for the solar reactor is 5.6 percent. Although this value is a world record for solar thermochemical splitting, it is not good enough. Substantial process optimisation is still required.

    How can the system be further improved to increase efficiency?
    Aldo Steinfeld: Heat recovery between the redox steps of the thermochemical cycle is essential because it can boost the efficiency of the solar reactor to over 20 percent. Furthermore, there is room for optimisation of the redox material structure, for example by means of 3D-​printed hierarchically ordered structures for improved heat and mass transfer. We are investing major efforts in both directions, and I’m optimistic that we will soon be able to report a new record value of energy efficiency.

    For the chemical process, CO2 and H2O must first be extracted from the air and fed into the system. How much energy must be invested for this?
    Aldo Steinfeld: The specific energy requirements per mole CO2 captured are about 15 kJ of mechanical work for vacuum pumping and 500–600 kJ of heat at 95°C depending on the air relative humidity. In principle, we can use waste heat to drive the direct air capture unit. But a huge quantity of high-​temperature process heat is needed for splitting the H2O and CO2, and this is supplied by concentrated solar energy.

    Scaling up to industrial scale: is this feasible?
    Aldo Steinfeld: Certainly. A heliostat field focusing on a solar tower can be used for scaling up. The current solar mini-​refinery uses a 5 kW solar reactor, and while a 10x scale of the solar reactor has already been tested in a solar tower, an additional 20x scale is still required for a 1 MW solar reactor module. The commercial-​size solar tower foresees an array of solar reactor modules and, notably, can make use of the solar concentrating infrastructure already established for commercial solar thermal power plants.

    Will you and your group take care of this?
    Aldo Steinfeld: No, this is up to our industrial partners. We at ETH focus on the more fundamental aspects of the technologies. But we also take care of the technology transfer to industry, for example through the licensing of patents. Two spin-​offs have already emerged from my group, founded by former doctoral students: Climeworks commercialises the technology for CO2 capture from air, while Synhelion commercialises the technology for the production of solar fuel from CO2.

    Anthony Patt, as a co-​author on the study, you examined how solar fuels could enter the market and become competitive. What sorts of policies would it take to help make this possible?
    Anthony Patt: Our analysis of policy instruments shows a need for technology support similar to what has existed for solar and wind energy. Both of these used to cost roughly ten times as much to build and operate as fossil generators, back when governments first started to support them. The current price ratio for solar kerosene compared to fossil is of the same order. A comparison with other renewable energy technologies shows that with a similar support mechanism, it ought to be possible to bring the cost of solar kerosene down to the current cost of fossil aviation fuel.

    What are the most important barriers?
    Anthony Patt: The hardest part is overcoming the high initial price barrier. Carbon taxes are not likely to be effective. If we were to tax fossil aviation fuel to the point where its cost to airlines was the same as solar fuels, which is what would be needed, it would mean making it ten times more expensive. Nobody would want to pay this additional cost for flying, and politicians would be unwilling to impose this burden on people. With solar and wind power, however, other policy instruments fit the context much better. They imposed a small additional cost on the total electricity consumed, and used this revenue to fund the cost that wind and solar added to the system. Similarly for fuels, we would need to impose only a small additional cost on flying, thanks to the current market dominance of fossil fuels, in order to finance investments in renewable fuel production. This would certainly help the solar reactor and solar fuels to take hold in the market.

    In your opinion, what would be the ideal policy instrument to help solar fuels in the market?
    Anthony Patt: The instrument most suited to the fuels market would be a quota system. This would function as follows: airlines and airports would be required to have a minimum share of renewable fuels in the total volume of fuel that they put in their aircraft. This would start out small, e.g. such as 1 or 2 percent. It would raise the total fuel costs, but only minimally; the initially small quota would add only a few Swiss francs to the cost of a typical European flight. The quota would rise each year, eventually towards 100 percent, meaning only solar fuels would be burned. The rising quota would lead to investment, and that in turn to falling costs, just as we observed with wind and solar. By the time solar fuels reach 10–15 percent of the fuel volume, we ought to see the costs for solar fuels nearing those of fossil kerosene. It is a strategy that is politically feasible and straightforward to implement.

    What locations would be suitable for large production facilities?
    Anthony Patt: A solar reactor needs direct sunlight, with no clouds in the way. It makes sense to build them in arid environments, such as those in South Spain and North Africa, the Arabian Peninsula, Australia, in the southwest of the United States, in the Gobi desert of China, or in the Atacama desert of Chile. The process chain does condense water from the air as one input, yet even desert air is moist enough to supply the needed quantities. Finally, desert land is relatively inexpensive, without competing uses. Solar fuels would be a global commodity similar to fossil fuels today, and indeed would rely on the same basic infrastructure for shipping and delivery.

    Aldo Steinfeld: Suitable locations are regions for which the annual direct normal solar radiation is higher than 2000 kWh/m2 per year. In contrast to biofuels, which are limited by resource provision, global jet fuel demand can be met by utilizing less than one percent of the worldwide arid land, which does not compete with food production. To put this in context, 2019 global aviation kerosene consumption was 414 billion liters; the total land footprint of all solar plants required to fully satisfy global demand would be about 45,000 km^2, equivalent to 0.5 percent of the area of the Sahara Desert.

    2
    The sun-​tracking parabolic reflector delivers concentrated sunlight to a solar reactor (seen via the secondary reflector) which converts water and CO2 extracted from the air into a syngas mixture, which in turn is further processed into drop-​in fuels such as kerosene (Photograph: ETH Zürich).

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ETH Zurich campus
    Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) is a public research university in the city of Zürich, Switzerland. Founded by the Swiss Federal Government in 1854 with the stated mission to educate engineers and scientists, the school focuses exclusively on science, technology, engineering and mathematics. Like its sister institution Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH) , it is part of the Swiss Federal Institutes of Technology Domain (ETH Domain)) , part of the Swiss Federal Department of Economic Affairs, Education and Research [EAER][Eidgenössisches Departement für Wirtschaft, Bildung und Forschung] [Département fédéral de l’économie, de la formation et de la recherche] (CH).

    The university is an attractive destination for international students thanks to low tuition fees of 809 CHF per semester, PhD and graduate salaries that are amongst the world’s highest, and a world-class reputation in academia and industry. There are currently 22,200 students from over 120 countries, of which 4,180 are pursuing doctoral degrees. In the 2021 edition of the QS World University Rankings ETH Zürich is ranked 6th in the world and 8th by the Times Higher Education World Rankings 2020. In the 2020 QS World University Rankings by subject it is ranked 4th in the world for engineering and technology (2nd in Europe) and 1st for earth & marine science.

    As of November 2019, 21 Nobel laureates, 2 Fields Medalists, 2 Pritzker Prize winners, and 1 Turing Award winner have been affiliated with the Institute, including Albert Einstein. Other notable alumni include John von Neumann and Santiago Calatrava. It is a founding member of the IDEA League and the International Alliance of Research Universities (IARU) and a member of the CESAER network.

    ETH Zürich was founded on 7 February 1854 by the Swiss Confederation and began giving its first lectures on 16 October 1855 as a polytechnic institute (eidgenössische polytechnische Schule) at various sites throughout the city of Zurich. It was initially composed of six faculties: architecture, civil engineering, mechanical engineering, chemistry, forestry, and an integrated department for the fields of mathematics, natural sciences, literature, and social and political sciences.

    It is locally still known as Polytechnikum, or simply as Poly, derived from the original name eidgenössische polytechnische Schule, which translates to “federal polytechnic school”.

    ETH Zürich is a federal institute (i.e., under direct administration by the Swiss government), whereas the University of Zürich [Universität Zürich ] (CH) is a cantonal institution. The decision for a new federal university was heavily disputed at the time; the liberals pressed for a “federal university”, while the conservative forces wanted all universities to remain under cantonal control, worried that the liberals would gain more political power than they already had. In the beginning, both universities were co-located in the buildings of the University of Zürich.

    From 1905 to 1908, under the presidency of Jérôme Franel, the course program of ETH Zürich was restructured to that of a real university and ETH Zürich was granted the right to award doctorates. In 1909 the first doctorates were awarded. In 1911, it was given its current name, Eidgenössische Technische Hochschule. In 1924, another reorganization structured the university in 12 departments. However, it now has 16 departments.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), and four associated research institutes form the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    Reputation and ranking

    ETH Zürich is ranked among the top universities in the world. Typically, popular rankings place the institution as the best university in continental Europe and ETH Zürich is consistently ranked among the top 1-5 universities in Europe, and among the top 3-10 best universities of the world.

    Historically, ETH Zürich has achieved its reputation particularly in the fields of chemistry, mathematics and physics. There are 32 Nobel laureates who are associated with ETH Zürich, the most recent of whom is Richard F. Heck, awarded the Nobel Prize in chemistry in 2010. Albert Einstein is perhaps its most famous alumnus.

    In 2018, the QS World University Rankings placed ETH Zürich at 7th overall in the world. In 2015, ETH Zürich was ranked 5th in the world in Engineering, Science and Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US) and University of Cambridge(UK). In 2015, ETH Zürich also ranked 6th in the world in Natural Sciences, and in 2016 ranked 1st in the world for Earth & Marine Sciences for the second consecutive year.

    In 2016, Times Higher Education World University Rankings ranked ETH Zürich 9th overall in the world and 8th in the world in the field of Engineering & Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US), California Institute of Technology(US), Princeton University(US), University of Cambridge(UK), Imperial College London(UK) and University of Oxford(UK) .

    In a comparison of Swiss universities by swissUP Ranking and in rankings published by CHE comparing the universities of German-speaking countries, ETH Zürich traditionally is ranked first in natural sciences, computer science and engineering sciences.

    In the survey CHE ExcellenceRanking on the quality of Western European graduate school programs in the fields of biology, chemistry, physics and mathematics, ETH Zürich was assessed as one of the three institutions to have excellent programs in all the considered fields, the other two being Imperial College London(UK) and the University of Cambridge(UK), respectively.

     
  • richardmitnick 8:13 am on October 18, 2021 Permalink | Reply
    Tags: "Plankton Is Undergoing a Global Migration With Dire Consequences For The Food Web", , , , Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)   

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) via Science Alert (US) : “Plankton Is Undergoing a Global Migration With Dire Consequences For The Food Web” 

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)

    via

    ScienceAlert

    Science Alert (US)

    18 OCTOBER 2021
    MICHELLE STARR

    1
    A chain of salps, a type of plankton. Credit: Gerard Soury/The Image Bank/Getty Images.

    If Earth’s temperature rises by a significant enough margin, we could see a major restructuring of the plankton species living in our oceans.

    Not only would the diversity of species radically change, but warming oceans could see plankton migrating from the tropics towards the poles, away from waters growing too warm for habitability.

    In fact, we may already be observing this shift in the last few decades, with some species documented farther north than we’ve ever seen them.

    This restructuring would have a major impact on oceanic ecosystems, as planktons form a vital component of both the oceanic carbon cycle and the food web.

    Plankton are mostly microscopic organisms that drift wheresoe’er the ocean currents take them, with insufficient propulsion abilities to control their journeys. They are the second-most abundant life form on Earth, beaten out only by bacteria; without plankton, life as we know it would not exist in our oceans.

    Two types that are of particular interest are phytoplankton (plants) and zooplankton (animals). Phytoplankton’s photosynthesis plays a major role in the carbon cycle, and the production of Earth’s oxygen, and the organisms constitute a vital part of the food web on which other, larger organisms rely. Zooplankton, too, is a vital part of the food web and carbon cycle.

    Changes in the distribution of plankton are expected as global temperatures continue to trend upwards. What those changes might be and where plankton might end up is the subject of a new study led by environmental physicist Fabio Benedetti of ETH Zürich in Switzerland.

    He and colleagues developed global distribution maps for more than 860 species of phytoplankton and zooplankton, and then used statistical algorithms and climate models to predict the changes these communities would undergo under future climate change.

    Initially, they found an increase in both kinds of plankton; but if mean sea surface temperatures were to reach greater than 25 degrees Celsius (the long-term average is currently 16.1 degrees Celsius), zooplankton would decline in the tropics, and all species would shift towards cooler waters at higher latitudes.

    In these polar communities, up to 40 percent of phytoplankton species would be replaced by subtropical interlopers, which means it’s not only the equatorial oceans that would be affected.

    “In some areas of the ocean, we will see a rise in species numbers that may, on the face of it, seem positive,” Benedetti explains. “But this boost in diversity could actually pose a serious threat to the existence and functioning of well-​established marine ecosystems at higher latitudes.”

    Although many plankton species are tiny, they are not all the same size, and this size variation matters. In the mid- and high latitudes, the ecosystems contain relatively few species, and these plankton communities consist of larger species that are efficient at exporting organic carbon, and are an important food source for fish.

    The team’s simulations showed that rising temperatures make the habitats less hospitable for larger plankton, but better for smaller ones. This would result in a boom of small plankton diversity, and a decline in the larger species at these latitudes. In turn, this would impact fish populations.

    It would affect the carbon cycle, too. Larger plankton species often have shells that smaller species do not, and heavier excretions. For these species, dead plankton and their waste sink faster, which means that the decomposition process that transforms the carbon in their bodies and poop to carbon dioxide happens at greater depths.

    This means the carbon dioxide gets trapped for long periods, prevented from reaching the atmosphere.

    Replacing these species with smaller species would result in decreasing efficiency of the ocean carbon sink, although it’s a little harder to quantify the effect, the researchers said.

    “The only thing we can determine right now is how important certain areas of the ocean are today in terms of different ecosystem services and whether this provision of services will change in the future,” Benedetti says.

    And it really does seem to be a matter of when, not if. We’ve already seen marine life leaving equatorial regions as the waters become too hot for survival, and we’ve already seen large copepods start to be displaced by smaller species. Jellyfish have also been observed moving north and south away from the equator.

    These results and observations imply “that future climate change threatens the plankton-mediated ecosystem services provided by the ocean in these regions,” the researchers write in their paper.

    The research has been published in Nature Communications.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ETH Zurich campus
    Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) is a public research university in the city of Zürich, Switzerland. Founded by the Swiss Federal Government in 1854 with the stated mission to educate engineers and scientists, the school focuses exclusively on science, technology, engineering and mathematics. Like its sister institution Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH) , it is part of the Swiss Federal Institutes of Technology Domain (ETH Domain)) , part of the Swiss Federal Department of Economic Affairs, Education and Research [EAER][Eidgenössisches Departement für Wirtschaft, Bildung und Forschung] [Département fédéral de l’économie, de la formation et de la recherche] (CH).

    The university is an attractive destination for international students thanks to low tuition fees of 809 CHF per semester, PhD and graduate salaries that are amongst the world’s highest, and a world-class reputation in academia and industry. There are currently 22,200 students from over 120 countries, of which 4,180 are pursuing doctoral degrees. In the 2021 edition of the QS World University Rankings ETH Zürich is ranked 6th in the world and 8th by the Times Higher Education World Rankings 2020. In the 2020 QS World University Rankings by subject it is ranked 4th in the world for engineering and technology (2nd in Europe) and 1st for earth & marine science.

    As of November 2019, 21 Nobel laureates, 2 Fields Medalists, 2 Pritzker Prize winners, and 1 Turing Award winner have been affiliated with the Institute, including Albert Einstein. Other notable alumni include John von Neumann and Santiago Calatrava. It is a founding member of the IDEA League and the International Alliance of Research Universities (IARU) and a member of the CESAER network.

    ETH Zürich was founded on 7 February 1854 by the Swiss Confederation and began giving its first lectures on 16 October 1855 as a polytechnic institute (eidgenössische polytechnische Schule) at various sites throughout the city of Zurich. It was initially composed of six faculties: architecture, civil engineering, mechanical engineering, chemistry, forestry, and an integrated department for the fields of mathematics, natural sciences, literature, and social and political sciences.

    It is locally still known as Polytechnikum, or simply as Poly, derived from the original name eidgenössische polytechnische Schule, which translates to “federal polytechnic school”.

    ETH Zürich is a federal institute (i.e., under direct administration by the Swiss government), whereas the University of Zürich [Universität Zürich ] (CH) is a cantonal institution. The decision for a new federal university was heavily disputed at the time; the liberals pressed for a “federal university”, while the conservative forces wanted all universities to remain under cantonal control, worried that the liberals would gain more political power than they already had. In the beginning, both universities were co-located in the buildings of the University of Zürich.

    From 1905 to 1908, under the presidency of Jérôme Franel, the course program of ETH Zürich was restructured to that of a real university and ETH Zürich was granted the right to award doctorates. In 1909 the first doctorates were awarded. In 1911, it was given its current name, Eidgenössische Technische Hochschule. In 1924, another reorganization structured the university in 12 departments. However, it now has 16 departments.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), and four associated research institutes form the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    Reputation and ranking

    ETH Zürich is ranked among the top universities in the world. Typically, popular rankings place the institution as the best university in continental Europe and ETH Zürich is consistently ranked among the top 1-5 universities in Europe, and among the top 3-10 best universities of the world.

    Historically, ETH Zürich has achieved its reputation particularly in the fields of chemistry, mathematics and physics. There are 32 Nobel laureates who are associated with ETH Zürich, the most recent of whom is Richard F. Heck, awarded the Nobel Prize in chemistry in 2010. Albert Einstein is perhaps its most famous alumnus.

    In 2018, the QS World University Rankings placed ETH Zürich at 7th overall in the world. In 2015, ETH Zürich was ranked 5th in the world in Engineering, Science and Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US) and University of Cambridge(UK). In 2015, ETH Zürich also ranked 6th in the world in Natural Sciences, and in 2016 ranked 1st in the world for Earth & Marine Sciences for the second consecutive year.

    In 2016, Times Higher Education World University Rankings ranked ETH Zürich 9th overall in the world and 8th in the world in the field of Engineering & Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US), California Institute of Technology(US), Princeton University(US), University of Cambridge(UK), Imperial College London(UK) and University of Oxford(UK) .

    In a comparison of Swiss universities by swissUP Ranking and in rankings published by CHE comparing the universities of German-speaking countries, ETH Zürich traditionally is ranked first in natural sciences, computer science and engineering sciences.

    In the survey CHE ExcellenceRanking on the quality of Western European graduate school programs in the fields of biology, chemistry, physics and mathematics, ETH Zürich was assessed as one of the three institutions to have excellent programs in all the considered fields, the other two being Imperial College London(UK) and the University of Cambridge(UK), respectively.

     
  • richardmitnick 4:25 pm on October 13, 2021 Permalink | Reply
    Tags: "How to better identify dangerous volcanoes", , , , Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH),   

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH): “How to better identify dangerous volcanoes” 

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)

    11.10.2021
    Felix Würsten

    The more water is dissolved in the magma, the greater the risk that a volcano will explode. A new ETH study now shows that this simple rule is only partially true. Paradoxically, high water content significantly reduces the risk of explosion.

    1
    During the eruption of Mount Pinatubo in June 1991, large quantities of ash particles were ejected into the stratosphere. The eruption’s impact on the climate lasted for years. (Bild: Dave Harlow, The Geological Survey (US))

    Volcanologists have long been troubled by two questions: When exactly will a volcano erupt next? And how will that eruption unfold? Will the lava flow down the mountain as a viscous paste, or will the volcano explosively drive a cloud of ash kilometres up into the atmosphere?

    The first question of “when” can now be answered relatively precisely, explains Olivier Bachmann, Professor of Magmatic Petrology at ETH Zürich. He points to monitoring data from the Canary Island of La Palma, where the Cumbre Vieja volcano recently emitted a lava flow that poured down to the sea. Using seismic data, the experts were able to track the rise of the lava in real time, so to speak, and predict the eruption to within a few days.

    Unpredictable forces of nature

    The “how”, on the other hand, is still a major headache for volcanologists. Volcanoes on islands such as La Palma or Hawaii are known to be unlikely to produce huge explosions. But this question is much more difficult to answer for the large volcanoes located along subduction zones, such as those found in the Andes, on the US West Coast, in Japan, Indonesia, or in Italy and Greece. This is because all these volcanoes can erupt in many different ways, with no way to predict which will occur.

    To better understand how a volcano erupts, in recent years many researchers have focused on what happens in the volcanic conduit. It has been known for some time that the dissolved gases in the magma, which then emerges as lava at the Earth’s surface, are an important factor. If there are large quantities of dissolved gases in the magma, gas bubbles form in response to the decrease in pressure as the magma rises up through the conduit, similar to what happens in a shaken champagne bottle. These gas bubbles, if they cannot escape, then lead to an explosive eruption. In contrast, a magma containing little dissolved gas flows gently out of the conduit and is therefore much less dangerous for the surrounding area.

    What happens in the run-​up?

    Bachmann and his postdoctoral researcher Răzvan-​Gabriel Popa have now focused on the magma chamber in a new study they recently published in the journal Nature Geoscience. In an extensive literature study, they analysed data from 245 volcanic eruptions, reconstructing how hot the magma chamber was before the eruption, how many solid crystals there were in the melt and how high the dissolved water content was. This last factor is particularly important, because the dissolved water later forms the infamous gas bubbles during the magma’s ascent, turning the volcano into a champagne bottle that was too quickly uncorked.

    The data initially confirmed the existing doctrine: if the magma contains little water, the risk of an explosive eruption is low. The risk is also low if the magma already contains many crystals. This is because these ensure the formation of gas channels in the conduit through which the gas can easily escape, Bachmann explains. In the case of magma with few crystals and a water content of more than 3.5 percent, on the other hand, the risk of an explosive eruption is very high – just as the prevailing doctrine predicts.

    What surprised Bachmann and Popa, however, was that the picture changes again with high water content: if there is more than about 5.5 percent water in the magma, the risk of an explosive eruption drops markedly, even though many gas bubbles can certainly form as the lava rises. “So there’s a clearly defined area of risk that we need to focus on,” Bachmann explains.

    Gases as a buffer

    The two volcanologists explain their new finding by way of two effects, all related to the very high water content that causes gas bubbles to form not only in the conduit, but also down in the magma chamber. First, the many gas bubbles link up early on, at great depth, to form channels in the conduit, making it easier for the gas to escape. The gas can then leak into the atmosphere without any explosive effect. Second, the gas bubbles present in the magma chamber delay the eruption of the volcano and thus reduce the risk of an explosion.

    “Before a volcano erupts, hot magma rises from great depths and enters the subvolcanic chamber of the volcano, which is located 6 to 8 kilometres below the surface, and increases the pressure there,” Popa explains. “As soon as the pressure in the magma chamber is high enough to crack the overlying rocks, an eruption occurs.”

    If the molten rock in the magma chamber contains gas bubbles, these act as a buffer: they are compressed by the material rising from below, slowing the pressure buildup in the magma chamber. This delay gives the magma more time to absorb heat from below, such that the lava is hotter and thus less viscous when it finally erupts. This makes it easier for the gas in the conduit to escape from the magma without explosive side effects.

    COVID-​19 as a stroke of luck

    These new findings make it theoretically possible to arrive at better forecasts for when to expect a dangerous explosion. The question is, how can scientists determine in advance the quantity of gas bubble in the magma chamber and the extent to which the magma has already crystallised? “We’re currently discussing with geophysicists which methods could be used to best record these crucial parameters,” Bachmann says. “I think the solution is to combine different metrics – seismic, gravimetric, geoelectric and magnetic data, for example.”

    To conclude, Bachmann mentions a side aspect of the new study: “If it weren’t for the coronavirus crisis, we probably wouldn’t have written this paper,” he says with a grin. “When the first lockdown meant we suddenly couldn’t go into the field or the lab, we had to rethink our research activities at short notice. So we took the time we now had on our hands and spent it going through the literature to verify an idea we’d already had based on our own measurement data. We probably wouldn’t have done this time-​consuming research under normal circumstances.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ETH Zurich campus
    Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) is a public research university in the city of Zürich, Switzerland. Founded by the Swiss Federal Government in 1854 with the stated mission to educate engineers and scientists, the school focuses exclusively on science, technology, engineering and mathematics. Like its sister institution Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH) , it is part of the Swiss Federal Institutes of Technology Domain (ETH Domain)) , part of the Swiss Federal Department of Economic Affairs, Education and Research [EAER][Eidgenössisches Departement für Wirtschaft, Bildung und Forschung] [Département fédéral de l’économie, de la formation et de la recherche] (CH).

    The university is an attractive destination for international students thanks to low tuition fees of 809 CHF per semester, PhD and graduate salaries that are amongst the world’s highest, and a world-class reputation in academia and industry. There are currently 22,200 students from over 120 countries, of which 4,180 are pursuing doctoral degrees. In the 2021 edition of the QS World University Rankings ETH Zürich is ranked 6th in the world and 8th by the Times Higher Education World Rankings 2020. In the 2020 QS World University Rankings by subject it is ranked 4th in the world for engineering and technology (2nd in Europe) and 1st for earth & marine science.

    As of November 2019, 21 Nobel laureates, 2 Fields Medalists, 2 Pritzker Prize winners, and 1 Turing Award winner have been affiliated with the Institute, including Albert Einstein. Other notable alumni include John von Neumann and Santiago Calatrava. It is a founding member of the IDEA League and the International Alliance of Research Universities (IARU) and a member of the CESAER network.

    ETH Zürich was founded on 7 February 1854 by the Swiss Confederation and began giving its first lectures on 16 October 1855 as a polytechnic institute (eidgenössische polytechnische Schule) at various sites throughout the city of Zurich. It was initially composed of six faculties: architecture, civil engineering, mechanical engineering, chemistry, forestry, and an integrated department for the fields of mathematics, natural sciences, literature, and social and political sciences.

    It is locally still known as Polytechnikum, or simply as Poly, derived from the original name eidgenössische polytechnische Schule, which translates to “federal polytechnic school”.

    ETH Zürich is a federal institute (i.e., under direct administration by the Swiss government), whereas the University of Zürich [Universität Zürich ] (CH) is a cantonal institution. The decision for a new federal university was heavily disputed at the time; the liberals pressed for a “federal university”, while the conservative forces wanted all universities to remain under cantonal control, worried that the liberals would gain more political power than they already had. In the beginning, both universities were co-located in the buildings of the University of Zürich.

    From 1905 to 1908, under the presidency of Jérôme Franel, the course program of ETH Zürich was restructured to that of a real university and ETH Zürich was granted the right to award doctorates. In 1909 the first doctorates were awarded. In 1911, it was given its current name, Eidgenössische Technische Hochschule. In 1924, another reorganization structured the university in 12 departments. However, it now has 16 departments.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), and four associated research institutes form the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    Reputation and ranking

    ETH Zürich is ranked among the top universities in the world. Typically, popular rankings place the institution as the best university in continental Europe and ETH Zürich is consistently ranked among the top 1-5 universities in Europe, and among the top 3-10 best universities of the world.

    Historically, ETH Zürich has achieved its reputation particularly in the fields of chemistry, mathematics and physics. There are 32 Nobel laureates who are associated with ETH Zürich, the most recent of whom is Richard F. Heck, awarded the Nobel Prize in chemistry in 2010. Albert Einstein is perhaps its most famous alumnus.

    In 2018, the QS World University Rankings placed ETH Zürich at 7th overall in the world. In 2015, ETH Zürich was ranked 5th in the world in Engineering, Science and Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US) and University of Cambridge(UK). In 2015, ETH Zürich also ranked 6th in the world in Natural Sciences, and in 2016 ranked 1st in the world for Earth & Marine Sciences for the second consecutive year.

    In 2016, Times Higher Education World University Rankings ranked ETH Zürich 9th overall in the world and 8th in the world in the field of Engineering & Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US), California Institute of Technology(US), Princeton University(US), University of Cambridge(UK), Imperial College London(UK) and University of Oxford(UK) .

    In a comparison of Swiss universities by swissUP Ranking and in rankings published by CHE comparing the universities of German-speaking countries, ETH Zürich traditionally is ranked first in natural sciences, computer science and engineering sciences.

    In the survey CHE ExcellenceRanking on the quality of Western European graduate school programs in the fields of biology, chemistry, physics and mathematics, ETH Zürich was assessed as one of the three institutions to have excellent programs in all the considered fields, the other two being Imperial College London(UK) and the University of Cambridge(UK), respectively.

     
  • richardmitnick 10:15 am on September 28, 2021 Permalink | Reply
    Tags: "Geologically vibrant continents produce higher biodiversity", Active plate tectonics promote both the formation of mountains such as the Andes in South America and the emergence of archipelagos as in Southeast Asia., Africa’s rainforest belt has had less tectonic activity over the past 110 million years., , , , Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH), Tropical rainforests are the most biodiverse habitats on Earth., Why the rainforests of Africa are home to fewer species than the tropical forests of South America and Southeast Asia.   

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH): “Geologically vibrant continents produce higher biodiversity” 

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)

    27.09.2021
    Peter Rüegg

    Using a new mechanistic model of evolution on Earth, researchers at ETH Zürich can now better explain why the rainforests of Africa are home to fewer species than the tropical forests of South America and Southeast Asia. The key to high species diversity lies in how dynamically the continents have evolved over time.

    1
    The tropical forests of South America are much more species-​rich compared to those of Africa. The Andean Cock-​of-the Rock (Rupicola peruvianus) is a particularly striking representative of South America’s diversity. Photograph: ondrejprosicky/ AdobeStock.

    Tropical rainforests are the most biodiverse habitats on Earth. They are home to a huge number of different plants, animals, fungi and other organisms. These forests are primarily spread over three continents, concentrated in the Amazon Basin in South America, the Congo Basin in Central Africa, and the vast archipelago of Southeast Asia.

    One might assume that all tropical rainforests are about equally diverse due to their stable warm and humid climate and their geographical location around the equator – but this is not the case. Compared to South America and Southeast Asia, the number of species in Africa’s humid tropical forests is significantly lower for many groups of organisms.

    Palms with few species

    A good illustration of this uneven distribution – what researchers refer to as the pantropical diversity disparity (PDD) – is palm trees: of the 2,500 species worldwide, 1,200 occur in the Southeast Asian region and 800 in the tropical forests of South America, but only 66 in African rainforests.

    Why this should be so is debated among biodiversity researchers. There is some evidence that the current climate is the cause of the lower species diversity in Africa’s tropical forests. The climate in Africa’s tropical belt is drier and cooler than that in Southeast Asia and South America.

    Other evidence suggests that the different environmental and tectonic histories of the three tropical forest regions over tens of millions of years had an impact on the differing levels of biodiversity. Such environmental changes include, for example, the formation of mountains, islands, or arid and desert areas.

    However, it is difficult to distinguish between the two factors of current climate and environmental history.

    Mountain building brings up diversity

    Led by Loïc Pellissier, Professor of Landscape Ecology, researchers at ETH Zürich have now investigated this question with the help of a new computer model that allows them to simulate species diversification over millions of years of evolution. They conclude that the current climate is not the main reason why biodiversity is lower in the rainforests of Africa. Rather, biodiversity has emerged from the dynamics of mountain building and climate change. The results of the historical simulations largely coincide with the patterns of biodiversity distribution observable today.

    “Our model confirms that differences in palaeoenvironmental dynamics produced the uneven distribution of biodiversity, rather than current climatic factors,” says Pellissier. “Geological processes as well as global temperature fluctuations determine where and when species emerge or go extinct.”

    One factor in particular is crucial to high biodiversity on a continent: geological dynamics. Active plate tectonics promote both the formation of mountains such as the Andes in South America and the emergence of archipelagos as in Southeast Asia. These two processes result in many new ecological niches, which in turn give rise to numerous new species. Africa’s rainforest belt has had less tectonic activity over the past 110 million years. It is also relatively small because it is bordered by drylands in the north and south, limiting its spread. “Species from humid regions can hardly adapt to the dry conditions of the surrounding drylands,” Pellissier points out.

    Geologically vibrant continents produce higher biodiversity

    The “gen3sis” model developed by ETH researchers was only recently presented in the journal PLoS Biology. It is a mechanistic model in which the primary constraints such as geology and climate are represented together with biological mechanisms and from which biodiversity patterns can materialise. To simulate the emergence of biodiversity, the most important processes to integrate into the model are ecology (i.e. each species has its own limited ecological niche), evolution, speciation and dispersal.

    “With these four basic rules, we can simulate the population dynamic of organisms over shifting environmental conditions and offer a very good explanation for how the organisms came about,” Pellissier says.

    By building their model on these basic evolutionary mechanisms, the researchers can simulate species diversity without having to input (distribution) data for each individual species. However, the model requires data on the geological dynamics of the continents under consideration, as well as humidity and temperatures from climate reconstructions.

    The researchers are now refining the model and running simulations to understand the emergence of biodiversity in other species-​rich regions, such as the mountains of western China. The model’s code and the palaeoenvironmental reconstructions are open source. All interested evolutionary and biodiversity researchers can use it to study the formation of biodiversity in different regions of the world.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ETH Zurich campus
    Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) is a public research university in the city of Zürich, Switzerland. Founded by the Swiss Federal Government in 1854 with the stated mission to educate engineers and scientists, the school focuses exclusively on science, technology, engineering and mathematics. Like its sister institution Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH) , it is part of the Swiss Federal Institutes of Technology Domain (ETH Domain)) , part of the Swiss Federal Department of Economic Affairs, Education and Research [EAER][Eidgenössisches Departement für Wirtschaft, Bildung und Forschung] [Département fédéral de l’économie, de la formation et de la recherche] (CH).

    The university is an attractive destination for international students thanks to low tuition fees of 809 CHF per semester, PhD and graduate salaries that are amongst the world’s highest, and a world-class reputation in academia and industry. There are currently 22,200 students from over 120 countries, of which 4,180 are pursuing doctoral degrees. In the 2021 edition of the QS World University Rankings ETH Zürich is ranked 6th in the world and 8th by the Times Higher Education World Rankings 2020. In the 2020 QS World University Rankings by subject it is ranked 4th in the world for engineering and technology (2nd in Europe) and 1st for earth & marine science.

    As of November 2019, 21 Nobel laureates, 2 Fields Medalists, 2 Pritzker Prize winners, and 1 Turing Award winner have been affiliated with the Institute, including Albert Einstein. Other notable alumni include John von Neumann and Santiago Calatrava. It is a founding member of the IDEA League and the International Alliance of Research Universities (IARU) and a member of the CESAER network.

    ETH Zürich was founded on 7 February 1854 by the Swiss Confederation and began giving its first lectures on 16 October 1855 as a polytechnic institute (eidgenössische polytechnische Schule) at various sites throughout the city of Zurich. It was initially composed of six faculties: architecture, civil engineering, mechanical engineering, chemistry, forestry, and an integrated department for the fields of mathematics, natural sciences, literature, and social and political sciences.

    It is locally still known as Polytechnikum, or simply as Poly, derived from the original name eidgenössische polytechnische Schule, which translates to “federal polytechnic school”.

    ETH Zürich is a federal institute (i.e., under direct administration by the Swiss government), whereas the University of Zürich [Universität Zürich ] (CH) is a cantonal institution. The decision for a new federal university was heavily disputed at the time; the liberals pressed for a “federal university”, while the conservative forces wanted all universities to remain under cantonal control, worried that the liberals would gain more political power than they already had. In the beginning, both universities were co-located in the buildings of the University of Zürich.

    From 1905 to 1908, under the presidency of Jérôme Franel, the course program of ETH Zürich was restructured to that of a real university and ETH Zürich was granted the right to award doctorates. In 1909 the first doctorates were awarded. In 1911, it was given its current name, Eidgenössische Technische Hochschule. In 1924, another reorganization structured the university in 12 departments. However, it now has 16 departments.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), and four associated research institutes form the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    Reputation and ranking

    ETH Zürich is ranked among the top universities in the world. Typically, popular rankings place the institution as the best university in continental Europe and ETH Zürich is consistently ranked among the top 1-5 universities in Europe, and among the top 3-10 best universities of the world.

    Historically, ETH Zürich has achieved its reputation particularly in the fields of chemistry, mathematics and physics. There are 32 Nobel laureates who are associated with ETH Zürich, the most recent of whom is Richard F. Heck, awarded the Nobel Prize in chemistry in 2010. Albert Einstein is perhaps its most famous alumnus.

    In 2018, the QS World University Rankings placed ETH Zürich at 7th overall in the world. In 2015, ETH Zürich was ranked 5th in the world in Engineering, Science and Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US) and University of Cambridge(UK). In 2015, ETH Zürich also ranked 6th in the world in Natural Sciences, and in 2016 ranked 1st in the world for Earth & Marine Sciences for the second consecutive year.

    In 2016, Times Higher Education World University Rankings ranked ETH Zürich 9th overall in the world and 8th in the world in the field of Engineering & Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US), California Institute of Technology(US), Princeton University(US), University of Cambridge(UK), Imperial College London(UK) and University of Oxford(UK) .

    In a comparison of Swiss universities by swissUP Ranking and in rankings published by CHE comparing the universities of German-speaking countries, ETH Zürich traditionally is ranked first in natural sciences, computer science and engineering sciences.

    In the survey CHE ExcellenceRanking on the quality of Western European graduate school programs in the fields of biology, chemistry, physics and mathematics, ETH Zürich was assessed as one of the three institutions to have excellent programs in all the considered fields, the other two being Imperial College London(UK) and the University of Cambridge(UK), respectively.

     
  • richardmitnick 1:56 pm on September 22, 2021 Permalink | Reply
    Tags: "Simplifying quantum systems", Although redundancy renders the system more stable it also makes it exponentially more complex – and in turn much more susceptible to error., If only it were less prone to error quantum physics might already be giving us instant solutions to seemingly unsolvable problems., In crude terms our digitally driven information society is based on a simple binary opposition: 0 or 1., It is little wonder that quantum physics should exercise a fascination far beyond its immediate circle., It will take some time before a quantum computer can solve practical problems beyond the realm of quantum physics., One potential route is the use of free electrons in semiconductor materials., , Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH), Topological quantum systems offer an especially neat example of how in physics theory and experiment can be mutually enriching.   

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH): “Simplifying quantum systems” 

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)

    22.09.2021
    Felix Würsten

    If only it were less prone to error quantum physics might already be giving us instant solutions to seemingly unsolvable problems. ETH researchers are therefore working to develop systems that are more robust.

    1
    Quantum systems require sophisticated control technology, a lot of engineering know-​how and a better understanding of the physical correlations. (Photograph: Heidi Hostettler)

    In crude terms our digitally driven information society is based on a simple binary opposition: 0 or 1. But what happens when other alternatives exist alongside these polar opposites? Might this give rise to a whole raft of different states and enable us to process complex information much faster?

    It is precisely the prospect of going beyond conventional methods of data processing that has inspired such high hopes in the field of quantum physics – not only on the part of scientists in basic and theoretical research, but also among the CEOs of major corporations. Were this vision to materialise, and computers behave in accordance with the laws of quantum mechanics, it would open the door to a whole new world of applications. For example, such a powerful system would be able to determine the mechanism of proteins at a radically faster rate than a conventional computer could ever hope to achieve. This, in turn, would massively accelerate the development of new medicines.

    A rocky road

    Given such prospects, it is little wonder that quantum physics should exercise a fascination far beyond its immediate circle. Yet the road that will take us to a quantum computer capable of answering everyday questions is a rocky one – and much longer than many are prepared to admit. “We’re talking about decades, not years, before we reach that point,” says Jonathan Home, Professor of Experimental Quantum Optics and Photonics at ETH Zürich. And Professor Home is one of those working in a field in which quantum research is relatively far along. He uses individual atoms as qubits. These are the basic units of information used by a quantum computer to perform calculations. Home uses beryllium and calcium atoms held in special electrical ion traps. These are then manipulated with a laser according to the laws of quantum mechanics. “Atoms are great systems for information processing because they can be isolated – and because, provided they remain isolated, they can store quantum information for a couple of seconds or even minutes,” he explains.

    In order to be able to use this information, however, these fragile quantum objects have to be reconnected with the everyday physical world. During this step, even the slightest anomalies can corrupt the entire system. The question is, therefore, how to reduce this susceptibility to error and, at the same time, increase the number of qubits.

    Simpler and more robust

    An obvious approach is to equip the systems with a degree of redundancy, i.e. to link several physical qubits to a single logical qubit. But this has a major drawback. Although redundancy renders the system more stable it also makes it exponentially more complex – and in turn much more susceptible to error.

    This requires not only sophisticated control technology and a lot of engineering know-​how but also a better understanding of the physical correlations. According to Home, the development of quantum computers has already yielded concrete benefits, even if today’s technology is still far removed from being able to investigate protein structures: “In essence, our experiments pose an endurance test for the physical theories. The results then provide us with new insights as to how the quantum world works.” One of ETH’s big strengths is that researchers here are working on very different approaches. The ion traps used by Home are just one of a number of routes that could deliver a breakthrough. Superconducting circuits are another promising option. “It’s highly unusual for one university to be pursuing so many different approaches,” says Home.

    Highly specialised infrastructure

    In common with his colleagues, Home has big hopes for the planned physics building on the Hönggerberg campus. Funded by an endowment from Walter Haefner, this will feature highly specialised laboratories that are exceptionally well isolated from outside interference. It is here that scientists will attempt to push back the boundaries of quantum research. In so doing, they will also explore ideas that are still very much in their infancy.

    One potential route is the use of free electrons in semiconductor materials. These are able to move freely of the influence of the crystal lattice structure and exhibit quantum mechanical properties that can be used for processing information. “But for this purpose, the semiconductors have to be extremely pure,” explains Werner Wegscheider, who as Professor of Solid State Physics has experience in producing these specialised materials. He uses a vacuum chamber to build customised semiconductors atom by atom. “We make the world’s purest semiconductors,” he says with pride. Such materials can exhibit completely new properties. When cooled to a very low temperature and exposed to a magnetic field, the free electrons condense to form a quasiparticle. In other words, they collectively behave in the manner of a single particle and can therefore be described mathematically. Researchers have good reason to believe that such topological quantum systems are more resistant to perturbation than other quantum objects – which is precisely why they may be less prone to error.

    A worthwhile effort

    Topological quantum systems offer an especially neat example of how in physics theory and experiment can be mutually enriching. The basic quantum Hall effect underpinning these systems was discovered experimentally. This effect was then described theoretically. The resulting theory subsequently led to the prediction of the topological states about which researchers are currently so excited. It has yet to be experimentally verified whether these theoretically predicted states actually exist in practice. If experimental physicists can demonstrate this, they may soon be returning the problem for additional theoretical elaboration.

    Like Home, Wegscheider warns it will take some time before a quantum computer can solve practical problems beyond the realm of quantum physics. “Three years ago, I was still sceptical, but now I’m pretty confident that we’ll get there,” he says.

    At present, it is still unclear which of the various approaches will ultimately prevail. The answer may well lie in a mix of different solutions – semiconductors with superconducting circuits, for example. “When these two options are combined, you get quasiparticles known as Majorana fermions, which are thought to be less susceptible to error,” says Wegscheider. Yiwen Chu, Assistant Professor of Hybrid Quantum Systems, is investigating combinations of different quantum systems. “There’s a whole range of quantum objects, such as photons, ions or even superconducting circuits,” she explains. “All have their specific strengths, but also disadvantages. The question is how to bring these elements together in a way that combines their strengths.”

    Bridging the gap

    Her model is the classic computer, which uses, for example, a silicon chip to process information and optical fibre to transfer the data. By analogy, a quantum system might use superconducting circuits to process data, which would then be transferred by photons. “But it turns out that these two quantum objects are not particularly compatible,” says Chu. What is needed, therefore, is something to bridge the gap. Chu and her research group are currently investigating the use of small crystals for this purpose. As mechanical objects, they are able to communicate with both sides by means of acoustic vibrations.

    At the same time, it may well be that these crystals themselves are capable of storing and processing quantum information. “The crystals use acoustic vibrations, which are much slower than light waves, so we could use them to build smaller qubits,” she explains. Yet her chief aim here is not to accommodate as many qubits as possible on a given surface. The advantage is rather that these crystals can be isolated from one another much more easily than, for example, superconducting circuits. The greater degree of isolation prevents an unwanted loss of information, which in turn helps reduce the susceptibility to error. Yet the greatest challenge of all is that as more and more qubits are connected together, the system itself has to become increasingly complex.

    Yet it would be wrong, she says, to look upon the quantum computer as purely an engineering problem. “There are also a lot of unanswered questions on the physics side of the equation.” One of these is whether the transition between the worlds of classical and quantum physics is continuous or abrupt. “We don’t yet have a definitive answer to this problem,” says Chu. “But either way, it’s going be an exciting time for us physicists!”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ETH Zurich campus
    Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) is a public research university in the city of Zürich, Switzerland. Founded by the Swiss Federal Government in 1854 with the stated mission to educate engineers and scientists, the school focuses exclusively on science, technology, engineering and mathematics. Like its sister institution Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH) , it is part of the Swiss Federal Institutes of Technology Domain (ETH Domain)) , part of the Swiss Federal Department of Economic Affairs, Education and Research [EAER][Eidgenössisches Departement für Wirtschaft, Bildung und Forschung] [Département fédéral de l’économie, de la formation et de la recherche] (CH).

    The university is an attractive destination for international students thanks to low tuition fees of 809 CHF per semester, PhD and graduate salaries that are amongst the world’s highest, and a world-class reputation in academia and industry. There are currently 22,200 students from over 120 countries, of which 4,180 are pursuing doctoral degrees. In the 2021 edition of the QS World University Rankings ETH Zürich is ranked 6th in the world and 8th by the Times Higher Education World Rankings 2020. In the 2020 QS World University Rankings by subject it is ranked 4th in the world for engineering and technology (2nd in Europe) and 1st for earth & marine science.

    As of November 2019, 21 Nobel laureates, 2 Fields Medalists, 2 Pritzker Prize winners, and 1 Turing Award winner have been affiliated with the Institute, including Albert Einstein. Other notable alumni include John von Neumann and Santiago Calatrava. It is a founding member of the IDEA League and the International Alliance of Research Universities (IARU) and a member of the CESAER network.

    ETH Zürich was founded on 7 February 1854 by the Swiss Confederation and began giving its first lectures on 16 October 1855 as a polytechnic institute (eidgenössische polytechnische Schule) at various sites throughout the city of Zurich. It was initially composed of six faculties: architecture, civil engineering, mechanical engineering, chemistry, forestry, and an integrated department for the fields of mathematics, natural sciences, literature, and social and political sciences.

    It is locally still known as Polytechnikum, or simply as Poly, derived from the original name eidgenössische polytechnische Schule, which translates to “federal polytechnic school”.

    ETH Zürich is a federal institute (i.e., under direct administration by the Swiss government), whereas the University of Zürich [Universität Zürich ] (CH) is a cantonal institution. The decision for a new federal university was heavily disputed at the time; the liberals pressed for a “federal university”, while the conservative forces wanted all universities to remain under cantonal control, worried that the liberals would gain more political power than they already had. In the beginning, both universities were co-located in the buildings of the University of Zürich.

    From 1905 to 1908, under the presidency of Jérôme Franel, the course program of ETH Zürich was restructured to that of a real university and ETH Zürich was granted the right to award doctorates. In 1909 the first doctorates were awarded. In 1911, it was given its current name, Eidgenössische Technische Hochschule. In 1924, another reorganization structured the university in 12 departments. However, it now has 16 departments.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), and four associated research institutes form the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    Reputation and ranking

    ETH Zürich is ranked among the top universities in the world. Typically, popular rankings place the institution as the best university in continental Europe and ETH Zürich is consistently ranked among the top 1-5 universities in Europe, and among the top 3-10 best universities of the world.

    Historically, ETH Zürich has achieved its reputation particularly in the fields of chemistry, mathematics and physics. There are 32 Nobel laureates who are associated with ETH Zürich, the most recent of whom is Richard F. Heck, awarded the Nobel Prize in chemistry in 2010. Albert Einstein is perhaps its most famous alumnus.

    In 2018, the QS World University Rankings placed ETH Zürich at 7th overall in the world. In 2015, ETH Zürich was ranked 5th in the world in Engineering, Science and Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US) and University of Cambridge(UK). In 2015, ETH Zürich also ranked 6th in the world in Natural Sciences, and in 2016 ranked 1st in the world for Earth & Marine Sciences for the second consecutive year.

    In 2016, Times Higher Education World University Rankings ranked ETH Zürich 9th overall in the world and 8th in the world in the field of Engineering & Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US), California Institute of Technology(US), Princeton University(US), University of Cambridge(UK), Imperial College London(UK) and University of Oxford(UK) .

    In a comparison of Swiss universities by swissUP Ranking and in rankings published by CHE comparing the universities of German-speaking countries, ETH Zürich traditionally is ranked first in natural sciences, computer science and engineering sciences.

    In the survey CHE ExcellenceRanking on the quality of Western European graduate school programs in the fields of biology, chemistry, physics and mathematics, ETH Zürich was assessed as one of the three institutions to have excellent programs in all the considered fields, the other two being Imperial College London(UK) and the University of Cambridge(UK), respectively.

     
  • richardmitnick 12:43 pm on September 20, 2021 Permalink | Reply
    Tags: "Rock shape should be given greater consideration in risk assessments", , , , Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)   

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH): “Rock shape should be given greater consideration in risk assessments” 

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)

    20.09.2021

    The shape of rocks is a key factor in assessing rockfall hazard. This is the conclusion of a new study from the WSL Institute for Snow and Avalanche Research[Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft][Institut fédéral de recherches sur la forêt, la neige et le paysage] (CH) and ETH Zürich.

    1
    One of the concrete blocks positioned on the tilting platform that will be used to set it in motion. (Photograph: SLF / Martin Heggli.)

    Rockfall is a very real threat in an Alpine country like Switzerland. In order to assess the hazard at a given location and plan protective measures, engineering firms use computer models to calculate how far falling rocks can roll. However, the models are not yet able to adequately take into account the extent to which the mass, size or shape of a rock influences its movement. This would require real-​world measurement data to be fed into the models, but until now such data were only available sporadically, since no systematic rockfall studies had been conducted.

    First comprehensive experiments

    That has now changed after researchers from the WSL Swiss Federal Institute for Forest Snow and Landscape Research and ETH Zürich spent over four years carrying out rockfall experiments. “This has allowed us to compile the largest set of measurement data to date,” says Andrin Caviezel, SLF researcher and lead author of the study. The researchers used artificial rocks in the form of concrete blocks fitted with sensors, which they rolled down a slope near the Flüela Pass in the Swiss canton of Grisons. They compared different shapes and masses, reconstructed the complete trajectories and determined speeds, jump heights and runout zones. They have just published their results in the scientific journal Nature Communications.

    Lateral spread

    The most significant finding is that the direction a rock rolls in depends much more on its shape than on its mass. While cube-​shaped boulders plunge straight down the line of greatest slope, wheel-​shaped rocks often pull away to one side and so may threaten a much wider area at the base of the slope. “This needs to be taken into consideration when assessing danger zones, but also when determining the location and dimensions of rockfall nets,” explains Caviezel. Because wheel-​like rocks hit rockfall nets with their narrow side, their energy is concentrated on a much smaller area than is the case with cube-​like rocks – so protective nets need to be stronger.

    More realistic models

    The data are now being entered into the RAMMS::ROCKFALL simulation program developed at the SLF. As well as factoring in the shape, the aim is to represent more realistically how the rock’s speed is affected by the way it impacts and bounces off the ground. “This will enable us to offer an enhanced program that engineering firms can use to make more reliable calculations,” says Caviezel. The data set is also available on the EnviDat platform, where it is freely accessible to other research groups. They can use it to calibrate their own algorithms or to develop new, more accurate models providing enhanced protection against rockfall.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ETH Zurich campus
    Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) is a public research university in the city of Zürich, Switzerland. Founded by the Swiss Federal Government in 1854 with the stated mission to educate engineers and scientists, the school focuses exclusively on science, technology, engineering and mathematics. Like its sister institution Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH) , it is part of the Swiss Federal Institutes of Technology Domain (ETH Domain)) , part of the Swiss Federal Department of Economic Affairs, Education and Research [EAER][Eidgenössisches Departement für Wirtschaft, Bildung und Forschung] [Département fédéral de l’économie, de la formation et de la recherche] (CH).

    The university is an attractive destination for international students thanks to low tuition fees of 809 CHF per semester, PhD and graduate salaries that are amongst the world’s highest, and a world-class reputation in academia and industry. There are currently 22,200 students from over 120 countries, of which 4,180 are pursuing doctoral degrees. In the 2021 edition of the QS World University Rankings ETH Zürich is ranked 6th in the world and 8th by the Times Higher Education World Rankings 2020. In the 2020 QS World University Rankings by subject it is ranked 4th in the world for engineering and technology (2nd in Europe) and 1st for earth & marine science.

    As of November 2019, 21 Nobel laureates, 2 Fields Medalists, 2 Pritzker Prize winners, and 1 Turing Award winner have been affiliated with the Institute, including Albert Einstein. Other notable alumni include John von Neumann and Santiago Calatrava. It is a founding member of the IDEA League and the International Alliance of Research Universities (IARU) and a member of the CESAER network.

    ETH Zürich was founded on 7 February 1854 by the Swiss Confederation and began giving its first lectures on 16 October 1855 as a polytechnic institute (eidgenössische polytechnische Schule) at various sites throughout the city of Zurich. It was initially composed of six faculties: architecture, civil engineering, mechanical engineering, chemistry, forestry, and an integrated department for the fields of mathematics, natural sciences, literature, and social and political sciences.

    It is locally still known as Polytechnikum, or simply as Poly, derived from the original name eidgenössische polytechnische Schule, which translates to “federal polytechnic school”.

    ETH Zürich is a federal institute (i.e., under direct administration by the Swiss government), whereas the University of Zürich [Universität Zürich ] (CH) is a cantonal institution. The decision for a new federal university was heavily disputed at the time; the liberals pressed for a “federal university”, while the conservative forces wanted all universities to remain under cantonal control, worried that the liberals would gain more political power than they already had. In the beginning, both universities were co-located in the buildings of the University of Zürich.

    From 1905 to 1908, under the presidency of Jérôme Franel, the course program of ETH Zürich was restructured to that of a real university and ETH Zürich was granted the right to award doctorates. In 1909 the first doctorates were awarded. In 1911, it was given its current name, Eidgenössische Technische Hochschule. In 1924, another reorganization structured the university in 12 departments. However, it now has 16 departments.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), and four associated research institutes form the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    Reputation and ranking

    ETH Zürich is ranked among the top universities in the world. Typically, popular rankings place the institution as the best university in continental Europe and ETH Zürich is consistently ranked among the top 1-5 universities in Europe, and among the top 3-10 best universities of the world.

    Historically, ETH Zürich has achieved its reputation particularly in the fields of chemistry, mathematics and physics. There are 32 Nobel laureates who are associated with ETH Zürich, the most recent of whom is Richard F. Heck, awarded the Nobel Prize in chemistry in 2010. Albert Einstein is perhaps its most famous alumnus.

    In 2018, the QS World University Rankings placed ETH Zürich at 7th overall in the world. In 2015, ETH Zürich was ranked 5th in the world in Engineering, Science and Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US) and University of Cambridge(UK). In 2015, ETH Zürich also ranked 6th in the world in Natural Sciences, and in 2016 ranked 1st in the world for Earth & Marine Sciences for the second consecutive year.

    In 2016, Times Higher Education World University Rankings ranked ETH Zürich 9th overall in the world and 8th in the world in the field of Engineering & Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US), California Institute of Technology(US), Princeton University(US), University of Cambridge(UK), Imperial College London(UK) and University of Oxford(UK) .

    In a comparison of Swiss universities by swissUP Ranking and in rankings published by CHE comparing the universities of German-speaking countries, ETH Zürich traditionally is ranked first in natural sciences, computer science and engineering sciences.

    In the survey CHE ExcellenceRanking on the quality of Western European graduate school programs in the fields of biology, chemistry, physics and mathematics, ETH Zürich was assessed as one of the three institutions to have excellent programs in all the considered fields, the other two being Imperial College London(UK) and the University of Cambridge(UK), respectively.

     
  • richardmitnick 10:27 am on September 10, 2021 Permalink | Reply
    Tags: "An insulator made of two conductors", , In graphene layers twisted relative to each other two electrical conductors team up to form an insulator., , Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)   

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH): “An insulator made of two conductors” 

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)

    09.09.2021
    Oliver Morsch

    At ETH Zürich researchers have observed a new state of matter: in graphene layers twisted relative to each other, two electrical conductors team up to form an insulator.

    1
    In two graphene double layers twisted relative to each other (red and blue), insulating states consisting of electron-​hole pairs (‘-‘ and ‘+’) can form. (Visualisations: Peter Rickhaus / ETH Zürich)

    Ohm’s law is well-​known from physics class. It states that the resistance of a conductor and the voltage applied to it determine how much current will flow through the conductor. The electrons in the material – the negatively charged carriers – move in a disordered fashion and largely independently of each other. Physicists find it far more interesting, however, when the charge carriers influence one another strongly enough for that simple picture not to be correct anymore.

    This is the case, for instance, in “Twisted Bilayer Graphene”, which was discovered a few years ago. That material is made from two wafer-​thin graphene layers consisting of a single layer of carbon atoms each. If two neighbouring layers are slightly twisted with respect to each other, the electrons can be influenced in such a way that they interact strongly with one another. As a consequence, the material can, for instance, become superconducting and hence conduct current without any losses.

    A team of researchers led by Klaus Ensslin and Thomas Ihn at the Laboratory for Solid State Physics at ETH Zürich, together with colleagues at The University of Texas-Austin (US), has now observed a novel state in twisted double layers of graphene. In that state, negatively charged electrons and positively charged so-​called holes, which are missing electrons in the material, are correlated so strongly with each other that the material no longer conducts electric current.

    Twisted graphene layers

    “In conventional experiments, in which graphene layers are twisted by about one degree with respect to each other, the mobility of the electrons is influenced by quantum mechanical tunnelling between the layers”, explains Peter Rickhaus, a post-​doc and lead author of the study recently published in the journal Science. “In our new experiment, by contrast, we twist two double layers of graphene by more than two degrees relative to each other, so that electrons can essentially no longer tunnel between the double layers.”

    Increased resistance through coupling

    As a result of this, by applying an electric field electrons can be created in one of the double layers and holes in the other. Both electrons and holes can conduct electric current. Therefore, one would expect the two graphene double layers together to form an even better conductor with a smaller resistance.

    Under certain circumstances, however, the exact opposite can happen, as Folkert de Vries, a post-​doc in Ensslin’s team, explains: “If we adjust the electric field in such a way as to have the same number of electrons and holes in the double layers, the resistance suddenly increases sharply.” For several weeks Ensslin and his collaborators were unable to make sense of that surprising result, but eventually their theory colleague Allan H. MacDonald from Austin gave them a decisive hint: according to MacDonald, they had observed a new kind of density wave.

    So-​called charge density waves usually arise in one-​dimensional conductors when the electrons in the material collectively conduct electric current and also spatially arrange themselves into waves. In the experiment performed by the ETH researchers, it is now the electrons and holes that pair with each other by electrostatic attraction and thus form a collective density wave. That density wave, however, now consists of electrically neutral electron-​hole pairs, so that the two double layers taken together can no longer conduct electric current.

    2
    Twisted graphene (left) is sandwiched between two-dimensional insulators and attached to contacts in order to measure electric current (centre). An electron-hole state is then created by applying a large voltage to the gate electrodes (right). (Visualisations: Peter Rickhaus / ETH Zürich).

    New correlated state

    “That’s a completely new correlated state of electrons and holes which has no overall charge”, says Ensslin. “This neutral state can, nevertheless, transmit information or conduct heat. Moreover, what’s special about it is that we can completely control it through the twisting angle and the applied voltage.” Similar states have been observed in other materials in which electron-​hole pairs (also known as excitons) are created through excitation using laser light. In the experiment at ETH, however, the electrons and holes are in their ground state, or state of lowest energy, which means that their lifetime is not limited by spontaneous decay.

    Possible application in quantum technologies

    Ensslin, who specializes in the investigation of the electronic properties of small quantum systems, is already speculating about possible practical applications for the new correlated state. However, this will require a fair amount of preparatory work. One could trap the electron-​hole pairs, for instance in a (Fabry-​Pérot) resonator. That is very demanding, as neutral particles cannot be directly controlled, for example using electric fields. The fact that the state is electrically neutral might, on the other hand, turn out to be an advantage: it could be exploited to make quantum memories less susceptible to electric field noise.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ETH Zurich campus
    Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) is a public research university in the city of Zürich, Switzerland. Founded by the Swiss Federal Government in 1854 with the stated mission to educate engineers and scientists, the school focuses exclusively on science, technology, engineering and mathematics. Like its sister institution Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH) , it is part of the Swiss Federal Institutes of Technology Domain (ETH Domain)) , part of the Swiss Federal Department of Economic Affairs, Education and Research [EAER][Eidgenössisches Departement für Wirtschaft, Bildung und Forschung] [Département fédéral de l’économie, de la formation et de la recherche] (CH).

    The university is an attractive destination for international students thanks to low tuition fees of 809 CHF per semester, PhD and graduate salaries that are amongst the world’s highest, and a world-class reputation in academia and industry. There are currently 22,200 students from over 120 countries, of which 4,180 are pursuing doctoral degrees. In the 2021 edition of the QS World University Rankings ETH Zürich is ranked 6th in the world and 8th by the Times Higher Education World Rankings 2020. In the 2020 QS World University Rankings by subject it is ranked 4th in the world for engineering and technology (2nd in Europe) and 1st for earth & marine science.

    As of November 2019, 21 Nobel laureates, 2 Fields Medalists, 2 Pritzker Prize winners, and 1 Turing Award winner have been affiliated with the Institute, including Albert Einstein. Other notable alumni include John von Neumann and Santiago Calatrava. It is a founding member of the IDEA League and the International Alliance of Research Universities (IARU) and a member of the CESAER network.

    ETH Zürich was founded on 7 February 1854 by the Swiss Confederation and began giving its first lectures on 16 October 1855 as a polytechnic institute (eidgenössische polytechnische Schule) at various sites throughout the city of Zurich. It was initially composed of six faculties: architecture, civil engineering, mechanical engineering, chemistry, forestry, and an integrated department for the fields of mathematics, natural sciences, literature, and social and political sciences.

    It is locally still known as Polytechnikum, or simply as Poly, derived from the original name eidgenössische polytechnische Schule, which translates to “federal polytechnic school”.

    ETH Zürich is a federal institute (i.e., under direct administration by the Swiss government), whereas the University of Zürich [Universität Zürich ] (CH) is a cantonal institution. The decision for a new federal university was heavily disputed at the time; the liberals pressed for a “federal university”, while the conservative forces wanted all universities to remain under cantonal control, worried that the liberals would gain more political power than they already had. In the beginning, both universities were co-located in the buildings of the University of Zürich.

    From 1905 to 1908, under the presidency of Jérôme Franel, the course program of ETH Zürich was restructured to that of a real university and ETH Zürich was granted the right to award doctorates. In 1909 the first doctorates were awarded. In 1911, it was given its current name, Eidgenössische Technische Hochschule. In 1924, another reorganization structured the university in 12 departments. However, it now has 16 departments.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), and four associated research institutes form the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    Reputation and ranking

    ETH Zürich is ranked among the top universities in the world. Typically, popular rankings place the institution as the best university in continental Europe and ETH Zürich is consistently ranked among the top 1-5 universities in Europe, and among the top 3-10 best universities of the world.

    Historically, ETH Zürich has achieved its reputation particularly in the fields of chemistry, mathematics and physics. There are 32 Nobel laureates who are associated with ETH Zürich, the most recent of whom is Richard F. Heck, awarded the Nobel Prize in chemistry in 2010. Albert Einstein is perhaps its most famous alumnus.

    In 2018, the QS World University Rankings placed ETH Zürich at 7th overall in the world. In 2015, ETH Zürich was ranked 5th in the world in Engineering, Science and Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US) and University of Cambridge(UK). In 2015, ETH Zürich also ranked 6th in the world in Natural Sciences, and in 2016 ranked 1st in the world for Earth & Marine Sciences for the second consecutive year.

    In 2016, Times Higher Education World University Rankings ranked ETH Zürich 9th overall in the world and 8th in the world in the field of Engineering & Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US), California Institute of Technology(US), Princeton University(US), University of Cambridge(UK), Imperial College London(UK) and University of Oxford(UK) .

    In a comparison of Swiss universities by swissUP Ranking and in rankings published by CHE comparing the universities of German-speaking countries, ETH Zürich traditionally is ranked first in natural sciences, computer science and engineering sciences.

    In the survey CHE ExcellenceRanking on the quality of Western European graduate school programs in the fields of biology, chemistry, physics and mathematics, ETH Zürich was assessed as one of the three institutions to have excellent programs in all the considered fields, the other two being Imperial College London(UK) and the University of Cambridge(UK), respectively.

     
  • richardmitnick 11:20 am on September 3, 2021 Permalink | Reply
    Tags: "Those who fail productively are all the wiser", All of the students achieved much better learning success when they had to solve exercises and problems before the concepts required were explained to them., , First: students should at least be familiar with the most fundamental concepts of the work., Fourth and final: the instructor or instructional material provides an explanation that applies the new concept to solve the problem and demonstrates why the students’ solutions missed the target., If students fail “productively” during the practice stage their learning outcomes are up to three times better than what a very good teacher can achieve in a year., Learning outcomes depend on teaching in such a way that these four mechanisms all play a key role., Learning strategies, Practice before learning the theory is nearly twice as efficient as receiving a year of instruction from an outstanding teacher., Second: students should recognise the deficit between what they do and do not know already., Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH), The results of this study have turned the last several decades of educational research upside-​down., Third: this recognition makes them more receptive to new concepts and sparks their interest in solving the problem., What exactly is happening when students fail productively?   

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH): “Those who fail productively are all the wiser” 

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)

    02.09.2021
    Christoph Elhardt

    Researchers from ETH Zürich have demonstrated the positive effects of productive failure on learning outcomes. The success rate for one of ETH’s largest courses was increased by 20 percent.

    1
    If you want to achieve ideal learning outcomes, puzzling over relevant problems before learning the basics pays off. Credit: Alessandro Della Bella/ETH Zürich.

    For a long time, the dominant paradigm in teaching has been that we learn new things best when someone explains them to us. First instruction, then practice: this is the educational formula still applied in countless classrooms and lecture halls today.

    Researchers from the Professorship for Learning Sciences at ETH Zürich have now demonstrated that exactly the opposite is the case. “If you want to achieve ideal learning outcomes, it’s better to first puzzle over a problem that is specifically relevant to a topic before then exploring the underlying principles,” explains ETH professor Manu Kapur, who authored the study together with postdoctoral scientist Tanmay Sinha. The key to this approach is the experience of productive failure—a theory conceptualized and developed by Kapur.

    15 years of educational research

    Sinha’s and Kapur’s study is a meta-​analysis of educational research from the past 15 years.

    Science paper:
    Review of Educational Research

    The authors looked at 53 studies with 166 comparative analyses, all dealing with the question of which learning strategy is more effective: instruction before practice or vice versa. The primary topical focus was on how well school-​age and university students comprehended concepts in the disciplines of mathematics, physics, chemistry, biology and medicine or were able to successfully apply them. The study did not include general skills, such as sensemaking when reading and writing proficiency, or problems from humanities and social science disciplines.

    Almost half (45 percent) of the students tested were in grades 6 to 10 (at secondary school) at the time of the study, meaning they were between the ages of 12 and 18. Over a third (37 percent) were currently undergraduates, and one in six (15 percent) were still in primary school. Almost half (43 percent) of students came from North America, over a quarter each from Europe (26 percent) and Asia (28 percent).

    Three times as efficient as a good instructor

    The results have turned the last several decades of educational research upside-​down: all of the students achieved much better learning success when they had to solve exercises and problems before the concepts required were explained to them. However, this held true more for secondary school students and undergraduates than for students at primary school. According to the authors, this can be explained by a combination of factors: primary school students often have too little knowledge in an area to solve problems effectively. In addition, their analytical reasoning and problem-​solving abilities maybe less mature.

    What is particularly astonishing is how starkly this affects learning outcomes: “Practice before learning the theory is nearly twice as efficient as receiving a year of instruction from an outstanding teacher,” explains Kapur. Moreover, if students fail “productively” during the practice stage their learning outcomes are up to three times better than what a very good teacher can achieve in a year.

    Why Productive Failure pays off

    But what exactly is happening when students fail productively? Sinha and Kapur say that there are four mechanisms at work here, corresponding to four “As”: first, a problem should activate as much relevant knowledge as possible. “Productive failure,” says Kapur, “requires a certain amount of prior knowledge. If a person wants to solve a statistical problem like finding the standard deviation productively, for example, first: students should at least be familiar with the most fundamental concepts such as the mean.” Second: students should recognise the deficit between what they do and do not know already; this gives them awareness. Third: this recognition makes them more receptive to new concepts and sparks their interest in solving the problem, i.e. it changes their affect, or psychological state.

    The fourth and final stage is for the instructor or instructional material to provide an explanation that applies the new concept to solve the problem and demonstrates why the students’ solutions missed the target. This can be described as knowledge assembly. “Learning outcomes depend on teaching in such a way that these four mechanisms all play a key role,” explains Kapur. This is particularly true when students tackle problems that can be grasped intuitively but for which they are still lacking the knowledge required to solve the problem unless they are taught the new concepts.

    20 percent higher success rates at ETH Zürich

    But ETH Professor Kapur’s team went beyond a meta-​analysis and tested their theory directly in one of the largest year-​long courses taught at ETH, Linear Algebra, which enrolls around 650 students from the Department of Mechanical and Process Engineering. The course structure follows the traditional approach: concepts are introduced in lectures and then applied and explored in exercises.

    Led by doctoral student Vera Baumgartner and in collaboration with ETH mathematics Professor Norbert Hungerbühler, Kapur’s team created a set of tasks that students could voluntarily attempt to solve before five key lectures each semester. The goal of the exercises was productive failure. Roughly, sixty percent of students took advantage of the opportunity and completed the extra work. The results were impressive: historically, just over half of students (55 percent) on average pass the course. The success rate among those students who productively failed ahead of the lectures was 20 percent higher, and their marks were considerably better. For the authors, this clearly shows that those who engage in productive failure more often learn more.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ETH Zurich campus
    Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) is a public research university in the city of Zürich, Switzerland. Founded by the Swiss Federal Government in 1854 with the stated mission to educate engineers and scientists, the school focuses exclusively on science, technology, engineering and mathematics. Like its sister institution Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH) , it is part of the Swiss Federal Institutes of Technology Domain (ETH Domain)) , part of the Swiss Federal Department of Economic Affairs, Education and Research [EAER][Eidgenössisches Departement für Wirtschaft, Bildung und Forschung] [Département fédéral de l’économie, de la formation et de la recherche] (CH).

    The university is an attractive destination for international students thanks to low tuition fees of 809 CHF per semester, PhD and graduate salaries that are amongst the world’s highest, and a world-class reputation in academia and industry. There are currently 22,200 students from over 120 countries, of which 4,180 are pursuing doctoral degrees. In the 2021 edition of the QS World University Rankings ETH Zürich is ranked 6th in the world and 8th by the Times Higher Education World Rankings 2020. In the 2020 QS World University Rankings by subject it is ranked 4th in the world for engineering and technology (2nd in Europe) and 1st for earth & marine science.

    As of November 2019, 21 Nobel laureates, 2 Fields Medalists, 2 Pritzker Prize winners, and 1 Turing Award winner have been affiliated with the Institute, including Albert Einstein. Other notable alumni include John von Neumann and Santiago Calatrava. It is a founding member of the IDEA League and the International Alliance of Research Universities (IARU) and a member of the CESAER network.

    ETH Zürich was founded on 7 February 1854 by the Swiss Confederation and began giving its first lectures on 16 October 1855 as a polytechnic institute (eidgenössische polytechnische Schule) at various sites throughout the city of Zurich. It was initially composed of six faculties: architecture, civil engineering, mechanical engineering, chemistry, forestry, and an integrated department for the fields of mathematics, natural sciences, literature, and social and political sciences.

    It is locally still known as Polytechnikum, or simply as Poly, derived from the original name eidgenössische polytechnische Schule, which translates to “federal polytechnic school”.

    ETH Zürich is a federal institute (i.e., under direct administration by the Swiss government), whereas the University of Zürich [Universität Zürich ] (CH) is a cantonal institution. The decision for a new federal university was heavily disputed at the time; the liberals pressed for a “federal university”, while the conservative forces wanted all universities to remain under cantonal control, worried that the liberals would gain more political power than they already had. In the beginning, both universities were co-located in the buildings of the University of Zürich.

    From 1905 to 1908, under the presidency of Jérôme Franel, the course program of ETH Zürich was restructured to that of a real university and ETH Zürich was granted the right to award doctorates. In 1909 the first doctorates were awarded. In 1911, it was given its current name, Eidgenössische Technische Hochschule. In 1924, another reorganization structured the university in 12 departments. However, it now has 16 departments.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), and four associated research institutes form the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    Reputation and ranking

    ETH Zürich is ranked among the top universities in the world. Typically, popular rankings place the institution as the best university in continental Europe and ETH Zürich is consistently ranked among the top 1-5 universities in Europe, and among the top 3-10 best universities of the world.

    Historically, ETH Zürich has achieved its reputation particularly in the fields of chemistry, mathematics and physics. There are 32 Nobel laureates who are associated with ETH Zürich, the most recent of whom is Richard F. Heck, awarded the Nobel Prize in chemistry in 2010. Albert Einstein is perhaps its most famous alumnus.

    In 2018, the QS World University Rankings placed ETH Zürich at 7th overall in the world. In 2015, ETH Zürich was ranked 5th in the world in Engineering, Science and Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US) and University of Cambridge(UK). In 2015, ETH Zürich also ranked 6th in the world in Natural Sciences, and in 2016 ranked 1st in the world for Earth & Marine Sciences for the second consecutive year.

    In 2016, Times Higher Education World University Rankings ranked ETH Zürich 9th overall in the world and 8th in the world in the field of Engineering & Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US), California Institute of Technology(US), Princeton University(US), University of Cambridge(UK), Imperial College London(UK) and University of Oxford(UK) .

    In a comparison of Swiss universities by swissUP Ranking and in rankings published by CHE comparing the universities of German-speaking countries, ETH Zürich traditionally is ranked first in natural sciences, computer science and engineering sciences.

    In the survey CHE ExcellenceRanking on the quality of Western European graduate school programs in the fields of biology, chemistry, physics and mathematics, ETH Zürich was assessed as one of the three institutions to have excellent programs in all the considered fields, the other two being Imperial College London(UK) and the University of Cambridge(UK), respectively.

     
  • richardmitnick 11:06 am on August 17, 2021 Permalink | Reply
    Tags: "Computer algorithms are currently revolutionising biology", , , , Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)   

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH): “Computer algorithms are currently revolutionising biology” 

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)

    17.08.2021

    Artificial intelligence can help predict the three-​dimensional structure of proteins. Professor Beat Christen describes how such algorithms should soon help to develop tailored artificial proteins.

    Computer algorithms have been a helpful tool in biomedical research for decades, and their importance has been growing steadily over that time. But what we’re now experiencing is nothing short of a quantum leap; it overshadows all that came before and it will have unforeseen effects. Artificial intelligence (AI) algorithms have made it possible to use nothing but the linear sequence of the building blocks of proteins – amino acids – to deliver extremely accurate predictions of the three-​dimensional structure into which this chain of amino acids will assemble.

    Grasping the importance of this development hinges on knowing that biology on a cellular level is actually always about spatial interactions between molecules – and that it’s the three-​dimensional structure of these molecules that determine those interactions. Once we understand the structures and interactions in play, we understand the biology. And only once we understand the structure of molecules can we engineer medications capable of influencing the function of these molecules.

    1
    Proteins are thread-​like molecules that assemble to form a specific three-​dimensional structure. (Visualisation: Shutterstock)

    Up to now, there have been three experimental methods for determining the three-​dimensional structure of proteins: X-​ray structure analysis, nuclear magnetic resonance and, just in the past few years, cryo-​electron microscopy. The addition now of AI as a fourth precision method is due not just to improvements in AI algorithms and the vast computing power that is available today. For AI to make accurate predictions, it also needs to be trained using a wealth of data of exceptional quality. What makes the abovementioned quantum leap possible is considerable progress and effort in both data science and experimental protein research.

    Competition between private and public research

    Currently occupying most of the spotlight is the AlphaFold AI program developed by DeepMind, a sister company of Google. At present, DeepMind is undoubtedly the most important player in predicting protein structures. But what gets lost in the public discussion is that DeepMind is by no means the only player in this area; in particular the team led by David Baker from the University of Washington (US) is conducting some outstanding research.

    Overall, this competition between private and public research has surely served to inspire and invigorate the field, even if, as one would expect, private players keep many of their insights to themselves to protect their own business interests. But highly competitive research has also led to vast improvements to the AI algorithms that are in the public domain, which the entire scientific community can now use and develop. I expect this trend to continue. AI algorithms will soon provide us with highly precise structures for all known proteins. This will enable us to design precision medications on the computer.

    In the future, it should be possible to start from a three-​dimensional molecular scafold designed on a computer and employ AI to calculate a sequence of amino acids that will precisely assemble into the desired structure with the desired molecular function.

    Once this sequence of amino acids has been determined, my area of research comes into play. My work deals with the development of artificial genes and genomes, and it also employs computer algorithms. Based on sequences of amino acids, we calculate how protein information can be encoded into sequences of genetic building blocks – in other words into DNA. And we do it in a way that provides a simple means of synthesising these genes for practical applications.

    Reversing the information flow

    This means we are on the verge of being able to calculate an artificial gene for any given three-​dimensional protein structure designed on a computer, and then synthesise that gene. In biotechnology, this paves the way for manufacturing artificial proteins in microorganisms – including new pharmaceutical agents, vaccines or enzymes for use in industry.

    Ever since the earliest lifeforms emerged several billion years ago, to this day biological information has always been stored in the form of DNA. Inside biological cells, this information is transcribed– first into RNA molecules, and then translated into proteins. Until now, there has been no mechanism for reversing the flow of information such that protein information is translated back into DNA information. AI will soon change all that. For biologists such as myself, this is an incredibly spectacular development, one that will have a profound impact on biotechnology and medicine.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ETH Zurich campus
    Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) is a public research university in the city of Zürich, Switzerland. Founded by the Swiss Federal Government in 1854 with the stated mission to educate engineers and scientists, the school focuses exclusively on science, technology, engineering and mathematics. Like its sister institution Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH) , it is part of the Swiss Federal Institutes of Technology Domain (ETH Domain)) , part of the Swiss Federal Department of Economic Affairs, Education and Research [EAER][Eidgenössisches Departement für Wirtschaft, Bildung und Forschung] [Département fédéral de l’économie, de la formation et de la recherche] (CH).

    The university is an attractive destination for international students thanks to low tuition fees of 809 CHF per semester, PhD and graduate salaries that are amongst the world’s highest, and a world-class reputation in academia and industry. There are currently 22,200 students from over 120 countries, of which 4,180 are pursuing doctoral degrees. In the 2021 edition of the QS World University Rankings ETH Zürich is ranked 6th in the world and 8th by the Times Higher Education World Rankings 2020. In the 2020 QS World University Rankings by subject it is ranked 4th in the world for engineering and technology (2nd in Europe) and 1st for earth & marine science.

    As of November 2019, 21 Nobel laureates, 2 Fields Medalists, 2 Pritzker Prize winners, and 1 Turing Award winner have been affiliated with the Institute, including Albert Einstein. Other notable alumni include John von Neumann and Santiago Calatrava. It is a founding member of the IDEA League and the International Alliance of Research Universities (IARU) and a member of the CESAER network.

    ETH Zürich was founded on 7 February 1854 by the Swiss Confederation and began giving its first lectures on 16 October 1855 as a polytechnic institute (eidgenössische polytechnische Schule) at various sites throughout the city of Zurich. It was initially composed of six faculties: architecture, civil engineering, mechanical engineering, chemistry, forestry, and an integrated department for the fields of mathematics, natural sciences, literature, and social and political sciences.

    It is locally still known as Polytechnikum, or simply as Poly, derived from the original name eidgenössische polytechnische Schule, which translates to “federal polytechnic school”.

    ETH Zürich is a federal institute (i.e., under direct administration by the Swiss government), whereas the University of Zürich [Universität Zürich ] (CH) is a cantonal institution. The decision for a new federal university was heavily disputed at the time; the liberals pressed for a “federal university”, while the conservative forces wanted all universities to remain under cantonal control, worried that the liberals would gain more political power than they already had. In the beginning, both universities were co-located in the buildings of the University of Zürich.

    From 1905 to 1908, under the presidency of Jérôme Franel, the course program of ETH Zürich was restructured to that of a real university and ETH Zürich was granted the right to award doctorates. In 1909 the first doctorates were awarded. In 1911, it was given its current name, Eidgenössische Technische Hochschule. In 1924, another reorganization structured the university in 12 departments. However, it now has 16 departments.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), and four associated research institutes form the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    Reputation and ranking

    ETH Zürich is ranked among the top universities in the world. Typically, popular rankings place the institution as the best university in continental Europe and ETH Zürich is consistently ranked among the top 1-5 universities in Europe, and among the top 3-10 best universities of the world.

    Historically, ETH Zürich has achieved its reputation particularly in the fields of chemistry, mathematics and physics. There are 32 Nobel laureates who are associated with ETH Zürich, the most recent of whom is Richard F. Heck, awarded the Nobel Prize in chemistry in 2010. Albert Einstein is perhaps its most famous alumnus.

    In 2018, the QS World University Rankings placed ETH Zürich at 7th overall in the world. In 2015, ETH Zürich was ranked 5th in the world in Engineering, Science and Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US) and University of Cambridge(UK). In 2015, ETH Zürich also ranked 6th in the world in Natural Sciences, and in 2016 ranked 1st in the world for Earth & Marine Sciences for the second consecutive year.

    In 2016, Times Higher Education World University Rankings ranked ETH Zürich 9th overall in the world and 8th in the world in the field of Engineering & Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US), California Institute of Technology(US), Princeton University(US), University of Cambridge(UK), Imperial College London(UK) and University of Oxford(UK) .

    In a comparison of Swiss universities by swissUP Ranking and in rankings published by CHE comparing the universities of German-speaking countries, ETH Zürich traditionally is ranked first in natural sciences, computer science and engineering sciences.

    In the survey CHE ExcellenceRanking on the quality of Western European graduate school programs in the fields of biology, chemistry, physics and mathematics, ETH Zürich was assessed as one of the three institutions to have excellent programs in all the considered fields, the other two being Imperial College London(UK) and the University of Cambridge(UK), respectively.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: