Tagged: SURF Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 7:42 pm on September 11, 2018 Permalink | Reply
    Tags: A cool fact about this accelerator? It’s 60 years old and includes a Van de Graaff accelerator that was repurposed for use with CASPAR, , , “We are made of stardust.” Carl Sagan, , , , , , LUNA at Gran Sasso, Stellar burning and evolutionary phases in stars, SURF   

    From Sanford Underground Research Facility: “CASPAR” 

    SURF logo
    Sanford Underground levels

    From Sanford Underground Research Facility

    Constance Walter
    Photos by Matt Kapust

    1
    CASPAR is a low-energy particle accelerator that allows researchers to study processes that take place inside collapsing stars.

    “We are made of stardust.”

    While that statement may sound like a song title from the 1960s, it was actually made by astrophysicist and science fiction author Carl Sagan.

    Carl Sagan NASA/JPL

    And he was right. The nuclear burning inside collapsing stars produces the elements that make up and sustain life on Earth: carbon, nitrogen, iron and calcium, to name a few. Even lead, gold and the rock beneath our feet come from stars.

    The Compact Accelerator System for Performing Astrophysical Research (CASPAR) collaboration uses a low-energy accelerator to better understand how elements are produced in the Universe and at what rate and how much energy is produced during the process.

    “Unlike other underground experiments, we look at many different interactions and are not focused on discovering just one event,” said Dan Robertson, research associate professor at the University of Notre Dame. “All of these details give us a better understanding of the life of a star and what material is kicked out into the Universe during explosive stellar events.”

    2

    Studying the stars from underground

    Although it may seem counter-intuitive, going nearly a mile underground at Sanford Lab gives the CASPAR team a perfect place to study those stellar environments. CASPAR is one of just two underground accelerators in the world studying stellar environments. The other is the Laboratory for Underground Nuclear Astrophysics (LUNA), which is located at Gran Sasso National Laboratory in Italy and has been in existence for 25 years. Frank Strieder, principal investigator for the project and an associate professor of physics at South Dakota School of Mines & Technology (SD Mines), worked on that experiment for 22 years.

    LUNA-Laboratory for Underground Nuclear Astrophysics , which is located at Gran Sasso National Laboratory in Italy

    Gran Sasso LABORATORI NAZIONALI del GRAN SASSO, located in the Abruzzo region of central Italy

    “Both experiments are studying stellar burning and evolutionary phases in stars, but the work is different,” Strieder said. “And with our accelerator, we can cover a larger energy range than previous underground experiments.”

    3
    The accelerator

    The most famous particle accelerator in the world is the 17-mile long Large Hadron Collider, located in Switzerland and France, which generates up to 7 trillion volts as it hurls particles toward each other at nearly the speed of light.

    LHC

    CERN map


    CERN LHC Tunnel

    CERN LHC particles

    CASPAR, on the other hand, is a 50-foot long system that includes a Van de Graaff accelerator that uses radio-frequency energy to accelerate a beam of protons or alpha particles toward a target of up to 1.1 million volts.

    Robertson compares the accelerator to a tabletop version of the Van de Graaff used in high school or at a science museum—touch the polished metal dome and your hair stands on end. “Think of the accelerator as generating and storing a large voltage which then repels ionized particles (which we create at its heart) away from it.”

    A cool fact about this accelerator? It’s 60 years old and was repurposed for use with CASPAR.

    4
    The target

    Every reaction the CASPAR team investigates, requires two elements to interact—a projectile and a target. The target material varies according to the interaction they want to study and could include anything from nitrogen and carbon up to magnesium. These elements are usually stored on a heavier backing material for stability, which are kept extremely cold.

    The team bombards the target with either a proton beam or alpha beam generated in the accelerator. The power the beam dissipates in the target is up to 100 watts, “which is the same power as a good light bulb,” Strieder said.

    What’s LIGO got to do with it?

    In late 2017, the Laser-Interferometer Gravitational Wave Observatory (LIGO), recorded a violent collision of two neutron stars—this was on top of two previous observations of black hole mergers that emitted gravitational waves. Observations made after the collision reinforce the need for measurements like those CASPAR hopes to take, explained Strieder.


    VIRGO Gravitational Wave interferometer, near Pisa, Italy

    Caltech/MIT Advanced aLigo Hanford, WA, USA installation


    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project

    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger

    ESA/eLISA the future of gravitational wave research

    1
    Skymap showing how adding Virgo to LIGO helps in reducing the size of the source-likely region in the sky. (Credit: Giuseppe Greco (Virgo Urbino group)
    See also https://sciencesprings.wordpress.com/2017/10/16/from-ucsc-a-uc-santa-cruz-special-report-neutron-stars-gravitational-waves-and-all-the-gold-in-the-universe/

    “The basic point is that from the information we learned from this cataclysmic event, we can calculate the amount of heavy element material produced.” Strieder said. “And then compare it with the heavy elements found in our planetary system.”

    1,100,000
    Volts of energy generated by CASPAR

    7,700,000,000
    Volts of energy generated by LHC

    5
    Collecting data

    In July 2017, CASPAR achieved first beam and began full operations earlier this year. The accelerator runs for several days at a time, collecting data using a germanium detector.

    “We are recording the number of reactions that occur per time period, and in what conditions,” Roberson said. “For example, what energy did the interacting particle have prior to striking the target? The measurement of radiation and particles emitted during the interaction helps us backtrack what happened in the target material and at what rate. This can then be extrapolated to events in a star and scaled up for the star’s massive size.”

    6
    A lofty goal

    The end goal for the field of nuclear astrophysics is to complete the puzzle of how everything is made in the Universe and the locations and processes that govern such production. The experiments studying stellar processes are looking at singular puzzle pieces without knowing what the complete picture is.

    “Only as we understand how these pieces fit can we begin to put the whole puzzle together,” Robertson said. “CASPAR’s unique location deep underground means it is able to more clearly investigate the images previously obscured by cosmic interference.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.
    LUX/Dark matter experiment at SURFLUX/Dark matter experiment at SURF

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    Fermilab LBNE
    LBNE

     
  • richardmitnick 11:07 am on January 3, 2018 Permalink | Reply
    Tags: Compact Accelerator System for Performing Astrophysical Research (CASPAR) collaboration, Facebook visit - watch the included video, , Lab Director looks back at 2017, , LBNL’s Enhanced Geothermal Systems Collaboration (EGS Collab), , , , Ross Shaft rehabilitation project, SURF   

    From SURF: “Lab Director looks back at 2017” A Gigantic and Important Laboratory in The U.S. 

    SURF logo
    Sanford Underground levels

    Sanford Underground Research facility

    1.3.18
    Executive Director Mike Headley

    1

    2017 has been an exciting year at Sanford Lab. We’ve seen tremendous progress on current and future experiments, including dark matter and neutrino research; the ongoing efforts of the Black Hills Underground Campus; Education and Outreach; and the Ross Shaft rehabilitation project, which reached the 4850 Level in October. Underpinning the success of our projects is our continued commitment to safety at Sanford Lab. I am so proud of our staff, researchers and contractors for their focus on safety every day.

    The success of 2017 is directly related to our strong partnerships with many organizations, including the various science collaborations at Sanford Lab; Fermilab, which has oversight responsibilities for our operations activities for the Department of Energy and is the lead DOE laboratory for the Long-Baseline Neutrino Facility and Deep Underground Neutrino Experiment (LBNF/DUNE) project; and Lawrence Berkeley National Laboratory. I also want to thank the State of South Dakota and the SDSTA Board of Directors for their strong support of the world-leading underground science at Sanford Lab.

    2
    LBNF/DUNE Groundbreaking

    On July 21, we celebrated the groundbreaking of the Long-Baseline Neutrino Facility, which officially kicked off a new era in particle physics. We’re proud to be one of the sites hosting this international mega-science project, which will be the largest in the United States, and to be working alongside Fermilab and the DUNE collaboration. LBNF/DUNE has the potential to unlock the mysteries of neutrinos, which could explain more about how the universe works and why matter exists at all. At its peak, construction of LBNF is expected to create almost 2,000 jobs throughout South Dakota and a similar number of jobs in Illinois. The experiment will take approximately 10 years to build and will operate for about 20 years.

    Read more

    3
    International support

    The LBNF/DUNE project garnered support from CERN in 2016, marking the first time the European-based science facility supported a major project outside of Europe. In another first, the United Kingdom signed an umbrella agreement with the United States on September 20 that commits $88 million toward the LBNF/DUNE project along with accelerator advancements at Fermilab. The $88 million in funding makes the UK the largest country investor in the project outside of the United States.

    Read more

    CM/GC selected: On Aug. 9, a new team officially signed on to help prepare for the excavation and construction of LBNF. Fermi Research Alliance LLC, which operates Fermilab, awarded Kiewit/Alberici Joint Venture (KAJV) a contract to begin laying the groundwork for the excavation for LBNF, the facility that will support DUNE. KAJV will help finalize design and excavation plans for LBNF and oversee the excavation and removal of more than 800,000 tons of rock, as well as the outfitting of the DUNE caverns.

    Read more

    4
    Dark Matter

    For several years, we hosted LUX, one of the world’s most sensitive dark matter experiments. Now, we’re gearing up for the next-generation experiment, LUX-ZEPLIN (LZ). The collaboration had a positive directors’ progress review in November and will begin surface assembly activities in early 2018. We are proud to have made major contributions to LZ, including investing in 80 percent of the xenon, which is being purified at SLAC National Accelerator Laboratory. We’ve also updated the Surface Lab cleanroom (pictured above) and built a radon reduction facility. The experiment is expected to begin operations in 2020 and run for five years.

    Read more

    5
    LUX on display

    Visitors to the Sanford Lab Homestake Visitor Center can now view the decommissioned Large Underground Xenon (LUX) experiment on display as an interactive exhibit. On July 18, researchers unveiled the new exhibit, which features a window that allows visitors to view the inside of the detector: copper grids, white Teflon plates and a depiction of the wire grids that were vital to the success of the experiment. Additionally, an interactive kiosk explains the history of the LUX detector and all of the associated parts that are shown in the exhibit, and an actual PMT, one of 120 used in the experiment.

    Read more

    6

    CASPAR Ribbon Cutting

    In a major step forward, the Compact Accelerator System for Performing Astrophysical Research (CASPAR) collaboration achieved first beam and celebrated with a ribbon-cutting ceremony on July 12. CASPAR’s 50-foot long accelerator uses radio-frequency energy to produce a beam of protons or alpha particles from hydrogen or helium gas. The ions enter the accelerating tube, which is kept at high vacuum, then are directed down the beamline using magnets. The particles crash into a target, releasing the same neutrons that fuel the nuclear reactions in stars and produce a large amount of the heavy elements. The collaboration will begin full operations this year.

    Read more

    7
    Majorana reports results

    After years of planning and building its experiment, the Majorana Demonstrator collaboration announced its initial physics results. The team is looking for a rare type of radioactive decay called neutrinoless double-beta decay, which could answer fundamental questions about the universe, including why there is an imbalance of matter and antimatter in the universe and why we even exist. The Majorana Demonstrator collaboration needed to show it could achieve the low backgrounds required to see this rare physics event. And the team surpassed its goals, reducing backgrounds to a level that shows promise for a next-generation experiment that will be much larger.

    Read more

    8
    SIGMA-V

    We’re excited to have a new geology collaboration at Sanford Lab: LBNL’s Enhanced Geothermal Systems Collaboration (EGS Collab), which is studying geothermal systems, a clean-energy technology that could power up to 100 million American homes. The SIGMA-V (Stimulation Investigations for Geothermal Modeling and Analysis) team has been collecting data that will inform better predictive and geomechanic models of the subsurface of the earth by drilling several 60-meter long boreholes on the 4850 Level. The data will be applied toward the Frontier Observatory for Research in Geothermal Energy (FORGE), a flagship DOE geothermal project.

    Read more

    9
    Community outreach

    Interest in what’s happening at Sanford Lab continues to grow. This year more than 2,000 people attended events hosted by Sanford Lab. During Neutrino Day 2017: Discovery, visitors to Lead participated in a practice eclipse balloon launch, hands-on education activities, video conferences from a mile underground and Fermilab, hoistroom tours and “wild science” and geology demonstrations, and learned all about 2017’s Nobel-winning physics experiment, LIGO, which discovered gravitational waves. We also hosted an Eclipse party and several Deep Talks presentations.

    10
    Facebook visit

    Everywhere we go lately, we get asked about Mark Zuckerberg’s July 12 visit to Sanford Lab. The Facebook founder visited South Dakota, where he had lunch with ranchers in Piedmont, discussed net neutrality in Sturgis and stopped by the Sanford Underground Research Facility—all in a single day. In a live-stream video from the 4850 Level, Mr. Zuckerberg talked with Sanford Lab’s Dan Regan and Jaret Heise, and Cabot-Ann Christofferson, a member of the Majorana Collabortion to learn more about the community of Lead and the world-leading science taking place nearly a mile below the earth’s surface. So far, more than 4 million people have viewed the video. We were honored to host him and his team and appreciate his efforts to help Facebook users better understand who we are.

    Watch the live post

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.
    LUX/Dark matter experiment at SURFLUX/Dark matter experiment at SURF

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    Fermilab LBNE
    LBNE

     
  • richardmitnick 12:39 pm on November 14, 2017 Permalink | Reply
    Tags: GERDA (GERmanium Detector Array), In 1937 Italian physicist Ettore Majorana hypothesized the existence of the Majorana fermion a particle that is its own anti-particle, LEGEND - Large Enriched Germanium Experiment for Neutrinoless ββ Decay, , , SURF   

    From SURF: “MAJORANA collaboration releases results” 

    SURF logo
    Sanford Underground levels

    Sanford Underground Research facility

    November 13, 2017
    Constance Walter

    2
    Dr. Vincente Guiseppe talked about Majorana Demonstrator’s new results at the November Deep Talks. Matthew Kapust

    U Washington Majorana Demonstrator Experiment at SURF

    In 1937, Italian physicist Ettore Majorana hypothesized the existence of the Majorana fermion, a particle that is its own anti-particle. His hypothesis informed the basis for decades of neutrino-based experiments, including the Majorana Demonstrator Project, which is looking for a rare form of decay called neutrinoless double-beta decay.

    “If the neutrino is its own antiparticle, it could explain a lot about our universe,” said Vincente Guiseppe, co-spokesperson for the Majorana collaboration and an assistant professor of physics and astronomy at the University of South Carolina. “Such a discovery could help explain why there is more matter than anti-matter in the universe—and why we exist at all.”

    After years of planning, building the experiment and collecting data, the collaboration has something to celebrate. At last week’s Deep Talks, Guiseppe announced the initial physics results. And although neutrinoless double-beta decay was not observed, the Majorana collaboration still has much to celebrate, Guiseppe said.

    “We know that we created an environment that is incredibly clean and quiet. These initial results give us a better understanding of the always-elusive neutrino and how it shaped the universe.”

    The collaboration went to great lengths to create such a quiet environment. For the past six years, the team grew the world’s purest copper to build the demonstrator. Two ultra-pure copper cryostats each hold approximately 22 kg of enriched and natural germanium. And both are housed inside a six-layered shield deep underground at Sanford Lab to escape cosmic radiation and other impurities that could create noisy events.

    To observe this type of rare physics event in just two atoms, you’d have to wait over 2 x 1025 years. That’s a 2 followed by 25 zeroes.

    “You might say that’s improbable—the universe is only 13.8 billion years old,” Guiseppe said in his presentation. “But so is the lottery. To increase your chances, you buy more lottery tickets.” In the case of Majorana, they had to increase the number of germanium atoms.

    Still, they didn’t expect to see neutrinoless double-beta decay. The project is, first and foremost, a demonstrator, a research and development project built on a moderate scale to determine whether a larger version is feasible. And for it to be feasible, “We had to show that backgrounds can be low enough to justify building a next-generation experiment,” Guiseppe said.

    Ettore Majorana disappeared mysteriously in 1938 while traveling by ship from Palermo to Naples, Italy. For decades rumors abounded about his disappearance: he committed suicide, he fell overboard and drowned or took refuge in a convent. An article from the 1950s suggests he resurfaced in Venezuela, South America, under an assumed name.

    The Majorana collaboration, however, has no intention of disappearing.

    “We plan to continue operating the Demonstrator to study its performance, better estimate the backgrounds we observe and test some hardware upgrades,” Guiseppe said. “In a few years, we’ll hit a point of diminishing returns. At that time, we can make better use of the detectors along a path towards a next-generation experiment.”

    That next generation is LEGEND, the Large Enriched Germanium Experiment for Neutrinoless ββ Decay, which will contain up to 1,000 kg of germanium. Last year, the collaboration joined forces with members of GERDA (GERmanium Detector Array), as well as other researchers in this field to begin planning for LEGEND. GERDA, another neutrinoless double-beta decay experiment, used commercial copper and shielded its detector inside a tank of liquid argon, which scintillates, or lights up, when backgrounds enter.

    How can they be sure the next generation will work? They can’t. Still, they are compelled to keep searching.

    “We live in a curious world. And as humans, we want to know what things are, how they came to be and why we exist,” Guiseppe said. “That’s why our collaboration is studying neutrinos. That’s why so many other experiments around the world study neutrinos.”

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.
    LUX/Dark matter experiment at SURFLUX/Dark matter experiment at SURF

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    Fermilab LBNE
    LBNE

     
  • richardmitnick 4:03 pm on May 11, 2017 Permalink | Reply
    Tags: , , , , SURF   

    From FNAL: “New U.S. and CERN agreements open pathways for future projects” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    May 11, 2017
    No writer credit found.

    1
    The CMS detector at the Large Hadron Collider at CERN. Photo: CERN

    The U.S. Department of Energy and CERN establish contributions for next-generation experiments and scientific infrastructure located both at CERN and in the United States

    The United States Department of Energy (DOE) and the European Organization for Nuclear Research (CERN) last week signed three new agreements securing a symbiotic partnership for scientific projects based both in the United States and Europe. These new agreements, which follow from protocols signed by both agencies in 2015, outline the contributions CERN will make to the neutrino program hosted by Fermilab in the United States and the U.S. Department of Energy’s contributions to the High-Luminosity Large Hadron Collider upgrade program at CERN.

    LHC

    CERN/LHC Map

    CERN LHC Tunnel

    CERN LHC particles

    Researchers, engineers and technicians at CERN are currently designing detector technology for the U.S. neutrino research program hosted by Fermilab.

    CERN Proto DUNE Maximillian Brice


    Surf-Dune/LBNF Caverns at Sanford


    FNAL DUNE Argon tank at SURF


    FNAL/DUNE Near Site Layout


    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    Neutrinos are nearly massless, neutral particles that interact so rarely with other matter that trillions of them pass through our bodies each second without leaving a trace. These tiny particles could be key to a deeper understanding of our universe, but their unique properties make them very difficult to study. Using intense particle beams and sophisticated detectors, Fermilab currently operates three neutrino experiments (NOvA, MicroBooNE and MINERvA) and has three more in development, including the Deep Underground Neutrino Experiment (DUNE) and two short-baseline experiments on the Fermilab site, one of which will make use of the Italian ICARUS detector, currently being prepared for transport from CERN.

    FNAL/NOvA experiment map

    FNAL/MicrobooNE

    FNAL/MINERvA

    FNAL/ICARUS


    INFN Gran Sasso ICARUS, since moved to FNAL

    The Long Baseline Neutrino Facility will provide the infrastructure needed to support DUNE both on the Fermilab site in Illinois and at the Sanford Underground Research Facility in South Dakota. Together, LBNF/DUNE represent the first international megascience project to be built at a DOE national laboratory.


    3
    Deep science at the frontier of physics

    The first agreement, signed last week, describes CERN’s provision of the first cryostat to house the massive DUNE detectors in South Dakota, which represent a major investment by CERN to the U.S.-hosted neutrino program. This critical piece of technology ensures that the particle detectors can operate below a temperature of minus 300 degrees Celsius, allowing them to record the traces of neutrinos as they pass through.

    The agreement also formalizes CERN’s support for construction and testing of prototype DUNE detectors. Researchers at CERN are currently working in partnership with Fermilab and other DUNE collaborating institutions to build prototypes for the huge subterranean detectors which will eventually sit a mile underground at the Sanford Underground Research Facility in South Dakota. These detectors will capture and measure neutrinos generated by Fermilab’s neutrino beam located 800 miles away. The prototypes developed at CERN will test and refine new methods for measuring neutrinos, and engineers will later integrate this new technology into the final detector designs for DUNE.

    The agreement also lays out the framework and objectives for CERN’s participation in Fermilab’s Short Baseline Neutrino Program, which is assembling a suite of three detectors to search for a hypothesized new type of neutrino. CERN has been refurbishing the ICARUS detector that originally searched for neutrinos at INFN’s Gran Sasso Laboratory in Italy and will ship it to Fermilab later this spring.

    Gran Sasso LABORATORI NAZIONALI del GRAN SASSO

    More than 1,700 scientists and engineers from DOE national laboratories and U.S. universities work on the Large Hadron Collider (LHC) experiments hosted at CERN. The LHC is the world’s most powerful particle collider, used to discover the Higgs boson in 2012 and now opening new realms of scientific discovery with higher-energy and higher-intensity beams. U.S. scientists, students, engineers and technicians contributed critical accelerator and detectors components for the original construction of the LHC and subsequent upgrades, and U.S. researchers continue to play essential roles in the international community that maintains, operates and analyzes data from the LHC experiments.

    The second agreement concerns the next phase of the LHC program, which includes an upgrade of the accelerator to increase the luminosity, a measurement of particle collisions per second. Scientists and engineers at U.S. national laboratories and universities are partnering with CERN to design powerful focusing magnets that employ state-of-the-art superconducting technology. The final magnets will be constructed by both American and European industries and then installed inside the LHC tunnel. The higher collision rate enabled by these magnets will help generate the huge amount of data scientists need in order to search and discover new particles and study extremely rare processes.

    American experts funded by DOE will also contribute to detector upgrades that will enable the ATLAS and CMS experiments to withstand the deluge of particles emanating from the LHC’s high-luminosity collisions. This work is detailed in the third agreement. These upgrades will make the detectors more robust and provide a high-resolution and three-dimensional picture of what is happening when rare particles metamorphose and decay. Fermilab will be a hub of upgrade activity for both the LHC accelerator and the CMS experiment upgrades, serving as the host DOE laboratory for the High-Luminosity LHC Accelerator Upgrade and the CMS Detector Upgrade projects.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    FNAL Icon
    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.

     
  • richardmitnick 2:48 pm on May 8, 2017 Permalink | Reply
    Tags: , Biology opportunities, , , Geology of the site has been well-characterized, Global footprint, Global footprint depth, International investment and cooperation, , , , Science access, Science with national priority, SURF, Surface footprint, Two shafts for safety and redundancy, Us Department of High Energy Physics   

    From SURF: “Science impact” 

    SURF logo
    Sanford Underground levels

    Sanford Underground Research facility

    1

    The Sanford Underground Research Facility supports world-leading research in particle and nuclear physics and other science disciplines. While still a gold mine, the facility hosted Ray Davis’s solar neutrino experiment, which shared the 2002 Nobel Prize in Physics. His work is a model for other experiments looking to understand the nature of the universe.

    The Facility’s depth, rock stability and history make it ideal for sensitive experiments that need to escape cosmic rays. The impacts on science can be seen worldwide.

    2

    In 2014, the Department of Energy’s High Energy Physics committee prioritized physics experiments, making neutrino and dark matter projects high-priority. Sanford Lab houses two experiments named in the P-5 report:

    Lux Zeplin project at SURF

    (LZ) and LBNF/DUNE.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA


    FNAL DUNE Argon tank at SURF


    Surf-Dune/LBNF Caverns at Sanford

    FNAL LBNF DUNE Organization Chart


    FNAL/DUNE Near Site Layout

    Science with national priority

    In 2014, the Department of Energy’s High Energy Physics committee prioritized physics experiments, making neutrino and dark matter projects high-priority. Sanford Lab houses two experiments named in the P-5 report: LUX-ZEPLIN (LZ) and LBNF/DUNE.

    LZ, a second-generation dark matter experiment, will continue the search for weakly interacting massive particles (WIMPs), while LBNF/DUNE, the largest mega-science project ever on U.S. soil, will study the properties of neutrinos.

    3

    International investment and cooperation

    4

    Global footprint

    Competition for underground lab space is fierce. Once the Long Baseline Neutrino Facility (LBNF) construction is complete, Sanford Lab will host approximately 25 percent of the total volume of underground laboratory space in the world.

    The sheer amount of space (7700 acres underground) and existing infrastructure make the site highly attractive for future experiments in a variety of disciplines.

    5

    Global footprint depth

    Sanford Lab is the deepest underground lab in the U.S. at 1,490 meters. The average rock overburden is approximately 4300 meters water equivalent for existing laboratories on the 4850 Level. Space in operating laboratories has a strong track record of meeting experiment needs.

    Surface footprint

    The local footprint of the facility includes 186 acres on the surface. Facilities at both the Yates and Ross surface campuses office researchers administrative support, office space, communications and education and public outreach. The Waste Water Treatment Plant handles and processes waste materials and a warehouse for shipping and receiving.

    Underground footprint

    Of the 370 total miles of underground space, Sanford Lab maintains approximately 12 for science at various levels, including the 300, 800, 1700, 2000, 4100, and 4850 levels. The Davis Campus on the 4850 Level is a world-class laboratory space that houses experiment for neutrinoless double-beta decay and dark matter.

    Sanford Lab hosts a variety of research projects in many discipline. Researchers from around the globe use the facility to learn more about our universe, life underground and the unique geology of the region. The site also allows scientists to share and foster growth within the science community.

    The site also encourages cooperation between many countries and institutions. For the first time in its history, CERN is investing in an experiment outside of the European Union with its $90 million commitment to LBNF/DUNE.

    8

    Two shafts for safety and redundancy

    Construction on the Ross Shaft began in 1932, with the first skip of ore hoisted in 1934. The steel shaft reaches 5,000 feet and was in operation until 2002 when the Homestake Mine closed. While the Yates Shaft is used for primary access, both the Ross and Yates shafts are conduits for power, optical fiber and ventilation.

    Refurbishment of the Ross Shaft infrastructure is underway and includes the replacement of the steel and ground support. Modernizing the Ross Shaft is critical to carving out the space needed to house LNBF/DUNE. Nearly 850,000 tons of rock will be hoisted through the Ross during excavation for the experiment.

    Science access

    The Yates Shaft, which was raised in 1939 and reaches the 4850 Level, is the primary access point for scientists and others who work underground at Sanford Lab. The hoists convey equipment and materials used to build and maintain experiments, enhance infrastructure and excavate caverns.

    Researchers often have similar requirements for space, power, data connections and other utilities and share common infrastructure throughout the facility.

    9

    Geology of the site has been well-characterized

    Geotechnical properties of some rock formations at Sanford Lab are ideal for large excavations for laboratory space. Before excavating, engineers study the character of the rock using new and existing core drilled from throughout the former Homestake mine.

    7 main rock formations and rhyolite intrusives
    27,870 drill holes throughout the facility
    39,760 boxes of core from 2,688 drill holes
    Sanford Lab maintains a database with more than 58,000 entries representing 1,740 drill holes

    9

    Biology opportunities

    The isolation from surface microorganisms results in different environmental conditions. Temperature, humidity, variety of niches, different rock formations, access to water and seepage from various sources create unique opportunities to study extreme forms of life.

    Research teams from the NASA Astrobiology Institute,the Desert Research Institute, the South Dakota School of Mines and Technology and Black Hills State University and other institutions from around the world, conduct research on several levels of the facility hoping to understand how these life forms survive in such extreme conditions.

    10

    Engineering

    The Sanford Underground Research Facility offers a variety of environments in which engineers can test real-world applications and new technologies. And the rich history of the Homestake Mine, which includes a vast archive of core samples, allows engineers to better understand how to excavate caverns for new experiments.

    LZ, a second-generation dark matter experiment, will continue the search for weakly interacting massive particles (WIMPs), while LBNF/DUNE, the largest mega-science project ever on U.S. soil, will study the properties of neutrinos.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.
    LUX/Dark matter experiment at SURFLUX/Dark matter experiment at SURF

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    Fermilab LBNE
    LBNE

     
  • richardmitnick 10:38 am on September 22, 2016 Permalink | Reply
    Tags: , Clint Wiseman SCGSR Award winner, , , SURF   

    From SURF: “SCGSR Award opens door to new research” 

    SURF logo
    Sanford Underground levels

    Sanford Underground Research facility

    1
    Clint Wiseman. Credit: Constance Walter

    In an article he wrote for the University of South Carolina physics newsletter, Clint Wiseman said, “For the last three years I’ve been living under a rock with neutrinos on my mind.” The University of South Carolina (USC) graduate student was referring to his work on the Majorana Demonstrator Project, which is located on the 4850 Level of Sanford Lab. But all of that is about to change.

    Majorana Demonstrator Experiment
    Majorana Demonstrator Experiment

    Wiseman recently learned he had received a Department of Energy Office of Science Graduate Student Research (SCGSR) award. In January, he heads to Los Alamos National Laboratory in New Mexico to work on his Ph.D. project for six months.

    “My work with Majorana gave me confidence that I could get the award,” he said. “Still, I was speechless. I was flabbergasted. I was elated.”

    Wiseman has been involved in almost every aspect of the Majorana experiment: construction, commissioning, operation, and data analysis. “One of my colleagues told me that he’s done everything on Majorana incorrectly and correctly. That applies to me also,” Wiseman said. Still, he’s learned a great deal.

    “Clint is highly motivated and talented,” said Vince Guiseppe, an assistant professor of physics at USC and Wiseman’s advisor. “With this SCGSR award, he has the added opportunity to expand upon his dissertation work and gain experience at a National Laboratory.”

    To be considered for the SCGSR, graduate students must submit a proposal that is in line with their dissertation. Wiseman’s thesis focuses on cosmic ray and solar axion studies with Majorana. The project he proposed to DOE focuses on ways to improve shielding of germanium detectors.

    In the search for a rare form of radioactive decay, called neutrinoless double-beta decay, scientists use special shielding to eliminate background noise from cosmic rays. The Majorana experiment operates within a vacuum: the detectors are placed in a copper cryostat and surrounded by a six-layered shield. Conversely, the German experiment GERDA has an active shield: the detectors are submerged in liquid argon.

    “Both have advantages and disadvantages,” Wiseman said. So, he is proposing something that has never been done: operating a germanium detector in a gas environment.

    Could that remove problems with current shielding environments? Wiseman doesn’t know, but through his work at Los Alamos, he hopes to find out.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.
    LUX/Dark matter experiment at SURFLUX/Dark matter experiment at SURF

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    Fermilab LBNE
    LBNE

     
  • richardmitnick 3:47 pm on August 30, 2016 Permalink | Reply
    Tags: , , , SURF   

    From SURF: “kISMET taps into vast heat resources” 

    SURF logo
    Sanford Underground levels

    Sanford Underground Research facility

    August 30, 2016
    Constance Walter

    1
    Each kISMET drill hole is photographed and logged by lowering an optical televiewer. Credit: Matthew Kapust

    On the 4850 Level of Sanford Lab, scientists with kISMET (permeability (k) and Induced Seismicity Management for Energy Technologies) drilled and cored five 50-meter deep boreholes. Led by Curtis Oldenburg and Patrick Dobson of Lawrence Berkeley National Lab, the team is trying to better understand the relationship between the rock fabric and fracturing as a way to tap into and use the earth’s heat as an energy resource.

    “We hope to develop permeability enhancement techniques that can improve our ability to extract heat from geothermal reservoirs,” Oldenburg said. “The best way to engineer permeability is to fracture the rock.” These engineered geothermal systems are call Enhanced Geothermal Systems, or EGS.

    At about 4,000 miles below the surface, the Earth’s temperature is nearly that of the sun’s surface—9,932 degrees Fahrenheit. Closer to the surface, temperatures are dramatically cooler, but remain warm enough to be a potential source of renewable energy. According to the Department of Energy (DOE), EGS technology has the potential to access these vast resources of heat as a way to meet the energy needs of the United States.

    After drilling the boreholes, the kISMET team lowered an optical televiewer into each hole. A camera takes continuous photos of the borehole walls, which helps the scientists determine intervals to target for fracturing. Other tools are “parked” inside the boreholes to record and monitor several things.

    “Primarily, we want to understand the effects of the stress state, rock fabric and existing fractures in the rock,” Oldenburg said. The stress state controls the orientation and development of fractures, both natural and man made, while rock fabric refers to the non-isotropic character of the rock. The rock at Sanford Lab tends to have a fairly strong fabric, Oldenburg added, making it cleave, or split, along one plane.

    To create fractures within the borehole, scientists injected water at 4,000 psi. The key to extracting geothermal energy, Oldenburg said, is to create just the right amount of permeability to capture the heat—too much and the water won’t heat up during the flow from injection to production wells.

    “Our kISMET project will help inform how to develop EGS sites,” Oldenburg said.

    But the team is also looking to better understand seismicity within deep crystalline rock. “Induced seismicity, or fracturing, has become a serious issue in some parts of the country,” Oldenburg said. He credits that to the disposal water that is produced.

    “Through our highly controlled water injection experiments, we will be able to improve our ability to detect and locate microseismicity in deep crystalline rock.”

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.
    LUX/Dark matter experiment at SURFLUX/Dark matter experiment at SURF

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    Fermilab LBNE
    LBNE

     
  • richardmitnick 7:08 pm on August 15, 2016 Permalink | Reply
    Tags: , Programmable memory cells, SURF   

    From SURF: “Testing the sensitivity of memory cells” 

    SURF logo
    Sanford Underground levels

    Sanford Underground Research facility

    August 15, 2016
    Constance Walter

    Particle physics researchers go deep underground to escape the constant bombardment of cosmic radiation that creates background “noise” in their sensitive experiments. And what’s good for particle physics, it turns out, is also good for programmable memory cells.

    1

    Xilinx is one of the world’s leading providers of semi- conductor devices called eld programmable gate arrays (FPGA). Based around a matrix of con gurable logic blocks (CLBs) connected through programmable interconnects, FPGAs are designed and built using tens of millions of SRAM (static random access memory) cells, which can be sensitive to single event upsets (SEU). So, for the past year, Xilinx has been running tests on its FPGAs on the 4850 Level of Sanford Lab.

    SEUs occur when the logic state of a SRAM memory cell is changed by ionized radiation. “When a neutron, proton, or alpha particle hits the silicon in the semiconductor, it leaves a trail of charged particles, which in some cases can cause a transistor of a SRAM cell to change its logic state,” said John Latimer, senior director with Xilinx’s Customer Quality Engineering division. “When that happens, it can potentially a ect the design programmed into the FPGA, in rare cases causing it to function improperly.”

    FPGAs are used in such applications as 3-D video record- ing and movie projection, driver assistance, datacenters, cellular communication and networking, smart electricity grid management, avionics instrumentation, satellite instruments, and space vehicles like the Mars Rover. It’s important that they function correctly.

    What Xilinx is trying to understand is just what causes the single event upsets. “We need to separate out the cosmic radiation e ects from the e ects of the alpha particle-producing package material of the FPGA,” Latimer said. “Placing the arrays deep underground allows us to block the cosmic radiation and only measure SEU events that are caused by the package material itself.”

    Latimer said that so far, “the results have been excellent with the alpha upset rates right in line with our predictions. We are very happy to be able use the Sanford Lab facilities and look forward to working with the ne sta at Sanford for many years to come.”

    The company plans to install and begin testing additional arrays over the next couple of months.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.
    LUX/Dark matter experiment at SURFLUX/Dark matter experiment at SURF

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    Fermilab LBNE
    LBNE

     
  • richardmitnick 6:36 pm on June 20, 2016 Permalink | Reply
    Tags: , , , SURF   

    From Rapid City Journal via SURF: “Xenon central to next-gen dark matter experiment” 

    SURF logo
    Sanford Underground levels

    Sanford Underground Research facility

    1
    Rapid City Journal

    6.20.16
    Tom Griffith

    1
    LUX researchers spell out the experiment’s name, like cheerleaders, inside a 72,000 gallon water tank. The detector is the cylindrical titanium tank behind them. The tank is now filled with water, and the detector is operating. Credit: Matt Kapust

    If you happen to have some extra xenon lying around – say about 1.8 million liters – officials at the Sanford Underground Research Facility would like to talk to you.

    That’s the amount of the colorless, odorless element that makes up only 0.0000087 percent of the Earth’s atmosphere that scientists say will be needed for the deep underground laboratory’s $50 million to $60 million LUX-ZEPLIN experiment, so the Sanford Lab is going to start stockpiling it soon.

    At its annual meeting Thursday, the South Dakota Science and Technology Authority unanimously approved a loan from the University of South Dakota Foundation and authorization for its executive director to procure up to 500,000 liters of xenon.

    “The SDSTA truly appreciates the USD Foundation’s investment in the LUX-ZEPLIN experiment,” said Mike Headley, the Science Authority’s executive director. “Their investment along with similar investments by the South Dakota State University Foundation and the South Dakota Community Foundation, along with tremendous support from Gov. Daugaard, will help keep the U.S. in a leadership role in the global search for dark matter.”

    Two years ago, xenon was priced at nearly $25 per liter, meaning the necessary gaseous element of atomic number 54, obtained through the distillation of liquid air, would have set the Science Authority back a cool $45 million. Fortunately, the price has dropped significantly since then.

    “We will pay $5.50 per liter and this is not a discount; it’s the current market price,” said Sanford Lab spokeswoman Constance Walter. “Basically, the increased use of LED lights in vehicles, etc., has decreased the demand for xenon lighting. So, the price has dropped dramatically from a couple of years ago when they were in excess of $20 per liter.”

    Headley said late Thursday that the Science Authority had secured the first 500,000 liters at a cost of $6.25 per liter and the remaining 1.3 million liters would cost $5.50 per liter. Consequently, even with the price reduction, the xenon will likely cost the Science Authority nearly $10.3 million.

    Initially, the Science Authority will purchase 1.5 million liters, or about 80 percent of the 1.8 million liters the experiment will require, Walters said. The xenon will be delivered over the next two-plus years and when it is purchased, it will first go to the U.S. Department of Energy’s SLAC National Accelerator Laboratory in Menlo Park, Calif., where it will be purified. Then it will be shipped to the Sanford Lab to be placed in the detector sometime in 2018, she explained.

    Discovered in 1898 by Sir William Ramsay, a Scottish chemist, and Morris M. Travers, an English chemist, shortly after their discovery of the elements krypton and neon, xenon was used in the Sanford Lab’s original Large Underground Xenon experiment known as LUX.

    In October 2013, more than 100 science enthusiasts and government officials gathered at the Sanford Lab to receive initial findings of the LUX, while hundreds more from around the world joined via webcam. In that complex three-month trial involving particle physics, scientists sought to detect mysterious dark matter particles previously observed only through their gravitational effects on galaxies.

    Nearly a mile deep in the bedrock of the Black Hills and shielded from vast amounts of cosmic radiation that constantly bombard the earth’s atmosphere, the LUX was comprised of a phone booth-sized titanium tank filled with nearly a third of a metric-ton (370 kilograms) of liquid xenon cooled to minus 150 degrees, scientists explained. The detector was further buffered from background radiation by its immersion in a 72,000-gallon tank of ultra-pure water.

    Now, scientists around the globe are awaiting the start-up of the much larger 60-ton particle detector known as the LUX-ZEPLIN or LZ, which will be approximately 30 times larger (10 metric tons or 10,000 kilograms of xenon) and 100 times more sensitive than the LUX.

    And, it’s going to take quite a bit of xenon to make that happen.

    __________________________________________________________________________________________

    Xenon Q, xenon A

    LEAD | With the help of a few friends, the South Dakota Science and Technology Authority will spend more than $10 million on xenon this year, a hefty amount for a gaseous element that a non-scientist knows so little about.

    So, we asked Sanford Underground Research Facility scientist Markus Horn, who worked on the LUX and is now collaborating on the LUX LZ, the next-generation dark matter experiment, what makes xenon critical to its success.

    Q: How is xenon extracted from the earth’s atmosphere?

    A: Xenon is a trace gas in the atmosphere and is extracted as a by-product at the separation of air into oxygen and nitrogen.

    Q: Why is xenon worth so much money?

    A: It’s rare in the Earth’s atmosphere; only about 1 part in 20 million.

    Q: Why is xenon critical to the LUX LZ? Succinctly, what does it do?

    A: Xenon has unique properties for dark matter research. To name a few:

    • It emits light at 175nm (UV light, sort of easy detectable with our PMTs);

    • It is heavy, 135 times mass of proton, which is around the theoretically most favorable mass of the WIMP particle (billiard-ball-nuclear recoil is largest, hence easier to detect);

    • It liquifies easily at moderate temperature of -100 Celsius;

    • It is radio-pure;, does not have any natural radioactive isotopes;

    • It has a high scintillation yield (emits a lot of light, so to say), very low energy threshold can be achieved (as we do in LUX);

    • It is self-shielding (easily said, because it’s heavy, it shields itself, so the inner part of the detector is even quieter);

    • It is a liquid noble gas detectors are easy to scale, LUX to LZ, etc.

    Q: Why does it have to be so cold (-150 degrees)?

    A: As with any material, it can be in different states (gas, liquid, solid). Depending on the element, this happens at different temperatures and pressures. Xenon is a gas at room temperature and atmospheric pressure, you need to compress it or cool it to approx -100C to force it into a liquid. I guess that’s simple chemistry.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.
    LUX/Dark matter experiment at SURFLUX/Dark matter experiment at SURF

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    Fermilab LBNE
    LBNE

     
  • richardmitnick 4:03 pm on June 14, 2016 Permalink | Reply
    Tags: , Neutrinoless double-beta (0νββ) decay, , SURF   

    From SURF: “Spring-cleaning for Majorana” 

    SURF logo
    Sanford Underground levels

    Sanford Underground Research facility

    Nearly a mile underground at the Ross Campus, Majorana is doing a bit of spring-cleaning. The team is shutting down the copper production process and now it’s time to reclaim the copper left behind in the acid baths. The process by which the team does this is called electro-winning.

    1
    Majorana copper taking shape

    “It’s a common industrial practice that removes metals from solution,” said Cabot-Ann Christofferson,” liaison for the Majorana Demonstrator project to Sanford Lab.

    1
    A 3D model of a cryostat of detectors for the Majorana Demonstrator experiment. Nepahwin 15 February 2012

    2
    Design for the Majorana Demonstrator neutrinoless double beta decay experiment. James Loach 10 April 2012

    Majorana began growing, or electro¬forming, copper in 2011. During the process, stainless steel mandrels were lowered into sulfuric acid baths and surrounded by copper nuggets that had been triple-etched in nitric acid. Dilute sulfuric acid breaks down the copper, freeing uranium, thorium and radioisotopes like Cobalt-60, which stayed in the solution.
    An electrical current ran through the mandrel, causing the copper to accumulate on the surface of the man¬drel at a rate of about 33 millionths of a meter per day. Most mandrels stayed in the solution for over a year, depending on the thickness required. Since 2011, 6,600 pounds of copper were electroformed on 33 mandrels, the last of which was removed March 31, 2015.
    The copper, the cleanest in the world, was used to build the Majorana Demonstrator, which is on the hunt for neutrino-less double-beta decay, a rare form of radioactive decay that could help scientists answer funda¬mental questions about the origins of the universe.

    But with the experiment built, there is no need to grow more cop¬per. Colter Dunagan, an undergradu¬ate student at the South Dakota School of Mines and Technology, is a member of the clean-up crew. “Basically, we have to decommission everything now and one part of that is to remove all of the copper nuggets and dissolved copper from the baths.” The nuggets can simply be removed; however, the dissolved copper requires a bit more work.

    That’s where electro-winning comes in. It works this way: an anode, or thin copper plate, is place inside the sulfuric acid solution. A current runs through the anode, attracting the remaining copper ions, which then begin to grow onto the anode.

    “This allows us to reclaim the copper for recycling,” said Jared Thompson, a research technician with SDSMT who has been working with the Majorana project for several years. But there’s more to it than just recycling the copper. Copper sulfate is toxic to plant life. According to the Environmental Protection Agency, the allotted amount for heavy metals in liquid is 2 parts per million. Majorana can get the liquid to nearly zero ppm by using the electro-winning method. “By removing the metal from the baths, we eliminate a hazard to the environ¬ment as well,” Thompson said.
    Christofferson added, “It’s the responsible thing to do.”

    Once the copper has plated onto the anodes, it is put into recycling bins and sold to Pacific Steel of Rapid City.

    Received via email .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.
    LUX/Dark matter experiment at SURFLUX/Dark matter experiment at SURF

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    Fermilab LBNE
    LBNE

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: