Tagged: SURF – Sanford Underground Research Facility Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:17 am on September 19, 2017 Permalink | Reply
    Tags: , LEGEND 200, Majorana demonstrator, , SURF - Sanford Underground Research Facility   

    From SURF: “Majorana Demonstrator: Preparing to scale up” 

    SURF logo
    Sanford Underground levels

    Sanford Underground Research facility

    September 11, 2017
    Constance Walter

    1
    John Wilkerson (left) and Cabot-Ann Christofferson work on the systems for the Majorana experiment, which sits inside a six-layered shield to block backgrounds. Photo by Matt Kapust

    For years, the Majorana Demonstrator laboratories and machine shop bustled with activity. Dozens of collaboration members worked on various elements of the experiment— from electroforming copper to building a shield to machining every component for the detectors and cryostats. Today, nestled deep within its six-layered shield, Majorana quietly collects data with just a handful of team members to ensure things are working.

    “We’ve made the transition from managing construction to overseeing an operation,” said Vince Guiseppe, assistant professor of physics at the University of South Carolina. “Since the winter, we’ve been running smoothly.”

    The Majorana Demonstrator uses natural and enriched germanium crystals to look for neutrinoless double-beta decay. Such a discovery could determine whether the neutrino is its own antiparticle.

    U Washington Majorana Demonstrator Experiment at SURF

    But the project is, first and foremost, a demonstrator, a research and development project built on a small scale to determine whether a 1-ton version is feasible, said Steve Elliott of Los Alamos National Laboratory. “For it to be feasible, we have to show that backgrounds can be low enough to justify building such a next-generation experiment.”

    Which Majorana has done, Guiseppe said. “We’ve only been running for about a year and we appear to be meeting those goals. Our backgrounds are excellent.”

    Guiseppe recently became a co-spokesperson for the project, along with Jason Detwiler of the University of Washington. The two replace Elliott, who will become co-spokesperson for LEGEND, the recently formed collaboration that will develop a much larger next-generation neutrinoless double-beta decay experiment

    The Large Enriched Germanium Experiment for Neutrinoless ββ Decay, or LEGEND, collaboration was formed a year ago and includes members of the Majorana Demonstrator collaboration, the GERDA (GERmanium Detector Array) collaboration, and other researchers in this field.

    3
    The GERDA experiment has been proposed in 2004 as a new 76Ge double-beta decay experiment at LNGS. The GERDA installation is a facility with germanium detectors made out of isotopically enriched material. The detectors are operated inside a liquid argon shield. The experiment is located in Hall A of LNGS.

    GERDA and Majorana are searching for the same thing, but they’ve used different technologies to reach their goals. For example, where Majorana used electroformed copper and built a complicated six-layered shield to keep backgrounds out, GERDA used commercial copper and shielded its detector inside a tank of liquid argon, which scintillates, or lights up, when backgrounds enter.

    And both are seeing what they hoped to see: low backgrounds. “They’ve done a lot of nice things, we’ve done a lot of nice things and there are some things we both did very well.” Guiseppe said. “And we’ve both demonstrated we can get the backgrounds we want. LEGEND will take the best features of each experiment.”

    The LEGEND collaboration wants to scale up to 1,000 kg of enriched germanium. By comparison, Majorana and GERDA each use approximately 30 kg in their experiments. But the plan is to start smaller, with a 200-kg experiment.

    “LEGEND 200 will be the first incarnation and will be the roadmap to get to the ton-scale experiment,” Guiseppe said.

    “The good news is we have a great collaboration with great people. We have a common vision and design and funding plans are moving forward. This is not something one of us can do alone. It’s important to have international partners.”

    Although he’s looking to the future, Guiseppe remains focused on the here and now. “Both GERDA and Majorana have to complete their life cycles,” he said. “And there’s still a lot we can learn from running our current experiments.”

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.
    LUX/Dark matter experiment at SURFLUX/Dark matter experiment at SURF

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    Fermilab LBNE
    LBNE

    Advertisements
     
  • richardmitnick 1:51 pm on September 13, 2017 Permalink | Reply
    Tags: , , , SURF - Sanford Underground Research Facility   

    From FNAL: “Contract awarded for LBNF preconstruction services” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    September 13, 2017
    Leah Poffenberger

    On July 21, a group of dignitaries broke ground on the Long-Baseline Neutrino Facility (LBNF) 4,850 feet underground in a former goldmine, making a small dent in the 875,000 tons of rock that will ultimately be excavated for Fermilab’s flagship experiment.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA


    FNAL DUNE Argon tank at SURF


    Surf-Dune/LBNF Caverns at Sanford



    SURF building in Lead SD USA

    But a groundbreaking ceremony doesn’t always mean you can get straight to digging.

    Removing 875,000 tons of rock from a mile underground and assembling a massive particle detector in its place is a big job. Many months of careful design and preparatory construction work have to happen before the main excavation can even start at the future site of the Deep Underground Neutrino Experiment (DUNE) at Sanford Underground Research Facility in Lead, South Dakota.

    On Aug. 9, a new team officially signed on to help prepare for the excavation and construction of DUNE. Fermi Research Alliance LLC, which operates Fermilab, awarded Kiewit/Alberici Joint Venture (KAJV) a contract to begin laying the groundwork for the excavation for LBNF, the facility that will support DUNE.

    “Our team is excited and honored to serve as the construction manager/general contractor on a project like the Long-Baseline Neutrino Facility,” said KAJV Project Manager Scott Lundgren. “We look forward to working with Fermi Research Alliance to support this groundbreaking physics experiment.”

    Under the contract, over the next 12 months, KAJV will assist in the final design and excavation planning for LBNF/DUNE.

    “We’re all very excited about this partnership,” said Troy Lark, LBNF procurement manager. “It’s great to be working with two premier international contracting companies on this project.”

    The four-story-high, 70,000-ton DUNE detector at LBNF will catch neutrinos — subatomic particles that rarely interact with matter — sent through the Earth’s mantle from Fermilab, 800 miles away. This international megascience experiment will work to unravel some of the mysteries surrounding neutrinos, possibly leading to a better understanding of how the universe began.

    Building such an ambitious experiment has some unique challenges.

    “It’s kind of like building a ship in a bottle,” said Chris Mossey, Fermilab’s deputy director for LBNF. “We’re using a narrow shaft to move all the excavated rock up, and then all the parts and pieces of very large cryostats and detectors down to the 4850 level, about a mile underground.”

    KAJV will have two main tasks. The first is to help finalize design and excavation plans for LBNF. The second is to use the finalized designs to create what are known as bid packages: specific projects that KAJV or other contractors will work on.

    These bid packages will include jobs such as building site infrastructure and ensuring the structural integrity of the building above the shaft through which everything will enter or exit the mine.

    “Before you excavate 875,000 tons of rock, there’s a lot of things you’ve got to do. You have to have a system to move the rock safely from where it’s excavated to the surface, then horizontally about 3,700 feet to the large open pit where it will be deposited,” Mossey said. “All that has to be built.”

    Construction on pre-excavation projects — such as the conveyor system to move the rock — is expected to begin in 2018. The main excavation for LBNF/DUNE is planned to start in 2019.

    “We’re really happy to get this contract awarded,” Mossey said. “It was a lot of work to get to this point — a lot by the project, the lab and the DOE team. Everybody worked to be able to get this big, complicated contract in place.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    FNAL Icon
    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.

     
  • richardmitnick 7:58 am on August 10, 2017 Permalink | Reply
    Tags: , , , , , SURF - Sanford Underground Research Facility,   

    From ScienceNews: “Neutrino experiment may hint at why matter rules the universe” 

    ScienceNews bloc

    ScienceNews

    1
    NEUTRINO CLUES The T2K experiment found clues that neutrinos may behave differently than their antimatter partners. In a possible sighting of an electron neutrino at the Super-Kamiokande detector in Hida, Japan (shown), colored spots represent sensors that observed light from the interacting neutrino. Kamioka Observatory/ICRR/The University of Tokyo

    A new study hints that neutrinos might behave differently than their antimatter counterparts. The result amplifies scientists’ suspicions that the lightweight elementary particles could help explain why the universe has much more matter than antimatter.

    In the Big Bang, 13.8 billion years ago, matter and antimatter were created in equal amounts. To tip that balance to the universe’s current, matter-dominated state, matter and antimatter must behave differently, a concept known as CP, or “charge parity,” violation.

    In neutrinos, which come in three types — electron, muon and tau — CP violation can be measured by observing how neutrinos oscillate, or change from one type to another. Researchers with the T2K experiment found that muon neutrinos morphed into electron neutrinos more often than expected, while muon antineutrinos became electron antineutrinos less often. That suggests that the neutrinos were violating CP, the researchers concluded August 4 at a colloquium at the High Energy Accelerator Research Organization, KEK, in Tsukuba, Japan.

    T2K scientists had previously presented a weaker hint [Physical Review Letters]of CP violation. The new result is based on about twice as much data, but the evidence is still not definitive. In physicist parlance, it is a “two sigma” measurement, an indicator of how statistically strong the evidence is. Physicists usually require five sigma to claim a discovery.

    Even three sigma is still far away — T2K could reach that milestone by 2026. A future experiment, DUNE, now under construction at the Sanford Underground Research Laboratory in Lead, S.D., may reach five sigma.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA


    FNAL DUNE Argon tank at SURF


    Surf-Dune/LBNF Caverns at Sanford



    SURF building in Lead SD USA

    It is worth being patient, says physicist Chang Kee Jung of Stony Brook University in New York, who is a member of the T2K collaboration. “We are dealing with really profound problems.”

    See the full article here .

    Science News is edited for an educated readership of professionals, scientists and other science enthusiasts. Written by a staff of experienced science journalists, it treats science as news, reporting accurately and placing findings in perspective. Science News and its writers have won many awards for their work; here’s a list of many of them.

    Published since 1922, the biweekly print publication reaches about 90,000 dedicated subscribers and is available via the Science News app on Android, Apple and Kindle Fire devices. Updated continuously online, the Science News website attracted over 12 million unique online viewers in 2016.

    Science News is published by the Society for Science & the Public, a nonprofit 501(c) (3) organization dedicated to the public engagement in scientific research and education.

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 4:00 pm on August 1, 2017 Permalink | Reply
    Tags: , , SURF - Sanford Underground Research Facility, Surface lab cleanroom paves way for LZ assembly   

    From SURF: “Surface lab cleanroom paves way for LZ assembly” 

    SURF logo
    Sanford Underground levels

    Sanford Underground Research facility

    July 31, 2017
    Christel Peters

    1
    The surface laboratory cleanroom. Matt Kapust.

    After years of planning, building and installing systems, Sanford Lab’s cleanroom is, well, really clean, paving the way for the LUX-ZEPLIN collaboration to begin assembling the second-generation dark matter experiment.

    Lux Zeplin project at SURF

    “Now that construction is complete and we have done a first round of extensive cleaning of all surfaces, we are taking careful measurements of the degree of cleanliness and radon concentration in the air,” said Simon Fiorucci, a member of the LZ collaboration. “This will take several more weeks until we are convinced of the room’s performance. We expect to receive the first LZ detector parts to start assembly by the end of the year.”

    At the same time the cleanroom was under construction, Sanford Lab was building a new radon-reduction facility. That building was completed and equipped earlier this summer. Radon, a naturally occurring radioactive gas, significantly increases background noise in sensitive physics projects. The radon reduction system pressurizes, dehumidifies and cools air to minus 60 degrees Celsius before sending it through two columns, each filled with 1600 kg of activated charcoal, which remove the radon. The pressure is released, warmed and humidified before flowing into the cleanroom.

    “That’s the magic part of this cleanroom,” said John Keefner, underground operations engineer and project manager for the cleanroom construction.. “The room will be positively pressured so radon can’t get in.”

    Creating a clean space for scientists requires more than dust rags and vacuum cleaners. Robyn Varland, custodian for the Davis Campus, and Melissa Barker, a contract custodian from The CleanerZ, worked diligently to remove the visible—and unseen—particles that lingered on the surfaces of the room. The other systems that maintain a clean environment are also in place and functioning; the radon-reduction, water purification and air filtration systems.

    “It took about 80 hours to clean and we worked at it hard,” Varland said. “It just takes time, you can’t ‘go clean’ fast.”

    Varland uses the same system that is in place for the Majorana Demonstrator cleanroom.

    U Washington Majorana Demonstrator Experiment at SURF

    In the Surface Lab cleanroom, Varland and Barker spent seven hours just on the grating. “That was the hardest part,” Varland said. “Each bar was vacuumed and washed thoroughly with a wet rag and scrubbing tool to lift the particulates. Spray, wipe with a rag, rinse it out three times.”

    And it’s all done moving only half-an-arm-length at a time—all while suited up in cleanroom garb to prevent any contamination.

    “Once the initial cleaning happens, you then become the source of dust,” said David Taylor, experiment review engineer for LZ. “That requires special PPE and procedures to keep it clean. Now, the particle counts are really low. That means the dust is gone and it’s ready to use.”

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.
    LUX/Dark matter experiment at SURFLUX/Dark matter experiment at SURF

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    Fermilab LBNE
    LBNE

     
  • richardmitnick 7:01 am on July 22, 2017 Permalink | Reply
    Tags: , , Groundbreaking for DUNE at SURF, SURF - Sanford Underground Research Facility   

    From FNAL: “Construction begins on international mega-science experiment to understand neutrinos” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    July 21, 2017

    Media contact
    Andre Salles
    Fermilab Office of Communication
    asalles@fnal.gov
    630-840-6733

    Constance Walter
    Sanford Underground Research Facility,
    cwalter@sanfordlab.org
    605-722-4025

    1
    Ground is broken! Attending the underground ceremony today were, from left: Fermilab Director Nigel Lockyer; Executive Director of Programmes Grahame Blair, Science and Technology Facilities Council; Professor Sergio Bertolucci, National Institute for Nuclear Physics in Italy; Director for International Relations Charlotte Warakaulle, CERN; Rep. Randy Hultgren, Illinois; Rep. Kristi Noem, South Dakota; Sen. Mike Rounds, South Dakota; Sen. John Thune, South Dakota; Associate Director of Science for High-Energy Research Jim Siegrist, U.S. Department of Energy; Deputy Assistant to the President and Deputy U.S. Chief Technology Officer Michael Kratsios; South Dakota Governor Dennis Daugaard; Project Manager Scott Lundgren, Kiewit/Alberici; Executive Director Mike Headley, Sanford Underground Research Facility; and Chair of the Board Casey Peterson, South Dakota Science and Technology Authority. Photo: Reidar Hahn, Fermilab.

    Groundbreaking held today in South Dakota marks the start of excavation for the Long-Baseline Neutrino Facility, future home to the international Deep Underground Neutrino Experiment.

    With the turning of a shovelful of earth a mile underground, a new era in international particle physics research officially began today.

    In a unique groundbreaking ceremony held this afternoon at the Sanford Underground Research Facility in Lead, South Dakota, a group of dignitaries, scientists and engineers from around the world marked the start of construction of a massive international experiment that could change our understanding of the universe. The Long-Baseline Neutrino Facility (LBNF) will house the international Deep Underground Neutrino Experiment (DUNE), which will be built and operated by a group of roughly 1,000 scientists and engineers from 30 countries.

    When complete, LBNF/DUNE will be the largest experiment ever built in the United States to study the properties of mysterious particles called neutrinos. Unlocking the mysteries of these particles could help explain more about how the universe works and why matter exists at all.

    At its peak, construction of LBNF is expected to create almost 2,000 jobs throughout South Dakota and a similar number of jobs in Illinois. Institutions in dozens of countries will contribute to the construction of DUNE components. The DUNE experiment will attract students and young scientists from around the world, helping to foster the next generation of leaders in the field and to maintain the highly skilled scientific workforce in the United States and worldwide.

    The U.S. Department of Energy’s Fermi National Accelerator Laboratory, located outside Chicago, will generate a beam of neutrinos and send them 1,300 kilometers (800 miles) through Earth to Sanford Lab, where a four-story-high, 70,000-ton detector will be built beneath the surface to catch those neutrinos.

    Scientists will study the interactions of neutrinos in the detector, looking to better understand the changes these particles undergo as they travel across the country in less than the blink of an eye. Ever since their discovery 61 years ago, neutrinos have proven to be one of the most surprising subatomic particles, and the fact that they oscillate between three different states is one of their biggest surprises. That discovery began with a solar neutrino experiment led by physicist Ray Davis in the 1960s, performed in the same underground mine that now will house LBNF/DUNE. Davis shared the Nobel Prize in physics in 2002 for his experiment.

    2
    The DUNE neutrino beam will travel 1,300 kilometers (800 miles) through Earth from Fermilab in Illinois to Sanford Underground Research Facility in South Dakota. Illustration: Sandbox Studio/Fermilab.

    DUNE scientists will also look for the differences in behavior between neutrinos and their antimatter counterparts, antineutrinos, which could give us clues as to why the visible universe is dominated by matter. DUNE will also watch for neutrinos produced when a star explodes, which could reveal the formation of neutron stars and black holes, and will investigate whether protons live forever or eventually decay, bringing us closer to fulfilling Einstein’s dream of a grand unified theory.

    But first, the facility must be built, and that will happen over the next 10 years. Now that the first shovel of earth has been moved, crews will begin to excavate more than 870,000 tons of rock to create the huge underground caverns for the DUNE detector. Large DUNE prototype detectors are under construction at European research center CERN, a major partner in the project, and the technology refined for those smaller versions will be tested and scaled up when the massive DUNE detectors are built.

    This research is funded by the U.S. Department of Energy Office of Science in conjunction with CERN and international partners from 30 countries. DUNE collaborators come from institutions in Armenia, Brazil, Bulgaria, Canada, Chile, China, Colombia, Czech Republic, Finland, France, Greece, India, Iran, Italy, Japan, Madagascar, Mexico, the Netherlands, Peru, Poland, Romania, Russia, South Korea, Spain, Sweden, Switzerland, Turkey, Ukraine, United Kingdom and the United States.

    QUOTES

    Energy Secretary Rick Perry

    “The start of construction on this world-leading science experiment is cause for celebration, not just because of its positive impacts on the economy and on America’s strong relationships with our international partners, but also because of the fantastic discoveries that await us beyond the next horizon. I’m proud to support the efforts by Fermilab, Sanford Underground Research Facility and CERN, and we’re pleased to see it moving forward.”

    Deputy Assistant to the President and Deputy U.S. Chief Technology Officer Michael Kratsios, Office of Science and Technology Policy

    “Today’s groundbreaking for the Long-Baseline Neutrino Facility marks a historic moment for American leadership in science and technology. It also serves as a model for what the future of mega-science research looks like: an intensely collaborative effort between state, local and federal governments, international partners, and enterprising corporate and philanthropic pioneers whose combined efforts will significantly increase our understanding of the universe. The White House celebrates today with everyone who is bringing this once-in-a-generation endeavor to life, including the men and women providing the logistical organization and financial capital to set the project on the right foot, the physical labor to construct these incredible facilities, and the scientific vision to discover new truths through their work here.”

    South Dakota Governor Dennis Daugaard

    “This project will be one of the world’s most significant physics experiments conducted over the next several decades, and today’s groundbreaking is another milestone in the development of the Sanford Underground Research Facility.”

    U.S. Senator John Thune, South Dakota

    “The Long-Baseline Neutrino Facility continues Lead, South Dakota’s, tradition of cutting-edge neutrino research, dating back to physics experiments at the former Homestake Mine in the 1960s. When completed, LBNF and the Deep Underground Neutrino Experiment will attract some of the world’s brightest scientists to South Dakota and push the boundaries of basic research, not to mention support good-paying jobs in the historic mining region of the Black Hills. I look forward to seeing the facility’s completion and the groundbreaking experiments that will be done in the years to come.”

    U.S. Senator Mike Rounds, South Dakota

    “Today’s groundbreaking marks another significant step toward gaining a deeper understanding of the makeup of our universe. It is pretty remarkable that such world-class research continues to develop right here in Lead, South Dakota. When we began the process of securing an underground laboratory at South Dakota’s Homestake gold mine more than a decade ago, we were hopeful that it would lead to major advancements in particle physics and neutrino research. Today, those hopes are turning into reality as the Sanford Underground Research Facility, Fermilab and CERN join together to break ground on the Long-Baseline Neutrino Facility, which will house the Deep Underground Neutrino Experiment. Today is a truly special day, and I thank everyone involved in this collaboration for the years of hard work they’ve put into this project.”

    U.S. Representative Kristi Noem, South Dakota

    “In breaking ground today, we move closer to uncovering a new understanding of how the natural world works. That new knowledge could have a profound impact, potentially leading to faster global communications, better nuclear weapons detection technologies and a whole new field of research. The future of science is happening right here in South Dakota.”

    U.S. Representative Randy Hultgren, Illinois

    “The LBNF/DUNE groundbreaking once again puts the United States in a leadership position on the world stage, attracting scientists from around the globe to the only place they can do their work. Fermilab attracts top talent, employing nearly 2,000 in Illinois and providing a strong economic engine to our state. I commend the work done by the Department of Energy, Fermilab and Sanford Lab to bring together a strong coalition to serve the research needs of the international community. With great anticipation I look forward to the new and breathtaking discoveries made at this facility. What we all can learn together will be awe-inspiring and uncover the new questions that will drive future generations of scientists in their quest for greater understanding.”

    Director Nigel Lockyer, Fermi National Accelerator Laboratory

    “Fermilab is proud to host the Long-Baseline Neutrino Facility and the Deep Underground Neutrino Experiment, which bring together scientists from 30 countries in a quest to understand the neutrino. This is a true landmark day and the start of a new era in global neutrino physics.”

    Executive Director Mike Headley, Sanford Underground Research Facility

    “The South Dakota Science and Technology Authority is proud to be hosting LBNF at the Sanford Underground Research Facility. This milestone represents the start of construction of the largest mega-science project in the United States. We’re excited to be working with the project and the international DUNE collaboration and expanding our knowledge of the role neutrinos play in the makeup of the universe.”

    Director-General Fabiola Gianotti, CERN

    “Some of the open questions in fundamental physics today are related to extremely fascinating and elusive particles called neutrinos. The Long-Baseline Neutrino Facility in the United States, whose start of construction is officially inaugurated with today’s groundbreaking ceremony, brings together the international particle physics community to explore some of the most interesting properties of neutrinos.”

    Executive Director of Programmes Grahame Blair, Science and Technology Facilities Council, United Kingdom

    “The groundbreaking ceremony today is a significant milestone in what is an extremely exciting prospect for the UK research community. The DUNE project will delve deeper into solving the unanswered questions of our universe, opening the doors to a whole new set of tools to probe its constituents at a very fundamental level and, indeed, even addressing how it came to be. International partnerships are key to building these leading-edge experiments, which explore the origins of the universe, and I am very happy to be a representative of the international community here today.”

    President Fernando Ferroni, National Institute for Nuclear Physics, Italy

    “We are very proud of this great endeavor of Fermilab as its technology has roots in the work undertaken by Carlo Rubbia at the INFN Gran Sasso Laboratory in Italy.”

    Professor Ed Blucher, University of Chicago and co-spokesperson, DUNE collaboration

    “Today is extremely exciting for all of us in the DUNE collaboration. It marks the start of an incredibly challenging and ambitious experiment, which could have a profound impact on our understanding of the universe.”

    Professor Mark Thomson, University of Cambridge and co-spokesperson, DUNE collaboration

    “The international DUNE collaboration came together to realize a dream of a game-changing program of neutrino science; today represents a major milestone in turning this dream into reality.”

    Illustrations and animations of the LBNF/DUNE project and its science goals are available at:

    http://www.dunescience.org/for-the-media

    More information about the facility and experiment can be found at:

    http://lbnf.fnal.gov

    http://dunescience.org

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    FNAL Icon
    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.

     
  • richardmitnick 12:42 pm on July 20, 2017 Permalink | Reply
    Tags: , Commercialization of enhanced geothermal systems (EGS), , SURF - Sanford Underground Research Facility   

    From LBNL: “Berkeley Lab to Lead Multimillion-Dollar Geothermal Energy Project” 

    Berkeley Logo

    Berkeley Lab

    July 20, 2017
    Julie Chao
    JHChao@lbl.gov
    (510) 486-6491

    1
    Berkeley Lab scientist Tim Kneafsey demonstrates how he places rock samples, from the Brady Geothermal Field in Nevada, into a stress permeability apparatus, which tests how long a fracture can remain open. (Credit: Marilyn Chung/Berkeley Lab.)

    The Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) will lead a new $9 million project aimed at removing technical barriers to commercialization of enhanced geothermal systems (EGS), a clean energy technology with the potential to power 100 million American homes.

    Berkeley Lab will partner with seven other DOE national labs and six universities to develop field experiments focused on understanding and modeling rock fractures, an essential element of geothermal systems. Scientists will use the Sanford Underground Research Facility (SURF) in South Dakota to create small-scale fracture networks in crystalline rock 1,500 meters below ground.

    “We will be putting instrumentation within tens of meters of the fractures and will be able to detect fracturing at a higher resolution than what has ever been done before,” said Berkeley Lab’s Tim Kneafsey, who leads the project. “The goal is to work towards increasing our understanding of fracturing and fluid flow in EGS, which could provide a significant amount of electricity as a large quantity of accessible hot rock lies untapped across the U.S.”

    In geothermal systems, heat acquired from water circulating in rock fractures deep in the Earth’s crust is extracted for conversion to electricity. Conventional geothermal technology is possible only in locations with particular geological characteristics, either near active volcanic centers or in places with a very high temperature gradient, such as much of Nevada and parts of the western United States. These locations have the three components essential to extracting geothermal energy—heat, fluid, and permeability, a measure of how easily fluid can circulate through the rock’s fractures, picking up heat as it moves.

    With EGS, a fracture network can be enhanced or engineered, thus bypassing the geographic limitations of conventional geothermal energy. EGS could eventually provide more than 100 gigawatts (GW) of economically viable electric generating capacity in the continental United States, a huge increase over the current geothermal capacity of 3.5 GW.

    “Although geothermal energy production is already used effectively, there is a lot we need to learn about how to create and develop an EGS reservoir,” Kneafsey said. “This project will seek to understand the relationship between permeability creation and heat extraction in crystalline rocks under certain stress and temperature conditions.”

    Dubbed EGS Collab, the project has been awarded $9 million for the first year by DOE’s Geothermal Technologies Office. Other national labs partnering in the project include Sandia, Lawrence Livermore, Idaho, Los Alamos, Pacific Northwest, Oak Ridge, and the National Renewable Energy Laboratory.

    Douglas Blankenship, manager of geothermal research at Sandia National Laboratories, is the co-lead with Kneafsey. Additionally, professors from Stanford University, the University of Wisconsin, the South Dakota School of Mines and Technology, the Colorado School of Mines, Penn State University, and the University of Oklahoma will also contribute.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    A U.S. Department of Energy National Laboratory Operated by the University of California

    University of California Seal

    DOE Seal

     
  • richardmitnick 2:13 pm on July 18, 2017 Permalink | Reply
    Tags: , CASPAR achieves first beam, , , SURF - Sanford Underground Research Facility   

    From SURF: “CASPAR achieves first beam” 

    SURF logo
    Sanford Underground levels

    Sanford Underground Research facility

    July 17, 2017
    Constance Walter

    1
    Dan Robertson speaks to a group during the CASPAR first beam ribbon cutting event. Matthew Kapust.

    Nearly two years after the CASPAR collaboration (compact accelerator system for performing astrophysical research) began moving into its home on the 4850 Level of Sanford Lab, it celebrated a huge milestone: first beam.

    CASPAR’s accelerator at SURF

    CASPAR at SURF

    “This is a great step forward,” said Frank Strieder, an associate physics professor of physics at South Dakota School of Mines and Technology. “We’ve prepared for this for years. It’s exciting moment to have it running and to see the first beam.

    “But we have to also give credit to the people who worked outside the doors,” said Strieder, the principal investigator for CASPAR. “If you can imagine, all of this equipment came down in the Yates shaft with the help of Sanford Lab staff. These are incredible people who work very hard, they supported us in every way to make this happen.”

    Dan Robertson, a research assistant professor with Notre Dame, said it was a special day for the collaboration.

    “Seeing the beam for the first time was really cool—the pay off for the work,” said Dan Robertson, a research assistant professor with Notre Dame. “Today we get to share this accomplishment with other people.”

    Researchers with CASPAR hope to recreate the nuclear fusion processes responsible for energy generation to better understand how stars burn and what elements they create while doing so.

    CASPAR is one of only two underground accelerators in the world. The other has been operating for more than 25 years at the Laboratory for Underground Nuclear Astrophysics (LUNA) in Gran Sasso, Italy.

    LUNA-MV at Gran Sasso

    Gran Sasso LABORATORI NAZIONALI del GRAN SASSO, located in the Abruzzo region of central Italy

    “Installing and operating accelerators underground is a considerable challenge,” said Michael Wiescher, Freimann Professor of Nuclear Physics at the University of Notre Dame. “CASPAR is unique since it covers a broader energy range than the LUNA accelerator. It allows us, for the first time, to explore reactions of stellar helium burning, which take place in stars like Betelgeuse, at laboratory conditions.

    “Through these studies, we will learn about the origin of oxygen and carbon as the most important ingredients of biological life in the universe, and we will learn about the mechanisms stars have developed to produce gradually heavier elements through neutron fusion processes.”

    CASPAR’s 50-foot long accelerator uses radio-frequency energy to produce a beam of protons or alpha particles from hydrogen or helium gas. The ions enter the accelerating tube, which is kept at high vacuum, then are directed down the beamline using magnets. The particles crash into a target, releasing the same neutrons that fuel the nuclear reactions in stars and produce a large amount of the heavy elements.

    With the achievement of first beam, the collaboration is ready to begin full operations.

    “This team worked really hard to make this happen,” said Elizabeth Freer, who served as CASPAR’s project manager for four years. “It’s really exciting to see the whole team get to this point,”

    Manoel Couder, an assistant professor of physics at Notre Dame, agrees. “Two years ago when we were moving in, it was like Christmas. Today, it’s like second Christmas! Now, the science starts.”

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.
    LUX/Dark matter experiment at SURFLUX/Dark matter experiment at SURF

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    Fermilab LBNE
    LBNE

     
  • richardmitnick 3:51 pm on July 12, 2017 Permalink | Reply
    Tags: , Many deep underground experiments, , , , SURF - Sanford Underground Research Facility   

    From SA: “Physicists Go Deep in Search of Dark Matter” 

    Scientific American

    Scientific American

    July 11, 2017
    Sarah Scoles

    A laboratory buried nearly a mile beneath South Dakota is at the forefront of a global push for subterranean science.

    1
    A worker gazes into the darkness of the Sanford Underground Research Facility’s “4850 level,” a cavern nearly a mile deep in the Homestake mine that houses state-of-the-art physics experiments. Credit: Sarah Scoles

    The elevator that lowers them 4,850 feet down a mine shaft to a subterranean physics lab isn’t called an elevator, the physicists tell me. It’s called The Cage. It descends at precisely 7:30 A.M.—the same time it leaves the surface every day—and doesn’t wait around for stragglers.

    I show up on time, and prepare to board with a group of scientists. We look identical: in coveralls blinged out with reflective tape, steel-toed boots, an emergency breathing mask and a lamp that clips to the belt and loops over the shoulder.

    An operator opens the big yellow door, directs us inside and then closes The Cage. Soon it begins bumping down at 500 feet per minute. The operator’s headlamp provides the only light, tracing along the timber that lines the shaft. We descend for 10 minutes, silently imagining the weight of the world above us increasing. Water trickling down the shaft’s walls provides an unsettling sound track.

    This place—the Sanford Underground Research Facility (SURF) in Lead, S.D.—hosts experiments that can only be conducted deep under Earth’s surface. Entombed beneath the Black Hills by thousands of feet of solid rock, these experiments are shielded from much of the background radiation that bathes the planet’s surface. Here scientists can more easily detect various elusive cosmic messengers that would otherwise be swamped by the sound and fury at the surface—neutrinos that stream from our sun and from distant exploding stars or other hypothetical particles thought to make up the mysterious dark matter that acts as a hidden hand guiding the growth of galaxies. Such particles are so dim that they’re drowned out aboveground: Looking for them there is a bit like looking for a spotlight shining from the sun’s surface. But these are the very particles scientists must study to understand how our universe came to be. And so, from the depths of Earth where even the very closest star does not shine, they are glimpsing some of the most ancient, distant and cataclysmic aspects of the cosmos.

    This place was not always science-centric: For more than 100 years its labyrinth of deep chambers and drippy, dirt-floored tunnels was a gold mine called Homestake. Today, stripped of much of its precious ore, the facility has become a figurative gold mine for researchers as the U.S.’s premier subterranean lab. This fall SURF will debut a new experiment at the frontiers of physics: CASPAR, which mimics the conditions at the cores of stars where atoms of hydrogen and other light elements fuse to release energy, forming as a by-product the more substantial elements required for building asteroids, planets, mines and mammals. This year physicists are also starting to build equipment for an experiment called LUX–ZEPLIN (LZ), which will try to detect particles of dark matter as soon as 2020.

    Lux Zeplin project at SURF

    It is all part of a trend unfolding around (as well as within) the globe, as scientists construct or repurpose buried infrastructure in places like Minnesota, Japan, Italy, China and Finland to peer deep into the cosmos from deep underground, seeking to learn why the universe is the way it is—and maybe how humans got here at all.

    Inside The Cage, the riders have leaned their heads back against the walls, eyes closed for a quiet moment before work. They look up as the elevator lurches to a stop and the door opens onto a rounded, rocky hallway, covered in netting to protect against rock slides and cave-ins. The light is yellow, with a spectrum not unlike the sun’s.

    “Just another day in paradise,” one of the passengers says as the operator releases us into this alien environment. We walk away from The Cage, our only conduit to the surface, and toward the strange science that—like extreme subterranean organisms that survive without sunlight—can only happen here. (LZ), which will try to detect particles of dark matter as soon as 2020.

    Cosmic Messengers in a Mine

    En route to our first destination, the LZ dark-matter experiment, we walk through a section of the mine called the Davis Lab.

    Its name descends from late physicist Ray Davis, who visited the town of Lead in the 1960s with a science experiment in mind. Back then Lead and next-door Deadwood looked much like they look now, with one-floor casinos and a bar bearing a sign that reads “Historic Site Saloon No. 10 Where Wild Bill Was Shot.” Davis had asked the owners of the Homestake Mine if he could use a small slice of that vast space to search for solar neutrinos.

    Neutrinos are nearly massless particles with no electrical charge. They move almost as fast as light itself. They are barely subject to the effects of gravity and are immune to electromagnetism. In fact, they hardly interact with anything at all—a neutrino might just zip straight through the atoms of any corporeal object in the universe in the way a motorcycle can split lanes straight through traffic. Physicists and astronomers love neutrinos because their cosmic shyness keeps them pristine. Each carries imprints, like birthmarks, from the explosions and radioactive decays that unleashed them on the cosmos. By studying them, scientists can learn about the inner workings of supernovae, the first moments after the big bang, and the seething hearts of stars—including our sun, which is what Davis wanted to investigate. In the 1960s, theorists had already predicted that neutrinos should exist, but no one had yet found them in the physical world.

    The mining company decided to let Davis try to become the first person to do so.

    Toiling away on Homestake’s “4850 level”—the “floor” 4,850 feet below the surface—Davis built a neutrino detector that became operational in 1967.

    Sanford Underground levels

    Over the course of the next quarter century he extracted what he came for: actual neutrinos, not just theoretical ones on paper. As the first person to directly detect the particles—and so prove they existed at all—Davis won the 2002 Nobel Prize. He was one of the first to show that, sometimes, to best connect with deep space, humans have to travel farther from it, deep inside the planet itself.

    During the initial decades of the Davis experiment, the Homestake Mine continued sending a steady stream of gold to the surface, ultimately producing nearly three million pounds of the precious metal during its lifetime—the most of any mine in the Western Hemisphere. But in 2002 when the price of an ounce dropped too low for the mine to turn a profit, Barrick Gold Corp. shut it down and later donated the facility to the State of South Dakota.

    The state—with funding from billionaire T. Denny Sanford and the U.S. Department of Energy—expanded on Davis’s legacy and turned the whole operation into a physics lab: today’s SURF, with the original Davis Campus at its core.

    Setting Up Shop

    As we enter the Davis Campus, we snap elastic-ankle booties over our shoes and are gifted a sticker. “It’s always sunny on the 4850,” it says. The evidence does not support this conclusion.

    Our guide, Mark Hanhardt, doesn’t have such a sticker, but he does have a Ghostbusters patch on the upper arm of his coveralls. He later refers to the dark matter that LZ will look for as “ghost particles.” He is, then, the buster to which his patch refers. He’s a jolly guy, with a smile—the eyes-and-mouth kind—always in between his beard and short haircut. An experiment-support scientist, he is also the son of a former Homestake miner called Jim Hanhardt. Jim was laid off when Homestake stopped mining—but he got a different belowground job back when SURF took over, becoming a technical support lead in 2008. For a few years, before his father’s recent death, the two toiled together in this subterranean space—a common story around Lead. Everyone in town seems to know or share blood with someone who works in the lab, because SURF hired back many miners and contracted with local companies for blasting and construction work. Hanhardt’s daily work, then, is carrying on dual legacies—one familial, one scientific. “There’s already been one Nobel from down here,” Hanhardt says, gesturing for us to follow him down the hallway. “Maybe there will be more.”

    Hanhardt walks along the platform toward the high-ceilinged room that SURF employees are currently preparing for LUX-ZEPLIN. Most of the space belongs to an immense and empty water tank—three and a half times as tall as me, and across whose diameter four and a half of me could lie down.

    SURF LUX water tank was transported in pieces and welded together in the Davis Cavern

    Hanhardt calls it the “giant science bucket.” Once it had been filled with 72,000 gallons of water and shielded an experiment called LUX, which operated from October 2014 to May 2016. At the time LUX was the world’s most sensitive seeker of dark matter—more attuned to the universe’s most mysterious particles than any other experiment on the planet.

    Decades of observations with telescopes have hinted the universe is full of invisible matter that neither emits nor reflects light but outweighs all the visible stars, gas and galaxies combined. This dark matter has apparently shaped some of those galaxies into spirals, and may even be what made their matter glom together into galaxies in the first place. No one knows exactly what the dark matter is made of, but most physicists agree it is likely composed of at least one kind of undiscovered subatomic particle. But just as one cannot say for sure what Sasquatch looks like until you spy one on a remote camera or ensnare one in a trap, scientists can’t say what dark matter is until they capture some.

    LUX tried to do just that. During its nearly yearlong run, a 350-kilogram canister of liquid xenon sat nested like a matryoshka doll inside the giant water tank, which isolated the xenon from the intrepid background of run-of-the-mill cosmic rays that manage to penetrate even this far underground. The xenon, denser than solid aluminum, waited hopefully for hypothetical dark matter particles to tunnel through thousands of feet of earth, ending up in South Dakota after their interstellar—or even intergalactic—journeys. If a particle of dark matter struck an atom of xenon, the collision would produce a flash of light. Electrons would then spin out of the collision, making a second flash. Detectors lining the tank’s interior would pick those up and send a signal back to scientists, who could rewind the reaction to study the particles that first sparked the fireworks.

    In October 2016 SURF scientists began dismantling LUX and carting its xenon, like miners, to the surface. The setup had seen nothing. Dark matter had stayed true to its name.

    To tenacious physicists, that just meant they needed a bigger, better bucket in which to collect dark matter: LUX-ZEPLIN. When it debuts in 2020, this follow-on experiment will still be the best in the world: 70 times as sensitive as its predecessor, thanks in large part to its 10 metric tons of liquid xenon—as compared with LUX the First’s puny third of a metric ton. The scientific collaboration, which involves 250 scientists from the U.S., the U.K., Portugal, Russia and South Korea, launched construction in February.

    Hanhardt sticks his head inside the silvery cylinder of the empty water tank and whispers “Helloooo.” The tiny sound seems to echo almost endlessly, bouncing on the tank walls and throwing itself back at us as evidence of his existence.

    Deep Physics

    SURF occupies one of the world’s deepest scientific spaces, more than twice as far down as the Soudan Underground Laboratory in Minnesota, which is in a former iron mine.

    2
    Soudan Underground Laboratory in Minnesota.Alamy photos

    The Super-Kamiokande lab, which focuses on neutrinos like Davis did, occupies the Mozumi zinc mine in Japan, 3,300 feet underground.

    Super-Kamiokande experiment. located under Mount Ikeno near the city of Hida, Gifu Prefecture, Japan

    The deepest physics facility in the world, though, is China’s Jinping Lab, in Sichuan, China which takes advantage of the tunnels beneath a hydroelectric dam.

    4

    It has a dark matter detector and a neutrino experiment called PandaX.

    5

    Using existing infrastructure, as these labs do, means scientists can focus on building their experiments instead of blasting rock. And it means they can rely on local workers who already know how to help maintain the snaking caverns that might otherwise flood, collapse or fill with poisonous gases. Italy is the first country to complete a belowground lab, Gran Sasso, for the express purpose of doing research. It took them 30 years.

    Gran Sasso LABORATORI NAZIONALI del GRAN SASSO, located in the Abruzzo region of central Italy

    Each of these far-flung facilities is racng to be the first to make breakthrough discoveries about elusive dark matter and ghostly neutrinos. But for the end-result science to emerge at its best, the facilities need one another—and one another’s data—to be better, faster and stronger than they can manage on their own. Together, they form an ecosystem that supports science that can’t be done on the surface.

    A Pint-Size Star Is Born

    SURF, since its genesis, has been expanding beyond the Davis Campus to other parts of the mine—of which there are plenty. The new “campus” is so far away that to visit it we take a railway cart, rumbling down darkened tracks through cavernous spaces like pickax-wielders of old. Cool air still blows past us, somehow flowing into this nether realm fresh from the surface world almost a mile above. Hallway lights pass at intervals, glowing then receding in slow, strobelike procession until we reach what is called the Ross Campus and the CASPAR experiment.

    CASPAR’s accelerator at SURF

    CASPAR is a particle accelerator—but one that fits in a regular-size room. A series of tubes, the air sucked from them by vacuum pumps, snakes across tables that run all the way across the room, then bend back into a farther open space. From one end a beam of particles streams through the tubes, its path bent by magnets. At the other end sits a target. When the beam bull’s-eyes it, the collision triggers the fusion processes that happen inside stars, when small atoms join to build larger ones. These processes happen deep inside stellar cores all across the universe, and have created essentially all the elements heavier than helium (elements astronomers call “metals,” even when they are not down in mines).

    All those “metals” comprise you, me, these tubes, this cavity, SURF, the ecosystem of underground labs, Earth and everything you may (or may not) care about. But scientists do not actually understand the details of how stars fuse elements. And because they cannot fly into the center of a star, they have instead traveled toward the center of the planet. Here, shielded from stray radiation and particles that bombard Earth’s surface, they can much more clearly see the particles and radiation from their own experiment, rather than from the sun or space.

    When we arrive, a batch of graduate students and three professors are huddled over several computers, trying to get that beam as just-right as it can be. The mini accelerator itself is on the other side of a door next to them. It looks like a kid’s chemistry set, minus the colorful liquids.

    Physicist Michael Wiescher, from the University of Notre Dame, steps away from his colleagues to tell me what they are doing. He speaks quietly, perhaps trying not to disturb them. He needn’t worry, though: Their attention is as focused as the experiment’s beam.

    That’s because it’s a big day down here: Wiescher and the others, from Notre Dame and the South Dakota School of Mines, are just starting to launch the beam toward their target. Soon they will make their own pint-size stars, farther from outer space than most people ever go. Their first experiments will examine the details of a process called “helium burning.” In the burning’s first stage, an important interaction happens when three helium nuclei alchemize into one carbon—the atom that by definition makes molecules “organic.” In actual stars this only happens with age: After stars like the sun have burned through most of the hydrogen fuel at their cores, and have evolved into red giant stars, they begin to fuse helium instead. But here in SURF, in a bathroom-size setup, CASPAR can learn about burning helium any day the scientists see fit, and so learn how to create again and again the elements that became us—fast-forwarding the sun’s clock while rewinding our own. “It’s not just physics,” says Hanhardt, who stands watch as the team works, “It’s philosophy.” It deals, in other words, in the big questions: How, literally, did we get here? Why, cosmically? These queries have scientific answers but existential implications, the science having moved into territory previously only occupied by religion.

    European researchers, Wiescher tells me, are two years behind in their work on a similar project called LUNA–MV at Gran Sasso.

    6
    LUNA–MV at Gran Sasso

    China is building its own—JUNA. But CASPAR will (any day now) start cooking first. After the CASPAR team gets a few results on their own, they plan to merge data with some of these other teams, and will let scientists come down to this cave to do their own experiments with the CASPAR equipment. Someday soon—when CASPAR opens up for collaborators, when LZ begins its search—SURF will be robust and bustling in the way of the gold mine’s heyday, back when a single neutrino experiment squatted in a corner.

    One of the computer-focused scientists says, “We have 100 percent beam transmission!” and then a smiling grad student—Thomas Kadlecek, from the South Dakota School of Mines—turns to me and Wiescher. He likes it down here, he says. His grandfather was a miner back when it was Homestake. With that, he quickly turns away again goes back to his work, leaning on a rack of electronics.

    I later find out his grandfather died in Homestake. Just as one generation of stars fuels the next—South Dakota’s previous underground generations inspire the ones that follow. “They identify with the mine,” Wiescher explains. “It’s incredible.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Scientific American, the oldest continuously published magazine in the U.S., has been bringing its readers unique insights about developments in science and technology for more than 160 years.

     
  • richardmitnick 12:47 pm on July 5, 2017 Permalink | Reply
    Tags: , , , SURF - Sanford Underground Research Facility   

    From FNAL: “Contract to design rock conveyor for neutrino experiment awarded” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    July 5, 2017
    Leah Hesla

    If in a few years you happen to travel down Highway 85 in the Black Hills near Lead, South Dakota, you will find yourself passing beneath a new, narrow beam-like structure stretching across the road overhead.

    You’ll be crossing under part of a conveyor system that will be used to transport rock from nearly a mile underground at the former Homestake gold mine — now the Sanford Underground Research Facility — to an enormous open pit on the surface as underground space is carved out to house a giant particle detector.

    1
    The North Alabama Fabricating Company has been contracted to design and fabricate a rock conveyor to help remove rock from the former Homestake Mine. This effort is to make way for a giant particle detector for the international Deep Underground Neutrino Experiment. The detector will be situated nearly a mile underground. Image: Sanford Lab

    Scientists from the international Deep Underground Neutrino Experiment (DUNE), an experiment hosted by the U.S. Department of Energy’s Fermi National Accelerator Laboratory, will build and use the mammoth detector to study particles called neutrinos. Understanding these particles is expected to lead to a deeper knowledge of how our universe is put together.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA


    FNAL DUNE Argon tank at SURF


    Surf-Dune/LBNF Caverns at Sanford



    SURF building in Lead SD USA

    On June 28, Fermi Research Alliance LLC, which operates Fermilab, signed a contract with North Alabama Fabricating Company to design and fabricate the pipe conveyor to be installed at Sanford Lab. The contract supports the excavation for the Long-Baseline Neutrino Facility (LBNF), the facility that will house and support DUNE.

    “The fabrication and installation of the pipe conveyor will be a major step toward LBNF excavation,” said Mike Headley, executive director of the South Dakota Science and Technology Authority, or SDSTA, which owns and operates Sanford Lab. “It’s an exciting milestone, and the SDSTA is proud to support the LBNF team on this project.”

    Fermilab and Sanford Lab staff expect conveyor installation to begin in mid-2018 and continue for six months. Rock removal is expected to take about three years once the conveyor begins operating.

    2
    The rock conveyor will transport rock excavated from the former Homestake Mine to a nearby open cut. Image: Sanford Lab.

    “The conveyor will transport 875,000 tons of rock — approximately equal to the mass of eight Nimitz class aircraft carriers,” said retired U.S. Navy admiral Chris Mossey, who is now the LBNF project director at Fermilab.

    Like a giant futuristic supermarket checkout lane, the rock conveyor will move rock over a stretch of 3,700 feet while containing dust and debris.

    The conveyor path will take advantage of a long, existing tunnel carved out during Homestake’s gold mining days in the 1930s. The conveyor will start 175 feet underground, make its way to the surface, and continue high above ground until it arrives at the pit, called an open cut, which is roughly two miles wide and 1,200 feet deep. In fact, miners used a similar machine in the 1980s to transport rock away from the open cut as they looked for gold.

    3
    This is a conceptual illustration of the aboveground portion of the rock conveyor. Image: Sanford Lab.

    LBNF project members have kept in close contact with the city of Lead and its residents regarding rock-handling options, as well as with the State Historic Preservation Office to ensure that cultural aspects of the site are understood and respected. The communication will continue as the design evolves.

    “The design team has worked hard to come up with the right system,” said Fermilab’s Elaine McCluskey, LBNF project manager.

    Excavation for the DUNE detector caverns is expected to be complete in early 2022.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    FNAL Icon
    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.

     
  • richardmitnick 3:09 pm on June 24, 2017 Permalink | Reply
    Tags: , CERN ProtoDUNE, , , , SURF - Sanford Underground Research Facility,   

    From Symmetry: “World’s biggest neutrino experiment moves one step closer” 

    Symmetry Mag

    Symmetry

    06/23/17
    Lauren Biron

    1
    Photo by Maximilien Brice, CERN

    The startup of a 25-ton test detector at CERN advances technology for the Deep Underground Neutrino Experiment.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA


    FNAL DUNE Argon tank at SURF


    Surf-Dune/LBNF Caverns at Sanford



    SURF building in Lead SD USA

    In a lab at CERN sits a very important box. It covers about three parking spaces and is more than a story tall. Sitting inside is a metal device that tracks energetic cosmic particles.

    CERN Proto DUNE Maximillian Brice

    This is a prototype detector, a stepping-stone on the way to the future Deep Underground Neutrino Experiment (DUNE). On June 21, it recorded its first particle tracks.

    So begins the largest ever test of an extremely precise method for measuring elusive particles called neutrinos, which may hold the key to why our universe looks the way it does and how it came into being.

    A two-phase detector

    The prototype detector is named WA105 3x1x1 (its dimensions in meters) and holds five active tons—3000 liters—of liquid argon. Argon is well suited to interacting with neutrinos then transmitting the subsequent light and electrons for collection. Previous liquid argon neutrino detectors, such as ICARUS and MicroBooNE, detected signals from neutrinos using wires in the liquid argon. But crucially, this new test detector also holds a small amount of gaseous argon, earning it the special status of a two-phase detector.

    INFN Gran Sasso ICARUS, since moved to FNAL

    FNAL/ICARUS

    FNAL/MicrobooNE

    As particles pass through the detector, they interact with the argon atoms inside. Electrons are stripped off of atoms and drift through the liquid toward an “extraction grid,” which kicks them into the gas. There, large electron multipliers create a cascade of electrons, leading to a stronger signal that scientists can use to reconstruct the particle track in 3D. Previous tests of this method were conducted in small detectors using about 250 active liters of liquid argon.

    “This is the first time anyone will demonstrate this technology at this scale,” says Sebastien Murphy, who led the construction of the detector at CERN.

    The 3x1x1 test detector represents a big jump in size compared to previous experiments, but it’s small compared to the end goal of DUNE, which will hold 40,000 active tons of liquid argon. Scientists say they will take what they learn and apply it (and some of the actual electronic components) to next-generation single- and dual-phase prototypes, called ProtoDUNE.

    The technology used for both types of detectors is a time projection chamber, or TPC. DUNE will stack many large modules snugly together like LEGO blocks to create enormous DUNE detectors, which will catch neutrinos a mile underground at Sanford Underground Research Facility in South Dakota. Overall development for liquid argon TPCs has been going on for close to 40 years, and research and development for the dual-phase for more than a decade. The idea for this particular dual-phase test detector came in 2013.

    “The main goal [with WA105 3x1x1] is to demonstrate that we can amplify charges in liquid argon detectors on the same large scale as we do in standard gaseous TPCs,” Murphy says.

    By studying neutrinos and antineutrinos that travel 800 miles through the Earth from the US Department of Energy’s Fermi National Accelerator Laboratory [FNAL] to the DUNE detectors, scientists aim to discover differences in the behavior of matter and antimatter. This could point the way toward explaining the abundance of matter over antimatter in the universe. The supersensitive detectors will also be able to capture neutrinos from exploding stars (supernovae), unveiling the formation of neutron stars and black holes. In addition, they allow scientists to hunt for a rare phenomenon called proton decay.

    “All the R&D we did for so many years and now want to do with ProtoDUNE is the homework we have to do,” says André Rubbia, the spokesperson for the WA105 3x1x1 experiment and former co-spokesperson for DUNE. “Ultimately, we are all extremely excited by the discovery potential of DUNE itself.”

    2
    One of the first tracks in the prototype detector, caused by a cosmic ray. André Rubbia

    Testing, testing, 3-1-1, check, check

    Making sure a dual-phase detector and its electronics work at cryogenic temperatures of minus 184 degrees Celsius (minus 300 degrees Fahrenheit) on a large scale is the primary duty of the prototype detector—but certainly not its only one. The membrane that surrounds the liquid argon and keeps it from spilling out will also undergo a rigorous test. Special cryogenic cameras look for any hot spots where the liquid argon is predisposed to boiling away and might cause voltage breakdowns near electronics.

    After many months of hard work, the cryogenic team and those working on the CERN neutrino platform have already successfully corrected issues with the cryostat, resulting in a stable level of incredibly pure liquid argon. The liquid argon has to be pristine and its level just below the large electron multipliers so that the electrons from the liquid will make it into the gaseous argon.

    “Adding components to a detector is never trivial, because you’re adding impurities such as water molecules and even dust,” says Laura Manenti, a research associate at the University College London in the UK. “That is why the liquid argon in the 311—and soon to come ProtoDUNEs—has to be recirculated and purified constantly.”

    While ultimately the full-scale DUNE detectors will sit in the most intense neutrino beam in the world, scientists are testing the WA105 3x1x1 components using muons from cosmic rays, high-energy particles arriving from space. These efforts are supported by many groups, including the Department of Energy’s Office of Science.

    The plan is now to run the experiment, gather as much data as possible, and then move on to even bigger territory.

    “The prospect of starting DUNE is very exciting, and we have to deliver the best possible detector,” Rubbia says. “One step at a time, we’re climbing a large mountain. We’re not at the top of Everest yet, but we’re reaching the first chalet.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: