Tagged: Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 1:56 pm on September 22, 2021 Permalink | Reply
    Tags: "Simplifying quantum systems", Although redundancy renders the system more stable it also makes it exponentially more complex – and in turn much more susceptible to error., If only it were less prone to error quantum physics might already be giving us instant solutions to seemingly unsolvable problems., In crude terms our digitally driven information society is based on a simple binary opposition: 0 or 1., It is little wonder that quantum physics should exercise a fascination far beyond its immediate circle., It will take some time before a quantum computer can solve practical problems beyond the realm of quantum physics., One potential route is the use of free electrons in semiconductor materials., , Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH), Topological quantum systems offer an especially neat example of how in physics theory and experiment can be mutually enriching.   

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH): “Simplifying quantum systems” 

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)

    22.09.2021
    Felix Würsten

    If only it were less prone to error quantum physics might already be giving us instant solutions to seemingly unsolvable problems. ETH researchers are therefore working to develop systems that are more robust.

    1
    Quantum systems require sophisticated control technology, a lot of engineering know-​how and a better understanding of the physical correlations. (Photograph: Heidi Hostettler)

    In crude terms our digitally driven information society is based on a simple binary opposition: 0 or 1. But what happens when other alternatives exist alongside these polar opposites? Might this give rise to a whole raft of different states and enable us to process complex information much faster?

    It is precisely the prospect of going beyond conventional methods of data processing that has inspired such high hopes in the field of quantum physics – not only on the part of scientists in basic and theoretical research, but also among the CEOs of major corporations. Were this vision to materialise, and computers behave in accordance with the laws of quantum mechanics, it would open the door to a whole new world of applications. For example, such a powerful system would be able to determine the mechanism of proteins at a radically faster rate than a conventional computer could ever hope to achieve. This, in turn, would massively accelerate the development of new medicines.

    A rocky road

    Given such prospects, it is little wonder that quantum physics should exercise a fascination far beyond its immediate circle. Yet the road that will take us to a quantum computer capable of answering everyday questions is a rocky one – and much longer than many are prepared to admit. “We’re talking about decades, not years, before we reach that point,” says Jonathan Home, Professor of Experimental Quantum Optics and Photonics at ETH Zürich. And Professor Home is one of those working in a field in which quantum research is relatively far along. He uses individual atoms as qubits. These are the basic units of information used by a quantum computer to perform calculations. Home uses beryllium and calcium atoms held in special electrical ion traps. These are then manipulated with a laser according to the laws of quantum mechanics. “Atoms are great systems for information processing because they can be isolated – and because, provided they remain isolated, they can store quantum information for a couple of seconds or even minutes,” he explains.

    In order to be able to use this information, however, these fragile quantum objects have to be reconnected with the everyday physical world. During this step, even the slightest anomalies can corrupt the entire system. The question is, therefore, how to reduce this susceptibility to error and, at the same time, increase the number of qubits.

    Simpler and more robust

    An obvious approach is to equip the systems with a degree of redundancy, i.e. to link several physical qubits to a single logical qubit. But this has a major drawback. Although redundancy renders the system more stable it also makes it exponentially more complex – and in turn much more susceptible to error.

    This requires not only sophisticated control technology and a lot of engineering know-​how but also a better understanding of the physical correlations. According to Home, the development of quantum computers has already yielded concrete benefits, even if today’s technology is still far removed from being able to investigate protein structures: “In essence, our experiments pose an endurance test for the physical theories. The results then provide us with new insights as to how the quantum world works.” One of ETH’s big strengths is that researchers here are working on very different approaches. The ion traps used by Home are just one of a number of routes that could deliver a breakthrough. Superconducting circuits are another promising option. “It’s highly unusual for one university to be pursuing so many different approaches,” says Home.

    Highly specialised infrastructure

    In common with his colleagues, Home has big hopes for the planned physics building on the Hönggerberg campus. Funded by an endowment from Walter Haefner, this will feature highly specialised laboratories that are exceptionally well isolated from outside interference. It is here that scientists will attempt to push back the boundaries of quantum research. In so doing, they will also explore ideas that are still very much in their infancy.

    One potential route is the use of free electrons in semiconductor materials. These are able to move freely of the influence of the crystal lattice structure and exhibit quantum mechanical properties that can be used for processing information. “But for this purpose, the semiconductors have to be extremely pure,” explains Werner Wegscheider, who as Professor of Solid State Physics has experience in producing these specialised materials. He uses a vacuum chamber to build customised semiconductors atom by atom. “We make the world’s purest semiconductors,” he says with pride. Such materials can exhibit completely new properties. When cooled to a very low temperature and exposed to a magnetic field, the free electrons condense to form a quasiparticle. In other words, they collectively behave in the manner of a single particle and can therefore be described mathematically. Researchers have good reason to believe that such topological quantum systems are more resistant to perturbation than other quantum objects – which is precisely why they may be less prone to error.

    A worthwhile effort

    Topological quantum systems offer an especially neat example of how in physics theory and experiment can be mutually enriching. The basic quantum Hall effect underpinning these systems was discovered experimentally. This effect was then described theoretically. The resulting theory subsequently led to the prediction of the topological states about which researchers are currently so excited. It has yet to be experimentally verified whether these theoretically predicted states actually exist in practice. If experimental physicists can demonstrate this, they may soon be returning the problem for additional theoretical elaboration.

    Like Home, Wegscheider warns it will take some time before a quantum computer can solve practical problems beyond the realm of quantum physics. “Three years ago, I was still sceptical, but now I’m pretty confident that we’ll get there,” he says.

    At present, it is still unclear which of the various approaches will ultimately prevail. The answer may well lie in a mix of different solutions – semiconductors with superconducting circuits, for example. “When these two options are combined, you get quasiparticles known as Majorana fermions, which are thought to be less susceptible to error,” says Wegscheider. Yiwen Chu, Assistant Professor of Hybrid Quantum Systems, is investigating combinations of different quantum systems. “There’s a whole range of quantum objects, such as photons, ions or even superconducting circuits,” she explains. “All have their specific strengths, but also disadvantages. The question is how to bring these elements together in a way that combines their strengths.”

    Bridging the gap

    Her model is the classic computer, which uses, for example, a silicon chip to process information and optical fibre to transfer the data. By analogy, a quantum system might use superconducting circuits to process data, which would then be transferred by photons. “But it turns out that these two quantum objects are not particularly compatible,” says Chu. What is needed, therefore, is something to bridge the gap. Chu and her research group are currently investigating the use of small crystals for this purpose. As mechanical objects, they are able to communicate with both sides by means of acoustic vibrations.

    At the same time, it may well be that these crystals themselves are capable of storing and processing quantum information. “The crystals use acoustic vibrations, which are much slower than light waves, so we could use them to build smaller qubits,” she explains. Yet her chief aim here is not to accommodate as many qubits as possible on a given surface. The advantage is rather that these crystals can be isolated from one another much more easily than, for example, superconducting circuits. The greater degree of isolation prevents an unwanted loss of information, which in turn helps reduce the susceptibility to error. Yet the greatest challenge of all is that as more and more qubits are connected together, the system itself has to become increasingly complex.

    Yet it would be wrong, she says, to look upon the quantum computer as purely an engineering problem. “There are also a lot of unanswered questions on the physics side of the equation.” One of these is whether the transition between the worlds of classical and quantum physics is continuous or abrupt. “We don’t yet have a definitive answer to this problem,” says Chu. “But either way, it’s going be an exciting time for us physicists!”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ETH Zurich campus
    Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) is a public research university in the city of Zürich, Switzerland. Founded by the Swiss Federal Government in 1854 with the stated mission to educate engineers and scientists, the school focuses exclusively on science, technology, engineering and mathematics. Like its sister institution Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH) , it is part of the Swiss Federal Institutes of Technology Domain (ETH Domain)) , part of the Swiss Federal Department of Economic Affairs, Education and Research [EAER][Eidgenössisches Departement für Wirtschaft, Bildung und Forschung] [Département fédéral de l’économie, de la formation et de la recherche] (CH).

    The university is an attractive destination for international students thanks to low tuition fees of 809 CHF per semester, PhD and graduate salaries that are amongst the world’s highest, and a world-class reputation in academia and industry. There are currently 22,200 students from over 120 countries, of which 4,180 are pursuing doctoral degrees. In the 2021 edition of the QS World University Rankings ETH Zürich is ranked 6th in the world and 8th by the Times Higher Education World Rankings 2020. In the 2020 QS World University Rankings by subject it is ranked 4th in the world for engineering and technology (2nd in Europe) and 1st for earth & marine science.

    As of November 2019, 21 Nobel laureates, 2 Fields Medalists, 2 Pritzker Prize winners, and 1 Turing Award winner have been affiliated with the Institute, including Albert Einstein. Other notable alumni include John von Neumann and Santiago Calatrava. It is a founding member of the IDEA League and the International Alliance of Research Universities (IARU) and a member of the CESAER network.

    ETH Zürich was founded on 7 February 1854 by the Swiss Confederation and began giving its first lectures on 16 October 1855 as a polytechnic institute (eidgenössische polytechnische Schule) at various sites throughout the city of Zurich. It was initially composed of six faculties: architecture, civil engineering, mechanical engineering, chemistry, forestry, and an integrated department for the fields of mathematics, natural sciences, literature, and social and political sciences.

    It is locally still known as Polytechnikum, or simply as Poly, derived from the original name eidgenössische polytechnische Schule, which translates to “federal polytechnic school”.

    ETH Zürich is a federal institute (i.e., under direct administration by the Swiss government), whereas the University of Zürich [Universität Zürich ] (CH) is a cantonal institution. The decision for a new federal university was heavily disputed at the time; the liberals pressed for a “federal university”, while the conservative forces wanted all universities to remain under cantonal control, worried that the liberals would gain more political power than they already had. In the beginning, both universities were co-located in the buildings of the University of Zürich.

    From 1905 to 1908, under the presidency of Jérôme Franel, the course program of ETH Zürich was restructured to that of a real university and ETH Zürich was granted the right to award doctorates. In 1909 the first doctorates were awarded. In 1911, it was given its current name, Eidgenössische Technische Hochschule. In 1924, another reorganization structured the university in 12 departments. However, it now has 16 departments.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), and four associated research institutes form the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    Reputation and ranking

    ETH Zürich is ranked among the top universities in the world. Typically, popular rankings place the institution as the best university in continental Europe and ETH Zürich is consistently ranked among the top 1-5 universities in Europe, and among the top 3-10 best universities of the world.

    Historically, ETH Zürich has achieved its reputation particularly in the fields of chemistry, mathematics and physics. There are 32 Nobel laureates who are associated with ETH Zürich, the most recent of whom is Richard F. Heck, awarded the Nobel Prize in chemistry in 2010. Albert Einstein is perhaps its most famous alumnus.

    In 2018, the QS World University Rankings placed ETH Zürich at 7th overall in the world. In 2015, ETH Zürich was ranked 5th in the world in Engineering, Science and Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US) and University of Cambridge(UK). In 2015, ETH Zürich also ranked 6th in the world in Natural Sciences, and in 2016 ranked 1st in the world for Earth & Marine Sciences for the second consecutive year.

    In 2016, Times Higher Education World University Rankings ranked ETH Zürich 9th overall in the world and 8th in the world in the field of Engineering & Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US), California Institute of Technology(US), Princeton University(US), University of Cambridge(UK), Imperial College London(UK) and University of Oxford(UK) .

    In a comparison of Swiss universities by swissUP Ranking and in rankings published by CHE comparing the universities of German-speaking countries, ETH Zürich traditionally is ranked first in natural sciences, computer science and engineering sciences.

    In the survey CHE ExcellenceRanking on the quality of Western European graduate school programs in the fields of biology, chemistry, physics and mathematics, ETH Zürich was assessed as one of the three institutions to have excellent programs in all the considered fields, the other two being Imperial College London(UK) and the University of Cambridge(UK), respectively.

     
  • richardmitnick 12:43 pm on September 20, 2021 Permalink | Reply
    Tags: "Rock shape should be given greater consideration in risk assessments", , , , Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)   

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH): “Rock shape should be given greater consideration in risk assessments” 

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)

    20.09.2021

    The shape of rocks is a key factor in assessing rockfall hazard. This is the conclusion of a new study from the WSL Institute for Snow and Avalanche Research[Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft][Institut fédéral de recherches sur la forêt, la neige et le paysage] (CH) and ETH Zürich.

    1
    One of the concrete blocks positioned on the tilting platform that will be used to set it in motion. (Photograph: SLF / Martin Heggli.)

    Rockfall is a very real threat in an Alpine country like Switzerland. In order to assess the hazard at a given location and plan protective measures, engineering firms use computer models to calculate how far falling rocks can roll. However, the models are not yet able to adequately take into account the extent to which the mass, size or shape of a rock influences its movement. This would require real-​world measurement data to be fed into the models, but until now such data were only available sporadically, since no systematic rockfall studies had been conducted.

    First comprehensive experiments

    That has now changed after researchers from the WSL Swiss Federal Institute for Forest Snow and Landscape Research and ETH Zürich spent over four years carrying out rockfall experiments. “This has allowed us to compile the largest set of measurement data to date,” says Andrin Caviezel, SLF researcher and lead author of the study. The researchers used artificial rocks in the form of concrete blocks fitted with sensors, which they rolled down a slope near the Flüela Pass in the Swiss canton of Grisons. They compared different shapes and masses, reconstructed the complete trajectories and determined speeds, jump heights and runout zones. They have just published their results in the scientific journal Nature Communications.

    Lateral spread

    The most significant finding is that the direction a rock rolls in depends much more on its shape than on its mass. While cube-​shaped boulders plunge straight down the line of greatest slope, wheel-​shaped rocks often pull away to one side and so may threaten a much wider area at the base of the slope. “This needs to be taken into consideration when assessing danger zones, but also when determining the location and dimensions of rockfall nets,” explains Caviezel. Because wheel-​like rocks hit rockfall nets with their narrow side, their energy is concentrated on a much smaller area than is the case with cube-​like rocks – so protective nets need to be stronger.

    More realistic models

    The data are now being entered into the RAMMS::ROCKFALL simulation program developed at the SLF. As well as factoring in the shape, the aim is to represent more realistically how the rock’s speed is affected by the way it impacts and bounces off the ground. “This will enable us to offer an enhanced program that engineering firms can use to make more reliable calculations,” says Caviezel. The data set is also available on the EnviDat platform, where it is freely accessible to other research groups. They can use it to calibrate their own algorithms or to develop new, more accurate models providing enhanced protection against rockfall.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ETH Zurich campus
    Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) is a public research university in the city of Zürich, Switzerland. Founded by the Swiss Federal Government in 1854 with the stated mission to educate engineers and scientists, the school focuses exclusively on science, technology, engineering and mathematics. Like its sister institution Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH) , it is part of the Swiss Federal Institutes of Technology Domain (ETH Domain)) , part of the Swiss Federal Department of Economic Affairs, Education and Research [EAER][Eidgenössisches Departement für Wirtschaft, Bildung und Forschung] [Département fédéral de l’économie, de la formation et de la recherche] (CH).

    The university is an attractive destination for international students thanks to low tuition fees of 809 CHF per semester, PhD and graduate salaries that are amongst the world’s highest, and a world-class reputation in academia and industry. There are currently 22,200 students from over 120 countries, of which 4,180 are pursuing doctoral degrees. In the 2021 edition of the QS World University Rankings ETH Zürich is ranked 6th in the world and 8th by the Times Higher Education World Rankings 2020. In the 2020 QS World University Rankings by subject it is ranked 4th in the world for engineering and technology (2nd in Europe) and 1st for earth & marine science.

    As of November 2019, 21 Nobel laureates, 2 Fields Medalists, 2 Pritzker Prize winners, and 1 Turing Award winner have been affiliated with the Institute, including Albert Einstein. Other notable alumni include John von Neumann and Santiago Calatrava. It is a founding member of the IDEA League and the International Alliance of Research Universities (IARU) and a member of the CESAER network.

    ETH Zürich was founded on 7 February 1854 by the Swiss Confederation and began giving its first lectures on 16 October 1855 as a polytechnic institute (eidgenössische polytechnische Schule) at various sites throughout the city of Zurich. It was initially composed of six faculties: architecture, civil engineering, mechanical engineering, chemistry, forestry, and an integrated department for the fields of mathematics, natural sciences, literature, and social and political sciences.

    It is locally still known as Polytechnikum, or simply as Poly, derived from the original name eidgenössische polytechnische Schule, which translates to “federal polytechnic school”.

    ETH Zürich is a federal institute (i.e., under direct administration by the Swiss government), whereas the University of Zürich [Universität Zürich ] (CH) is a cantonal institution. The decision for a new federal university was heavily disputed at the time; the liberals pressed for a “federal university”, while the conservative forces wanted all universities to remain under cantonal control, worried that the liberals would gain more political power than they already had. In the beginning, both universities were co-located in the buildings of the University of Zürich.

    From 1905 to 1908, under the presidency of Jérôme Franel, the course program of ETH Zürich was restructured to that of a real university and ETH Zürich was granted the right to award doctorates. In 1909 the first doctorates were awarded. In 1911, it was given its current name, Eidgenössische Technische Hochschule. In 1924, another reorganization structured the university in 12 departments. However, it now has 16 departments.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), and four associated research institutes form the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    Reputation and ranking

    ETH Zürich is ranked among the top universities in the world. Typically, popular rankings place the institution as the best university in continental Europe and ETH Zürich is consistently ranked among the top 1-5 universities in Europe, and among the top 3-10 best universities of the world.

    Historically, ETH Zürich has achieved its reputation particularly in the fields of chemistry, mathematics and physics. There are 32 Nobel laureates who are associated with ETH Zürich, the most recent of whom is Richard F. Heck, awarded the Nobel Prize in chemistry in 2010. Albert Einstein is perhaps its most famous alumnus.

    In 2018, the QS World University Rankings placed ETH Zürich at 7th overall in the world. In 2015, ETH Zürich was ranked 5th in the world in Engineering, Science and Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US) and University of Cambridge(UK). In 2015, ETH Zürich also ranked 6th in the world in Natural Sciences, and in 2016 ranked 1st in the world for Earth & Marine Sciences for the second consecutive year.

    In 2016, Times Higher Education World University Rankings ranked ETH Zürich 9th overall in the world and 8th in the world in the field of Engineering & Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US), California Institute of Technology(US), Princeton University(US), University of Cambridge(UK), Imperial College London(UK) and University of Oxford(UK) .

    In a comparison of Swiss universities by swissUP Ranking and in rankings published by CHE comparing the universities of German-speaking countries, ETH Zürich traditionally is ranked first in natural sciences, computer science and engineering sciences.

    In the survey CHE ExcellenceRanking on the quality of Western European graduate school programs in the fields of biology, chemistry, physics and mathematics, ETH Zürich was assessed as one of the three institutions to have excellent programs in all the considered fields, the other two being Imperial College London(UK) and the University of Cambridge(UK), respectively.

     
  • richardmitnick 10:27 am on September 10, 2021 Permalink | Reply
    Tags: "An insulator made of two conductors", , In graphene layers twisted relative to each other two electrical conductors team up to form an insulator., , Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)   

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH): “An insulator made of two conductors” 

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)

    09.09.2021
    Oliver Morsch

    At ETH Zürich researchers have observed a new state of matter: in graphene layers twisted relative to each other, two electrical conductors team up to form an insulator.

    1
    In two graphene double layers twisted relative to each other (red and blue), insulating states consisting of electron-​hole pairs (‘-‘ and ‘+’) can form. (Visualisations: Peter Rickhaus / ETH Zürich)

    Ohm’s law is well-​known from physics class. It states that the resistance of a conductor and the voltage applied to it determine how much current will flow through the conductor. The electrons in the material – the negatively charged carriers – move in a disordered fashion and largely independently of each other. Physicists find it far more interesting, however, when the charge carriers influence one another strongly enough for that simple picture not to be correct anymore.

    This is the case, for instance, in “Twisted Bilayer Graphene”, which was discovered a few years ago. That material is made from two wafer-​thin graphene layers consisting of a single layer of carbon atoms each. If two neighbouring layers are slightly twisted with respect to each other, the electrons can be influenced in such a way that they interact strongly with one another. As a consequence, the material can, for instance, become superconducting and hence conduct current without any losses.

    A team of researchers led by Klaus Ensslin and Thomas Ihn at the Laboratory for Solid State Physics at ETH Zürich, together with colleagues at The University of Texas-Austin (US), has now observed a novel state in twisted double layers of graphene. In that state, negatively charged electrons and positively charged so-​called holes, which are missing electrons in the material, are correlated so strongly with each other that the material no longer conducts electric current.

    Twisted graphene layers

    “In conventional experiments, in which graphene layers are twisted by about one degree with respect to each other, the mobility of the electrons is influenced by quantum mechanical tunnelling between the layers”, explains Peter Rickhaus, a post-​doc and lead author of the study recently published in the journal Science. “In our new experiment, by contrast, we twist two double layers of graphene by more than two degrees relative to each other, so that electrons can essentially no longer tunnel between the double layers.”

    Increased resistance through coupling

    As a result of this, by applying an electric field electrons can be created in one of the double layers and holes in the other. Both electrons and holes can conduct electric current. Therefore, one would expect the two graphene double layers together to form an even better conductor with a smaller resistance.

    Under certain circumstances, however, the exact opposite can happen, as Folkert de Vries, a post-​doc in Ensslin’s team, explains: “If we adjust the electric field in such a way as to have the same number of electrons and holes in the double layers, the resistance suddenly increases sharply.” For several weeks Ensslin and his collaborators were unable to make sense of that surprising result, but eventually their theory colleague Allan H. MacDonald from Austin gave them a decisive hint: according to MacDonald, they had observed a new kind of density wave.

    So-​called charge density waves usually arise in one-​dimensional conductors when the electrons in the material collectively conduct electric current and also spatially arrange themselves into waves. In the experiment performed by the ETH researchers, it is now the electrons and holes that pair with each other by electrostatic attraction and thus form a collective density wave. That density wave, however, now consists of electrically neutral electron-​hole pairs, so that the two double layers taken together can no longer conduct electric current.

    2
    Twisted graphene (left) is sandwiched between two-dimensional insulators and attached to contacts in order to measure electric current (centre). An electron-hole state is then created by applying a large voltage to the gate electrodes (right). (Visualisations: Peter Rickhaus / ETH Zürich).

    New correlated state

    “That’s a completely new correlated state of electrons and holes which has no overall charge”, says Ensslin. “This neutral state can, nevertheless, transmit information or conduct heat. Moreover, what’s special about it is that we can completely control it through the twisting angle and the applied voltage.” Similar states have been observed in other materials in which electron-​hole pairs (also known as excitons) are created through excitation using laser light. In the experiment at ETH, however, the electrons and holes are in their ground state, or state of lowest energy, which means that their lifetime is not limited by spontaneous decay.

    Possible application in quantum technologies

    Ensslin, who specializes in the investigation of the electronic properties of small quantum systems, is already speculating about possible practical applications for the new correlated state. However, this will require a fair amount of preparatory work. One could trap the electron-​hole pairs, for instance in a (Fabry-​Pérot) resonator. That is very demanding, as neutral particles cannot be directly controlled, for example using electric fields. The fact that the state is electrically neutral might, on the other hand, turn out to be an advantage: it could be exploited to make quantum memories less susceptible to electric field noise.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ETH Zurich campus
    Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) is a public research university in the city of Zürich, Switzerland. Founded by the Swiss Federal Government in 1854 with the stated mission to educate engineers and scientists, the school focuses exclusively on science, technology, engineering and mathematics. Like its sister institution Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH) , it is part of the Swiss Federal Institutes of Technology Domain (ETH Domain)) , part of the Swiss Federal Department of Economic Affairs, Education and Research [EAER][Eidgenössisches Departement für Wirtschaft, Bildung und Forschung] [Département fédéral de l’économie, de la formation et de la recherche] (CH).

    The university is an attractive destination for international students thanks to low tuition fees of 809 CHF per semester, PhD and graduate salaries that are amongst the world’s highest, and a world-class reputation in academia and industry. There are currently 22,200 students from over 120 countries, of which 4,180 are pursuing doctoral degrees. In the 2021 edition of the QS World University Rankings ETH Zürich is ranked 6th in the world and 8th by the Times Higher Education World Rankings 2020. In the 2020 QS World University Rankings by subject it is ranked 4th in the world for engineering and technology (2nd in Europe) and 1st for earth & marine science.

    As of November 2019, 21 Nobel laureates, 2 Fields Medalists, 2 Pritzker Prize winners, and 1 Turing Award winner have been affiliated with the Institute, including Albert Einstein. Other notable alumni include John von Neumann and Santiago Calatrava. It is a founding member of the IDEA League and the International Alliance of Research Universities (IARU) and a member of the CESAER network.

    ETH Zürich was founded on 7 February 1854 by the Swiss Confederation and began giving its first lectures on 16 October 1855 as a polytechnic institute (eidgenössische polytechnische Schule) at various sites throughout the city of Zurich. It was initially composed of six faculties: architecture, civil engineering, mechanical engineering, chemistry, forestry, and an integrated department for the fields of mathematics, natural sciences, literature, and social and political sciences.

    It is locally still known as Polytechnikum, or simply as Poly, derived from the original name eidgenössische polytechnische Schule, which translates to “federal polytechnic school”.

    ETH Zürich is a federal institute (i.e., under direct administration by the Swiss government), whereas the University of Zürich [Universität Zürich ] (CH) is a cantonal institution. The decision for a new federal university was heavily disputed at the time; the liberals pressed for a “federal university”, while the conservative forces wanted all universities to remain under cantonal control, worried that the liberals would gain more political power than they already had. In the beginning, both universities were co-located in the buildings of the University of Zürich.

    From 1905 to 1908, under the presidency of Jérôme Franel, the course program of ETH Zürich was restructured to that of a real university and ETH Zürich was granted the right to award doctorates. In 1909 the first doctorates were awarded. In 1911, it was given its current name, Eidgenössische Technische Hochschule. In 1924, another reorganization structured the university in 12 departments. However, it now has 16 departments.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), and four associated research institutes form the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    Reputation and ranking

    ETH Zürich is ranked among the top universities in the world. Typically, popular rankings place the institution as the best university in continental Europe and ETH Zürich is consistently ranked among the top 1-5 universities in Europe, and among the top 3-10 best universities of the world.

    Historically, ETH Zürich has achieved its reputation particularly in the fields of chemistry, mathematics and physics. There are 32 Nobel laureates who are associated with ETH Zürich, the most recent of whom is Richard F. Heck, awarded the Nobel Prize in chemistry in 2010. Albert Einstein is perhaps its most famous alumnus.

    In 2018, the QS World University Rankings placed ETH Zürich at 7th overall in the world. In 2015, ETH Zürich was ranked 5th in the world in Engineering, Science and Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US) and University of Cambridge(UK). In 2015, ETH Zürich also ranked 6th in the world in Natural Sciences, and in 2016 ranked 1st in the world for Earth & Marine Sciences for the second consecutive year.

    In 2016, Times Higher Education World University Rankings ranked ETH Zürich 9th overall in the world and 8th in the world in the field of Engineering & Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US), California Institute of Technology(US), Princeton University(US), University of Cambridge(UK), Imperial College London(UK) and University of Oxford(UK) .

    In a comparison of Swiss universities by swissUP Ranking and in rankings published by CHE comparing the universities of German-speaking countries, ETH Zürich traditionally is ranked first in natural sciences, computer science and engineering sciences.

    In the survey CHE ExcellenceRanking on the quality of Western European graduate school programs in the fields of biology, chemistry, physics and mathematics, ETH Zürich was assessed as one of the three institutions to have excellent programs in all the considered fields, the other two being Imperial College London(UK) and the University of Cambridge(UK), respectively.

     
  • richardmitnick 11:20 am on September 3, 2021 Permalink | Reply
    Tags: "Those who fail productively are all the wiser", All of the students achieved much better learning success when they had to solve exercises and problems before the concepts required were explained to them., , First: students should at least be familiar with the most fundamental concepts of the work., Fourth and final: the instructor or instructional material provides an explanation that applies the new concept to solve the problem and demonstrates why the students’ solutions missed the target., If students fail “productively” during the practice stage their learning outcomes are up to three times better than what a very good teacher can achieve in a year., Learning outcomes depend on teaching in such a way that these four mechanisms all play a key role., Learning strategies, Practice before learning the theory is nearly twice as efficient as receiving a year of instruction from an outstanding teacher., Second: students should recognise the deficit between what they do and do not know already., Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH), The results of this study have turned the last several decades of educational research upside-​down., Third: this recognition makes them more receptive to new concepts and sparks their interest in solving the problem., What exactly is happening when students fail productively?   

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH): “Those who fail productively are all the wiser” 

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)

    02.09.2021
    Christoph Elhardt

    Researchers from ETH Zürich have demonstrated the positive effects of productive failure on learning outcomes. The success rate for one of ETH’s largest courses was increased by 20 percent.

    1
    If you want to achieve ideal learning outcomes, puzzling over relevant problems before learning the basics pays off. Credit: Alessandro Della Bella/ETH Zürich.

    For a long time, the dominant paradigm in teaching has been that we learn new things best when someone explains them to us. First instruction, then practice: this is the educational formula still applied in countless classrooms and lecture halls today.

    Researchers from the Professorship for Learning Sciences at ETH Zürich have now demonstrated that exactly the opposite is the case. “If you want to achieve ideal learning outcomes, it’s better to first puzzle over a problem that is specifically relevant to a topic before then exploring the underlying principles,” explains ETH professor Manu Kapur, who authored the study together with postdoctoral scientist Tanmay Sinha. The key to this approach is the experience of productive failure—a theory conceptualized and developed by Kapur.

    15 years of educational research

    Sinha’s and Kapur’s study is a meta-​analysis of educational research from the past 15 years.

    Science paper:
    Review of Educational Research

    The authors looked at 53 studies with 166 comparative analyses, all dealing with the question of which learning strategy is more effective: instruction before practice or vice versa. The primary topical focus was on how well school-​age and university students comprehended concepts in the disciplines of mathematics, physics, chemistry, biology and medicine or were able to successfully apply them. The study did not include general skills, such as sensemaking when reading and writing proficiency, or problems from humanities and social science disciplines.

    Almost half (45 percent) of the students tested were in grades 6 to 10 (at secondary school) at the time of the study, meaning they were between the ages of 12 and 18. Over a third (37 percent) were currently undergraduates, and one in six (15 percent) were still in primary school. Almost half (43 percent) of students came from North America, over a quarter each from Europe (26 percent) and Asia (28 percent).

    Three times as efficient as a good instructor

    The results have turned the last several decades of educational research upside-​down: all of the students achieved much better learning success when they had to solve exercises and problems before the concepts required were explained to them. However, this held true more for secondary school students and undergraduates than for students at primary school. According to the authors, this can be explained by a combination of factors: primary school students often have too little knowledge in an area to solve problems effectively. In addition, their analytical reasoning and problem-​solving abilities maybe less mature.

    What is particularly astonishing is how starkly this affects learning outcomes: “Practice before learning the theory is nearly twice as efficient as receiving a year of instruction from an outstanding teacher,” explains Kapur. Moreover, if students fail “productively” during the practice stage their learning outcomes are up to three times better than what a very good teacher can achieve in a year.

    Why Productive Failure pays off

    But what exactly is happening when students fail productively? Sinha and Kapur say that there are four mechanisms at work here, corresponding to four “As”: first, a problem should activate as much relevant knowledge as possible. “Productive failure,” says Kapur, “requires a certain amount of prior knowledge. If a person wants to solve a statistical problem like finding the standard deviation productively, for example, first: students should at least be familiar with the most fundamental concepts such as the mean.” Second: students should recognise the deficit between what they do and do not know already; this gives them awareness. Third: this recognition makes them more receptive to new concepts and sparks their interest in solving the problem, i.e. it changes their affect, or psychological state.

    The fourth and final stage is for the instructor or instructional material to provide an explanation that applies the new concept to solve the problem and demonstrates why the students’ solutions missed the target. This can be described as knowledge assembly. “Learning outcomes depend on teaching in such a way that these four mechanisms all play a key role,” explains Kapur. This is particularly true when students tackle problems that can be grasped intuitively but for which they are still lacking the knowledge required to solve the problem unless they are taught the new concepts.

    20 percent higher success rates at ETH Zürich

    But ETH Professor Kapur’s team went beyond a meta-​analysis and tested their theory directly in one of the largest year-​long courses taught at ETH, Linear Algebra, which enrolls around 650 students from the Department of Mechanical and Process Engineering. The course structure follows the traditional approach: concepts are introduced in lectures and then applied and explored in exercises.

    Led by doctoral student Vera Baumgartner and in collaboration with ETH mathematics Professor Norbert Hungerbühler, Kapur’s team created a set of tasks that students could voluntarily attempt to solve before five key lectures each semester. The goal of the exercises was productive failure. Roughly, sixty percent of students took advantage of the opportunity and completed the extra work. The results were impressive: historically, just over half of students (55 percent) on average pass the course. The success rate among those students who productively failed ahead of the lectures was 20 percent higher, and their marks were considerably better. For the authors, this clearly shows that those who engage in productive failure more often learn more.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ETH Zurich campus
    Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) is a public research university in the city of Zürich, Switzerland. Founded by the Swiss Federal Government in 1854 with the stated mission to educate engineers and scientists, the school focuses exclusively on science, technology, engineering and mathematics. Like its sister institution Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH) , it is part of the Swiss Federal Institutes of Technology Domain (ETH Domain)) , part of the Swiss Federal Department of Economic Affairs, Education and Research [EAER][Eidgenössisches Departement für Wirtschaft, Bildung und Forschung] [Département fédéral de l’économie, de la formation et de la recherche] (CH).

    The university is an attractive destination for international students thanks to low tuition fees of 809 CHF per semester, PhD and graduate salaries that are amongst the world’s highest, and a world-class reputation in academia and industry. There are currently 22,200 students from over 120 countries, of which 4,180 are pursuing doctoral degrees. In the 2021 edition of the QS World University Rankings ETH Zürich is ranked 6th in the world and 8th by the Times Higher Education World Rankings 2020. In the 2020 QS World University Rankings by subject it is ranked 4th in the world for engineering and technology (2nd in Europe) and 1st for earth & marine science.

    As of November 2019, 21 Nobel laureates, 2 Fields Medalists, 2 Pritzker Prize winners, and 1 Turing Award winner have been affiliated with the Institute, including Albert Einstein. Other notable alumni include John von Neumann and Santiago Calatrava. It is a founding member of the IDEA League and the International Alliance of Research Universities (IARU) and a member of the CESAER network.

    ETH Zürich was founded on 7 February 1854 by the Swiss Confederation and began giving its first lectures on 16 October 1855 as a polytechnic institute (eidgenössische polytechnische Schule) at various sites throughout the city of Zurich. It was initially composed of six faculties: architecture, civil engineering, mechanical engineering, chemistry, forestry, and an integrated department for the fields of mathematics, natural sciences, literature, and social and political sciences.

    It is locally still known as Polytechnikum, or simply as Poly, derived from the original name eidgenössische polytechnische Schule, which translates to “federal polytechnic school”.

    ETH Zürich is a federal institute (i.e., under direct administration by the Swiss government), whereas the University of Zürich [Universität Zürich ] (CH) is a cantonal institution. The decision for a new federal university was heavily disputed at the time; the liberals pressed for a “federal university”, while the conservative forces wanted all universities to remain under cantonal control, worried that the liberals would gain more political power than they already had. In the beginning, both universities were co-located in the buildings of the University of Zürich.

    From 1905 to 1908, under the presidency of Jérôme Franel, the course program of ETH Zürich was restructured to that of a real university and ETH Zürich was granted the right to award doctorates. In 1909 the first doctorates were awarded. In 1911, it was given its current name, Eidgenössische Technische Hochschule. In 1924, another reorganization structured the university in 12 departments. However, it now has 16 departments.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), and four associated research institutes form the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    Reputation and ranking

    ETH Zürich is ranked among the top universities in the world. Typically, popular rankings place the institution as the best university in continental Europe and ETH Zürich is consistently ranked among the top 1-5 universities in Europe, and among the top 3-10 best universities of the world.

    Historically, ETH Zürich has achieved its reputation particularly in the fields of chemistry, mathematics and physics. There are 32 Nobel laureates who are associated with ETH Zürich, the most recent of whom is Richard F. Heck, awarded the Nobel Prize in chemistry in 2010. Albert Einstein is perhaps its most famous alumnus.

    In 2018, the QS World University Rankings placed ETH Zürich at 7th overall in the world. In 2015, ETH Zürich was ranked 5th in the world in Engineering, Science and Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US) and University of Cambridge(UK). In 2015, ETH Zürich also ranked 6th in the world in Natural Sciences, and in 2016 ranked 1st in the world for Earth & Marine Sciences for the second consecutive year.

    In 2016, Times Higher Education World University Rankings ranked ETH Zürich 9th overall in the world and 8th in the world in the field of Engineering & Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US), California Institute of Technology(US), Princeton University(US), University of Cambridge(UK), Imperial College London(UK) and University of Oxford(UK) .

    In a comparison of Swiss universities by swissUP Ranking and in rankings published by CHE comparing the universities of German-speaking countries, ETH Zürich traditionally is ranked first in natural sciences, computer science and engineering sciences.

    In the survey CHE ExcellenceRanking on the quality of Western European graduate school programs in the fields of biology, chemistry, physics and mathematics, ETH Zürich was assessed as one of the three institutions to have excellent programs in all the considered fields, the other two being Imperial College London(UK) and the University of Cambridge(UK), respectively.

     
  • richardmitnick 11:06 am on August 17, 2021 Permalink | Reply
    Tags: "Computer algorithms are currently revolutionising biology", , , , Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)   

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH): “Computer algorithms are currently revolutionising biology” 

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)

    17.08.2021

    Artificial intelligence can help predict the three-​dimensional structure of proteins. Professor Beat Christen describes how such algorithms should soon help to develop tailored artificial proteins.

    Computer algorithms have been a helpful tool in biomedical research for decades, and their importance has been growing steadily over that time. But what we’re now experiencing is nothing short of a quantum leap; it overshadows all that came before and it will have unforeseen effects. Artificial intelligence (AI) algorithms have made it possible to use nothing but the linear sequence of the building blocks of proteins – amino acids – to deliver extremely accurate predictions of the three-​dimensional structure into which this chain of amino acids will assemble.

    Grasping the importance of this development hinges on knowing that biology on a cellular level is actually always about spatial interactions between molecules – and that it’s the three-​dimensional structure of these molecules that determine those interactions. Once we understand the structures and interactions in play, we understand the biology. And only once we understand the structure of molecules can we engineer medications capable of influencing the function of these molecules.

    1
    Proteins are thread-​like molecules that assemble to form a specific three-​dimensional structure. (Visualisation: Shutterstock)

    Up to now, there have been three experimental methods for determining the three-​dimensional structure of proteins: X-​ray structure analysis, nuclear magnetic resonance and, just in the past few years, cryo-​electron microscopy. The addition now of AI as a fourth precision method is due not just to improvements in AI algorithms and the vast computing power that is available today. For AI to make accurate predictions, it also needs to be trained using a wealth of data of exceptional quality. What makes the abovementioned quantum leap possible is considerable progress and effort in both data science and experimental protein research.

    Competition between private and public research

    Currently occupying most of the spotlight is the AlphaFold AI program developed by DeepMind, a sister company of Google. At present, DeepMind is undoubtedly the most important player in predicting protein structures. But what gets lost in the public discussion is that DeepMind is by no means the only player in this area; in particular the team led by David Baker from the University of Washington (US) is conducting some outstanding research.

    Overall, this competition between private and public research has surely served to inspire and invigorate the field, even if, as one would expect, private players keep many of their insights to themselves to protect their own business interests. But highly competitive research has also led to vast improvements to the AI algorithms that are in the public domain, which the entire scientific community can now use and develop. I expect this trend to continue. AI algorithms will soon provide us with highly precise structures for all known proteins. This will enable us to design precision medications on the computer.

    In the future, it should be possible to start from a three-​dimensional molecular scafold designed on a computer and employ AI to calculate a sequence of amino acids that will precisely assemble into the desired structure with the desired molecular function.

    Once this sequence of amino acids has been determined, my area of research comes into play. My work deals with the development of artificial genes and genomes, and it also employs computer algorithms. Based on sequences of amino acids, we calculate how protein information can be encoded into sequences of genetic building blocks – in other words into DNA. And we do it in a way that provides a simple means of synthesising these genes for practical applications.

    Reversing the information flow

    This means we are on the verge of being able to calculate an artificial gene for any given three-​dimensional protein structure designed on a computer, and then synthesise that gene. In biotechnology, this paves the way for manufacturing artificial proteins in microorganisms – including new pharmaceutical agents, vaccines or enzymes for use in industry.

    Ever since the earliest lifeforms emerged several billion years ago, to this day biological information has always been stored in the form of DNA. Inside biological cells, this information is transcribed– first into RNA molecules, and then translated into proteins. Until now, there has been no mechanism for reversing the flow of information such that protein information is translated back into DNA information. AI will soon change all that. For biologists such as myself, this is an incredibly spectacular development, one that will have a profound impact on biotechnology and medicine.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ETH Zurich campus
    Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) is a public research university in the city of Zürich, Switzerland. Founded by the Swiss Federal Government in 1854 with the stated mission to educate engineers and scientists, the school focuses exclusively on science, technology, engineering and mathematics. Like its sister institution Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH) , it is part of the Swiss Federal Institutes of Technology Domain (ETH Domain)) , part of the Swiss Federal Department of Economic Affairs, Education and Research [EAER][Eidgenössisches Departement für Wirtschaft, Bildung und Forschung] [Département fédéral de l’économie, de la formation et de la recherche] (CH).

    The university is an attractive destination for international students thanks to low tuition fees of 809 CHF per semester, PhD and graduate salaries that are amongst the world’s highest, and a world-class reputation in academia and industry. There are currently 22,200 students from over 120 countries, of which 4,180 are pursuing doctoral degrees. In the 2021 edition of the QS World University Rankings ETH Zürich is ranked 6th in the world and 8th by the Times Higher Education World Rankings 2020. In the 2020 QS World University Rankings by subject it is ranked 4th in the world for engineering and technology (2nd in Europe) and 1st for earth & marine science.

    As of November 2019, 21 Nobel laureates, 2 Fields Medalists, 2 Pritzker Prize winners, and 1 Turing Award winner have been affiliated with the Institute, including Albert Einstein. Other notable alumni include John von Neumann and Santiago Calatrava. It is a founding member of the IDEA League and the International Alliance of Research Universities (IARU) and a member of the CESAER network.

    ETH Zürich was founded on 7 February 1854 by the Swiss Confederation and began giving its first lectures on 16 October 1855 as a polytechnic institute (eidgenössische polytechnische Schule) at various sites throughout the city of Zurich. It was initially composed of six faculties: architecture, civil engineering, mechanical engineering, chemistry, forestry, and an integrated department for the fields of mathematics, natural sciences, literature, and social and political sciences.

    It is locally still known as Polytechnikum, or simply as Poly, derived from the original name eidgenössische polytechnische Schule, which translates to “federal polytechnic school”.

    ETH Zürich is a federal institute (i.e., under direct administration by the Swiss government), whereas the University of Zürich [Universität Zürich ] (CH) is a cantonal institution. The decision for a new federal university was heavily disputed at the time; the liberals pressed for a “federal university”, while the conservative forces wanted all universities to remain under cantonal control, worried that the liberals would gain more political power than they already had. In the beginning, both universities were co-located in the buildings of the University of Zürich.

    From 1905 to 1908, under the presidency of Jérôme Franel, the course program of ETH Zürich was restructured to that of a real university and ETH Zürich was granted the right to award doctorates. In 1909 the first doctorates were awarded. In 1911, it was given its current name, Eidgenössische Technische Hochschule. In 1924, another reorganization structured the university in 12 departments. However, it now has 16 departments.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), and four associated research institutes form the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    Reputation and ranking

    ETH Zürich is ranked among the top universities in the world. Typically, popular rankings place the institution as the best university in continental Europe and ETH Zürich is consistently ranked among the top 1-5 universities in Europe, and among the top 3-10 best universities of the world.

    Historically, ETH Zürich has achieved its reputation particularly in the fields of chemistry, mathematics and physics. There are 32 Nobel laureates who are associated with ETH Zürich, the most recent of whom is Richard F. Heck, awarded the Nobel Prize in chemistry in 2010. Albert Einstein is perhaps its most famous alumnus.

    In 2018, the QS World University Rankings placed ETH Zürich at 7th overall in the world. In 2015, ETH Zürich was ranked 5th in the world in Engineering, Science and Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US) and University of Cambridge(UK). In 2015, ETH Zürich also ranked 6th in the world in Natural Sciences, and in 2016 ranked 1st in the world for Earth & Marine Sciences for the second consecutive year.

    In 2016, Times Higher Education World University Rankings ranked ETH Zürich 9th overall in the world and 8th in the world in the field of Engineering & Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US), California Institute of Technology(US), Princeton University(US), University of Cambridge(UK), Imperial College London(UK) and University of Oxford(UK) .

    In a comparison of Swiss universities by swissUP Ranking and in rankings published by CHE comparing the universities of German-speaking countries, ETH Zürich traditionally is ranked first in natural sciences, computer science and engineering sciences.

    In the survey CHE ExcellenceRanking on the quality of Western European graduate school programs in the fields of biology, chemistry, physics and mathematics, ETH Zürich was assessed as one of the three institutions to have excellent programs in all the considered fields, the other two being Imperial College London(UK) and the University of Cambridge(UK), respectively.

     
  • richardmitnick 9:26 am on August 16, 2021 Permalink | Reply
    Tags: "'Jump in and go for it'", , Atmospheric Physics, , , How water droplets in clouds freeze to form ice and the role played by particles in this process., Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)   

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH): “‘Jump in and go for it'” 

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)

    16.08.2021
    Maja Schaffner

    ETH Fellow Nadia Shardt is researching how water droplets in clouds freeze to form ice and the role played by particles in this process. She has developed an innovative apparatus specifically for this purpose. She hopes that her findings will enable climate models to produce more accurate forecasts.

    1
    ETH Fellow Nadia Shardt studies how dust particles in the atmosphere influence the formation of ice in clouds. (all photographs: Stefan Weiss, partners in GmbH).

    Outside it is overcast, with grey clouds blanketing the sky. A strong wind gusts across the asphalt, lashing the branches of trees and shrubs and peppering heavy rain drops everywhere. Nadia Shardt, sporting a brown ponytail and wearing all black, offset by a pale blue face mask, waits at the entrance to the CHN building housing the Institute for Atmospheric and Climate Science. This is where the 27-​year-old Canadian conducts her research as part of Professor Ulrike Lohmann’s Atmospheric Physics group.

    Cloud from a Chip

    It is only a few steps to Shardt’s laboratory on the ground floor. The blinds are shut, blocking out the poor weather outdoors. Even so, clouds and rain dominate activities indoors: Shardt is researching how water droplets form ice in clouds.

    Working with Florin Isenrich, a doctoral student at the Institute for Chemical and Bioengineering, Shardt has developed a new apparatus to study this phenomenon, which they have christened a “Cloud from a Chip”. Shardt is eager to show how the invention works. Externally, it resembles a thick microscope slide, in other words a glass plate for microscopy that easily fits on the palm of a hand. Inside this, a tiny, winding system of passages produces water droplets with a diameter of around 75 micrometres. That is roughly the thickness of a human hair – and close to the diameter of water droplets in clouds.

    2
    The “Cloud from a Chip” apparatus produces water droplets embedded in oil to create a mini cloud for studying the formation of ice.

    3
    Scheme of the Cloud on a Chip (Graphic: Nadia Shardt).

    Supercool water

    The tiny droplets are embedded in oil and lined up behind each other in a row. Shardt guides the entire water-​in-oil emulsion into a fine plastic tube. Arranged in parallel, these tubes form a type of artificial mini cloud. The researcher can gradually lower the cloud’s temperature with a cooling unit she has also developed herself. “At this size, pure water droplets only turn into ice at around minus 35 degrees Celsius,” she explains. Although they are literally ice cold beforehand, they do not actually crystallise. The technical term for this process is “supercooling”.

    In the microscope’s black field of view, Shardt can watch around 300 droplets freezing at the same time. A camera takes images continuously. “When ice crystals form, they appear as white dots,” the chemical engineer explains. The screening process is only semi-​automated at present and the image quality can still be improved, but the basic experimental approach works: “The findings tally with results from previous studies,” Shardt says.

    Fun experimenting

    “Developing an entire apparatus from scratch was a brilliant experience,” the scientist says. “I would never have imagined I would actually put to use so much of what I learned during my chemical engineering studies.”

    Shardt specialised in thermodynamics as part of her doctorate. She is particularly interested in phase transitions. Her PhD thesis focused on theoretical problems and data from the literature. Keen to expand her horizons, she then decided to familiarise herself with the experimental side of research and “develop experiments and generate data on my own”.

    Relevant for climate

    She is doing just that with the new apparatus. “I’m interested in exactly how different dust particles in the atmosphere affect the formation of ice in clouds.” Dust particles act as so-​called crystallisation nuclei that trigger the formation of ice crystals. The scientist is therefore planning experiments in which she will mix mineral dusts, such as silicates, with the water droplets – first individually, and then in clearly defined mixtures. Her results should help to improve climate models and thus allow more precise forecasting. “It may be a tiny detail,” the postdoc explains, “But still a very important one”.

    In the atmosphere, the transition from water to ice on crystallisation nuclei occurs at low-​ to mid-​altitudes when temperatures are subzero. The process is relevant for weather and climate, because: “Ice formation changes the properties of clouds. For example, how much sunlight they let through or how much thermal radiation they retain from the Earth’s surface,” Shardt explains. “Or their propensity to produce precipitation”.

    4
    The chip in the hand, its magnification on the screen: the droplets are created by water and oil flowing through winding, narrow passages.

    A heavenly view

    We continue the interview in the building’s top storey. The view from the conference room is spectacular, stretching past the ETH Main Building across the whole of Zürich, over to the lake and the Alps in the distance. The sky, which appears wide and high up here, has since turned half blue, and the clouds are white, fluffy and serene.

    “Sometimes I come up here to take in the view, as it inspires me to come up with new ideas,” Shardt says. She is fascinated by landscapes and the elements, which she likes to photograph during her free time: she recently took a time-​lapse image of the city’s iconic Üetliberg shrouded in passing clouds. I like to explore everyday things,” she says.

    Grabbing opportunities

    During her Bachelor’s course, the chemical engineer realised she was interested in research. Janet Elliott, who subsequently acted as her doctoral supervisor, gave her the opportunity to participate in a research project early on. This involved ice formation as well, but in a very different context: Shardt was part of an interdisciplinary team investigating how to prevent the formation of ice in frozen transplant tissues. She had the opportunity to publish the results and present them at a conference. During the second year of her doctoral studies, she also had the chance to teach younger students, which is not common practice in Canada. She has always been open to such challenges. Her motto is: “Just jump in and go for it – and see how it goes.”

    Her interest in atmospheric physics was initially fuelled by a lecture she attended during her doctoral studies at the University of Alberta (CA). “I thought that would be an interesting topic for my post doctorate,” Shardt recalls. And a good opportunity to apply her specialist knowledge of thermodynamics. She found out that ETH Zürich is a pioneer in this field and contacted Ulrike Lohmann to “See what is possible”. And it paid off: her postdoctoral was financed by the research group’s own funds, a Canadian NSERC – Natural Sciences and Engineering Research Council of Canada [Conseil de recherches en sciences naturelles et en génie du Canada](CA) grant and an ETH Fellowship.

    The ultimate goal: a professorship

    Nadia Shardt’s goal is a professorship, and specifically one that allows her “to apply thermodynamics to relevant systems”. She is keen to continue focusing on atmospheric systems. “The more we understand what happens in the atmosphere, the better we can predict the weather – and thus also make more informed decisions and find better solutions,” she says. And she is eager to play her part in this.

    As if directed to stress the relevance of research around atmosphere and climate, the weather has changed again by the end of the interview: the magnificent view has almost vanished. Wind and rain whip against the meeting room windows. It is like looking into a gigantic washing machine. But as quickly as the rain started, it suddenly stops. By the time we reach the building’s exit, the sky is blue again.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ETH Zurich campus
    Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) is a public research university in the city of Zürich, Switzerland. Founded by the Swiss Federal Government in 1854 with the stated mission to educate engineers and scientists, the school focuses exclusively on science, technology, engineering and mathematics. Like its sister institution Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH) , it is part of the Swiss Federal Institutes of Technology Domain (ETH Domain)) , part of the Swiss Federal Department of Economic Affairs, Education and Research [EAER][Eidgenössisches Departement für Wirtschaft, Bildung und Forschung] [Département fédéral de l’économie, de la formation et de la recherche] (CH).

    The university is an attractive destination for international students thanks to low tuition fees of 809 CHF per semester, PhD and graduate salaries that are amongst the world’s highest, and a world-class reputation in academia and industry. There are currently 22,200 students from over 120 countries, of which 4,180 are pursuing doctoral degrees. In the 2021 edition of the QS World University Rankings ETH Zürich is ranked 6th in the world and 8th by the Times Higher Education World Rankings 2020. In the 2020 QS World University Rankings by subject it is ranked 4th in the world for engineering and technology (2nd in Europe) and 1st for earth & marine science.

    As of November 2019, 21 Nobel laureates, 2 Fields Medalists, 2 Pritzker Prize winners, and 1 Turing Award winner have been affiliated with the Institute, including Albert Einstein. Other notable alumni include John von Neumann and Santiago Calatrava. It is a founding member of the IDEA League and the International Alliance of Research Universities (IARU) and a member of the CESAER network.

    ETH Zürich was founded on 7 February 1854 by the Swiss Confederation and began giving its first lectures on 16 October 1855 as a polytechnic institute (eidgenössische polytechnische Schule) at various sites throughout the city of Zurich. It was initially composed of six faculties: architecture, civil engineering, mechanical engineering, chemistry, forestry, and an integrated department for the fields of mathematics, natural sciences, literature, and social and political sciences.

    It is locally still known as Polytechnikum, or simply as Poly, derived from the original name eidgenössische polytechnische Schule, which translates to “federal polytechnic school”.

    ETH Zürich is a federal institute (i.e., under direct administration by the Swiss government), whereas the University of Zürich [Universität Zürich ] (CH) is a cantonal institution. The decision for a new federal university was heavily disputed at the time; the liberals pressed for a “federal university”, while the conservative forces wanted all universities to remain under cantonal control, worried that the liberals would gain more political power than they already had. In the beginning, both universities were co-located in the buildings of the University of Zürich.

    From 1905 to 1908, under the presidency of Jérôme Franel, the course program of ETH Zürich was restructured to that of a real university and ETH Zürich was granted the right to award doctorates. In 1909 the first doctorates were awarded. In 1911, it was given its current name, Eidgenössische Technische Hochschule. In 1924, another reorganization structured the university in 12 departments. However, it now has 16 departments.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), and four associated research institutes form the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    Reputation and ranking

    ETH Zürich is ranked among the top universities in the world. Typically, popular rankings place the institution as the best university in continental Europe and ETH Zürich is consistently ranked among the top 1-5 universities in Europe, and among the top 3-10 best universities of the world.

    Historically, ETH Zürich has achieved its reputation particularly in the fields of chemistry, mathematics and physics. There are 32 Nobel laureates who are associated with ETH Zürich, the most recent of whom is Richard F. Heck, awarded the Nobel Prize in chemistry in 2010. Albert Einstein is perhaps its most famous alumnus.

    In 2018, the QS World University Rankings placed ETH Zürich at 7th overall in the world. In 2015, ETH Zürich was ranked 5th in the world in Engineering, Science and Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US) and University of Cambridge(UK). In 2015, ETH Zürich also ranked 6th in the world in Natural Sciences, and in 2016 ranked 1st in the world for Earth & Marine Sciences for the second consecutive year.

    In 2016, Times Higher Education World University Rankings ranked ETH Zürich 9th overall in the world and 8th in the world in the field of Engineering & Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US), California Institute of Technology(US), Princeton University(US), University of Cambridge(UK), Imperial College London(UK) and University of Oxford(UK) .

    In a comparison of Swiss universities by swissUP Ranking and in rankings published by CHE comparing the universities of German-speaking countries, ETH Zürich traditionally is ranked first in natural sciences, computer science and engineering sciences.

    In the survey CHE ExcellenceRanking on the quality of Western European graduate school programs in the fields of biology, chemistry, physics and mathematics, ETH Zürich was assessed as one of the three institutions to have excellent programs in all the considered fields, the other two being Imperial College London(UK) and the University of Cambridge(UK), respectively.

     
  • richardmitnick 10:41 am on August 12, 2021 Permalink | Reply
    Tags: "Researchers discover new limit of trapping light at the nanoscale", , , , , Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH),   

    From University of Southampton (UK) and Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH): “Researchers discover new limit of trapping light at the nanoscale” 

    U Southampton bloc

    From University of Southampton (UK)

    and

    Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)

    10 August 2021

    1
    Light focussed by nano-antennas on a gold surface leaks out by generating propagating plasmons.

    Physicists from the University of Southampton and ETH Zürich have reached a new threshold of light-matter coupling at the nanoscale.

    The international research, published this week in Nature Photonics, combined theoretical and experimental findings to establish a fundamental limitation of our ability to confine and exploit light.

    The collaboration focused on photonic nano-antennas fabricated in ever reducing sizes on the top of a two-dimensional electron gas. The setup is commonly used in laboratories all over the world to explore the effect of intense electromagnetic coupling, taking advantage of the antennas’ ability to trap and focus light close to electrons.

    Professor Simone De Liberato, Director of the Quantum Theory and Technology group at the University of Southampton, says: “The fabrication of photonic resonators able to focus light in extremely small volumes is proving a key technology which is presently enabling advances in fields as different as material science, optoelectronics, chemistry, quantum technologies, and many others.

    “In particular, the focussed light can be made to interact extremely strongly with matter, making electromagnetism non-perturbative. Light can then be used to modify the properties of the materials it interacts with, thus becoming a powerful tool for material science. Light can be effectively woven into novel materials.”

    Scientists discovered that light could no longer be confined in the system below a critical dimension, of the order of 250nm in the sample under study, when the experiment started exciting propagating plasmons. This caused waves of electrons to move away from the resonator and spill the energy of the photon.

    Experiments performed in the group of Professors Jérôme Faist and Giacomo Scalari at ETH Zürich had obtained results that could not be interpreted with state-of-the-art understanding of light-matter coupling. The physicists approached Southampton’s School of Physics and Astronomy, where researchers led theoretical analysis and built a novel theory able to quantitatively reproduce the results.

    Professor De Liberato believes the newfound limits could yet be exceeded by future experiments, unlocking dramatic technological advances that hinge on ultra-confined electromagnetic fields.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ETH Zurich campus
    Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) is a public research university in the city of Zürich, Switzerland. Founded by the Swiss Federal Government in 1854 with the stated mission to educate engineers and scientists, the school focuses exclusively on science, technology, engineering and mathematics. Like its sister institution Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH) , it is part of the Swiss Federal Institutes of Technology Domain (ETH Domain)) , part of the Swiss Federal Department of Economic Affairs, Education and Research [EAER][Eidgenössisches Departement für Wirtschaft, Bildung und Forschung] [Département fédéral de l’économie, de la formation et de la recherche] (CH).

    The university is an attractive destination for international students thanks to low tuition fees of 809 CHF per semester, PhD and graduate salaries that are amongst the world’s highest, and a world-class reputation in academia and industry. There are currently 22,200 students from over 120 countries, of which 4,180 are pursuing doctoral degrees. In the 2021 edition of the QS World University Rankings ETH Zürich is ranked 6th in the world and 8th by the Times Higher Education World Rankings 2020. In the 2020 QS World University Rankings by subject it is ranked 4th in the world for engineering and technology (2nd in Europe) and 1st for earth & marine science.

    As of November 2019, 21 Nobel laureates, 2 Fields Medalists, 2 Pritzker Prize winners, and 1 Turing Award winner have been affiliated with the Institute, including Albert Einstein. Other notable alumni include John von Neumann and Santiago Calatrava. It is a founding member of the IDEA League and the International Alliance of Research Universities (IARU) and a member of the CESAER network.

    ETH Zürich was founded on 7 February 1854 by the Swiss Confederation and began giving its first lectures on 16 October 1855 as a polytechnic institute (eidgenössische polytechnische Schule) at various sites throughout the city of Zurich. It was initially composed of six faculties: architecture, civil engineering, mechanical engineering, chemistry, forestry, and an integrated department for the fields of mathematics, natural sciences, literature, and social and political sciences.

    It is locally still known as Polytechnikum, or simply as Poly, derived from the original name eidgenössische polytechnische Schule, which translates to “federal polytechnic school”.

    ETH Zürich is a federal institute (i.e., under direct administration by the Swiss government), whereas the University of Zürich [Universität Zürich ] (CH) is a cantonal institution. The decision for a new federal university was heavily disputed at the time; the liberals pressed for a “federal university”, while the conservative forces wanted all universities to remain under cantonal control, worried that the liberals would gain more political power than they already had. In the beginning, both universities were co-located in the buildings of the University of Zürich.

    From 1905 to 1908, under the presidency of Jérôme Franel, the course program of ETH Zürich was restructured to that of a real university and ETH Zürich was granted the right to award doctorates. In 1909 the first doctorates were awarded. In 1911, it was given its current name, Eidgenössische Technische Hochschule. In 1924, another reorganization structured the university in 12 departments. However, it now has 16 departments.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), and four associated research institutes form the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    Reputation and ranking

    ETH Zürich is ranked among the top universities in the world. Typically, popular rankings place the institution as the best university in continental Europe and ETH Zürich is consistently ranked among the top 1-5 universities in Europe, and among the top 3-10 best universities of the world.

    Historically, ETH Zürich has achieved its reputation particularly in the fields of chemistry, mathematics and physics. There are 32 Nobel laureates who are associated with ETH Zürich, the most recent of whom is Richard F. Heck, awarded the Nobel Prize in chemistry in 2010. Albert Einstein is perhaps its most famous alumnus.

    In 2018, the QS World University Rankings placed ETH Zürich at 7th overall in the world. In 2015, ETH Zürich was ranked 5th in the world in Engineering, Science and Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US) and University of Cambridge(UK). In 2015, ETH Zürich also ranked 6th in the world in Natural Sciences, and in 2016 ranked 1st in the world for Earth & Marine Sciences for the second consecutive year.

    In 2016, Times Higher Education World University Rankings ranked ETH Zürich 9th overall in the world and 8th in the world in the field of Engineering & Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US), California Institute of Technology(US), Princeton University(US), University of Cambridge(UK), Imperial College London(UK) and University of Oxford(UK) .

    In a comparison of Swiss universities by swissUP Ranking and in rankings published by CHE comparing the universities of German-speaking countries, ETH Zürich traditionally is ranked first in natural sciences, computer science and engineering sciences.

    In the survey CHE ExcellenceRanking on the quality of Western European graduate school programs in the fields of biology, chemistry, physics and mathematics, ETH Zürich was assessed as one of the three institutions to have excellent programs in all the considered fields, the other two being Imperial College London(UK) and the University of Cambridge(UK), respectively.

    U Southampton campus

    The University of Southampton (UK) is a world-class university built on the quality and diversity of our community. Our staff place a high value on excellence and creativity, supporting independence of thought, and the freedom to challenge existing knowledge and beliefs through critical research and scholarship. Through our education and research we transform people’s lives and change the world for the better.

    Vision 2020 is the basis of our strategy.

    Since publication of the previous University Strategy in 2010 we have achieved much of what we set out to do against a backdrop of a major economic downturn and radical change in higher education in the UK.

    Vision 2020 builds on these foundations, describing our future ambition and priorities. It presents a vision of the University as a confident, growing, outwardly-focused institution that has global impact. It describes a connected institution equally committed to education and research, providing a distinctive educational experience for its students, and confident in its place as a leading international research university, achieving world-wide impact.

     
  • richardmitnick 2:50 pm on August 7, 2021 Permalink | Reply
    Tags: "New high-resolution models merge weather and climate", , EXCLAIM – Center for Climate Systems Modeling (C2SM) | ETH Zürich, Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)   

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH): “New high-resolution models merge weather and climate” 

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)

    06.08.2021
    Florian Meyer

    Torrential rain and flooding have dominated the weather over the past few weeks. To forecast these weather events with greater accuracy and gain a better understanding of them against the backdrop of global climate change, ETH Zürich and partners are developing a new generation of high-​resolution weather and climate models.

    1
    The EXCLAIM research initiative is developing new, global climate models that integrate regional weather models in high resolution, directly simulating storms, thunderstorms and hurricanes. (Thematic photo: Wikipedia/ National Oceanic and Atmospheric Administration (US))

    Torrential rain, hailstorms and floods in the Alpine region and northwest Europe: the past few weeks have highlighted the impacts of severe thunderstorms. But how exactly are extreme weather events connected to global warming? This is one of the central questions for researchers studying and modelling the interaction between weather and climate.

    By representing the underlying fundamental physical processes, models are a very powerful tool to understand these interactions. But current models and the required computer infrastructure have reached a wall, limiting the extent to which researchers can draw conclusions about how, for example, climate change affects extreme weather. To overcome this issue, ETH Zürich has teamed up with partners to launch the EXCLAIM research initiative. This project aims to dramatically increase the spatial resolution of the models, thereby enhancing their accuracy in simulating the weather on a global scale in a future, warmer world.

    Seamless weather simulations in climate models

    “Thanks to their high resolution, the new, global models will simulate key processes such as storms and weather systems in much more detail than before, allowing us to study the interaction of climate change and weather events much more accurately,” says Nicolas Gruber, EXCLAIM lead PI and Professor of Environmental Physics.

    EXCLAIM – Center for Climate Systems Modeling (C2SM) | ETH Zürich is interdisciplinary: along with the climate researchers from the ETH Center for Climate Systems Modeling (C2SM), ETH computer scientists, the Swiss National Supercomputing Centre [Centro Svizzero di Calcolo Scientifico](CH), the SDSC – Swiss Data Science Center [Schweizerisches Data Science Center][Centre suisse de la science des données] (CH), the Empa – Swiss Federal Laboratories for Materials Science and Technology [Eidgenössische Materialprüfungs- und Forschungsanstalt] (CH) and the Federal Office of Meteorology and Climatology MeteoSwiss [CH] are all involved in the project. Not only will this collaboration improve the modelling of climate, it will also make the weather forecasts provided by MeteoSwiss more reliable. International project partners include Germany’s National Meteorological Service, Deutscher Wetterdienst (DWD)[Wetter und Klima – Deutscher Wetterdienst] (DE), and the MPG Institute for Meteorology [MPG Institut für Meteorologie] (DE) (MPI-​M), which together developed the ICON (Icosahedral Nonhydrostatic) Model – the basis of EXCLAIM – as well as the European Centre for Medium-​Range Weather Forecasts (ECMWF), of which Switzerland is a full member.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ETH Zurich campus
    Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) is a public research university in the city of Zürich, Switzerland. Founded by the Swiss Federal Government in 1854 with the stated mission to educate engineers and scientists, the school focuses exclusively on science, technology, engineering and mathematics. Like its sister institution Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH) , it is part of the Swiss Federal Institutes of Technology Domain (ETH Domain)) , part of the Swiss Federal Department of Economic Affairs, Education and Research [EAER][Eidgenössisches Departement für Wirtschaft, Bildung und Forschung] [Département fédéral de l’économie, de la formation et de la recherche] (CH).

    The university is an attractive destination for international students thanks to low tuition fees of 809 CHF per semester, PhD and graduate salaries that are amongst the world’s highest, and a world-class reputation in academia and industry. There are currently 22,200 students from over 120 countries, of which 4,180 are pursuing doctoral degrees. In the 2021 edition of the QS World University Rankings ETH Zürich is ranked 6th in the world and 8th by the Times Higher Education World Rankings 2020. In the 2020 QS World University Rankings by subject it is ranked 4th in the world for engineering and technology (2nd in Europe) and 1st for earth & marine science.

    As of November 2019, 21 Nobel laureates, 2 Fields Medalists, 2 Pritzker Prize winners, and 1 Turing Award winner have been affiliated with the Institute, including Albert Einstein. Other notable alumni include John von Neumann and Santiago Calatrava. It is a founding member of the IDEA League and the International Alliance of Research Universities (IARU) and a member of the CESAER network.

    ETH Zürich was founded on 7 February 1854 by the Swiss Confederation and began giving its first lectures on 16 October 1855 as a polytechnic institute (eidgenössische polytechnische Schule) at various sites throughout the city of Zurich. It was initially composed of six faculties: architecture, civil engineering, mechanical engineering, chemistry, forestry, and an integrated department for the fields of mathematics, natural sciences, literature, and social and political sciences.

    It is locally still known as Polytechnikum, or simply as Poly, derived from the original name eidgenössische polytechnische Schule, which translates to “federal polytechnic school”.

    ETH Zürich is a federal institute (i.e., under direct administration by the Swiss government), whereas the University of Zürich [Universität Zürich ] (CH) is a cantonal institution. The decision for a new federal university was heavily disputed at the time; the liberals pressed for a “federal university”, while the conservative forces wanted all universities to remain under cantonal control, worried that the liberals would gain more political power than they already had. In the beginning, both universities were co-located in the buildings of the University of Zürich.

    From 1905 to 1908, under the presidency of Jérôme Franel, the course program of ETH Zürich was restructured to that of a real university and ETH Zürich was granted the right to award doctorates. In 1909 the first doctorates were awarded. In 1911, it was given its current name, Eidgenössische Technische Hochschule. In 1924, another reorganization structured the university in 12 departments. However, it now has 16 departments.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), and four associated research institutes form the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    Reputation and ranking

    ETH Zürich is ranked among the top universities in the world. Typically, popular rankings place the institution as the best university in continental Europe and ETH Zürich is consistently ranked among the top 1-5 universities in Europe, and among the top 3-10 best universities of the world.

    Historically, ETH Zürich has achieved its reputation particularly in the fields of chemistry, mathematics and physics. There are 32 Nobel laureates who are associated with ETH Zürich, the most recent of whom is Richard F. Heck, awarded the Nobel Prize in chemistry in 2010. Albert Einstein is perhaps its most famous alumnus.

    In 2018, the QS World University Rankings placed ETH Zürich at 7th overall in the world. In 2015, ETH Zürich was ranked 5th in the world in Engineering, Science and Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US) and University of Cambridge(UK). In 2015, ETH Zürich also ranked 6th in the world in Natural Sciences, and in 2016 ranked 1st in the world for Earth & Marine Sciences for the second consecutive year.

    In 2016, Times Higher Education World University Rankings ranked ETH Zürich 9th overall in the world and 8th in the world in the field of Engineering & Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US), California Institute of Technology(US), Princeton University(US), University of Cambridge(UK), Imperial College London(UK) and University of Oxford(UK) .

    In a comparison of Swiss universities by swissUP Ranking and in rankings published by CHE comparing the universities of German-speaking countries, ETH Zürich traditionally is ranked first in natural sciences, computer science and engineering sciences.

    In the survey CHE ExcellenceRanking on the quality of Western European graduate school programs in the fields of biology, chemistry, physics and mathematics, ETH Zürich was assessed as one of the three institutions to have excellent programs in all the considered fields, the other two being Imperial College London(UK) and the University of Cambridge(UK), respectively.

     
  • richardmitnick 8:34 pm on July 29, 2021 Permalink | Reply
    Tags: "High-precision frequency measurement", , , For many scientific experiments today’s researchers require a precise reference frequency that allows them to calibrate the time measurements made by their equipment., IT network infrastructures for Swiss universities., , , Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)   

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH): “High-precision frequency measurement” 

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)

    29.07.2021
    Felix Würsten

    Many scientific experiments require highly precise time measurements with the help of a clearly defined frequency. Now, a new approach allows the direct comparison of frequency measurements in the lab with the atomic clock in Bern, Switzerland.

    1
    Close-​up of the optical components used to stabilise the light of the infrared laser for the precise reference frequency. (Image: METAS)

    For many scientific experiments today’s researchers require a precise reference frequency that allows them to calibrate the time measurements made by their equipment. Such experiments include spectroscopy investigations – in which chemical reactions between molecules are examined in real time – and physical studies on natural constants.

    Access to exactly this kind of highly precise reference frequency could soon become standard for Swiss research institutions. In a joint project funded as part of the Swiss National Science Foundation [Schweizerischer Nationalfonds zur Förderung der wissenschaftlichen Forschung] [Fonds national suisse de la recherche scientifique] (CH)’s Sinergia programme, researchers at ETH Zürich, the University of Basel [Universität Basel][Université de Bâle] (CH), the Swiss Federal Institute of Metrology [Institut Fédéral Suisse de Métrologie][Eidgenössisches Institut für Metrologie](CH)) – Switzerland’s “guardian of measurement units” – and the SWITCH Foundation [Fundament Wechseln][Changer de Fondation] [CH], which operates Switzerland’s academic data network, have demonstrated that such a precision reference signal can be sent via conventional telecommunications infrastructure.

    “Initial results show that this permits chemical spectroscopy analyses that are 100 times more accurate than before”, reports Stefan Willitsch, Professor of Physical Chemistry at the University of Basel and coordinator of the project. “With this precision, the laws of nature are verified by spectroscopic measurements on molecules with unprecedented accuracy,” adds Frédéric Merkt, Professor of Physical Chemistry at ETH Zürich.

    Continuous correction

    Specifically, the project established a trial network that connects the METAS site in Wabern near Bern with the University of Basel and ETH Zürich. A clever process synchronises the output signal with the METAS atomic clock. This signal is transmitted via the fibre-​optic network operated by SWITCH – which manages IT network infrastructures for Swiss universities – to Basel and Zürich, where researchers can use it to calibrate their measuring devices.

    “To ensure that the signal reaches the researchers with the desired level of precision, transmission must be continuously adjusted. Even the slightest variation in the length of the fibre-​optic cable – caused by vibrations or temperature changes – affect the frequency”, explains Jacques Morel, Head of the Photonics, Time and Frequency Laboratory at METAS. Therefore the signal is bounced back from Basel and Zürich to Bern, where the output signal is corrected as required.

    High quality, lower costs

    “In Switzerland, we’re only now beginning to establish this kind of network,” says Jérôme Faist, Professor at the Institute for Quantum Electronics at ETH Zürich, who contributed his expertise in laser technology to the project. “Other countries like Italy, Germany and France are already a step ahead in this area.”

    In these countries, the reference frequencies have, up to now, been transmitted in one of two ways – each with its own specific drawbacks. Either the signal is sent via a dedicated cable, which produces an optimum physical result but is expensive, or the signal is transmitted via the telecommunications provider’s existing infrastructure. While this is much cheaper, it is technically inferior because the reference signal for measuring time is transmitted within the C band, in other words at a similar base frequency to data traffic. Not only does this leave the reference signal open to potential disruption by the rest of the data traffic, it blocks a channel that would normally be used for data transmission, which in turn complicates operation.

    2
    Dominik Husmann adjusts the optical setup used to generate a precise reference frequency based on an infrared laser. (Picture: METAS)

    “We’ve now developed a third option,” explains Fabian Mauchle, project manager at Switch: “For reasons of cost, we use the existing SWITCH network. But instead of transmitting the reference signal within the physically optimum C band – which is largely taken up by data traffic – we use the L band, which is still mostly uncongested and has a different base frequency.” The results now show that the L band is also a viable option for transmitting reference signals at excellent quality without encountering disruption from data traffic. This did, however, require SWITCH to make certain modifications to its network infrastructure.

    International networking

    The next step will be to further expand the network to include other Swiss institutions such as European Organization for Nuclear Research [Organisation européenne pour la recherche nucléaire] [Europäische Organisation für Kernforschung](CH) [CERN] in Geneva, EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH) or the University of Neuchâtel [Université de Neuchâtel](CH). There are also plans to take the network to an international level. The goal is to establish a transnational network capable of comparing signals from various atomic clocks.

    This would pave the way for an even more precise time measurement for defining the second as an SI unit. To ensure consistent time measurement worldwide, atomic clocks are currently compared with satellite signals in the gigahertz range. Synchronising atomic clocks using optical signals in the terahertz range would allow measurements of the second up to 18 decimal places instead of the “mere” 16 decimal places previously achieved. But the only way this can work is if the signals used to compare these optical clocks are transmitted as light via fibre optics.

    Interesting for other disciplines

    Faist also points out that it’s not just chemists and physicists who could benefit from the new network. It could provide geoscientists with new insights, too. Geoscientists might not require highly precise time signals for their experiments, but since even the tiniest disruption will affect the signal frequency, they could use the approach to detect subsurface vibrations that are too subtle for today’s measuring devices to register.

    Science paper
    Optics Express

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ETH Zurich campus
    Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) is a public research university in the city of Zürich, Switzerland. Founded by the Swiss Federal Government in 1854 with the stated mission to educate engineers and scientists, the school focuses exclusively on science, technology, engineering and mathematics. Like its sister institution Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH) , it is part of the Swiss Federal Institutes of Technology Domain (ETH Domain)) , part of the Swiss Federal Department of Economic Affairs, Education and Research [EAER][Eidgenössisches Departement für Wirtschaft, Bildung und Forschung] [Département fédéral de l’économie, de la formation et de la recherche] (CH).

    The university is an attractive destination for international students thanks to low tuition fees of 809 CHF per semester, PhD and graduate salaries that are amongst the world’s highest, and a world-class reputation in academia and industry. There are currently 22,200 students from over 120 countries, of which 4,180 are pursuing doctoral degrees. In the 2021 edition of the QS World University Rankings ETH Zürich is ranked 6th in the world and 8th by the Times Higher Education World Rankings 2020. In the 2020 QS World University Rankings by subject it is ranked 4th in the world for engineering and technology (2nd in Europe) and 1st for earth & marine science.

    As of November 2019, 21 Nobel laureates, 2 Fields Medalists, 2 Pritzker Prize winners, and 1 Turing Award winner have been affiliated with the Institute, including Albert Einstein. Other notable alumni include John von Neumann and Santiago Calatrava. It is a founding member of the IDEA League and the International Alliance of Research Universities (IARU) and a member of the CESAER network.

    ETH Zürich was founded on 7 February 1854 by the Swiss Confederation and began giving its first lectures on 16 October 1855 as a polytechnic institute (eidgenössische polytechnische Schule) at various sites throughout the city of Zurich. It was initially composed of six faculties: architecture, civil engineering, mechanical engineering, chemistry, forestry, and an integrated department for the fields of mathematics, natural sciences, literature, and social and political sciences.

    It is locally still known as Polytechnikum, or simply as Poly, derived from the original name eidgenössische polytechnische Schule, which translates to “federal polytechnic school”.

    ETH Zürich is a federal institute (i.e., under direct administration by the Swiss government), whereas the University of Zürich [Universität Zürich ] (CH) is a cantonal institution. The decision for a new federal university was heavily disputed at the time; the liberals pressed for a “federal university”, while the conservative forces wanted all universities to remain under cantonal control, worried that the liberals would gain more political power than they already had. In the beginning, both universities were co-located in the buildings of the University of Zürich.

    From 1905 to 1908, under the presidency of Jérôme Franel, the course program of ETH Zürich was restructured to that of a real university and ETH Zürich was granted the right to award doctorates. In 1909 the first doctorates were awarded. In 1911, it was given its current name, Eidgenössische Technische Hochschule. In 1924, another reorganization structured the university in 12 departments. However, it now has 16 departments.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), and four associated research institutes form the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    Reputation and ranking

    ETH Zürich is ranked among the top universities in the world. Typically, popular rankings place the institution as the best university in continental Europe and ETH Zürich is consistently ranked among the top 1-5 universities in Europe, and among the top 3-10 best universities of the world.

    Historically, ETH Zürich has achieved its reputation particularly in the fields of chemistry, mathematics and physics. There are 32 Nobel laureates who are associated with ETH Zürich, the most recent of whom is Richard F. Heck, awarded the Nobel Prize in chemistry in 2010. Albert Einstein is perhaps its most famous alumnus.

    In 2018, the QS World University Rankings placed ETH Zürich at 7th overall in the world. In 2015, ETH Zürich was ranked 5th in the world in Engineering, Science and Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US) and University of Cambridge(UK). In 2015, ETH Zürich also ranked 6th in the world in Natural Sciences, and in 2016 ranked 1st in the world for Earth & Marine Sciences for the second consecutive year.

    In 2016, Times Higher Education World University Rankings ranked ETH Zürich 9th overall in the world and 8th in the world in the field of Engineering & Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US), California Institute of Technology(US), Princeton University(US), University of Cambridge(UK), Imperial College London(UK) and University of Oxford(UK) .

    In a comparison of Swiss universities by swissUP Ranking and in rankings published by CHE comparing the universities of German-speaking countries, ETH Zürich traditionally is ranked first in natural sciences, computer science and engineering sciences.

    In the survey CHE ExcellenceRanking on the quality of Western European graduate school programs in the fields of biology, chemistry, physics and mathematics, ETH Zürich was assessed as one of the three institutions to have excellent programs in all the considered fields, the other two being Imperial College London(UK) and the University of Cambridge(UK), respectively.

     
  • richardmitnick 10:00 am on July 26, 2021 Permalink | Reply
    Tags: "On eternal imbalance", , Probability distributions, , Some physical systems-especially in the quantum world-do not reach a stable equilibrium even after a long time. An ETH researcher has now found an elegant explanation for this phenomenon., Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH), Systems in which long-​range interactions occur do not reach a stable equilibrium but rather a meta-​stable state in which they always return to their initial position., The number of stable energy states coincides with the number of degrees of freedom of the system and thus corresponds exactly to the number of allowed locations., We are talking about systems in which the individual building blocks influence not only their immediate neighbours but also objects further away.   

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH): “On eternal imbalance” 

    From Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH)

    26.07.2021
    Maria Engel

    Some physical systems-especially in the quantum world-do not reach a stable equilibrium even after a long time. An ETH researcher has now found an elegant explanation for this phenomenon.

    1
    Not only quantum systems, but also large objects such as the spiral galaxy NGC 1300 can adopt a meta-​stable state that leads to surprising effects. (Picture: Hubble Heritage Team, European Space Agency [Agence spatiale européenne][Europäische Weltraumorganisation](EU), National Aeronautics Space Agency (US).)

    If you put a bottle of beer in a big bathtub full of ice-​cold water, it won’t be long before you can enjoy a cold beer. Physicists discovered how this works more than a hundred years ago. Heat exchange takes place through the glass bottle until equilibrium is reached.

    However, there are other systems, especially quantum systems, that don’t find equilibrium. They resemble a hypothetical beer bottle in a bath of ice-​cold water that doesn’t always and inevitably cool to the temperature of the bath water, but rather reaches different states depending on its own initial temperature. Until now, such systems have puzzled physicists. But Nicolò Defenu, a postdoc at the ETH Zürich Institute for Theoretical Physics, has now found a way to elegantly explain this behaviour.

    A more distant influence

    Specifically, we are talking about systems in which the individual building blocks influence not only their immediate neighbours but also objects further away. One example would be a galaxy: the gravitational force of their individual stars and planetary systems acts not only on the neighbouring celestial bodies, but far beyond that – albeit ever more weakly – on the other components of the galaxy.

    Defenu’s approach begins by simplifying the problem to a world with a single dimension. In it, there is a single quantum particle that can reside only in very specific locations along a line. This world resembles a board game like Ludo, where a little token hops from square to square. Suppose there is a game die whose sides are all marked “one” or “minus one”, and suppose the player whose token it is now rolls the die over and over again in succession. The token will hop to a neighbouring square, and from there it will either hop back or else on to the next square. And so on.

    The question is, What happens if the player rolls the die an infinite number of times? If there are only a few squares in the game, the token will return to its starting point every now and then. However, it is impossible to predict exactly where it will be at any given time because the throws of the die are unknown.

    Back to square one

    It’s a similar situation with particles that are subject to the laws of quantum mechanics: there’s no way to know exactly where they are at any given time. However, it is possible to establish their whereabouts using probability distributions. Each distribution results from a different superposition of the probabilities for the individual locations and corresponds to a particular energy state of the particle. It turns out that the number of stable energy states coincides with the number of degrees of freedom of the system and thus corresponds exactly to the number of allowed locations. The important point is that all the stable probability distributions are non-​zero at the starting point. So at some point, the token returns to its starting square.

    The more squares there are, the less often the token will return to its starting point; eventually, with an infinite number of possible squares, it will never return. For the quantum particle, this means there are an infinite number of ways in which the probabilities of the individual locations can be combined to form distributions. Thus, it can no longer occupy only certain discrete energy states, but all possible ones in a continuous spectrum.

    None of this is new knowledge. There are, however, variants of the game or physical systems where the die can also contain numbers larger than one and smaller than minus one, i.e. the steps allowed per move can be larger – to be precise, even infinitely large. This fundamentally changes the situation, as Defenu has now been able to show: in these systems, the energy spectrum always remains discrete, even when there are infinite squares. This means that from time to time, the particle will return to its starting point.

    Peculiar phenomena

    This new theory explains what scientists have already observed many times in experiments: systems in which long-​range interactions occur do not reach a stable equilibrium but rather a meta-​stable state in which they always return to their initial position. In the case of galaxies, this is one reason they develop spiral arms rather than being uniform clouds. The density of stars is higher inside these arms than outside.

    An example of quantum systems that can be described with Defenu’s theory are ions, which are charged atoms trapped in electric fields. Using such ion traps to build quantum computers is currently one of the largest research projects worldwide. However, for these computers to really deliver a step change in terms of computational power, they will need a very large number of simultaneously trapped ions – and that is exactly the point at which the new theory becomes interesting. “In systems with a hundred or more ions, you would see peculiar effects that we can now explain,” says Defenu, who is a member of ETH Professor Gian Michele Graf’s group. His colleagues in experimental physics are getting closer every day to the goal of being able to realise such formations. And once they’ve got there, it might be worth their while to have a cold beer with Defenu.

    Science paper:
    PNAS

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    ETH Zurich campus
    Swiss Federal Institute of Technology in Zürich [ETH Zürich] [Eidgenössische Technische Hochschule Zürich] (CH) is a public research university in the city of Zürich, Switzerland. Founded by the Swiss Federal Government in 1854 with the stated mission to educate engineers and scientists, the school focuses exclusively on science, technology, engineering and mathematics. Like its sister institution Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne](CH) , it is part of the Swiss Federal Institutes of Technology Domain (ETH Domain)) , part of the Swiss Federal Department of Economic Affairs, Education and Research [EAER][Eidgenössisches Departement für Wirtschaft, Bildung und Forschung] [Département fédéral de l’économie, de la formation et de la recherche] (CH).

    The university is an attractive destination for international students thanks to low tuition fees of 809 CHF per semester, PhD and graduate salaries that are amongst the world’s highest, and a world-class reputation in academia and industry. There are currently 22,200 students from over 120 countries, of which 4,180 are pursuing doctoral degrees. In the 2021 edition of the QS World University Rankings ETH Zürich is ranked 6th in the world and 8th by the Times Higher Education World Rankings 2020. In the 2020 QS World University Rankings by subject it is ranked 4th in the world for engineering and technology (2nd in Europe) and 1st for earth & marine science.

    As of November 2019, 21 Nobel laureates, 2 Fields Medalists, 2 Pritzker Prize winners, and 1 Turing Award winner have been affiliated with the Institute, including Albert Einstein. Other notable alumni include John von Neumann and Santiago Calatrava. It is a founding member of the IDEA League and the International Alliance of Research Universities (IARU) and a member of the CESAER network.

    ETH Zürich was founded on 7 February 1854 by the Swiss Confederation and began giving its first lectures on 16 October 1855 as a polytechnic institute (eidgenössische polytechnische Schule) at various sites throughout the city of Zurich. It was initially composed of six faculties: architecture, civil engineering, mechanical engineering, chemistry, forestry, and an integrated department for the fields of mathematics, natural sciences, literature, and social and political sciences.

    It is locally still known as Polytechnikum, or simply as Poly, derived from the original name eidgenössische polytechnische Schule, which translates to “federal polytechnic school”.

    ETH Zürich is a federal institute (i.e., under direct administration by the Swiss government), whereas the University of Zürich [Universität Zürich ] (CH) is a cantonal institution. The decision for a new federal university was heavily disputed at the time; the liberals pressed for a “federal university”, while the conservative forces wanted all universities to remain under cantonal control, worried that the liberals would gain more political power than they already had. In the beginning, both universities were co-located in the buildings of the University of Zürich.

    From 1905 to 1908, under the presidency of Jérôme Franel, the course program of ETH Zürich was restructured to that of a real university and ETH Zürich was granted the right to award doctorates. In 1909 the first doctorates were awarded. In 1911, it was given its current name, Eidgenössische Technische Hochschule. In 1924, another reorganization structured the university in 12 departments. However, it now has 16 departments.

    ETH Zürich, EPFL (Swiss Federal Institute of Technology in Lausanne) [École polytechnique fédérale de Lausanne](CH), and four associated research institutes form the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) with the aim of collaborating on scientific projects.

    Reputation and ranking

    ETH Zürich is ranked among the top universities in the world. Typically, popular rankings place the institution as the best university in continental Europe and ETH Zürich is consistently ranked among the top 1-5 universities in Europe, and among the top 3-10 best universities of the world.

    Historically, ETH Zürich has achieved its reputation particularly in the fields of chemistry, mathematics and physics. There are 32 Nobel laureates who are associated with ETH Zürich, the most recent of whom is Richard F. Heck, awarded the Nobel Prize in chemistry in 2010. Albert Einstein is perhaps its most famous alumnus.

    In 2018, the QS World University Rankings placed ETH Zürich at 7th overall in the world. In 2015, ETH Zürich was ranked 5th in the world in Engineering, Science and Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US) and University of Cambridge(UK). In 2015, ETH Zürich also ranked 6th in the world in Natural Sciences, and in 2016 ranked 1st in the world for Earth & Marine Sciences for the second consecutive year.

    In 2016, Times Higher Education World University Rankings ranked ETH Zürich 9th overall in the world and 8th in the world in the field of Engineering & Technology, just behind the Massachusetts Institute of Technology(US), Stanford University(US), California Institute of Technology(US), Princeton University(US), University of Cambridge(UK), Imperial College London(UK) and University of Oxford(UK) .

    In a comparison of Swiss universities by swissUP Ranking and in rankings published by CHE comparing the universities of German-speaking countries, ETH Zürich traditionally is ranked first in natural sciences, computer science and engineering sciences.

    In the survey CHE ExcellenceRanking on the quality of Western European graduate school programs in the fields of biology, chemistry, physics and mathematics, ETH Zürich was assessed as one of the three institutions to have excellent programs in all the considered fields, the other two being Imperial College London(UK) and the University of Cambridge(UK), respectively.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: