Tagged: Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH) Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 8:54 am on August 26, 2021 Permalink | Reply
    Tags: "Light-matter interactions propel quantum technologies forward", A photon can be absorbed to turn a pair of atoms into a molecule then emitted back then reabsorbed multiple times., , QED: cavity quantum electrodynamics, , Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH), The pair-photon system forms a new type of ‘particle’ – technically an excitation – which we call ‘pair-polariton’.   

    From Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH): “Light-matter interactions propel quantum technologies forward” 

    From Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)

    26.08.21
    Nik Papageorgiou

    Physicists at EPFL have found a way to get photons to interact with pairs of atoms for the first time. The breakthrough is important for the field of cavity quantum electrodynamics (QED), a cutting-edge field leading the way to quantum technologies.

    1
    A collection of atom pairs inside an optical cavity formed by a pair of mirrors facing each other. The light trapped between the mirrors turns pairs of atoms into molecules in a coherent way. Credit: Ella Maru studio.

    There is no doubt that we are moving steadily toward an era of technologies based on quantum physics. But to get there, we first have to master the ability to make light interact with matter – or more technically, photons with atoms.

    This has already been achieved to some degree, giving us the cutting-edge field of cavity quantum electrodynamics (QED), which is already used in quantum networks and quantum information processing. Nonetheless, there are still a long way to go. Current light-matter interactions are limited to individual atoms, which limits our ability to study them in the sort of complex systems involved in quantum-based technologies.

    In a paper published in Nature, researchers from the group of Jean-Philippe Brantut at EPFL’s School of Basic Sciences have found a way to get photons to ‘mix’ with pairs of atoms at ultra-low temperatures.

    The researchers used what is known as a Fermi gas, a state of matter made of atoms that resembles that of electrons in materials. “In the absence of photons, the gas can be prepared in a state where atoms interact very strongly with each other, forming loosely bound pairs,” explains Brantut. “As light is sent onto the gas, some of these pairs can be turned into chemically bound molecules by absorbing with photons.”

    A key concept in this new effect is that that it happens “coherently”, which means that photon can be absorbed to turn a pair of atoms into a molecule then emitted back then reabsorbed multiple times. “This implies the pair-photon system forms a new type of ‘particle’ – technically an excitation – which we call ‘pair-polariton’,” says Brantut. “This is made possible in our system, where photons are confined in an ‘optical cavity’ – a closed box that forces them to interact strongly with the atoms.”

    The hybrid pair-polaritons take on some of the properties of photons, meaning that they can be measured with optical methods. They also take on some of the properties of the Fermi gas, like the number of atom pairs it had originally before the incoming photons.

    “Some of the very intricate properties of the gas are translated onto optical properties, which can be measured in a direct way, and even without perturbing the system,” says Brantut. “A future application would be in quantum chemistry, since we demonstrate that some chemical reactions can be coherently produced using single photons.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    EPFL campus

    The Swiss Federal Institute of Technology in Lausanne [EPFL-École polytechnique fédérale de Lausanne] (CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

    The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

    EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is the Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich)](CH) . Associated with several specialized research institutes, the two universities form the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

    The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices was located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganised and acquired the status of a university in 1890, the technical faculty changed its name to École d’ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich(CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

    In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.

    Organization

    EPFL is organised into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

    School of Basic Sciences (SB, Jan S. Hesthaven)

    Institute of Mathematics (MATH, Victor Panaretos)
    Institute of Chemical Sciences and Engineering (ISIC, Emsley Lyndon)
    Institute of Physics (IPHYS, Harald Brune)
    European Centre of Atomic and Molecular Computations (CECAM, Ignacio Pagonabarraga Mora)
    Bernoulli Center (CIB, Nicolas Monod)
    Biomedical Imaging Research Center (CIBM, Rolf Gruetter)
    Interdisciplinary Center for Electron Microscopy (CIME, Cécile Hébert)
    Max Planck-EPFL Centre for Molecular Nanosciences and Technology (CMNT, Thomas Rizzo)
    Swiss Plasma Center (SPC, Ambrogio Fasoli)
    Laboratory of Astrophysics (LASTRO, Jean-Paul Kneib)

    School of Engineering (STI, Ali Sayed)

    Institute of Electrical Engineering (IEL, Giovanni De Micheli)
    Institute of Mechanical Engineering (IGM, Thomas Gmür)
    Institute of Materials (IMX, Michaud Véronique)
    Institute of Microengineering (IMT, Olivier Martin)
    Institute of Bioengineering (IBI, Matthias Lütolf)

    School of Architecture, Civil and Environmental Engineering (ENAC, Claudia R. Binder)

    Institute of Architecture (IA, Luca Ortelli)
    Civil Engineering Institute (IIC, Eugen Brühwiler)
    Institute of Urban and Regional Sciences (INTER, Philippe Thalmann)
    Environmental Engineering Institute (IIE, David Andrew Barry)

    School of Computer and Communication Sciences (IC, James Larus)

    Algorithms & Theoretical Computer Science
    Artificial Intelligence & Machine Learning
    Computational Biology
    Computer Architecture & Integrated Systems
    Data Management & Information Retrieval
    Graphics & Vision
    Human-Computer Interaction
    Information & Communication Theory
    Networking
    Programming Languages & Formal Methods
    Security & Cryptography
    Signal & Image Processing
    Systems

    School of Life Sciences (SV, Gisou van der Goot)

    Bachelor-Master Teaching Section in Life Sciences and Technologies (SSV)
    Brain Mind Institute (BMI, Carmen Sandi)
    Institute of Bioengineering (IBI, Melody Swartz)
    Swiss Institute for Experimental Cancer Research (ISREC, Douglas Hanahan)
    Global Health Institute (GHI, Bruno Lemaitre)
    Ten Technology Platforms & Core Facilities (PTECH)
    Center for Phenogenomics (CPG)
    NCCR Synaptic Bases of Mental Diseases (NCCR-SYNAPSY)

    College of Management of Technology (CDM)

    Swiss Finance Institute at EPFL (CDM-SFI, Damir Filipovic)
    Section of Management of Technology and Entrepreneurship (CDM-PMTE, Daniel Kuhn)
    Institute of Technology and Public Policy (CDM-ITPP, Matthias Finger)
    Institute of Management of Technology and Entrepreneurship (CDM-MTEI, Ralf Seifert)
    Section of Financial Engineering (CDM-IF, Julien Hugonnier)

    College of Humanities (CDH, Thomas David)

    Human and social sciences teaching program (CDH-SHS, Thomas David)

    EPFL Middle East (EME, Dr. Franco Vigliotti)[62]

    Section of Energy Management and Sustainability (MES, Prof. Maher Kayal)

    In addition to the eight schools there are seven closely related institutions

    Swiss Cancer Centre
    Center for Biomedical Imaging (CIBM)
    Centre for Advanced Modelling Science (CADMOS)
    École cantonale d’art de Lausanne (ECAL)
    Campus Biotech
    Wyss Center for Bio- and Neuro-engineering
    Swiss National Supercomputing Centre

     
  • richardmitnick 9:28 pm on August 3, 2021 Permalink | Reply
    Tags: "Running quantum software on a classical computer", , , , Solving classical optimization problems in mathematics., Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH), There is a lot of interest in understanding what problems can be solved most efficiently by a quantum computer rathere than a classical computer which will always be superior for some computation.   

    From Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH): “Running quantum software on a classical computer” 

    From Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)

    03.08.21

    Two physicists, from EPFL and Columbia University (US), have introduced an approach for simulating the quantum approximate optimization algorithm using a traditional computer. Instead of running the algorithm on advanced quantum processors, the new approach uses a classical machine-learning algorithm that closely mimics the behavior of near-term quantum computers.

    1
    Credit: iStock photos.

    In a paper published in Nature Quantum Information, EPFL professor Giuseppe Carleo and Matija Medvidović, a graduate student at Columbia University and at the Flatiron Institute (US) in New York, have found a way to execute a complex quantum computing algorithm on traditional computers instead of quantum ones.

    The specific “quantum software” they are considering is known as “Quantum Approximate Optimization Algorithm” (QAOA) and is used to solve classical optimization problems in mathematics; it’s essentially a way of picking the best solution to a problem out of a set of possible solutions. “There is a lot of interest in understanding what problems can be solved efficiently by a quantum computer, and QAOA is one of the more prominent candidates,” says Carleo.

    Ultimately, QAOA is meant to help us on the way to the famed “quantum speedup”, the predicted boost in processing speed that we can achieve with quantum computers instead of conventional ones. Understandably, QAOA has a number of proponents, including Google, who have their sights set on quantum technologies and computing in the near future: in 2019 they created Sycamore, a 53-qubit quantum processor, and used it to run a task it estimated it would take a state-of-the-art classical supercomputer around 10,000 years to complete. Sycamore ran the same task in 200 seconds.

    Google 53-qubit “Sycamore” superconducting processor quantum computer.

    “But the barrier of “quantum speedup” is all but rigid and it is being continuously reshaped by new research, also thanks to the progress in the development of more efficient classical algorithms,” says Carleo.

    In their study, Carleo and Medvidović address a key open question in the field: can algorithms running on current and near-term quantum computers offer a significant advantage over classical algorithms for tasks of practical interest? “If we are to answer that question, we first need to understand the limits of classical computing in simulating quantum systems,” says Carleo. This is especially important since the current generation of quantum processors operate in a regime where they make errors when running quantum “software”, and can therefore only run algorithms of limited complexity.

    Using conventional computers, the two researchers developed a method that can approximately simulate the behavior of a special class of algorithms known as variational quantum algorithms, which are ways of working out the lowest energy state, or “ground state” of a quantum system. QAOA is one important example of such family of quantum algorithms, that researchers believe are among the most promising candidates for “quantum advantage” in near-term quantum computers.

    The approach is based on the idea that modern machine-learning tools, e.g. the ones used in learning complex games like Go, can also be used to learn and emulate the inner workings of a quantum computer. The key tool for these simulations are Neural Network Quantum States, an artificial neural network that Carleo developed in 2016 with Matthias Troyer, and that was now used for the first time to simulate QAOA. The results are considered the province of quantum computing, and set a new benchmark for the future development of quantum hardware.

    “Our work shows that the QAOA you can run on current and near-term quantum computers can be simulated, with good accuracy, on a classical computer too,” says Carleo. “However, this does not mean that alluseful quantum algorithms that can be run on near-term quantum processors can be emulated classically. In fact, we hope that our approach will serve as a guide to devise new quantum algorithms that are both useful and hard to simulate for classical computers.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    EPFL campus

    The Swiss Federal Institute of Technology in Lausanne [EPFL-École polytechnique fédérale de Lausanne] (CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

    The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

    EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is the Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich)](CH) . Associated with several specialized research institutes, the two universities form the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

    The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices was located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganised and acquired the status of a university in 1890, the technical faculty changed its name to École d’ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich(CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

    In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.

    Organization

    EPFL is organised into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

    School of Basic Sciences (SB, Jan S. Hesthaven)

    Institute of Mathematics (MATH, Victor Panaretos)
    Institute of Chemical Sciences and Engineering (ISIC, Emsley Lyndon)
    Institute of Physics (IPHYS, Harald Brune)
    European Centre of Atomic and Molecular Computations (CECAM, Ignacio Pagonabarraga Mora)
    Bernoulli Center (CIB, Nicolas Monod)
    Biomedical Imaging Research Center (CIBM, Rolf Gruetter)
    Interdisciplinary Center for Electron Microscopy (CIME, Cécile Hébert)
    Max Planck-EPFL Centre for Molecular Nanosciences and Technology (CMNT, Thomas Rizzo)
    Swiss Plasma Center (SPC, Ambrogio Fasoli)
    Laboratory of Astrophysics (LASTRO, Jean-Paul Kneib)

    School of Engineering (STI, Ali Sayed)

    Institute of Electrical Engineering (IEL, Giovanni De Micheli)
    Institute of Mechanical Engineering (IGM, Thomas Gmür)
    Institute of Materials (IMX, Michaud Véronique)
    Institute of Microengineering (IMT, Olivier Martin)
    Institute of Bioengineering (IBI, Matthias Lütolf)

    School of Architecture, Civil and Environmental Engineering (ENAC, Claudia R. Binder)

    Institute of Architecture (IA, Luca Ortelli)
    Civil Engineering Institute (IIC, Eugen Brühwiler)
    Institute of Urban and Regional Sciences (INTER, Philippe Thalmann)
    Environmental Engineering Institute (IIE, David Andrew Barry)

    School of Computer and Communication Sciences (IC, James Larus)

    Algorithms & Theoretical Computer Science
    Artificial Intelligence & Machine Learning
    Computational Biology
    Computer Architecture & Integrated Systems
    Data Management & Information Retrieval
    Graphics & Vision
    Human-Computer Interaction
    Information & Communication Theory
    Networking
    Programming Languages & Formal Methods
    Security & Cryptography
    Signal & Image Processing
    Systems

    School of Life Sciences (SV, Gisou van der Goot)

    Bachelor-Master Teaching Section in Life Sciences and Technologies (SSV)
    Brain Mind Institute (BMI, Carmen Sandi)
    Institute of Bioengineering (IBI, Melody Swartz)
    Swiss Institute for Experimental Cancer Research (ISREC, Douglas Hanahan)
    Global Health Institute (GHI, Bruno Lemaitre)
    Ten Technology Platforms & Core Facilities (PTECH)
    Center for Phenogenomics (CPG)
    NCCR Synaptic Bases of Mental Diseases (NCCR-SYNAPSY)

    College of Management of Technology (CDM)

    Swiss Finance Institute at EPFL (CDM-SFI, Damir Filipovic)
    Section of Management of Technology and Entrepreneurship (CDM-PMTE, Daniel Kuhn)
    Institute of Technology and Public Policy (CDM-ITPP, Matthias Finger)
    Institute of Management of Technology and Entrepreneurship (CDM-MTEI, Ralf Seifert)
    Section of Financial Engineering (CDM-IF, Julien Hugonnier)

    College of Humanities (CDH, Thomas David)

    Human and social sciences teaching program (CDH-SHS, Thomas David)

    EPFL Middle East (EME, Dr. Franco Vigliotti)[62]

    Section of Energy Management and Sustainability (MES, Prof. Maher Kayal)

    In addition to the eight schools there are seven closely related institutions

    Swiss Cancer Centre
    Center for Biomedical Imaging (CIBM)
    Centre for Advanced Modelling Science (CADMOS)
    École cantonale d’art de Lausanne (ECAL)
    Campus Biotech
    Wyss Center for Bio- and Neuro-engineering
    Swiss National Supercomputing Centre

     
  • richardmitnick 9:43 pm on July 26, 2021 Permalink | Reply
    Tags: "Midgard - a paradigm shift in data center technology", , Communications, , Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)   

    From Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH): “Midgard – a paradigm shift in data center technology” 

    From Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)

    1
    ©stock.adobe.com

    EPFL researchers have pioneered an innovative approach to implementing virtual memory in data centers, which will greatly increase server efficiency.

    As big data, used by everything from AI to the Internet of Things, increasingly dominates our modern lives, cloud computing has grown massively in importance. It relies heavily on the use of virtual memory with one data server running many services for many different customers all at the same time, using virtual memory to process these services and to keep each customer’s data secure from the others.

    However, the way this virtual memory is deployed dates back to the 1960’s, and the fact that memory capacity is always increasing is actually beginning to slow things down. For example, data centers that provide services such as social networks or business analytics spend more than 20% of their processing time in virtual memory and protection checks. That means that any gains made in this area will represent a huge benefit in efficiency.

    Midgard: saving energy in the cloud

    Now, researchers working with EPFL’s Ecocloud Center for Sustainable Cloud Computing, have developed Midgard, a software-modelled prototype demonstrating proof of concept to greatly increase server efficiency. Their research paper, Rebooting Virtual Memory with Midgard, has just been presented at ISCA’21, the world’s flagship conference in computer architecture, and is the first of several steps to demonstrate a fully working system.

    “Midgard is a technology that can allow for growing memory capacity, while continuing to guarantee the security of the data of each user in the cloud services,” explains Professor Babak Falsafi, Founding Director of the Ecocloud Center and one of the paper’s authors. “With Midgard, the all-important data lookups and protection checks are done directly in on-chip memory rather than virtual memory, removing so much of the traditional hierarchy of lookups and translations that it scores a net gain in efficiency, even as more memory is deployed,” he continued.

    In recent testing at low loads, the Midgard system was 5% behind standard performance, but at loads of 256 MB aggregate large cache it was able to outperform traditional systems in terms of virtual memory overheads.

    An outstanding feature of Midgard technology is that, while it does represent a paradigm shift, it is compatible with existing operating systems such as Windows, MacOS and Linux. Future work will address the wide spectrum of topics needed to realize Midgard in real systems, such as compatibility development, packaging strategies and maintenance plans.

    For more information about Midgard click here.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    EPFL campus

    The Swiss Federal Institute of Technology in Lausanne [EPFL-École polytechnique fédérale de Lausanne] (CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

    The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

    EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is the Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich)](CH) . Associated with several specialized research institutes, the two universities form the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

    The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices was located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganised and acquired the status of a university in 1890, the technical faculty changed its name to École d’ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich(CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

    In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.

    Organization

    EPFL is organised into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

    School of Basic Sciences (SB, Jan S. Hesthaven)

    Institute of Mathematics (MATH, Victor Panaretos)
    Institute of Chemical Sciences and Engineering (ISIC, Emsley Lyndon)
    Institute of Physics (IPHYS, Harald Brune)
    European Centre of Atomic and Molecular Computations (CECAM, Ignacio Pagonabarraga Mora)
    Bernoulli Center (CIB, Nicolas Monod)
    Biomedical Imaging Research Center (CIBM, Rolf Gruetter)
    Interdisciplinary Center for Electron Microscopy (CIME, Cécile Hébert)
    Max Planck-EPFL Centre for Molecular Nanosciences and Technology (CMNT, Thomas Rizzo)
    Swiss Plasma Center (SPC, Ambrogio Fasoli)
    Laboratory of Astrophysics (LASTRO, Jean-Paul Kneib)

    School of Engineering (STI, Ali Sayed)

    Institute of Electrical Engineering (IEL, Giovanni De Micheli)
    Institute of Mechanical Engineering (IGM, Thomas Gmür)
    Institute of Materials (IMX, Michaud Véronique)
    Institute of Microengineering (IMT, Olivier Martin)
    Institute of Bioengineering (IBI, Matthias Lütolf)

    School of Architecture, Civil and Environmental Engineering (ENAC, Claudia R. Binder)

    Institute of Architecture (IA, Luca Ortelli)
    Civil Engineering Institute (IIC, Eugen Brühwiler)
    Institute of Urban and Regional Sciences (INTER, Philippe Thalmann)
    Environmental Engineering Institute (IIE, David Andrew Barry)

    School of Computer and Communication Sciences (IC, James Larus)

    Algorithms & Theoretical Computer Science
    Artificial Intelligence & Machine Learning
    Computational Biology
    Computer Architecture & Integrated Systems
    Data Management & Information Retrieval
    Graphics & Vision
    Human-Computer Interaction
    Information & Communication Theory
    Networking
    Programming Languages & Formal Methods
    Security & Cryptography
    Signal & Image Processing
    Systems

    School of Life Sciences (SV, Gisou van der Goot)

    Bachelor-Master Teaching Section in Life Sciences and Technologies (SSV)
    Brain Mind Institute (BMI, Carmen Sandi)
    Institute of Bioengineering (IBI, Melody Swartz)
    Swiss Institute for Experimental Cancer Research (ISREC, Douglas Hanahan)
    Global Health Institute (GHI, Bruno Lemaitre)
    Ten Technology Platforms & Core Facilities (PTECH)
    Center for Phenogenomics (CPG)
    NCCR Synaptic Bases of Mental Diseases (NCCR-SYNAPSY)

    College of Management of Technology (CDM)

    Swiss Finance Institute at EPFL (CDM-SFI, Damir Filipovic)
    Section of Management of Technology and Entrepreneurship (CDM-PMTE, Daniel Kuhn)
    Institute of Technology and Public Policy (CDM-ITPP, Matthias Finger)
    Institute of Management of Technology and Entrepreneurship (CDM-MTEI, Ralf Seifert)
    Section of Financial Engineering (CDM-IF, Julien Hugonnier)

    College of Humanities (CDH, Thomas David)

    Human and social sciences teaching program (CDH-SHS, Thomas David)

    EPFL Middle East (EME, Dr. Franco Vigliotti)[62]

    Section of Energy Management and Sustainability (MES, Prof. Maher Kayal)

    In addition to the eight schools there are seven closely related institutions

    Swiss Cancer Centre
    Center for Biomedical Imaging (CIBM)
    Centre for Advanced Modelling Science (CADMOS)
    École cantonale d’art de Lausanne (ECAL)
    Campus Biotech
    Wyss Center for Bio- and Neuro-engineering
    Swiss National Supercomputing Centre

     
  • richardmitnick 11:06 am on July 26, 2021 Permalink | Reply
    Tags: "EPFL now has its own Hyperloop test track", Cutting power use with a linear induction motor, Hyperloop projects are already under way in the Nevada desert; Port of Hamburg; Toulouse; the Near East; and China., Hyperloops-viewed by some as the fifth mode of transport-stand to revolutionize long-distance travel. They offer a cleaner alternative to planes and are faster than trains., Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH), Testing a linear induction motor   

    From Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH): “EPFL now has its own Hyperloop test track” 

    From Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)

    23.07.21
    Anne-Muriel Brouet

    1

    Engineers at EPFL’s DESL lab, working in association with EPFL spin-off Swisspod, have built a Hyperloop test track on the Lausanne campus. They will use the loop – a large vacuum tube for ultra-high-speed travel – to test a linear induction motor. The research is being funded by an Innosuisse grant.

    Hyperloops-viewed by some as the fifth mode of transport-stand to revolutionize long-distance travel. They offer a cleaner alternative to planes and are faster than trains. Hyperloop projects are already under way in the Nevada desert; Port of Hamburg; Toulouse; the Near East; and China. And yesterday, a team of engineers from EPFL and Swisspod unveiled a circular test track on the Lausanne campus – Europe’s first operational model Hyperloop. It will be used to study new ideas for the loop’s structure and pod and assess its viability for ultra-high-speed mass transportation.

    The test track – 40 m in diameter and 120 m long – was developed by EPFL’s Distributed Electrical Systems Laboratory (DESL), headed by Mario Paolone. It’s made out of aluminum alloy and designed to simulate an infinitely long Hyperloop, with pods of various sizes depending on the testing objectives and results. Its performance in terms of the propulsion and levitation system and kinematics will be tested under vacuum at a scale of 1:12 that eventually could go up to 1/6. Its numerous high-tech sensors will give engineers key information about their design’s properties. “With this reduced-scale test track, we will be able to study the fundamental aspects of our pod’s electromagnetic propulsion and levitation system,” says Paolone. “We’ll use the results to enhance the pod design and make the loop operate more efficiently.”

    The pod’s components were produced using DESL’s industrial-scale 3D printer, which can fabricate objects up to 45 cm in size in a range of materials (such as ABS, PLA, PET, nylon, carbon, Flex, polystyrene and Laywood). Special software will be used to replicate the power grid’s behavior in real time, like a digital twin.

    Cutting power use with a linear induction motor

    One of the big challenges of a Hyperloop is its propulsion system. To keep costs down, the energy required for propulsion in the EPFL design will not come from the track – as it does for Maglev trains – but will be carried by the pods themselves. They will be equipped with linear induction motors, although further development work is needed to reduce the pods’ power consumption. The target is to reach a power consumption of 10–50 Wh/km per passenger (depending on how long the trip is), compared with 97–100 Wh/km for electric cars and 515–600 Wh/km for planes. The development work will be carried out under the LIMITLESS project (for Linear Induction Motor drIve for Traction and LEvitation in Sustainable hyperloop Systems) involving Swisspod, DESL and the Vaud School of Management and Engineering (HEIG-VD), with the support of an Innosuisse grant. Once the low-power linear induction motor is ready, it will be tested on the EPFL track.

    “This project provides a great opportunity for Swisspod to join forces with EPFL’s world-class engineering skills,” says Denis Tudor, CEO of Swisspod and a PhD student at EPFL. “By combining those skills with our own business and engineering capabilities, we hope to develop a system that will reach the market in four to five years.” Georgios Sarantakos, who heads up the project at DESL, adds: “Both DESL and Swisspod aim to use innovation as a vector for positive change and develop a feasible transportation system that can bring real value to the local community and deliver significant benefits to society as a whole.”

    ______________________________________________________________________________________________________________
    Multidisciplinary projects
    Close to 20 students from various EPFL schools are taking part in EPFLoop as part of their semester or Master’s projects. “In prior years, our main goal was to break speed records at international Hyperloop competitions,” says Georgios Sarantakos, the project head at DESL. “But now we want to define certain parameters and improve efficiency so that one day we can build a full-scale track.” Meeting that goal will require pushing the boundaries of technology in a range of areas, including batteries, power electronics, propulsion systems, heat management, avionics, design, tubular structures and data management.
    ______________________________________________________________________________________________________________

    Video:


    #EPFLoop: Augustin Mohr, électronique de puissance


    #EPFLoop: Iléane Lefevre, energy and storage system


    #EPFLoop: Bassem Alsakhawy, mechanical structure


    #EPFLoop: Anis Hassan, leader subteam mechanical engineering

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    EPFL campus

    The Swiss Federal Institute of Technology in Lausanne [EPFL-École polytechnique fédérale de Lausanne] (CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

    The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

    EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is the Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich)](CH) . Associated with several specialized research institutes, the two universities form the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

    The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices was located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganised and acquired the status of a university in 1890, the technical faculty changed its name to École d’ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich(CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

    In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.

    Organization

    EPFL is organised into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

    School of Basic Sciences (SB, Jan S. Hesthaven)

    Institute of Mathematics (MATH, Victor Panaretos)
    Institute of Chemical Sciences and Engineering (ISIC, Emsley Lyndon)
    Institute of Physics (IPHYS, Harald Brune)
    European Centre of Atomic and Molecular Computations (CECAM, Ignacio Pagonabarraga Mora)
    Bernoulli Center (CIB, Nicolas Monod)
    Biomedical Imaging Research Center (CIBM, Rolf Gruetter)
    Interdisciplinary Center for Electron Microscopy (CIME, Cécile Hébert)
    Max Planck-EPFL Centre for Molecular Nanosciences and Technology (CMNT, Thomas Rizzo)
    Swiss Plasma Center (SPC, Ambrogio Fasoli)
    Laboratory of Astrophysics (LASTRO, Jean-Paul Kneib)

    School of Engineering (STI, Ali Sayed)

    Institute of Electrical Engineering (IEL, Giovanni De Micheli)
    Institute of Mechanical Engineering (IGM, Thomas Gmür)
    Institute of Materials (IMX, Michaud Véronique)
    Institute of Microengineering (IMT, Olivier Martin)
    Institute of Bioengineering (IBI, Matthias Lütolf)

    School of Architecture, Civil and Environmental Engineering (ENAC, Claudia R. Binder)

    Institute of Architecture (IA, Luca Ortelli)
    Civil Engineering Institute (IIC, Eugen Brühwiler)
    Institute of Urban and Regional Sciences (INTER, Philippe Thalmann)
    Environmental Engineering Institute (IIE, David Andrew Barry)

    School of Computer and Communication Sciences (IC, James Larus)

    Algorithms & Theoretical Computer Science
    Artificial Intelligence & Machine Learning
    Computational Biology
    Computer Architecture & Integrated Systems
    Data Management & Information Retrieval
    Graphics & Vision
    Human-Computer Interaction
    Information & Communication Theory
    Networking
    Programming Languages & Formal Methods
    Security & Cryptography
    Signal & Image Processing
    Systems

    School of Life Sciences (SV, Gisou van der Goot)

    Bachelor-Master Teaching Section in Life Sciences and Technologies (SSV)
    Brain Mind Institute (BMI, Carmen Sandi)
    Institute of Bioengineering (IBI, Melody Swartz)
    Swiss Institute for Experimental Cancer Research (ISREC, Douglas Hanahan)
    Global Health Institute (GHI, Bruno Lemaitre)
    Ten Technology Platforms & Core Facilities (PTECH)
    Center for Phenogenomics (CPG)
    NCCR Synaptic Bases of Mental Diseases (NCCR-SYNAPSY)

    College of Management of Technology (CDM)

    Swiss Finance Institute at EPFL (CDM-SFI, Damir Filipovic)
    Section of Management of Technology and Entrepreneurship (CDM-PMTE, Daniel Kuhn)
    Institute of Technology and Public Policy (CDM-ITPP, Matthias Finger)
    Institute of Management of Technology and Entrepreneurship (CDM-MTEI, Ralf Seifert)
    Section of Financial Engineering (CDM-IF, Julien Hugonnier)

    College of Humanities (CDH, Thomas David)

    Human and social sciences teaching program (CDH-SHS, Thomas David)

    EPFL Middle East (EME, Dr. Franco Vigliotti)[62]

    Section of Energy Management and Sustainability (MES, Prof. Maher Kayal)

    In addition to the eight schools there are seven closely related institutions

    Swiss Cancer Centre
    Center for Biomedical Imaging (CIBM)
    Centre for Advanced Modelling Science (CADMOS)
    École cantonale d’art de Lausanne (ECAL)
    Campus Biotech
    Wyss Center for Bio- and Neuro-engineering
    Swiss National Supercomputing Centre

     
  • richardmitnick 8:43 pm on July 22, 2021 Permalink | Reply
    Tags: "Laser improves the time resolution of CryoEM", , , , , In cryoEM samples are embedded in vitreous ice-a glass-like form of ice that is obtained when water is frozen so rapidly that crystallization cannot occur., , , Scientists at EPFL’s School of Basic Sciences has developed a cryoEM method that can capture images of protein movements at the microsecond (a millionth of a second) timescale., Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH), The instrument forms images using a beam of electrons instead of light.   

    From Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH): “Laser improves the time resolution of CryoEM” 

    From Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)

    20.07.21
    Nik Papageorgiou

    EPFL scientists have devised a new method that can speed up the real-time observation capabilities of cryo-electron microscopy.

    Cryo-Electron Microscope

    1

    In 2017, Jacques Dubochet, Joachim Frank, and Richard Henderson won the Nobel Prize in Chemistry for their contributions to cryo-electron microscopy (cryoEM), an imaging technique that can capture pictures of biomolecules such as proteins with atomic precision.

    In cryoEM samples are embedded in vitreous ice-a glass-like form of ice that is obtained when water is frozen so rapidly that crystallization cannot occur. With the sample vitrified, high-resolution pictures of their molecular structure can be taken with an electron microscope, an instrument that forms images using a beam of electrons instead of light.

    CryoEM has opened up new dimensions in life sciences, chemistry, and medicine. For example, it was recently used to map the structure of the SARS-CoV-2 spike protein, which is the target of many of the COVID-19 vaccines.

    Proteins constantly change their 3D structure in the cell. These conformational rearrangements are integral for proteins to perform their specialized functions, and take place within millionths to thousandths of a second. Such fast movements are too fast to be observed in real time by current cryoEM protocols, rendering our understanding of proteins incomplete.

    But a team of scientists led by Ulrich Lorenz at EPFL’s School of Basic Sciences has developed a cryoEM method that can capture images of protein movements at the microsecond (a millionth of a second) timescale. The work is published in Chemical Physics Letters.

    The method involves rapidly melting the vitrified sample with a laser pulse. When the ice melts into a liquid, there is a tunable time window in which the protein can be induced to move in the way they do in their natural liquid state in the cell.

    3

    “Generally speaking, warming up a cryo sample causes it to de-vitrify,” says Ulrich Lorenz. “But we can overcome this obstacle by how quickly we melt the sample.”

    After the laser pulse, the sample is re-vitrified in just a few microseconds, trapping the particles in their transient configurations. In this “paused” state, they can now be observed with conventional cryoEM methods.

    “Matching the time resolution of cryoEM to the natural timescale of proteins will allow us to directly study processes that were previously inaccessible,” says Lorenz.

    The team of scientists tested their new method by disassembling proteins after structurally damaging them, and trapping them in partially unraveled configurations.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    EPFL campus

    The Swiss Federal Institute of Technology in Lausanne [EPFL-École polytechnique fédérale de Lausanne] (CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

    The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

    EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is the Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich)](CH) . Associated with several specialized research institutes, the two universities form the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

    The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices was located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganised and acquired the status of a university in 1890, the technical faculty changed its name to École d’ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich(CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

    In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.

    Organization

    EPFL is organised into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

    School of Basic Sciences (SB, Jan S. Hesthaven)

    Institute of Mathematics (MATH, Victor Panaretos)
    Institute of Chemical Sciences and Engineering (ISIC, Emsley Lyndon)
    Institute of Physics (IPHYS, Harald Brune)
    European Centre of Atomic and Molecular Computations (CECAM, Ignacio Pagonabarraga Mora)
    Bernoulli Center (CIB, Nicolas Monod)
    Biomedical Imaging Research Center (CIBM, Rolf Gruetter)
    Interdisciplinary Center for Electron Microscopy (CIME, Cécile Hébert)
    Max Planck-EPFL Centre for Molecular Nanosciences and Technology (CMNT, Thomas Rizzo)
    Swiss Plasma Center (SPC, Ambrogio Fasoli)
    Laboratory of Astrophysics (LASTRO, Jean-Paul Kneib)

    School of Engineering (STI, Ali Sayed)

    Institute of Electrical Engineering (IEL, Giovanni De Micheli)
    Institute of Mechanical Engineering (IGM, Thomas Gmür)
    Institute of Materials (IMX, Michaud Véronique)
    Institute of Microengineering (IMT, Olivier Martin)
    Institute of Bioengineering (IBI, Matthias Lütolf)

    School of Architecture, Civil and Environmental Engineering (ENAC, Claudia R. Binder)

    Institute of Architecture (IA, Luca Ortelli)
    Civil Engineering Institute (IIC, Eugen Brühwiler)
    Institute of Urban and Regional Sciences (INTER, Philippe Thalmann)
    Environmental Engineering Institute (IIE, David Andrew Barry)

    School of Computer and Communication Sciences (IC, James Larus)

    Algorithms & Theoretical Computer Science
    Artificial Intelligence & Machine Learning
    Computational Biology
    Computer Architecture & Integrated Systems
    Data Management & Information Retrieval
    Graphics & Vision
    Human-Computer Interaction
    Information & Communication Theory
    Networking
    Programming Languages & Formal Methods
    Security & Cryptography
    Signal & Image Processing
    Systems

    School of Life Sciences (SV, Gisou van der Goot)

    Bachelor-Master Teaching Section in Life Sciences and Technologies (SSV)
    Brain Mind Institute (BMI, Carmen Sandi)
    Institute of Bioengineering (IBI, Melody Swartz)
    Swiss Institute for Experimental Cancer Research (ISREC, Douglas Hanahan)
    Global Health Institute (GHI, Bruno Lemaitre)
    Ten Technology Platforms & Core Facilities (PTECH)
    Center for Phenogenomics (CPG)
    NCCR Synaptic Bases of Mental Diseases (NCCR-SYNAPSY)

    College of Management of Technology (CDM)

    Swiss Finance Institute at EPFL (CDM-SFI, Damir Filipovic)
    Section of Management of Technology and Entrepreneurship (CDM-PMTE, Daniel Kuhn)
    Institute of Technology and Public Policy (CDM-ITPP, Matthias Finger)
    Institute of Management of Technology and Entrepreneurship (CDM-MTEI, Ralf Seifert)
    Section of Financial Engineering (CDM-IF, Julien Hugonnier)

    College of Humanities (CDH, Thomas David)

    Human and social sciences teaching program (CDH-SHS, Thomas David)

    EPFL Middle East (EME, Dr. Franco Vigliotti)[62]

    Section of Energy Management and Sustainability (MES, Prof. Maher Kayal)

    In addition to the eight schools there are seven closely related institutions

    Swiss Cancer Centre
    Center for Biomedical Imaging (CIBM)
    Centre for Advanced Modelling Science (CADMOS)
    École cantonale d’art de Lausanne (ECAL)
    Campus Biotech
    Wyss Center for Bio- and Neuro-engineering
    Swiss National Supercomputing Centre

     
  • richardmitnick 11:21 am on July 5, 2021 Permalink | Reply
    Tags: "Machine learning cracks the oxidation states of crystal structures", , As of 2016 we know of 118 elements all of which can be found categorized in the famous periodic table., , , Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)   

    From Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH): “Machine learning cracks the oxidation states of crystal structures” 

    From Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)

    05.07.21
    Nik Papageorgiou

    Chemical engineers at EPFL have developed a machine-learning model that can predict a compound’s oxidation state, a property that is so essential that many chemists argue it must be included in the periodic table.

    1

    Chemical elements make up pretty much everything in the physical world. As of 2016 we know of 118 elements all of which can be found categorized in the famous periodic table that hangs in every chemistry lab and classroom.

    Each element in the periodic table appears as a one-, two-letter abbreviation (e.g. O for oxygen, Al for aluminum) along with its atomic number, which shows how many protons there are in the element’s nucleus. The number of protons is enormously important, as it also determines how many electrons orbit the nucleus, which essentially makes the element what it is and gives it its chemical properties. In short, the atomic number is an element’s ID card.

    The periodic table should include oxidation states.

    Publishing in Nature Chemistry, chemical engineers at EPFL’s School of Basic Sciences investigate another number that must be reported for each element in the periodic table: the element’s oxidation state, also known as oxidation number. Simply put, the oxidation state describes how many electrons an atom must gain or lose in order to form a chemical bond with another atom.

    “In chemistry, the oxidation state is always reported in the chemical name of a compound,” says Professor Berend Smit who led the research. “Oxidation states play such an important role in the fundamentals of chemistry that some have argued that they should be represented as the third dimension of the periodic table.” A good example is chromium: in oxidation state III it is essential to the human body; in oxidation state IV, it is extremely toxic.

    Complex materials complicate things

    But although figuring out the oxidation state of a single element is pretty straightforward, when it comes to compounds made up of multiple elements, things become complicated. “For complex materials, it is in practice impossible to predict the oxidation state from first principles,” says Smit. “In fact, most quantum programs require the oxidation state of the metal as input.”

    The current state-of-the-art in predicting oxidation states is still based on a something called “bond valence theory” developed in the early 20th century, which estimates the oxidation state of a compound based on the distances between the atoms of its constituent elements. But this doesn’t always work, especially in materials with crystal structures. “It is well known that it is not only the distance that matters but also the geometry of a metal complex,” says Smit. “But attempts to take this into account have not been very successful.”

    A machine-learning solution

    Until now, that is. In the study, the researchers were able to train a machine-learning algorithm to categorize a famous group of materials, the metal-organic frameworks, by oxidation state.

    The team used the Cambridge structural database, a repository of crystal structures in which the oxidation state in given in the name of the materials. “The database is very messy, with many errors and a mixture of experiments, expert guesses, and different variations of the bond valence theory are used to assign oxidation states,” says Smit. “We assume that chemistry is self-correcting,” he adds. “So while there are many errors on individual accounts, the community as a whole will get it right.”

    “We basically made a machine-learning model that has captured the collective knowledge of the chemistry community,” says Kevin Jablonka, a PhD student in Smit’s group at EPFL. “Our machine learning is nothing more than the television game “Who Wants To Be A Millionaire?” If a chemist does not know the oxidation state, one of the lifelines is to ask the audience of chemistry what they think the oxidation state should be. By uploading a crystal structure and our machine-learned model is the audience of chemists that will tell them what the most likely oxidation state is.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    EPFL campus

    The Swiss Federal Institute of Technology in Lausanne [EPFL-École polytechnique fédérale de Lausanne] (CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

    The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

    EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is the Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich)](CH). Associated with several specialized research institutes, the two universities form the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales](CH), which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

    The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices was located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganised and acquired the status of a university in 1890, the technical faculty changed its name to École d’ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich(CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

    In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.

    Organization

    EPFL is organised into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

    School of Basic Sciences (SB, Jan S. Hesthaven)

    Institute of Mathematics (MATH, Victor Panaretos)
    Institute of Chemical Sciences and Engineering (ISIC, Emsley Lyndon)
    Institute of Physics (IPHYS, Harald Brune)
    European Centre of Atomic and Molecular Computations (CECAM, Ignacio Pagonabarraga Mora)
    Bernoulli Center (CIB, Nicolas Monod)
    Biomedical Imaging Research Center (CIBM, Rolf Gruetter)
    Interdisciplinary Center for Electron Microscopy (CIME, Cécile Hébert)
    Max Planck-EPFL Centre for Molecular Nanosciences and Technology (CMNT, Thomas Rizzo)
    Swiss Plasma Center (SPC, Ambrogio Fasoli)
    Laboratory of Astrophysics (LASTRO, Jean-Paul Kneib)

    School of Engineering (STI, Ali Sayed)

    Institute of Electrical Engineering (IEL, Giovanni De Micheli)
    Institute of Mechanical Engineering (IGM, Thomas Gmür)
    Institute of Materials (IMX, Michaud Véronique)
    Institute of Microengineering (IMT, Olivier Martin)
    Institute of Bioengineering (IBI, Matthias Lütolf)

    School of Architecture, Civil and Environmental Engineering (ENAC, Claudia R. Binder)

    Institute of Architecture (IA, Luca Ortelli)
    Civil Engineering Institute (IIC, Eugen Brühwiler)
    Institute of Urban and Regional Sciences (INTER, Philippe Thalmann)
    Environmental Engineering Institute (IIE, David Andrew Barry)

    School of Computer and Communication Sciences (IC, James Larus)

    Algorithms & Theoretical Computer Science
    Artificial Intelligence & Machine Learning
    Computational Biology
    Computer Architecture & Integrated Systems
    Data Management & Information Retrieval
    Graphics & Vision
    Human-Computer Interaction
    Information & Communication Theory
    Networking
    Programming Languages & Formal Methods
    Security & Cryptography
    Signal & Image Processing
    Systems

    School of Life Sciences (SV, Gisou van der Goot)

    Bachelor-Master Teaching Section in Life Sciences and Technologies (SSV)
    Brain Mind Institute (BMI, Carmen Sandi)
    Institute of Bioengineering (IBI, Melody Swartz)
    Swiss Institute for Experimental Cancer Research (ISREC, Douglas Hanahan)
    Global Health Institute (GHI, Bruno Lemaitre)
    Ten Technology Platforms & Core Facilities (PTECH)
    Center for Phenogenomics (CPG)
    NCCR Synaptic Bases of Mental Diseases (NCCR-SYNAPSY)

    College of Management of Technology (CDM)

    Swiss Finance Institute at EPFL (CDM-SFI, Damir Filipovic)
    Section of Management of Technology and Entrepreneurship (CDM-PMTE, Daniel Kuhn)
    Institute of Technology and Public Policy (CDM-ITPP, Matthias Finger)
    Institute of Management of Technology and Entrepreneurship (CDM-MTEI, Ralf Seifert)
    Section of Financial Engineering (CDM-IF, Julien Hugonnier)

    College of Humanities (CDH, Thomas David)

    Human and social sciences teaching program (CDH-SHS, Thomas David)

    EPFL Middle East (EME, Dr. Franco Vigliotti)[62]

    Section of Energy Management and Sustainability (MES, Prof. Maher Kayal)

    In addition to the eight schools there are seven closely related institutions

    Swiss Cancer Centre
    Center for Biomedical Imaging (CIBM)
    Centre for Advanced Modelling Science (CADMOS)
    École cantonale d’art de Lausanne (ECAL)
    Campus Biotech
    Wyss Center for Bio- and Neuro-engineering
    Swiss National Supercomputing Centre

     
  • richardmitnick 3:27 pm on June 24, 2021 Permalink | Reply
    Tags: "An artificial leaf made from semiconducting polymers", , Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)   

    From Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH): “An artificial leaf made from semiconducting polymers” 

    From Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)

    24.06.21
    Laboratoire LIMNO EPFL SB

    EPFL scientists are generating oxygen from sunlight, water and semiconducting polymers. They present a promising way towards economical and scalable solar fuel production.

    Natural photosynthesis evolved to covert water and sunlight into oxygen (O2) and stored chemical energy. In plants this process is not very efficient, however the possibility to convert sunlight into chemical fuel in an economical and globally scalable manner is a very attractive method for reducing our dependence on fossil fuels. As such, scientists have been searching for routes toward efficient and inexpensive mimics of natural photosynthesis for decades. It turns out that the O2 production step is quite tricky and remains a major challenge toward artificial photosynthesis.

    Now, in a recent report published in Nature Catalysis, Prof. Kevin Sivula and his co-workers in the Laboratory for Molecular Engineering of Optoelectronic Nanomaterials (LIMNO) at EPFL describe a mixture of semiconducting polymers, commonly known as plastic electronics, that demonstrates highly efficient solar-driven water oxidation (H2O → O2).

    1
    Generating oxygen from sunlight, water and semiconducting polymers © LIMNO / EPFL.

    Compared to previously-reported systems, which employ inorganic materials such as metal oxides or silicon and have not met the performance and cost requirements for industrialization, the polymeric materials reported in this new work have molecularly tunable properties, and are solution-processable at low temperature, allowing large scale device fabrication at low manufacturing cost.

    The EPFL team’s breakthrough was realized by tuning the properties of the polymers to match the requirements of the water oxidation reaction and by assembling them into what is called “a bulk heterojunction” (BHJ) blend that further improves the efficiency of the solar-driven catalytic reaction. By also optimizing the conduction of the electronic charges in the device by using carefully engineered interfaces, they realized the first demonstration of a water oxidizing “photo-anode” based on a BHJ polymer blend that exhibits a benchmark performance to date – performing two orders of magnitude better than previous organic-based devices. Moreover, the team identified key factors that influence the robust performance of O2 production, which will help define paths forward to further improve the performance.

    By virtue of the potential of this approach, the system developed by Prof. Kevin Sivula and colleagues could substantially contribute to advancing the field of polymer-based electronics and establishing a promising route towards economical, efficient, and scalable solar fuel production by artificial photosynthesis.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    EPFL campus

    The Swiss Federal Institute of Technology in Lausanne [EPFL-École polytechnique fédérale de Lausanne] (CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

    The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

    EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is the Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich)](CH) . Associated with several specialized research institutes, the two universities form the Domain of the Swiss Federal Institutes of Technology (ETH Domain) [ETH-Bereich; Domaine des Écoles polytechniques fédérales] (CH) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

    The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices was located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganised and acquired the status of a university in 1890, the technical faculty changed its name to École d’ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich(CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

    In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.

    Organization

    EPFL is organised into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

    School of Basic Sciences (SB, Jan S. Hesthaven)

    Institute of Mathematics (MATH, Victor Panaretos)
    Institute of Chemical Sciences and Engineering (ISIC, Emsley Lyndon)
    Institute of Physics (IPHYS, Harald Brune)
    European Centre of Atomic and Molecular Computations (CECAM, Ignacio Pagonabarraga Mora)
    Bernoulli Center (CIB, Nicolas Monod)
    Biomedical Imaging Research Center (CIBM, Rolf Gruetter)
    Interdisciplinary Center for Electron Microscopy (CIME, Cécile Hébert)
    Max Planck-EPFL Centre for Molecular Nanosciences and Technology (CMNT, Thomas Rizzo)
    Swiss Plasma Center (SPC, Ambrogio Fasoli)
    Laboratory of Astrophysics (LASTRO, Jean-Paul Kneib)

    School of Engineering (STI, Ali Sayed)

    Institute of Electrical Engineering (IEL, Giovanni De Micheli)
    Institute of Mechanical Engineering (IGM, Thomas Gmür)
    Institute of Materials (IMX, Michaud Véronique)
    Institute of Microengineering (IMT, Olivier Martin)
    Institute of Bioengineering (IBI, Matthias Lütolf)

    School of Architecture, Civil and Environmental Engineering (ENAC, Claudia R. Binder)

    Institute of Architecture (IA, Luca Ortelli)
    Civil Engineering Institute (IIC, Eugen Brühwiler)
    Institute of Urban and Regional Sciences (INTER, Philippe Thalmann)
    Environmental Engineering Institute (IIE, David Andrew Barry)

    School of Computer and Communication Sciences (IC, James Larus)

    Algorithms & Theoretical Computer Science
    Artificial Intelligence & Machine Learning
    Computational Biology
    Computer Architecture & Integrated Systems
    Data Management & Information Retrieval
    Graphics & Vision
    Human-Computer Interaction
    Information & Communication Theory
    Networking
    Programming Languages & Formal Methods
    Security & Cryptography
    Signal & Image Processing
    Systems

    School of Life Sciences (SV, Gisou van der Goot)

    Bachelor-Master Teaching Section in Life Sciences and Technologies (SSV)
    Brain Mind Institute (BMI, Carmen Sandi)
    Institute of Bioengineering (IBI, Melody Swartz)
    Swiss Institute for Experimental Cancer Research (ISREC, Douglas Hanahan)
    Global Health Institute (GHI, Bruno Lemaitre)
    Ten Technology Platforms & Core Facilities (PTECH)
    Center for Phenogenomics (CPG)
    NCCR Synaptic Bases of Mental Diseases (NCCR-SYNAPSY)

    College of Management of Technology (CDM)

    Swiss Finance Institute at EPFL (CDM-SFI, Damir Filipovic)
    Section of Management of Technology and Entrepreneurship (CDM-PMTE, Daniel Kuhn)
    Institute of Technology and Public Policy (CDM-ITPP, Matthias Finger)
    Institute of Management of Technology and Entrepreneurship (CDM-MTEI, Ralf Seifert)
    Section of Financial Engineering (CDM-IF, Julien Hugonnier)

    College of Humanities (CDH, Thomas David)

    Human and social sciences teaching program (CDH-SHS, Thomas David)

    EPFL Middle East (EME, Dr. Franco Vigliotti)[62]

    Section of Energy Management and Sustainability (MES, Prof. Maher Kayal)

    In addition to the eight schools there are seven closely related institutions

    Swiss Cancer Centre
    Center for Biomedical Imaging (CIBM)
    Centre for Advanced Modelling Science (CADMOS)
    École cantonale d’art de Lausanne (ECAL)
    Campus Biotech
    Wyss Center for Bio- and Neuro-engineering
    Swiss National Supercomputing Centre

     
  • richardmitnick 12:27 pm on June 22, 2021 Permalink | Reply
    Tags: "New connector for sustainable structures on Earth and in space", An online program for designing bamboo furniture, Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)   

    From Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH): “New connector for sustainable structures on Earth and in space” 

    From Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)

    22.06.21
    Sandrine Perroud

    As part of his Master’s degree in civil engineering, an EPFL student developed a connector for use in building sustainable structures. His initial project has expanded into an online program for designing bamboo furniture that’s stylish, modular and customizable. And now his connector is being looked at for use by astronauts in outer space.

    1
    Romain van Wassenhove with the new connector. Credit: Alain Herzog / EPFL 2021


    New connector for sustainable structures on Earth and in space.

    During his time at EPFL under the Erasmus program, Romain van Wassenhove came up with an idea for a connector that could be used to make modular structures out of sustainable bamboo rather than wood, plastic or metal. “I wanted to focus my Master’s on a topic that had meaning to me and that would lead to a concrete application,” he says. “Working with bamboo was something I already had in mind while I was studying in Brussels.” His connectors can be 3D-printed in biosourced plastic and are customizable to the type of material used for the structure.

    Van Wassenhove got the idea for his connector during a class at EPFL on composite materials and developed the concept further through his Master’s project, co-directed at EPFL by Senior Scientist Anastasios Vassilopoulos and by associate professor Lars De Laet at Free University of Brussels [Vrije Universiteit Brussel](BE). In September 2020, soon after graduating, he obtained research funds – through an EPFL Ignition Grant – to enhance the design and operation of his connector and test it on an initial application involving bamboo structures. Today van Wassenhove’s invention is EU patent-protected, and his research has just been published in Composite Structures, a leading journal for composite materials and their applications.

    In association with his project, called B’Novus, van Wassenhove has created an online program where users can design stylish, modular bamboo furniture assembled with the help of his connector. The program could be particularly useful to individuals and the organizers of events and temporary exhibitions, for example. After customers create their design and place their order, van Wassenhove generates cutting files for the bamboo sections. He then sends those files, along with the 3D printing plans for the connectors, to a local manufacturer – he uses manufacturers located as close as possible to his customers, so as to minimize the environmental impact.

    2
    The conncector is 3D-printed in biosourced plastic. © Alain Herzog / 2021 EPFL

    Many hurdles to overcome

    Quite a few hurdles still lie on van Wassenhove’s path. First of all, Europe’s bamboo industry is in its infancy. “Bamboo is still seen as ‘poor man’s wood,’ associated with patio furniture, exotic vacations and eco-friendly lifestyles,” says van Wassenhove. He also points out that Europe lacks the manufacturing know-how to cut bamboo properly. But bamboo has many sustainability advantages over wood, its direct competitor: because bamboo grows so quickly, it’s up to four times more productive than trees; it can fixate up to 30% more CO2 than leafy trees; its mechanical properties make it surprisingly solid; and, thanks to van Wassenhove’s connectors, it can be used without too much fabrication work required.

    The remaining hurdles haven’t discouraged the young entrepreneur. “My goal is to bring bamboo to European industry, as part of the transition to a more sustainable economy,” he says. He already sees applications for bamboo in construction, such as by using concrete-filled bamboo stems in buildings’ structural elements.

    Space, the next frontier

    In addition to potentially revolutionizing Europe’s construction industry, Van Wassenhove’s B’Novus connectors may be bound for space. Three Master’s students at ENAC are using his parametric design to develop a five-meter-high meteorological tower as part of the Asclepios project, a student-run cross-disciplinary initiative to conduct experiments under the same conditions as on the Moon and Mars. It’s modeled after a utility pole and consists of lightweight, composite materials – rather than bamboo – that can be easily assembled.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    EPFL campus

    The Swiss Federal Institute of Technology in Lausanne [EPFL-École polytechnique fédérale de Lausanne] (CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

    The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

    EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is the Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich)](CH) . Associated with several specialized research institutes, the two universities form the Swiss Federal Institutes of Technology Domain (ETH(CH) Domain) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

    The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices was located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganised and acquired the status of a university in 1890, the technical faculty changed its name to École d’ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich(CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

    In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.

    Organization

    EPFL is organised into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

    School of Basic Sciences (SB, Jan S. Hesthaven)

    Institute of Mathematics (MATH, Victor Panaretos)
    Institute of Chemical Sciences and Engineering (ISIC, Emsley Lyndon)
    Institute of Physics (IPHYS, Harald Brune)
    European Centre of Atomic and Molecular Computations (CECAM, Ignacio Pagonabarraga Mora)
    Bernoulli Center (CIB, Nicolas Monod)
    Biomedical Imaging Research Center (CIBM, Rolf Gruetter)
    Interdisciplinary Center for Electron Microscopy (CIME, Cécile Hébert)
    Max Planck-EPFL Centre for Molecular Nanosciences and Technology (CMNT, Thomas Rizzo)
    Swiss Plasma Center (SPC, Ambrogio Fasoli)
    Laboratory of Astrophysics (LASTRO, Jean-Paul Kneib)

    School of Engineering (STI, Ali Sayed)

    Institute of Electrical Engineering (IEL, Giovanni De Micheli)
    Institute of Mechanical Engineering (IGM, Thomas Gmür)
    Institute of Materials (IMX, Michaud Véronique)
    Institute of Microengineering (IMT, Olivier Martin)
    Institute of Bioengineering (IBI, Matthias Lütolf)

    School of Architecture, Civil and Environmental Engineering (ENAC, Claudia R. Binder)

    Institute of Architecture (IA, Luca Ortelli)
    Civil Engineering Institute (IIC, Eugen Brühwiler)
    Institute of Urban and Regional Sciences (INTER, Philippe Thalmann)
    Environmental Engineering Institute (IIE, David Andrew Barry)

    School of Computer and Communication Sciences (IC, James Larus)

    Algorithms & Theoretical Computer Science
    Artificial Intelligence & Machine Learning
    Computational Biology
    Computer Architecture & Integrated Systems
    Data Management & Information Retrieval
    Graphics & Vision
    Human-Computer Interaction
    Information & Communication Theory
    Networking
    Programming Languages & Formal Methods
    Security & Cryptography
    Signal & Image Processing
    Systems

    School of Life Sciences (SV, Gisou van der Goot)

    Bachelor-Master Teaching Section in Life Sciences and Technologies (SSV)
    Brain Mind Institute (BMI, Carmen Sandi)
    Institute of Bioengineering (IBI, Melody Swartz)
    Swiss Institute for Experimental Cancer Research (ISREC, Douglas Hanahan)
    Global Health Institute (GHI, Bruno Lemaitre)
    Ten Technology Platforms & Core Facilities (PTECH)
    Center for Phenogenomics (CPG)
    NCCR Synaptic Bases of Mental Diseases (NCCR-SYNAPSY)

    College of Management of Technology (CDM)

    Swiss Finance Institute at EPFL (CDM-SFI, Damir Filipovic)
    Section of Management of Technology and Entrepreneurship (CDM-PMTE, Daniel Kuhn)
    Institute of Technology and Public Policy (CDM-ITPP, Matthias Finger)
    Institute of Management of Technology and Entrepreneurship (CDM-MTEI, Ralf Seifert)
    Section of Financial Engineering (CDM-IF, Julien Hugonnier)

    College of Humanities (CDH, Thomas David)

    Human and social sciences teaching program (CDH-SHS, Thomas David)

    EPFL Middle East (EME, Dr. Franco Vigliotti)[62]

    Section of Energy Management and Sustainability (MES, Prof. Maher Kayal)

    In addition to the eight schools there are seven closely related institutions

    Swiss Cancer Centre
    Center for Biomedical Imaging (CIBM)
    Centre for Advanced Modelling Science (CADMOS)
    École cantonale d’art de Lausanne (ECAL)
    Campus Biotech
    Wyss Center for Bio- and Neuro-engineering
    Swiss National Supercomputing Centre

     
  • richardmitnick 11:11 am on May 18, 2021 Permalink | Reply
    Tags: "Helping drone swarms avoid obstacles without hitting each other", , Each drone can be equipped with different sensors., , Engineers at EPFL have developed a predictive control model that allows swarms of drones to fly in cluttered environments quickly and safely., , , Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)   

    From Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH): “Helping drone swarms avoid obstacles without hitting each other” 

    From Swiss Federal Institute of Technology in Lausanne [EPFL-École Polytechnique Fédérale de Lausanne] (CH)

    1
    Engineers at EPFL have developed a predictive control model that allows swarms of drones to fly in cluttered environments quickly and safely. It works by enabling individual drones to predict their own behavior and that of their neighbors in the swarm.


    Drone swarms avoid obstacles without collision.

    There is strength in numbers. That’s true not only for humans, but for drones too. By flying in a swarm, they can cover larger areas and collect a wider range of data, since each drone can be equipped with different sensors.

    Preventing drones from bumping into each other

    One reason why drone swarms haven’t been used more widely is the risk of gridlock within the swarm. Studies on the collective movement of animals show that each agent tends to coordinate its movements with the others, adjusting its trajectory so as to keep a safe inter-agent distance or to travel in alignment, for example.

    “In a drone swarm, when one drone changes its trajectory to avoid an obstacle, its neighbors automatically synchronize their movements accordingly,” says Dario Floreano, a professor at EPFL’s School of Engineering and head of the Laboratory of Intelligent Systems (LIS). “But that often causes the swarm to slow down, generates gridlock within the swarm or even leads to collisions.”

    Not just reacting, but also predicting

    Enrica Soria, a PhD student at LIS, has come up with a new method for getting around that problem. She has developed a predictive control model that allows drones to not just react to others in a swarm, but also to anticipate their own movements and predict those of their neighbors. “Our model gives drones the ability to determine when a neighbor is about to slow down, meaning the slowdown has less of an effect on their own flight,” says Soria. The model works by programing in locally controlled, simple rules, such as a minimum inter-agent distance to maintain, a set velocity to keep, or a specific direction to follow. Soria’s work has just been published in Nature Machine Intelligence.

    With Soria’s model, drones are much less dependent on commands issued by a central computer. Drones in aerial light shows, for example, get their instructions from a computer that calculates each one’s trajectory to avoid a collision. “But with our model, drones are commanded using local information and can modify their trajectories autonomously,” says Soria.

    A model inspired by nature

    Tests run at LIS show that Soria’s system improves the speed, order and safety of drone swarms in areas with a lot of obstacles. “We don’t yet know if, or to what extent, animals are able to predict the movements of those around them,” says Floreano. “But biologists have recently suggested that the synchronized direction changes observed in some large groups would require a more sophisticated cognitive ability than what has been believed until now.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    EPFL bloc

    EPFL campus

    The Swiss Federal Institute of Technology in Lausanne [EPFL-École polytechnique fédérale de Lausanne] (CH) is a research institute and university in Lausanne, Switzerland, that specializes in natural sciences and engineering. It is one of the two Swiss Federal Institutes of Technology, and it has three main missions: education, research and technology transfer.

    The QS World University Rankings ranks EPFL(CH) 14th in the world across all fields in their 2020/2021 ranking, whereas Times Higher Education World University Rankings ranks EPFL(CH) as the world’s 19th best school for Engineering and Technology in 2020.

    EPFL(CH) is located in the French-speaking part of Switzerland; the sister institution in the German-speaking part of Switzerland is the Swiss Federal Institute of Technology ETH Zürich [Eidgenössische Technische Hochschule Zürich)](CH) . Associated with several specialized research institutes, the two universities form the Swiss Federal Institutes of Technology Domain (ETH(CH) Domain) which is directly dependent on the Federal Department of Economic Affairs, Education and Research. In connection with research and teaching activities, EPFL(CH) operates a nuclear reactor CROCUS; a Tokamak Fusion reactor; a Blue Gene/Q Supercomputer; and P3 bio-hazard facilities.

    The roots of modern-day EPFL(CH) can be traced back to the foundation of a private school under the name École spéciale de Lausanne in 1853 at the initiative of Lois Rivier, a graduate of the École Centrale Paris (FR) and John Gay the then professor and rector of the Académie de Lausanne. At its inception it had only 11 students and the offices was located at Rue du Valentin in Lausanne. In 1869, it became the technical department of the public Académie de Lausanne. When the Académie was reorganised and acquired the status of a university in 1890, the technical faculty changed its name to École d’ingénieurs de l’Université de Lausanne. In 1946, it was renamed the École polytechnique de l’Université de Lausanne (EPUL). In 1969, the EPUL was separated from the rest of the University of Lausanne and became a federal institute under its current name. EPFL(CH), like ETH Zürich(CH), is thus directly controlled by the Swiss federal government. In contrast, all other universities in Switzerland are controlled by their respective cantonal governments. Following the nomination of Patrick Aebischer as president in 2000, EPFL(CH) has started to develop into the field of life sciences. It absorbed the Swiss Institute for Experimental Cancer Research (ISREC) in 2008.

    In 1946, there were 360 students. In 1969, EPFL(CH) had 1,400 students and 55 professors. In the past two decades the university has grown rapidly and as of 2012 roughly 14,000 people study or work on campus, about 9,300 of these being Bachelor, Master or PhD students. The environment at modern day EPFL(CH) is highly international with the school attracting students and researchers from all over the world. More than 125 countries are represented on the campus and the university has two official languages, French and English.

    Organization

    EPFL is organised into eight schools, themselves formed of institutes that group research units (laboratories or chairs) around common themes:

    School of Basic Sciences (SB, Jan S. Hesthaven)

    Institute of Mathematics (MATH, Victor Panaretos)
    Institute of Chemical Sciences and Engineering (ISIC, Emsley Lyndon)
    Institute of Physics (IPHYS, Harald Brune)
    European Centre of Atomic and Molecular Computations (CECAM, Ignacio Pagonabarraga Mora)
    Bernoulli Center (CIB, Nicolas Monod)
    Biomedical Imaging Research Center (CIBM, Rolf Gruetter)
    Interdisciplinary Center for Electron Microscopy (CIME, Cécile Hébert)
    Max Planck-EPFL Centre for Molecular Nanosciences and Technology (CMNT, Thomas Rizzo)
    Swiss Plasma Center (SPC, Ambrogio Fasoli)
    Laboratory of Astrophysics (LASTRO, Jean-Paul Kneib)

    School of Engineering (STI, Ali Sayed)

    Institute of Electrical Engineering (IEL, Giovanni De Micheli)
    Institute of Mechanical Engineering (IGM, Thomas Gmür)
    Institute of Materials (IMX, Michaud Véronique)
    Institute of Microengineering (IMT, Olivier Martin)
    Institute of Bioengineering (IBI, Matthias Lütolf)

    School of Architecture, Civil and Environmental Engineering (ENAC, Claudia R. Binder)

    Institute of Architecture (IA, Luca Ortelli)
    Civil Engineering Institute (IIC, Eugen Brühwiler)
    Institute of Urban and Regional Sciences (INTER, Philippe Thalmann)
    Environmental Engineering Institute (IIE, David Andrew Barry)

    School of Computer and Communication Sciences (IC, James Larus)

    Algorithms & Theoretical Computer Science
    Artificial Intelligence & Machine Learning
    Computational Biology
    Computer Architecture & Integrated Systems
    Data Management & Information Retrieval
    Graphics & Vision
    Human-Computer Interaction
    Information & Communication Theory
    Networking
    Programming Languages & Formal Methods
    Security & Cryptography
    Signal & Image Processing
    Systems

    School of Life Sciences (SV, Gisou van der Goot)

    Bachelor-Master Teaching Section in Life Sciences and Technologies (SSV)
    Brain Mind Institute (BMI, Carmen Sandi)
    Institute of Bioengineering (IBI, Melody Swartz)
    Swiss Institute for Experimental Cancer Research (ISREC, Douglas Hanahan)
    Global Health Institute (GHI, Bruno Lemaitre)
    Ten Technology Platforms & Core Facilities (PTECH)
    Center for Phenogenomics (CPG)
    NCCR Synaptic Bases of Mental Diseases (NCCR-SYNAPSY)

    College of Management of Technology (CDM)

    Swiss Finance Institute at EPFL (CDM-SFI, Damir Filipovic)
    Section of Management of Technology and Entrepreneurship (CDM-PMTE, Daniel Kuhn)
    Institute of Technology and Public Policy (CDM-ITPP, Matthias Finger)
    Institute of Management of Technology and Entrepreneurship (CDM-MTEI, Ralf Seifert)
    Section of Financial Engineering (CDM-IF, Julien Hugonnier)

    College of Humanities (CDH, Thomas David)

    Human and social sciences teaching program (CDH-SHS, Thomas David)

    EPFL Middle East (EME, Dr. Franco Vigliotti)[62]

    Section of Energy Management and Sustainability (MES, Prof. Maher Kayal)

    In addition to the eight schools there are seven closely related institutions

    Swiss Cancer Centre
    Center for Biomedical Imaging (CIBM)
    Centre for Advanced Modelling Science (CADMOS)
    École cantonale d’art de Lausanne (ECAL)
    Campus Biotech
    Wyss Center for Bio- and Neuro-engineering
    Swiss National Supercomputing Centre

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: