From FNAL Via SURF: “All Things Neutrino”
FNAL Art Image by Angela Gonzales
From Fermi National Accelerator Lab , an enduring source of strength for the US contribution to scientific research world wide.
via
Sanford Underground Research Facility
Do neutrinos violate the symmetries of physics?
The basics
Credit: Symmetry Magazine / Sandbox Studio, Chicago
One of the biggest mysteries in neutrino research is whether neutrinos and their antimatter twins, antineutrinos, behave the same way. This turns out to be a very important question—if the answer is no, it could explain how our universe full of matter came to exist.
Scientists think that matter and antimatter should have been created in equal proportions at the birth of the universe, yet when the two interact, they annihilate into pure energy. This should have left an empty universe. However, you’ve probably noticed all of the stuff made of matter around you. This kind of asymmetry is fascinating. It makes us want to know: How did this imbalance arise?
Neutrino scientists are looking for something called “charge-parity violation,” often shortened to CP violation. This complicated-sounding term really just asks if neutrinos and antineutrinos can pull off “the old switcheroo.” That is, does the universe treat the matter and antimatter particles identically? Scientists know neutrinos change flavors as they travel, a phenomenon known as oscillation. If the oscillations of neutrinos are fundamentally different from the oscillations of antineutrinos, then CP is broken.
Scientists already know that CP is violated for one major building block of the universe: the quarks. However, the discrepancy is not enough to account for the matter-rich world around us. But if CP were also violated among neutrinos, it could point us towards the answer.
More Info
Neutrinos could play a key role in why our universe is made of matter.
Physics is driven by symmetries. One key symmetry dictates that matter and antimatter are handled the same. In physics everything is invariant under charge, parity, and time; this is called the CPT theorem. This means if you were to change all of these things together, the universe would still react exactly the same. Therefore, for every process that produces a particle, there is a mirror process that produces an antiparticle. So during the Big Bang, we would have expected that the universe was formed with equal amounts of particles and antiparticles that would then annihilate with each other into pure energy.
Yet we know that the universe is full of matter and that everything in it, every star, planet, and galaxy, is made of matter and not antimatter. This abundance of matter means that after the particles and antiparticles annihilate with each other, somehow there was extra matter leftover, which now makes up the universe that we live in.
How this happened is a big mystery. In fact, this is one of the biggest mysteries that physicists are trying to solve. This question is fundamental to our understanding of how we came to exist.
Credit: Symmetry Magazine / Fermilab / Sandbox Studio, Chicago
Researchers have proposed a process that treats matter and antimatter slightly differently, a process that does not conserve the charge and parity parts of CPT. If this were the case, it would mean that a tiny bit more matter than antimatter was produced in the Big Bang.
In 1967 Andrei Sakharov, A Russian physicist, came up with three conditions that must be met in order for matter and antimatter to be produced at different rates. These are:
That the number of baryons (particles made of three quarks) produced in an interaction must not be conserved
That the charge and parity of particles produced in an interaction must not be conserved
These interactions must be out of thermal equilibrium
Physicists have searched for particles that do not conserve baryon number and, while they have found examples, they have not found this on a scale that can solve this problem. But there is another way to achieve this: if the number of leptons (the class of particles that include neutrinos as well as the charged electron, muon, and tau) produced in an interaction aren’t conserved, this can lead to a difference in the number of baryons.
The NOvA experiment studies beams of neutrinos and antineutrinos at Fermilab and again 500 miles away in Minnesota. NOvA collaborators hope to learn the mass ordering of the neutrinos and find any differences between neutrinos and their antimatter partners. Credit: NOvA collaboration / Fermilab
Physics have been searching for this process that treats leptons and antileptons differently to help explain matter’s dominance in our universe. This process is called leptogenesis. And neutrinos, one kind of lepton, are a prime candidate.
Some neutrino models contain heavy right-handed neutrinos, never before seen by scientists, that could have existed early in the universe’s history. These could have decayed in a way that did not conserve lepton number.
A variety of experiments, including NOvA, T2K, and DUNE, will search for the answer to a big part of this puzzle. They’ll look to see if neutrinos and antineutrinos conserve charge and parity. If it’s found that neutrinos don’t conserve CP, it could help us understand how the universe evolved to what we see today.
Even More
Physicists are particularly interested in symmetries of nature and whether those symmetries ever break. When scientists say “neutrinos might violate CP,” this is really just shorthand for asking if a particular kind of symmetry, charge-parity symmetry, is broken. Do neutrinos and antineutrinos behave differently, and does nature have a preference for one over the other? From the point of view of neutrino oscillations, this means that neutrinos and antineutrinos might oscillate at different rates—something many experiments have seen hints of and are searching for.
Neutrino oscillations are characterized by “mixing parameters,” which dictate how the mass states add up to form the particular flavor states. (Mixing parameters also look at the differences between the squares of the three mass states.)
The particular quantum combination of neutrino mass states that make up the neutrino flavor states is controlled via the so-called Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix.
The left image shows the sizes of the the CKM matrix elements for quark mixing, and the right image shows the PMNS matrix elements for neutrino mixing. Credit: Sheldon Stone
With three flavors (families) of neutrinos, the mixing matrix can be reduced to four independent components. These components are often written in a convenient format for experimentalists as three “mixing angles” and a CP-violating phase. Almost all of these mixing parameters have been measured to some degree, thanks to a suite of different neutrino oscillation experiments around the globe that use neutrinos from reactors, accelerators, and the sun. The one exception is the CP-violating phase. That phase could have any value, and if it turns out to be non-zero, then neutrinos and antineutrinos really do behave differently in ways that scientists did not expect.
Neutrinos are not the first kind of particle where scientists have observed “mixing” between flavors. A similar kind of mixing was discovered in the 1960s with quarks, the point-like particles that make up protons, neutrons, and all other nuclei. A long and storied campaign ensued to measure the mixing parameters of the quark mixing matrix, often referred to as the Cabibbo-Kobayashi-Maskawa (CKM) matrix.
After 30 years of very precise measurements, scientists know that the CKM mixing angles are relatively small, and that there is a striking lack of CP violation that many had hoped could explain the matter-antimatter asymmetry in the universe. In contrast, the PMNS matrix consists of relatively large (perhaps maximal) mixing angles, but the actual values of the mixing angles have not been precisely determined. These large but imprecise mixing angles are a driving force behind the desire to make more precise measurements, as such measurements could help rule out or support hints of physics beyond the Standard Model—bringing us one step closer to understanding our universe.
See the full here.
five-ways-keep-your-child-safe-school-shootings
Please help promote STEM in your local schools.
About us.
The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.
The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.
Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.
In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.
In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.
The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.
In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.
LUX’s mission was to scour the universe for WIMPs, vetoing all other signatures. It would continue to do just that for another three years before it was decommissioned in 2016.
In the midst of the excitement over first results, the LUX collaboration was already casting its gaze forward. Planning for a next-generation dark matter experiment at Sanford Lab was already under way. Named LUX-ZEPLIN (LZ), the next-generation experiment would increase the sensitivity of LUX 100 times.
SLAC physicist Tom Shutt, a previous co-spokesperson for LUX, said one goal of the experiment was to figure out how to build an even larger detector.
“LZ will be a thousand times more sensitive than the LUX detector,” Shutt said. “It will just begin to see an irreducible background of neutrinos that may ultimately set the limit to our ability to measure dark matter.”
We celebrate five years of LUX, and look into the steps being taken toward the much larger and far more sensitive experiment.
Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.
LBNE
The MAJORANA DEMONSTRATOR will contain 40 kg of germanium; up to 30 kg will be enriched to 86% in 76Ge. The DEMONSTRATOR will be deployed deep underground in an ultra-low-background shielded environment in the Sanford Underground Research Facility (SURF) in Lead, SD. The goal of the DEMONSTRATOR is to determine whether a future 1-tonne experiment can achieve a background goal of one count per tonne-year in a 4-keV region of interest around the 76Ge 0νββ Q-value at 2039 keV. MAJORANA plans to collaborate with GERDA for a future tonne-scale 76Ge 0νββ search.
CASPAR is a low-energy particle accelerator that allows researchers to study processes that take place inside collapsing stars.
The scientists are using space in the Sanford Underground Research Facility (SURF) in Lead, South Dakota, to work on a project called the Compact Accelerator System for Performing Astrophysical Research (CASPAR). CASPAR uses a low-energy particle accelerator that will allow researchers to mimic nuclear fusion reactions in stars. If successful, their findings could help complete our picture of how the elements in our universe are built. “Nuclear astrophysics is about what goes on inside the star, not outside of it,” said Dan Robertson, a Notre Dame assistant research professor of astrophysics working on CASPAR. “It is not observational, but experimental. The idea is to reproduce the stellar environment, to reproduce the reactions within a star.”
Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world collaborate at Fermilab on experiments at the frontiers of discovery.
Reply