Tagged: SURF – Sanford Underground Research Facility Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 10:44 am on June 12, 2018 Permalink | Reply
    Tags: , , Revolutionizing geothermal energy research, SURF - Sanford Underground Research Facility   

    From Sanford Underground Research Facility: “Revolutionizing geothermal energy research” 

    SURF logo
    Sanford Underground levels

    From Sanford Underground Research Facility

    June 11, 2018
    Constance Walter

    The SIMFIP tool is changing the way researchers measure and design hydro fractures.

    1
    Deep underground on the 4850 Level at Sanford Lab, engineer Paul Cook explains how the SIMFIP tool will be used to measure openings in hard rock. Matthew Kapust

    On May 22, researchers with the SIGMA-V experiment worked in near silence in the West Drift on the 4850 Level. The locomotives sat quietly on the tracks, jack-leg drills rested against drift walls and operations ceased for several minutes at a time as the team began pumping pressurized water into the injection well, one of eight boreholes drilled for this experiment.

    “We requested quiet because we use sensitive seismic monitoring equipment,” said Tim Kneafsey, earth scientist at Lawrence Berkeley National Laboratory (LBNL). “The signals we measure are very small and we don’t want vibrations from other sources overwhelming those signals.”

    Kneafsey is the principal investigator for the Enhanced Geothermal Systems (EGS) Collab Project, a collaboration comprised of eight national laboratories and six universities who are working to improve geothermal technologies. The test featured the SIMFIP (Step-Rate Injection Method for Fracture In-Situ Properties), a tool that revolutionizes the way scientists can study geothermal energy, a process that pulls heat from the earth as it extracts steam or hot water, which is then converted to electricity.

    Developed at LBNL, the SIMFIP allows precise measurements of displacements in the rock and, most importantly, the aperture, or opening, of a hydro fracture.

    The extreme quiet paid off, Kneafsey said.

    “Our goal was to create a fracture from a specific zone in our injection well that would connect to our production well—about 10 meters away. And we were successful in doing that,” Kneafsy said.

    “People were excited when the connection between the boreholes was made and measured. But it took a while for the team to realize how far we had come and how much research, logistics, planning and collaboration went into that moment. It was gratifying to say the least, and there was certainly a sense of accomplishment.” —Hunter Knox

    The experiment

    Before the introduction of the SIMFIP, separate tools were used to create and measure hydro fractures. They work like this: “Straddle packers”—pipes with two deflated balloons on either end—are placed inside boreholes. Once inside, the balloons are inflated and water injected down the pipes to create an airtight section. They continue to pump water until the rock fractures, then remove the packers and insert the measuring tool. In the time it takes to do all that, much of the pertinent data is lost, leaving traces, but little else.

    “Even if you did get the aperture, when you released the pressure, the hydro fracture was already closing,” said Yves Guglielmi, a geologist at LBNL who designed the tool. “You don’t have the ‘true’ aperture and you also don’t know how the aperture might vary during the test.”

    With the introduction of the SIMFIP, a small device that sits between the two packers, they can the aperture in real-time.

    “This is really a new way to do the work,” Guglielmi said. “It will help us understand the whole process of initiating and growing hydro fractures in hard rock, which is kind of new. This is fundamental science. If we understand how hydro fractures will behave in this kind of rock, we can begin to make intelligent, complex fractures that can capture more heat from the earth.”

    The device is “bristling with sensors and other instrumentation that give us a close-up view of what happens when the rock is stimulated—all in real-time,” said Paul Cook, LBNL engineer.

    The SIMFIP measures fracture openings in hard rock in the EGS Collab test site. The team had drilled eight slightly downward-sloping boreholes in the rib (side) of the West Drift: The injection hole, used for stimulating the rock, and production well, which produces the fluid, run parallel to each other through the rock. Six other boreholes contain equipment to monitor microseismic activity (rock displacement); electrical resistivity tomography (subsurface imaging); temperature; and strain (how rocks move when stimulated).

    Nestled between the straddle packers in the injection hole, the SIMFIP measured the rock opening as the team looked on.

    The SIMFIP difference

    The SIGMA-V team hoped to see signals as small as a few microns of displacements in the rock. As they watched data accumulate in real time over a two-day period, the excitement in the West Drift was palpable.

    “People were excited when the connection between the boreholes was made and measured,” said Hunter Knox, the field coordinator with Sandia National Laboratory, “But it took a while for the team to realize how far we had come and how much research, logistics, planning and collaboration went into that moment. It was gratifying to say the least, and there was certainly a sense of accomplishment.”

    Measurements from the SIMFIP could remove barriers that stand in the way of commercializing geothermal systems, which have the potential to provide enough energy to power 100 million American homes.

    “We know fracturing rock can be done. But can it be effective for geothermal purposes? We need good, well-monitored field tests of fracturing, particularly in crystalline rock, to better understand that,” Kneafsey said.

    With the first test under its belt, the EGS Collab just moved a step closer to that goal.

    2
    No image credit or caption

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.
    LUX/Dark matter experiment at SURFLUX/Dark matter experiment at SURF

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    Fermilab LBNE
    LBNE

    Advertisements
     
  • richardmitnick 12:01 pm on May 15, 2018 Permalink | Reply
    Tags: Dark Matter experiments, , , SuperCDMS (Cryogenic Dark Matter Search), SURF - Sanford Underground Research Facility,   

    From Sanford Underground Research Facility: “SD Mines develops radon reduction system for LZ, SuperCDMS” 

    SURF logo
    Sanford Underground levels

    From Sanford Underground Research Facility

    May 14, 2018
    Constance Walter

    1
    Radon reduction researchers pictured with the machine they designed from left): SD Mines physics graduate student Joseph Street, Richard Schnee, Ph.D., along with lab technicians David Molash and Christine Hjelmfelt. Charles Michael Ray, SD Mines

    In the coming months, researchers will begin building the LUX-ZEPLIN dark matter experiment in a surface cleanroom at the Sanford Underground Research Facility (Sanford Lab).

    LBNL Lux Zeplin project at SURF

    Once the detector is assembled, a team will carefully move the highly sensitive physics equipment to its home on the 4850 Level of Sanford Lab.

    But before that can happen, there’s some work that needs to be done to ensure the experiment remains free of backgrounds that could interfere with the results. That’s where Dr. Richard Schnee and a team from the South Dakota School of Mines & Technology come in. Schnee, who is head of the physics department at SD Mines and a collaborator with LZ, heads up the SD Mines team that designed a radon reduction system for the experiment.

    “Our detectors need very low levels of radon,” Schnee said. While the radon levels at the 4850 Level are safe for humans, they are too high for sensitive experiments like LZ, which go deep underground to escape cosmic radiation, Schnee explained. “We will take regular air from the facility and the systems will reduce the levels by 1,000 times or more.”

    LZ, a second-generation dark matter experiment, will continue the search for WIMPs—weakly interacting massive particles—begun by its much smaller predecessor LUX (Large Underground Xenon), which was named the most sensitive of its kind in 2013 and again in 2016.

    U Washington Large Underground Xenon at SURF, Lead, SD, USA

    LZ will hold 10 tons of liquid xenon, making it approximately 30 times larger and 100 times more sensitive than LUX.

    LZ is designed so that if a dark matter particle collides with a xenon atom, it will produce a flash of light followed by a second flash of light when the electrons produced in the liquid xenon chamber drift to its top. The light pulses, picked up by a series of about 500 photo multiplier tubes lining the massive tank—over four times more than were installed in LUX—will carry the telltale fingerprint of the particles that created them.

    Additionally, LZ will include a component not present in LUX—nine acrylic tanks filled with a liquid scintillator will form a veto system around the experiment, allowing researchers to better recognize a WIMP if they see one.

    The system designed by the SD Mines team focuses specifically on filtering out radon particles to produce the ultra-pure air needed for the acrylic tanks and other components of LZ located in the same water tank that held LUX. The team is also helping ensure the parts used to build the experiments are relatively free of radon.

    “The real problem for these super sensitive dark mater detectors are the radon daughters that are radioactive,” Schnee said. Even miniscule amounts of radioactive particles could contaminate and throw off the experiments—so the work of Schnee and his team is critical.

    “We are very excited to have SD Mines as a partner in producing a major component for LZ, a world-leading dark matter experiment,” said Mike Headley, executive director the South Dakota Science and Technology Authority.

    LZ is in a global race to discover dark matter. One competitor, SuperCDMS (Cryogenic Dark Matter Search), which will be located at SNOLab in Canada, is using germanium to search for WIMPs. And SD Mines is designing a radon reduction system for that experiment as well, Schnee said.

    SNOLAB, a Canadian underground physics laboratory at a depth of 2 km in Vale’s Creighton nickel mine in Sudbury, Ontario


    SNOLAB, Sudbury, Ontario, Canada.

    LBNL SuperCDMS, at SNOLAB (Vale Inco Mine, Sudbury, Canada)


    LBNL SuperCDMS, at SNOLAB (Vale Inco Mine, Sudbury, Canada)


    LBNL Super CDMS, at SNOLAB (Vale Inco Mine, Sudbury, Canada)

    SNOLab is the deepest underground laboratory in North America at 6,800 feet deep. Although the experiments are competitors, Schnee said they actually complement each other as they are searching for dark matter in different areas. To use a metaphor, if dark matter were a lost child in a large cornfield, LZ would be looking in one part of the field, and SuperCDMS would be looking in another. Both projects will begin operations in the early 2020s. SD Mines is one of 26 institutions working on the SuperCDMS and one of 37 institutions working on LZ.

    Headley attributes the expanding role of SD Mines’ in research at Sanford Lab and other international experiments to the Ph.D. program in South Dakota. SD Mines and the University of South Dakota offer a joint program and each graduated Ph.D. students in 2017.

    “With the implementation of the Ph.D. program in 2012, South Dakota institutions are attracting high-quality professors and students,” Headley said. “It’s impressive to see them deliver such an important component for LZ, but also on other experiments around the world.”

    To learn more about the physics program at SD Mines, go to http://www.sdsmt.edu; to read the full press release about SD Mines work on LZ and SuperCDMS, go to https://www.sdsmt.edu/Research/.

    You can learn more about LZ at http://lz.lbl.gov/detector/and SCDMS at https://supercdms.slac.stanford.edu.

    See the full article here .

    Please help promote STEM in your local schools.
    stem

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.
    LUX/Dark matter experiment at SURFLUX/Dark matter experiment at SURF

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    Fermilab LBNE
    LBNE

     
  • richardmitnick 10:42 am on April 4, 2018 Permalink | Reply
    Tags: , , , SURF - Sanford Underground Research Facility,   

    From SURF: “The MAJORANA DEMONSTRATOR” 

    SURF logo
    Sanford Underground levels

    Sanford Underground Research facility

    4.4.18
    No writer credit found

    U Washington Majorana Demonstrator Experiment at SURF

    1

    In 1937, Italian physicist Ettore Majorana hypothesized the Majorana fermion—a particle that could be its own antiparticle. If the theory proves true, it could unlock one of the greatest mysteries of the universe: why there is more matter than anti-matter—and why we exist at all.

    The MAJORANA DEMONSTRATOR Project, located deep underground at Sanford Lab, uses 44 kilograms of natural and enriched germanium crystals placed inside two cryostats in the hopes of finding this particle, a rare form of decay called neutrinoless double-beta decay. The experiment is called a demonstrator because the collaboration needed to prove it could create a quiet enough environment to find what it is looking for. A unique shield and 4,850 feet of rock help block cosmic and terrestrial radiation from this highly sensitive experiment.

    Now, after years of planning, designing and building the experiment, the collaboration has something to celebrate. In a study published in March 2018, the Majorana Collaboration showed it can shield a sensitive, scalable, 44-kilogram germanium detector from background radioactivity, which is critical to developing a proposed ton-scale experiment.

    “We know that we created an environment that is incredibly clean and quiet,” said Vincent Guiseppe, a co-spokesperson for the Majorana Demonstrator and an assistant professor of physics and astronomy at the University of South Carolina. “These results give us a much better understanding of the always-elusive neutrino and how it shaped the universe.”

    Guiseppe credits the results to the design of the experiment and the stringent cleanliness protocols put in place.

    3

    Growing copper

    In its finished form, Majorana is made up of more than 6,600 pounds of copper and more than 5,000 parts and pieces—some as tiny as the head of a pen; others measuring 2 feet square—nearly all of which were made from ultra-pure copper grown on the 4850 Level of Sanford Lab. The first step to building this highly sensitive experiment? Electroforming the purest copper in the world. It’s a simple, but slow process.

    Copper nuggets were dissolved in acid baths to remove trace impurities. Then, an electric current was added causing the copper atoms to adhere to a stainless steel cylinder called a mandrel, growing to a thickness of about 5/8 of an inch over a 14 month-period—approximately 33 millionth of a meter per day. Once electroformed the copper was taken to the world’s deepest clean machine shop a kilometer away in the Davis Campus.

    “Majorana went to great lengths to ensure the materials used in the experiment would not contribute to backgrounds,” said Cabot-Ann Christofferson, chemist for the Majorana and the South Dakota School of Mines & Technology. “The copper is such an integral part of low-background experiments, that it will be one of the technologies used going forward.”

    4

    Precision machining

    Every part of the Majorana experiment was machined underground to minimize exposure to cosmic radiation. And every part had to fit perfectly to ensure the experiment runs correctly.

    “If it’s just one or two thousandths of an inch off, it’s not close enough,” said project engineer Matthew Busch of Duke University/Triangle University Nuclear Laboratories.

    Inside the clean machine shop, machinist Randy Hughes used a lathe to machine the outer layer of the copper, a slitting saw to cut the copper cylinders in half, a 70-ton press to flatten the copper pieces and a wire EDM—electrical discharge machine— to vaporize copper as it cut hundreds of tiny identical parts. If things didn’t fit right, they had to get creative, Busch said.

    “We couldn’t buy more tools because there was no more room. So, we modified the tool or the design if things didn’t fit the way we needed them to,” Busch said.

    The science

    The Majorana Demonstrator collaboration believes germanium is the best material to detect neutrinoless double-beta decay. During the decay process, two electrons are ejected in the germanium. The electrons ionize the germanium, creating a very specific amount of electric charge that can be measured with special equipment. If they discover it, it could tell us why matter—planets, stars, humans and everything else in the universe—exists.

    The process is so rare, the slightest interference could render the experiment useless. That’s why it was built deep underground, using electroformed copper that never saw daylight. Still, that wasn’t enough. To achieve the quietest background possible, they built the experiment inside a glovebox in a class-1,000 cleanroom, then surrounded it with a six-layered shield designed to protect it from any stray cosmic or terrestrial radiation.

    5

    Assembling Majorana

    Having the world’s cleanest copper isn’t enough if you can’t keep your experiment clean. That’s why the experiment was assembled deep underground in a nitrogen-filled glovebox housed in a class-1,000 cleanroom.

    Before entering the cleanroom, scientists donned cleanroom garb—Tyvek suits, masks, hoods, special shoe coverings and two pairs of gloves. Once inside the cleanroom, they replaced the outer glove with a new one then headed to the glovebox where they placed their already gloved hands inside huge black rubber gloves covered with another pair of latex gloves. This was done to protect the experiment, not the researchers. Once fully garbed, they began assembling the strings of detectors that reside inside two cryostats. Each cryostat contains about seven strings of 4-5 germanium crystals.

    It was challenging and delicate work, involving hundreds of custom-made parts for each string. And everything had to be assembled in a particular order. Each detector is encapsulated in copper then stacked in strings and tied together with cables—most of which are no thicker than a strand of hair—and attached to the cryostat. Many of the parts connect everything to a data collection system inside the cleanroom.

    “It’s a detailed, highly specialized procedure that came out of many revisions of the experiment,” said Tom Gillis, a graduate student at the University of South Carolina.

    6

    Shields are like onions

    In the movie “Shrek,” the title character tells Donkey, “Ogres are like onions! … They have layers.” The same can be said of Majorana’s six-layered shield, said Guiseppe who oversaw the construction of the shield.

    Designed to keep out as much radiation as possible, each layer is cleaner as it gets closer to the heart of the experiment. The outer layer is polyethylene, which slows neutrons. The second layer is scintillating plastic, which detects muons. The third layer is an aluminum radon enclosure that keeps out room air, while the fourth layer is made of lead bricks to block gamma rays. Finally, a rectangular box of ultrapure commercial copper surrounds the electroformed copper shield.

    But the most critical layer—the one closest to the experiment and the last to be installed—is made of electroformed copper: two five-sided boxes made of 40, 1/2-inch thick plates that, together, weigh about a ton. Majorana began collecting data long before the shield was completed and released positive results as early as 2015.

    “Just two months after installing the electroformed shield, we saw a huge difference,” said Guiseppe. “It was like night and day.”

    5,500 parts
    Ultra-pure copper
    5,500 electroformed copper parts were used in the experiment, all were machined underground.

    144,500 pounds
    Total weight of the shield

    The breakdown:
    Lead: 108,000 pounds
    Poly shield: 31,000 pounds
    Copper shielding: 5,500 pounds

    The Majorana Demonstrator was designed to lay the groundwork for a ton-scale experiment by demonstrating that backgrounds can be low enough to justify building a larger detector.

    “When we started this project, there were many risks and no guarantee that we could achieve our goals, as we were pushing into unexplored territory,” said John Wilkerson, principal investigator of the experiment and the John R. and Louise S. Parker Distinguished Professor in the Department of Physics and Astronomy at the University of North Carolina.

    “It’s very exciting to see these world-leading results. We’ve achieved the best energy resolution of any double-beta decay experiment and are among the lowest backgrounds ever seen.”

    With 30 times more germanium than the current experiment, the ton-scale, called LEGEND (Large Enriched Germanium Experiment for Neutrinoless Double-Beta Decay), could more easily see the rare decay it seeks. Abstract on Legend.

    The plan is to partner with GERDA (GERmanium Detector Array), a sister experiment located at Gran Sasso in Italy, and other researchers in the field.

    MPG GERmanium Detector Array (GERDA) at Gran Sasso, Italy

    Gran Sasso LABORATORI NAZIONALI del GRAN SASSO, located in the Abruzzo region of central Italy

    “This merger leverages public investments by combining the best technologies of each,” said LEGEND Collaboration co-spokesperson Steve Elliott of Los Alamos National Laboratory.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.
    LUX/Dark matter experiment at SURFLUX/Dark matter experiment at SURF

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    Fermilab LBNE
    LBNE

     
  • richardmitnick 10:24 am on April 2, 2018 Permalink | Reply
    Tags: , , , , , , SURF - Sanford Underground Research Facility,   

    From CNN: “Why the universe shouldn’t exist at all” 

    1
    CNN

    April 1, 2018

    FNAL’s Don Lincoln

    Don Lincoln, a senior physicist at Fermilab, does research using the Large Hadron Collider. He is the author of The Large Hadron Collider: The Extraordinary Story of the Higgs Boson and Other Stuff That Will Blow Your Mind, and produces a series of science education videos. Follow him on Facebook. The opinions expressed in this commentary are his.

    Why is there something, rather than nothing?” could be the oldest and deepest question in all of metaphysics. Long exclusively the province of philosophy, in recent years this question has become one that can be addressed by scientific methods. What’s more, a new scientific advance has made it more likely that we will finally be able to answer this cosmic conundrum. This is a big deal, because the simplest scientific answer to that question is “We shouldn’t exist at all.”

    Obviously, we know that there must be something, because we’re here. If there were nothing, we couldn’t ask the question. But why? Why is there something? Why is the universe not a featureless void? Why does our universe have matter and not only energy? It might seem surprising, but given our current theories and measurements, science cannot answer those questions.

    However, give some scientists 65 pounds of a rare isotope of germanium, cool it to temperatures cold enough to liquify air, and place their equipment nearly a mile underground in an abandoned gold mine, and you’ll have the beginnings of an answer. Their project is called the Majorana Demonstrator and it is located at the Sanford Underground Research Facility, near Lead, South Dakota.

    U Washington Majorana Demonstrator Experiment at SURF

    Science paper om Majorana Demonstrator project
    Initial Results from the Majorana Demonstrator
    Journal of Physics: Conference Series

    SURF-Sanford Underground Research Facility


    SURF Above Ground

    SURF Out with the Old


    SURF An Empty Slate


    SURF Carving New Space


    SURF Shotcreting


    SURF Bolting and Wire Mesh


    SURF Outfitting Begins


    SURF circular wooden frame was built to form a concrete ring to hold the 72,000-gallon (272,549 liters) water tank that would house the LUX dark matter detector


    SURF LUX water tank was transported in pieces and welded together in the Davis Cavern


    SURF Ground Support


    SURF Dedicated to Science


    SURF Building a Ship in a Bottle


    SURF Tight Spaces


    SURF Ready for Science


    SURF Entrance Before Outfitting


    SURF Entrance After Outfitting


    SURF Common Corridior


    SURF Davis


    SURF Davis A World Class Site


    SURF Davis a Lab Site


    SURF DUNE LBNF Caverns at Sanford Lab


    FNAL DUNE Argon tank at SURF


    U Washington LUX Xenon experiment at SURF


    SURF Before Majorana


    U Washington Majorana Demonstrator Experiment at SURF

    To grasp why science has trouble explaining why matter exists — and to understand the scientific achievement of Majorana — we must first know a few simple things. First, our universe is made exclusively of matter; you, me, the Earth, even distant galaxies. All of it is matter.

    However, our best theory for explaining the behavior of the matter and energy of the universe contradicts the realities that we observe in the universe all around us. This theory, called the Standard Model, says that the matter of the universe should be accompanied by an identical amount of antimatter, which, as its name suggests, is a substance antagonistic to matter. Combine equal amounts of matter and antimatter and it will convert into energy.

    And the street goes both ways: Enough energy can convert into matter and antimatter. (Fun fact: Combining a paper clip’s worth of matter and antimatter will result in the same energy released in the atomic explosion at Hiroshima. Don’t worry though; since antimatter’s discovery in 1931, we have only been able to isolate enough of it to make about 10 pots of coffee.)

    An enigma about the relative amounts of matter and antimatter in the universe arises when we think about how the universe came to be. Modern cosmology says the universe began in an unimaginable Big Bang — an explosion of energy. In this theory, equal amounts of matter and antimatter should have resulted.

    So how is our universe made exclusively of matter? Where did the antimatter go?

    The simplest answer is that we don’t know. In fact, it remains one of the biggest unanswered problems of modern physics.

    Just because the question of missing antimatter is unanswered doesn’t mean that scientists are completely clueless. Beginning in 1964 and continuing through to the present day, physicists have studied the problem and we have found out that early in the universe there was a slight asymmetry in the laws of nature that treated matter and antimatter differently.

    Very approximately, for every billion antimatter subatomic particles that were made in the Big Bang, there were a billion-and-one matter particles. The billion matter and antimatter particles were annihilated, leaving the small amount of leftover matter (the “one”) that went on to make up the universe we see around us. This is accepted science.

    However, we don’t know the process whereby the asymmetry in the laws of the universe arose. One possible explanation revolves around a class of subatomic particles called leptons.

    The most well-known of the leptons is the familiar electron, found around atoms. However, a less known lepton is called the neutrino. Neutrinos are emitted in a particular kind of nuclear radiation, called beta decay. Beta decay occurs when a neutron in an atom decays into a proton, an electron, and a neutrino.

    Neutrinos are fascinating particles. They interact extremely weakly; a steady barrage of neutrinos from the nuclear reactions in the sun pass through the entire Earth essentially without interacting. Because they interact so little, they are very difficult to detect and study. And that means that there are properties of neutrinos that we still don’t understand.

    Still a mystery to scientists is whether there is a difference between neutrino matter and neutrino antimatter. While we know that both exist, we don’t know if they are different subatomic particles or if they are the same thing. That’s a heavy thought, so perhaps an analogy will help.

    Imagine you have a set of twins, with each twin standing in for the matter and antimatter neutrinos. If the twins are fraternal, you can tell them apart, but if they are identical, you can’t. Essentially, we don’t know which kind of twins the neutrino matter/antimatter pair are.

    If neutrinos are their own antimatter particle, it would be an enormous clue in the mystery of the missing antimatter. So, naturally, scientists are working to figure this out.

    The way they do that is to look first for a very rare form of beta decay, called double beta decay. That’s when two neutrons in the nucleus of an atom simultaneously decay. In this process, two neutrinos are emitted. Scientists have observed this kind of decay.

    However, if neutrinos are their own antiparticle, an even rarer thing can occur called “neutrinoless double beta decay.” In this process, the neutrinos are absorbed before they get outside of the nucleus. In this case, no neutrinos are emitted. This process has not been observed and this is what scientists are looking for. The observation of a single, unambiguous neutrinoless double beta decay would show that matter and antimatter neutrinos were the same.

    If indeed neutrinoless double beta decay exists, it’s very hard to detect and it’s important that scientists can discriminate between the many types of radioactive decay that mimic that of a neutrino. This requires the design and construction of very precise detectors.

    So that’s what the Majorana Demonstrator scientists achieved. They developed the technology necessary to make this very difficult differentiation. This demonstration paints a way forward for a follow-up experiment that can, once and for all, answer the question of whether matter and antimatter neutrinos are the same or different. And, with that information in hand, it might be possible to understand why our universe is made only of matter.

    For millennia, introspective thinkers have pondered the great questions of existence. Why are we here? Why is the universe the way it is? Do things have to be this way? With this advance, scientists have taken a step forward in answering these timeless questions.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

     
  • richardmitnick 1:05 pm on March 26, 2018 Permalink | Reply
    Tags: Gan Sasso Laboratory, , , , , SURF - Sanford Underground Research Facility   

    From LBNL: “Underground Neutrino Experiment Could Provide Greater Clarity on Matter-Antimatter Imbalance” 

    Berkeley Logo

    Berkeley Lab

    March 26, 2018
    Glenn Roberts Jr.
    geroberts@lbl.gov
    (510) 486-5582

    1
    Stacks of lead bricks (gray) and a copper chamber make up the innermost layers of the MAJORANA DEMONSTRATOR’s multilayered shield. The shielding materials weigh about 57 tons. (Credit: Matthew Kapust/Sanford Underground Research Facility)

    By Dawn Levy

    If equal amounts of matter and antimatter had formed in the Big Bang more than 13 billion years ago, one would have annihilated the other upon meeting, and today’s universe would be full of energy – but no matter – to form stars, planets, and life.

    So the very existence of matter suggests something is wrong with Standard Model equations describing symmetry between subatomic particles and their antiparticles.

    In a study published March 26 in Physical Review Letters, nuclear physicists from the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and other institutions working on the MAJORANA DEMONSTRATOR experiment have shown that they can shield a sensitive, scalable, 44-kilogram germanium detector array from background radioactivity. The experiment is led by Oak Ridge National Laboratory (ORNL).

    This accomplishment is critical to developing and proposing a much larger future experiment – with approximately a ton of detectors – to study the nature of neutrinos. These electrically neutral particles interact only weakly with matter, making their detection exceedingly difficult.

    “We’re trying to figure out the really basic question: Are neutrinos their own antiparticles?” said Alan Poon, the detector group leader for the MAJORANA DEMONSTRATOR. “Another goal is to demonstrate that we can actually build a bigger detector.”

    John Wilkerson, a nuclear physicist from ORNL and the University of North Carolina at Chapel Hill who led the construction of the experiment, said, “The excess of matter over antimatter is one of the most compelling mysteries in science.” The collaboration involves 129 researchers from 27 institutions and 6 nations.

    The experiment seeks to observe a phenomenon in atomic nuclei called “neutrinoless double-beta decay.” This observation would prove that neutrinos are their own antiparticles. The existence of this type of decay would have “profound implications for our understanding of the universe,” Wilkerson added. These measurements could also provide a better understanding of neutrino mass.

    Berkeley Lab was responsible for fashioning a specially prepared form of germanium crystals into working detectors for the experiment, and building the detector array’s front-end electronics that sit very close to the detectors. Decades ago, Berkeley Lab pioneered the technique for making high-purity germanium detectors and invented the type of germanium detectors that were adapted for the MAJORANA DEMONSTRATOR experiment.

    Poon noted that the electronics and other components surrounding the detectors are made of ultrapure materials to reduce background “noise,” or unwanted signals from naturally occurring radiation. “They are the lowest-radioactivity front-end electronics in the world,” he said.

    3
    A researcher works on the delicate wiring of a MAJORANA cryostat, which is like a thermos under vacuum that chills the detectors at the heart of the experiment. The experiment’s two cryostats each house 29 germanium detectors. Berkeley Lab fashioned a specialized form of germanium crystals into working detectors for the experiment. (Credit: Matthew Kapust/Sanford Underground Research Facility)

    The collaboration also used Berkeley Lab’s National Energy Research Scientific Computing Center (NERSC) to process and analyze data from the experiment. NERSC will be the principal site for data processing and analyses throughout the course of the experiment.

    NERSC Cray XC40 Cori II supercomputer

    LBL NERSC Cray XC30 Edison supercomputer


    The Genepool system is a cluster dedicated to the DOE Joint Genome Institute’s computing needs. Denovo is a smaller test system for Genepool that is primarily used by NERSC staff to test new system configurations and software.

    NERSC PDSF


    PDSF is a networked distributed computing cluster designed primarily to meet the detector simulation and data analysis requirements of physics, astrophysics and nuclear science collaborations.

    In a 2015 report of the U.S. Nuclear Science Advisory Committee to the Department of Energy and the National Science Foundation, a U.S.-led ton-scale experiment to detect neutrinoless double-beta decay was deemed a top priority for the nuclear physics community. Nearly a dozen experiments have sought neutrinoless double-beta decay, and as many future experiments have been proposed. One of their keys to success depends on avoiding background radiation that could mimic the signal of neutrinoless double-beta decay.

    That was the key accomplishment of the MAJORANA DEMONSTRATOR. Its implementation was completed in South Dakota in September 2016, nearly a mile underground at the Sanford Underground Research Facility.

    SURF-Sanford Underground Research Facility


    SURF Above Ground

    SURF Out with the Old


    SURF An Empty Slate


    SURF Carving New Space


    SURF Shotcreting


    SURF Bolting and Wire Mesh


    SURF Outfitting Begins


    SURF circular wooden frame was built to form a concrete ring to hold the 72,000-gallon (272,549 liters) water tank that would house the LUX dark matter detector


    SURF LUX water tank was transported in pieces and welded together in the Davis Cavern


    SURF Ground Support


    SURF Dedicated to Science


    SURF Building a Ship in a Bottle


    SURF Tight Spaces


    SURF Ready for Science


    SURF Entrance Before Outfitting


    SURF Entrance After Outfitting


    SURF Common Corridior


    SURF Davis


    SURF Davis A World Class Site


    SURF Davis a Lab Site


    SURF DUNE LBNF Caverns at Sanford Lab


    FNAL DUNE Argon tank at SURF


    U Washington LUX Xenon experiment at SURF


    SURF Before Majorana


    U Washington Majorana Demonstrator Experiment at SURF

    Siting the experiment under nearly a mile of rock was the first of many steps collaborators took to reduce interference from background levels of radiation. Other steps included a cryostat made of the world’s purest copper and a complex six-layer shield to eliminate interference from cosmic rays, radon, dust, fingerprints, and naturally occurring radioactive isotopes.

    “If you’re going to search for neutrinoless double-beta decay, it’s critical to know that radioactive background is not going to overwhelm the signal you seek,” said ORNL’s David Radford, a lead scientist in the experiment.

    There are many ways for an atomic nucleus to fall apart. A common decay mode happens when a neutron inside the nucleus emits an electron (called a “beta”) and an antineutrino to become a proton. In two-neutrino double-beta decay, two neutrons decay simultaneously to produce two protons, two electrons, and two antineutrinos. This process has been observed. The MAJORANA Collaboration seeks evidence for a similar decay process that has never been observed, in which no neutrinos are emitted.

    Conservation of the number of leptons – subatomic particles such as electrons, muons, or neutrinos that do not take part in strong interactions – was written into the Standard Model of particle physics. “There is no really good reason for this, just the observation that it appears that’s the case,” said Radford. “But if lepton number is not conserved, when added to processes that we think happened during the very early universe, that could help explain why there is more matter than antimatter.”

    Many theorists believe that the lepton number is not conserved: that the neutrino and the antineutrino – which were assumed to have opposite lepton numbers – are really the same particle spinning in different ways. Italian physicist Ettore Majorana introduced that concept in 1937, predicting the existence of particles that are their own antiparticles.

    The MAJORANA DEMONSTRATOR uses germanium crystals as both the source of double-beta decay and the means to detect it. Germanium-76 (Ge-76) decays to become selenium-76, which has a smaller mass. When germanium decays, mass gets converted to energy that is carried away by the electrons and the antineutrinos. “If all that energy goes to the electrons, then none is left for neutrinos,” Radford said. “That’s a clear identifier that we found the event we’re looking for.”

    The scientists distinguish two-neutrino vs. neutrinoless decay modes by their energy signatures. “It’s a common misconception that our experiments detect neutrinos,” said Jason Detwiler of the University of Washington, who is a co-spokesperson for the MAJORANA Collaboration and a former Glenn T. Seaborg Postdoctoral Fellow at Berkeley Lab. “It’s almost comical to say it, but we are searching for the absence of neutrinos. In the neutrinoless decay, the released energy is always a particular value. In the two-neutrino version, the released energy varies but is always smaller than it is for neutrinoless double-beta decay.”

    The MAJORANA DEMONSTRATOR has shown that the neutrinoless double-beta decay half-life of Ge-76 is at least 1025 years – 15 orders of magnitude longer than the age of the universe. So it’s impossible to wait for a single germanium nucleus to decay. “We get around the impossibility of watching one nucleus for a long time by instead watching on the order of 1026 nuclei for a shorter amount of time,” explained co-spokesperson Vincente Guiseppe of the University of South Carolina.

    Chances of spotting a neutrinoless double-beta decay in Ge-76 are rare – no more than 1 for every 100,000 two-neutrino double-beta decays, Guiseppe said. Using detectors containing large amounts of germanium atoms increases the probability of spotting the rare decays. Between June 2015 and March 2017, the scientists observed no events with the energy profile of neutrinoless decay, the process that has not yet been observed. (This was expected given the small number of germanium nuclei in the detector). However, they were encouraged to see many events with the energy profile of two-neutrino decays, verifying the detector could spot the decay process that has been observed.

    4
    Strings of MAJORANA detectors are shown here. Each cylindrical “string” features stacks of germanium crystals separated by ultrapure copper components. (Credit: Matthew Kapust/Sanford Underground Research Facility).

    The MAJORANA Collaboration’s results coincide with new results from a competing experiment in Italy called GERDA (for GERmanium Detector Array), which takes a complementary approach to studying the same phenomenon.

    MPG GERmanium Detector Array (GERDA) at Gran Sasso, Italy

    Gran Sasso LABORATORI NAZIONALI del GRAN SASSO, located in L’Aquila, Italy

    “The MAJORANA DEMONSTRATOR and GERDA together have the lowest background of any neutrinoless double-beta decay experiment,” said Radford.

    The DEMONSTRATOR was designed to lay the groundwork for a ton-scale experiment by demonstrating that backgrounds can be low enough to justify building a larger detector. Just as bigger telescopes collect more light and enable viewing of fainter objects, increasing the mass of germanium allows for a greater probability of observing the rare decay. With 30 times more germanium than the current experiment, the planned one-ton experiment would be able to spot the neutrinoless double-beta decay of just one germanium nucleus per year.

    The MAJORANA DEMONSTRATOR is planned to continue taking data for two or three years. Meanwhile, a merger with GERDA is in the works to develop a possible one-ton detector called LEGEND, planned to be built in stages at an as-yet-to-be-determined site.

    Poon said, “Our data demonstrates that the background signals are low enough that we can actually build a bigger detector.”

    LEGEND 200, the LEGEND demonstrator, represents a step toward a possible future ton-scale experiment that will be a combination of GERDA, MAJORANA, and new detectors. Scientists hope to start on the first stage of LEGEND 200 by 2021. A ton-scale experiment, LEGEND 1000, would be the next stage, if approved.

    “This merger leverages public investments in the MAJORANA DEMONSTRATOR and GERDA by combining the best technologies of each,” said LEGEND Collaboration co-spokesperson (and long-time MAJORANA spokesperson up until last year) Steve Elliott of Los Alamos National Laboratory.

    Funding came from the U.S. Department of Energy Office of Science and the U.S. National Science Foundation. The Russian Foundation for Basic Research and Laboratory Directed Research and Development programs of DOE’s Los Alamos, Lawrence Berkeley, and Pacific Northwest national laboratories provided support. The research used resources of the Oak Ridge Leadership Computing Facility and NERSC, which are DOE Office of Science User Facilities at ORNL and Berkeley Lab, respectively. Sanford Underground Research Facility hosted and collaborated on the experiment.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    A U.S. Department of Energy National Laboratory Operated by the University of California

    University of California Seal

    DOE Seal

     
  • richardmitnick 2:25 pm on January 30, 2018 Permalink | Reply
    Tags: , , LUX-ZEPLIN (LZ) a next-generation dark matter detector, , SURF - Sanford Underground Research Facility   

    From SURF: “Renovations begin on Davis Cavern” 

    SURF logo
    Sanford Underground levels

    Sanford Underground Research facility

    1
    This image depicts the renovations that will take place in preparation for the installation of LZ, the second-generation dark matter experiment, at Sanford Lab.
    LZ Collaboration.

    January 29, 2018
    Constance Walter

    This week marks another milestone in the search for dark matter at Sanford Lab. Renovations to the Davis Cavern, which housed the Large Underground Xenon (LUX) experiment from 2012-2016, will begin, paving the way for installation of LZ, or LUX-ZEPLIN.

    “Planning for this renovation started several years ago—even before LUX was built,” said John Keefner, underground operations engineer. “Now, we’re finally at the point where we can begin to refit the cavern and existing infrastructure to allow for the installation of LZ.”

    LZ, a second-generation dark matter experiment replaces LUX, which was named the most sensitive of its kind in 2013. LZ will hold 10 tons of liquid xenon, making it approximately 30 times larger and 100 times more sensitive than its smaller cousin.

    The Davis Cavern renovation project includes removing an existing cleanroom, tearing down a wall between two former low-background counting rooms, installing a new hoist system, building a work deck and modifying the water tank itself to accommodate the larger cryostat. Additionally, renovations include a radon reduction room and a xenon storage room.

    But just on the other side of the Davis Cavern, through a double door, is the common corridor—and the entrance to the Majorana Demonstrator Project, an incredibly sensitive experiment that requires an extremely clean environment.

    U Washington Majorana Demonstrator Experiment at SURF

    “We’re setting up a dividing line between the existing science space and the construction zone,” Keefner said. “We’ve taken several precautions to ensure dust and other particulates can’t get into the Majorana cleanroom.”

    Some of those measure include putting up tents at the door between the Davis Cavern and common corridor. Additionally, construction crews will enter the Davis Cavern through the decline drift—the same drift Ray Davis would have used to reach his solar neutrino experiment, which ran for nearly 30 years in the Davis Cavern.

    When all renovations are complete, including updates to plumbing, electrical and ventilations systems, scientists will begin installing the experiment itself. Renovations to the cavern will be done by Ainsworth Benning of Spearfish, the same company that outfitted the entire Davis Campus beginning in 2010.

    “This project is important to LZ and to getting it done in a timely fashion is required to keep our project scientifically competitive,” said Jeff Cherwinka, LZ chief engineer. “The help we’ve received from SURF is instrumental in helping make our project a success and it is going very well so far.”

    Projects inside the Davis Cavern

    Cleanroom demolition: This space is located on the upper level of the Davis Cavern. It will be removed to accommodate additional computer racks and control systems for LZ. It will also allow the LZ collaboration to raise and lower equipment (the grating on the floor can be removed) to a work deck that will be constructed.

    Work deck: This multi-purpose level will be built above the water tank and below the upper level of the cavern. It will allow for easier access to the breakout box, which holds the experiment apparatus—things like detector cables and electrical wires that connect to systems within the tank. The work deck will also serve as additional storage.

    Low-background counting rooms: A wall between the two rooms on the lower level of the Davis Cavern will be removed to make way for four big compressors that will be used for emergency xenon recovery. In the event of a power outage, a backup generator will keep everything, including the control systems, working.

    “In an emergency, the compressors will fire up and send the xenon back into the bottles safely,” Keefner said.

    Updated hoist system: A critical feature in the Davis Cavern is the hoist system that was used to lower the LUX cryostat into the water tank. Renovations include updating the current hoist system. “We’re relocating the two hoist beams that run through the Davis Cavern and installing one long beam that spans the length of the cavern. This will give us more flexibility as we move materials and the much bigger cryostat for LZ into the tank,” Keefner said.

    Water tank updates: When construction in the Davis Cavern is complete, modifications can begin on the water tank, itself. Updates include new ports and access points so new instrumentation can be installed inside the tank. “One of the coolest things we’re doing is adding additional shielding on top of the tank,” Keefner said. Several 3-inch moveable steel plates, each weighing several tons, will keep out stray particles, allowing the experiment to reach its desired sensitivity levels.

    Projects outside the Davis Cavern

    Radon reduction: The South Dakota School of Mines & Technology designed a radon reduction system that will pump low-radon filtered air into the Davis Cavern, allowing LZ researchers to construct their experiment in a clean environment. The system will be housed in an alcove just outside of the clean lab spaces in the Davis Campus.

    Xenon storage: Sanford Lab crews recently completed subgrade excavation in a cutout that sits at the top of the decline drift, which gives access to the back door of the Davis Cavern. Next, a 4-inch concrete floor will be poured, making it level with the floor of the drift. As xenon tanks are brought in, crews will be able to slide them into the storage area, which will save time and mitigate safety concerns associated with having to lift heavy tanks into the area.

    The LZ experiment

    2

    LZ (LUX-ZEPLIN) will be 30 times larger and 100 times more sensitive than its predecessor, the Large Underground Xenon experiment.

    The race to build the most sensitive direct-detection dark matter experiment got a bit more competitive with the Department of Energy’s approval of a key construction milestone on Feb.9.

    LUX-ZEPLIN (LZ), a next-generation dark matter detector, will replace the Large Underground Xenon (LUX) experiment. The Critical Decision 3 (CD-3) approval puts LZ on track to begin its deep-underground hunt for theoretical particles known as WIMPs in 2020.

    “We got a strong endorsement to move forward quickly and to be the first to complete the next-generation dark matter detector,” said Murdock “Gil” Gilchriese, LZ project director and a physicist at Lawrence Berkeley National Laboratory, the lead lab for the project. The LZ collaboration includes approximately 220 participating scientists and engineers representing 38 institutions around the world.

    The fast-moving schedule allows the U.S. to remain competitive with similar next-generation dark matter experiments planned in Italy and China.

    WIMPs (weakly interacting massive particles) are among the top prospects for explaining dark matter, which has only been observed through its gravitational effects on galaxies and clusters of galaxies. Believed to make up nearly 80 percent of all the matter in the universe, this “missing mass” is considered to be one of the most pressing questions in particle physics.

    LZ will be at least 100 times more sensitive to finding signals from dark matter particles than its predecessor, the Large Underground Xenon experiment (LUX), which was decommissed last year to make way for LZ. The new experiment will use 10 metric tons of ultra-purified liquid xenon, to tease out possible dark matter signals. Xenon, in its gas form, is one of the rarest elements in Earth’s atmosphere.

    “The science is highly compelling, so it’s being pursued by physicists all over the world,” said Carter Hall, the spokesperson for the LZ collaboration and an associate professor of physics at the University of Maryland. “It’s a friendly and healthy competition, with a major discovery possibly at stake.”

    A planned upgrade to the current XENON1T experiment at National Institute for Nuclear Physics’ Gran Sasso Laboratory (the XENONnT experiment) in Italy, and China’s plans to advance the work on PandaX-II, are also slated to be leading-edge underground experiments that will use liquid xenon as the medium to seek out a dark matter signal. Both of these projects are expected to have a similar schedule and scale to LZ, though LZ participants are aiming to achieve a higher sensitivity to dark matter than these other contenders.

    Hall noted that while WIMPs are a primary target for LZ and its competitors, LZ’s explorations into uncharted territory could lead to a variety of surprising discoveries. “People are developing all sorts of models to explain dark matter,” he said. “LZ is optimized to observe a heavy WIMP, but it’s sensitive to some less-conventional scenarios as well. It can also search for other exotic particles and rare processes.”

    LZ is designed so that if a dark matter particle collides with a xenon atom, it will produce a prompt flash of light followed by a second flash of light when the electrons produced in the liquid xenon chamber drift to its top. The light pulses, picked up by a series of about 500 light-amplifying tubes lining the massive tank—over four times more than were installed in LUX—will carry the telltale fingerprint of the particles that created them.

    Daniel Akerib and Thomas Shutt are leading the LZ team at SLAC National Accelerator Laboratory, which includes an effort to purify xenon for LZ by removing krypton, an element that is typically found in trace amounts with xenon after standard refinement processes. “We have already demonstrated the purification required for LZ and are now working on ways to further purify the xenon to extend the science reach of LZ,” Akerib said.

    SLAC and Berkeley Lab collaborators are also developing and testing hand-woven wire grids that draw out electrical signals produced by particle interactions in the liquid xenon tank. Full-size prototypes will be operated later this year at a SLAC test platform. “These tests are important to ensure that the grids don’t produce low-level electrical discharge when operated at high voltage, since the discharge could swamp a faint signal from dark matter,” said Shutt.

    Hugh Lippincott, a Wilson Fellow at Fermi National Accelerator Laboratory (Fermilab) and the physics coordinator for the LZ collaboration, said, “Alongside the effort to get the detector built and taking data as fast as we can, we’re also building up our simulation and data analysis tools so that we can understand what we’ll see when the detector turns on. We want to be ready for physics as soon as the first flash of light appears in the xenon.” Fermilab is responsible for implementing key parts of the critical system that handles, purifies, and cools the xenon.

    All of the components for LZ are painstakingly measured for naturally occurring radiation levels to account for possible false signals coming from the components themselves. A dust-filtering cleanroom is being prepared for LZ’s assembly and a radon-reduction building is under construction at the South Dakota site—radon is a naturally occurring radioactive gas that could interfere with dark matter detection. These steps are necessary to remove background signals as much as possible.

    The vessels that will surround the liquid xenon, which are the responsibility of the U.K. participants of the collaboration, are now being assembled in Italy. They will be built with the world’s most ultra-pure titanium to further reduce background noise.

    To ensure unwanted particles are not misread as dark matter signals, LZ’s liquid xenon chamber will be surrounded by another liquid-filled tank and a separate array of photomultiplier tubes that can measure other particles and largely veto false signals. Brookhaven National Laboratory is handling the production of another very pure liquid, known as a scintillator fluid, that will go into this tank

    The cleanrooms will be in place by June, Gilchriese said, and preparation of the cavern where LZ will be housed is underway at SURF. Onsite assembly and installation will begin in 2018, he added, and all of the xenon needed for the project has either already been delivered or is under contract. Xenon gas, which is costly to produce, is used in lighting, medical imaging and anesthesia, space-vehicle propulsion systems, and the electronics industry.

    “South Dakota is proud to host the LZ experiment at SURF and to contribute 80 percent of the xenon for LZ,” said Mike Headley, executive director of the South Dakota Science and Technology Authority (SDSTA) that oversees SURF. “Our facility work is underway and we’re on track to support LZ’s timeline.”

    UK scientists, who make up about one-quarter of the LZ collaboration, are contributing hardware for most subsystems. Henrique Araújo, from Imperial College London, said, “We are looking forward to seeing everything come together after a long period of design and planning.

    Kelly Hanzel, LZ project manager and a Berkeley Lab mechanical engineer, added, “We have an excellent collaboration and team of engineers who are dedicated to the science and success of the project.” The latest approval milestone, she said, “is probably the most significant step so far,” as it provides for the purchase of most of the major components in LZ’s supporting systems.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.
    LUX/Dark matter experiment at SURFLUX/Dark matter experiment at SURF

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    Fermilab LBNE
    LBNE

     
  • richardmitnick 1:49 pm on November 28, 2017 Permalink | Reply
    Tags: , , , SURF - Sanford Underground Research Facility, The Ross Shaft   

    From SURF: “The Ross Shaft” 

    SURF logo
    Sanford Underground levels

    Sanford Underground Research facility

    11.28.17
    Constance Walter
    Communications Director
    Office: 605.722.4025 • Mobile: 402-560-6116
    Sanford Underground Research Facility
    630 E. Summit St. Lead, SD 57754
    http://www.sanfordlab.org

    1

    Historical sources for this article include Steve Mitchell’s Nuggets to Neutrinos

    Historical images were provided by Black Hills Mining Museum

    Other information provided by Fermi National Accelerator Laboratory [FNAL]

    Reaching the 4850 Level is a major milestone that moves the team—and science—one step closer to a larger goal.

    For more than five years, Ross Shaft crews have been stripping out old steel and lacing, cleaning out decades of debris, adding new ground support and installing new steel to prepare the shaft for its future role in world-leading science. On Oct. 12, all that hard work paid off when the team, which worked its way down from the surface, reached a major milestone: the 4850 Level.

    “As we got closer to the station and we could see the lights off the 4850, there was a lot of excitement from the crew,” said Mike Johnson, Ross Shaft foreman. “It was like, ‘Man, we’re finally here.’”

    Mike Headley, executive director for the South Dakota Science and Technology Authority, praised the Ross Shaft team. “The Ross Shaft is critical to the future of Sanford Lab and I am incredibly proud of the hard work and dedication shown by this team.”

    Refurbishing the shaft is just one step toward a much larger goal, said Chris Mossey, Fermilab’s deputy director for LBNF.

    “Completion of the Ross Shaft renovation to the 4850 Level is critical to support construction of the Long-Baseline Neutrino Facility [LBNF]. Thanks to the Sanford Lab crews, who have worked since August 2012, to reach this significant milestone.”

    3
    A team effort. On Oct. 12, 2017, the team reached a major milestone by finishing the Ross Shaft down to the 4850-foot level. Pictured from left: Ross foreman Mike L. Johnson, infrastructure technicians Rodney Hanson, Dan James, Jerry Hinker, Dave Leatherman, Derek Lucero, Frank Gabel, Mike Mergen, Eli Atkinson, Clint Morrison, James Gregory, Will Roberts, Curtis Jones, engineering technician Kip Johnson, and infrastructure technician Kyle Ennis.

    LBNF will house the international Deep Underground Neutrino Experiment (DUNE), which will be built and operated by a collaboration of more than 1,000 scientists and engineers from 31 countries.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA


    FNAL DUNE Argon tank at SURF


    Surf-Dune/LBNF Caverns at Sanford

    Fermilab will shoot a beam of neutrinos 800 miles through the earth from Fermilab to massive particle detectors deep underground at Sanford Lab’s 4850 Level.

    When complete, the Fermilab-hosted LBNF/DUNE project will be the largest experiment ever built in the United States to study the properties of mysterious particles called neutrinos. Unlocking the mysteries of these particles could help explain more about how the universe works and why matter exists at all.

    But before scientists begin installing the DUNE detectors, the shaft needs to be completed to the 5000-foot level and a rock conveyor system installed to excavate the caverns that will house DUNE. Still, there’s much to celebrate.

    “This is a great accomplishment,” Johnson said. “We’ve got a team with different experiences and talents and they really worked together to reach this milestone.” But Johnson said credit goes to a lot people who have never set foot in the shaft.

    “Engineers, fabricators, vendors, electricians, procurement—everyone played a part in getting us to this point,” he said. “It takes a lot of planning and support. It was a real team effort.

    4
    A historic shaft
    The Ross Shaft was named for Homestake Superintendent Alec J. M. Ross. Construction began in 1932, with the first ore hoisted in 1934. The shaft used conventional sinking methods from 137 feet down to the tramway level. Below the tramway, pilot raises were driven at various depths to complete the shaft down to the 3050 Level. The Ross was deepened to nearly 3,800 feet in 1935 but wouldn’t reach the 5000 Level until the end of 1956.
    The Ross Shaft was designed to meet production requirements for Homestake, when the Ellison, the main production shaft, began to suffer from subsidence. The new shaft was closer to the south-plunging ore body, providing access to an additional 6.5 million tons of ore in an area known as 9 Ledge. The ore averaged 0.269 ounces of gold per ton. In 1938, the average price for an ounce of gold was $20.67.

    5
    Built for production
    The Ross Shaft is 19 feet 3 inches by 14 feet and is divided into several compartments: two skips, a cage, a counter weight, a cable compartment, a pipe compartment and an access compartment (called a manway during mining days). Two sections of the shaft were lined with concrete for added ground support: the first 308 feet of the shaft and a section between the 2900 and 4100 levels.
    Homestake built the shaft using steel sets spaced 6 feet apart. The “H” beam configuration served the purpose of gold mining very well, said Syd De Vries, project engineer for the current Ross Shaft project.
    For nearly 70 years, the Ross Shaft served as a main conduit for thousands of miners and millions of tons of ore. But debris, water and time took their toll on the structure. When the facility reopened as an underground research laboratory in 2008, the structure needed to be replaced to meet the needs of science.

    6
    The SDSTA called on G.L. Tiley and Associates to develop a design that could meet the new requirements for world-leading science. De Vries coordinated the design efforts.
    “We looked at options that included partial refurbishment. In the end, we concluded that a complete strip and equip was the right approach to take,” De Vries said. That included a more modern design that incorporated the use of hollow structural steel with set intervals of 18 feet.
    “Essentially, using these larger sets speeds up the process of steel refurbishment. But it also gives us a much stronger design than the old-style steel sets and improves the structural integrity of the shaft,” De Vries added.
    Above: Old steel sets at the 300 Level station. Note: near the top of the station, a new steel set is visible.

    7
    Two parts of the project required specialized structural design after the rehabilitation had begun to accommodate LBNF. Those areas include the brow at the 4850 Level and the spill collection area on the 5000 Level. De Vries worked closely with G.L. Tiley on the new designs—and sought the expertise of the crews on installation plans.
    “I’ve always found that when we do that, when we incorporate the expertise the crews have with respect to steel construction, we can work out any challenge and do a much better job.”
    And even with the changes in structural design, De Vries said it won’t hold up the project.
    Above: New steel at the 2000 Level station. Watch a short time-lapse of the completion of the 800 Level station below.

    800 Level station rehabilitation time lapse from Sanford Lab on Vimeo.

    8
    Meeting challenges
    The Ross Shaft is a unique construction project that included a unique set of challenges. Of particular concern? A design that allowed continued access to critical systems like the pumping stations and ventilation, while providing emergency egress.
    “From a construction point of view, it would have been easier and faster if we didn’t have to worry about ongoing access,” De Vries said. “We wouldn’t have had to shut down for shaft inspections of the lower sections or pump stations.”
    Another challenge was the Ross Pillar, a 1,200-foot concrete zone within the shaft used as additional ground support during mining days. Over the years, normal ground movement caused misalignment from the 2900 Level to the 4100 Level. In some areas, the encroaching concrete bowed the steel, making it difficult to move the cage through the shaft.
    “There was a lot of work that went into redoing this section and creating more room for the conveyances,” De Vries said. “In some places, the crews had to chip out the concrete liner with chipping hammers. They did a great job and I’m really proud of the work that was done.”
    Above: Looking down the Ross Shaft where a new set meets an old set.

    9
    Safety first
    Throughout construction of the Ross Shaft, safety has been of the utmost concern, said Johnson. “This is hard work with a lot of challenges, so safety is a big deal.”
    To mitigate risks, the team uses Job Hazard Analyses (JHAs) and follows Standard Operating Procedures (SOPs). The team starts its day with a tool-box talk. They go through the JHAs step by step and make sure they have everything they need to do the job safely.
    Recently Johnson incorporated a “mid-shift” safety talk, something he used while working in the oil fields in North Dakota. “Things can change throughout the day, so we talk about the job mid-shift to see if we need to make any adjustments.”
    “You know, we’ve got our families at home and our family at work. Taking this extra step takes time, but if it keeps people safe, it’s worth it,” Johnson said.
    Above: Technicians install ground support in the Ross Shaft.

    The future

    On Aug. 9, 2007 Fermi Research Alliance LLC, which operates Fermilab, awarded Kiewit/Alberici Joint Venture (KAJV) a contract to begin laying the groundwork for the excavation of LBNF, the facility that will support DUNE.

    Approximately 875,000 tons of rock will be removed and conveyed to the surface, then moved to the Open Cut using a rock conveyor system. When installation of LBNF and DUNE equipment begins, every component, including the massive steel beams that will be used to build the cryostats, will go down the Ross Shaft.

    “It’s kind of like building a ship in a bottle,” said Fermilab’s Chris Mossey. “We’re using a narrow shaft to move all the excavated rock up, and then all the parts and pieces of the very large cryostats and detectors for DUNE down to the 4850 level, about a mile underground.”

    Construction on pre-excavation projects, including additional work on the brow at the 4850 Level and the rock conveyor system, is expected to begin in 2018. The main excavation for LBNF/DUNE is planned for 2019 and is expected to take three years.

    Installation of the cryogenic infrastructure and the four detector modules for the experiment is expected to take about 10 years and will operate for more than 20 years. The Ross Shaft will play a role throughout, just as it did for many decades when Homestake mined for gold.

    “Now it has a new purpose,” said Sanford Lab’s Headley. “It will support world-leading science for decades to come.”

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.
    LUX/Dark matter experiment at SURFLUX/Dark matter experiment at SURF

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    Fermilab LBNE
    LBNE

     
  • richardmitnick 3:55 pm on November 21, 2017 Permalink | Reply
    Tags: , , , SURF - Sanford Underground Research Facility   

    From SURF: “LZ acrylic tanks face tight squeeze underground” 

    SURF logo
    Sanford Underground levels

    Sanford Underground Research facility

    November 20, 2017
    Constance Walter

    1
    John Keefner and Markus Horn, research scientist, move a device designed to carry acrylic tanks to the Davis Cavern. Matthew Kapust

    When designing an experiment that needs to go underground, scientists and engineers face unique logistical challenges. That’s the case with the LUX-ZEPLIN, a second-generation dark matter detector that will replace the Large Underground Xenon experiment (LUX) on the 4850 Level of Sanford Lab.

    LBNL Lux Zeplin project at SURF

    One upgrade to the design is so large, a transport exercise was devised to ensure the components would fit through the narrow corridor in the Davis Campus. LZ will be surrounded by six acrylic tanks filled with a liquid scintillator, or veto system. Four of the tanks stand 13 feet high and weigh well over a ton each—empty. Each will fit tightly around the sides of the xenon-filled cryostat The other two are circular and will fit tightly against the top and bottom of the cryostat. Getting all six to their destination is a tall order.

    2
    This rendering depicts the acrylic tanks (green and red) that are part of the veto system for the LZ dark matter detector. No image credit.

    “These tanks are such big objects, they won’t fit inside the cage and we can’t guarantee there will be a clear path to the Davis Cavern,” said John Keefner, underground operations engineer. “If we need to make changes, we need to know that now so adjustments can be made to the design.”

    The tanks won’t fit inside the cage, so they need to be slung below it. Engineers built a large rotary-style cart that will be used to transport the tanks and maneuver them through tight spots; however, before trying to move the tanks, they needed to do a dry run, which included moving the cart to the Davis Campus.

    Keefner called on the expertise of the Yates Shaft crews, including rope technician Rick Tinnell and infrastructure technicians Neil Engle, Casey Schaff, Dick Goetz and Dustin Mund. The team worked together to sling the device below the cage, then slowly transported it to the 4850 Level, watching through a small hole in the bottom of the cage to ensure the device did not hit the shaft walls.

    3
    Rick Tinnell and Dustin Mund prepare the device to lower it down the Ross Shaft.

    “That part went really well,” Keefner said. “The guys had to do a lot of work upfront and attach the ropes carefully to make sure the device hung correctly below the cage and make sure it didn’t hit the walls of the shaft. The guys did a great job.”

    Once on the 4850 Level, the device was wheeled into the Davis Campus with little trouble—unless you count the near-encounters with a low-hanging pipe and the Majorana gowning anteroom.

    “We learned two things from this exercise,” Keefner said. “We can get the device in with about an inch to spare. And we need to improve the rotating mechanism.”

    4
    Markus Horn and John Keefner at the Davis Cavern with the test device.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.
    LUX/Dark matter experiment at SURFLUX/Dark matter experiment at SURF

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    Fermilab LBNE
    LBNE

     
  • richardmitnick 1:06 pm on November 17, 2017 Permalink | Reply
    Tags: , LBNC-Long-Baseline Neutrino Committee, , SURF - Sanford Underground Research Facility   

    From SURF: “The LBNC encourages full momentum” 

    SURF logo
    Sanford Underground levels

    Sanford Underground Research facility

    First,

    LBNC meets at Sanford Lab
    October 30, 2017
    Constance Walter

    Last week, the Long-Baseline Neutrino Committee (LBNC) met at Sanford Lab. The committee consists of leading scientists from around the world who review the scientific, technical and managerial progress of the Long-Baseline Neutrino Facility and associated Deep Underground Neutrino Experiment (LBNF/DUNE).

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA


    FNAL DUNE Argon tank at SURF

    The committee meets three times each year in different locations; the previous meeting was held at CERN in Switzerland. In addition to attending meetings and writing reports, committee members toured Sanford Lab’s facilities, including the underground laboratories.

    “This is an independent group of scientists who were selected for their expertise,” said Nigel Lockyer, Fermilab director, who formed the committee. “Through this process, we ensure the project remains technically sound.”

    With more than 1,000 scientists from 176 institutions and 31 countries, LBNF/DUNE is the first international mega-science project to be hosted by a U.S. Department of Energy National Laboratory—Fermilab. The scientific collaboration hopes to revolutionize our understanding of the role neutrinos play in the creation of the universe. Using the Long-Baseline Neutrino Facility, they’ll shoot the world’s highest-intensity beam of neutrinos from Fermilab in Batavia, Illinois, 800 miles straight through the earth to huge detectors deep underground at Sanford Lab.

    The LBNC is analogous to the LHCC (Large Hadron Collider Committee) and has been in existence for two years. “That committee is a successful model that has been in place for more than 20 years,” Lockyer added.

    A sister committee, the Neutrino Cost Group, reviews the management schedule and costs of the project, Lockyer said.

    The LBNC writes a report that is delivered to the various funding agencies in countries that are supporting LBNF/DUNE, including the Department of Energy and National Science Foundation in the United States, CERN in Switzerland and the United Kingdom, which recently committed $88 million to the project.

    “We’re very pleased with the way the project is going,” Lockyer said.

    Now:

    The LBNC encourages full momentum

    November 16, 2017
    Anne Heavey
    Eric James

    The Long-Baseline Neutrino Committee (LBNC) — the experts responsible for advising the Fermilab Director on LBNF’s and DUNE’s scientific, technical, and managerial progress — had an opportunity to gain first-hand impressions of the DUNE Far Detector site during their recent review of the projects, held for the first time at SURF in late October.

    SURF-Sanford Underground Research Facility

    SURF An Empty Slate


    SURF Carving New Space


    SURF Shotcreting


    SURF Bolting and Wire Mesh


    SURF Outfitting Begins


    SURF circular wooden frame was built to form a concrete ring to hold the 72,000-gallon (272,549 liters) water tank that would house the LUX dark matter detector


    SURF LUX water tank was transported in pieces and welded together in the Davis Cavern


    SURF Ground Support


    SURF Dedicated to Science


    SURF Building a Ship in a Bottle


    SURF Tight Spaces


    SURF Ready for Science


    SURF Entrance Before Outfitting


    SURF Entrance After Outfitting


    SURF Common Corridior


    SURF Davis


    SURF Davis A World Class Site


    SURF Davis a Lab Site


    U Washington LUX Xenon experiment at SURF


    SURF Before Majorana


    U Washington Majorana Demonstrator Experiment at SURF

    1
    LBNC and LBNF members at the 4850 level at SURF. Photo: Josh Willhite

    Josh Willhite, the LBNF Far Site Conventional Facilities Manager, guided many of the attendees on an extensive tour of the 4850 level where pre-excavation activities will begin in the next few months followed by the start of actual rock excavation in 2019. The required clunky jumpsuits, helmets and boots in no way inhibited the group’s nonstop photos, questions and smiles.

    This review marked a transition in the LBNC’s focus. With the ProtoDUNE designs largely complete and construction underway, and the DUNE Far Detector Technical Proposal and Technical Design Report (TDR) now in the crosshairs, the LBNC is largely turning its attention towards plans for the Far Detector construction.

    CERN Proto DUNE Maximillian Brice

    The LBNC commended DUNE on establishing the consortium-based structure for the Far Detector in a timely manner, considering it “a demonstration of a major step in building up the collaborative spirit.”

    The committee applauded the steady growth in the DUNE Collaboration, which now includes 176 institutions in 31 nations and “a healthy fraction of PhD Students,” and on the “significant progress” in negotiations with new prospective partners in Europe, South America and Asia.

    “Overall, the Committee was very impressed by the significant progress achieved by both LBNF and DUNE since the last LBNC review (in June at CERN),” the committee wrote. In particular, on the LBNF side, the LBNC’s report highlighted the completion of the Ross shaft refurbishment, the award of the CM/GC contract, and the imminent start of the final design phase for the Far Site Conventional Facilities. On the DUNE side, they congratulated CERN Neutrino Platform and the Collaboration on the “tremendous progress” made on the ProtoDUNE cryostats.

    A special Wednesday evening session focused on plans for the Technical Proposal and the TDR. While acknowledging that the plans are “ambitious,” the LBNC agreed with the framework that the DUNE leadership presented, recognizing that such a plan “will allow the Collaboration to maintain full momentum for developing the project in a focused and timely fashion, including the detailed construction strategies and schedules for the various components.” The group discussed the review schedule in accordance with getting final approval in late 2019 to move forward with construction of the cryostats, cryogenic systems, and detector components.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.
    LUX/Dark matter experiment at SURFLUX/Dark matter experiment at SURF

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    Fermilab LBNE
    LBNE

     
  • richardmitnick 12:55 pm on November 7, 2017 Permalink | Reply
    Tags: , , SURF - Sanford Underground Research Facility, The U Washington Majorana experiment   

    From SURF: “Deep Talks delves into MAJORANA results” 

    SURF logo
    Sanford Underground levels

    Sanford Underground Research facility

    November 3, 2017
    Contact
    Constance Walter
    Communications Director
    605.722.4025
    Contact by email

    What do the results look like and what do they mean for the experiment? For science? For Sanford Lab?

    1
    The Majorana experiment sits inside a six-layered shield. Matt Kapust

    U Washington Majorana Demonstrator Experiment at SURF

    The MAJORANA DEMONSTRATOR Collaboration recently released its first physics results at a neutrino conference. What do those results mean for the experiment? For science? For Sanford Lab?

    Join Dr. Vincente Guiseppe Thursday, Nov. 9, for “Released from the Depths: What do Majorana’s results look like and what do they mean?,” at the Sanford Lab Homestake Visitor Center, 160 W. Main Street, in Lead, S.D. Guiseppe, co-spokesperson for the collaboration, will take us on a journey deep inside the Majorana experiment, explaining the collaboration’s effort to build an extremely quiet experiment that could tell us more about the origins of our universe.

    “These initial results will give us a better understanding of the always-elusive neutrino and how it shaped the universe,” Guiseppe said.

    Collaborators with the Majorana Demonstrator built their experiment on the 4850 Level of the Sanford Lab to escape cosmic radiation that constantly bombards the earth. The experiment, which uses enriched germanium crystals to look for a rare form of radioactive decay called neutrinoless double-beta decay, is further protected by a six-layered shield. The collaboration hopes to answer one of the most challenging and important questions in physics: are neutrinos their own antiparticles? If the answer is yes, we could finally learn why matter is more abundant than antimatter and why we exist at all.

    Guiseppe, an assistant professor of physics and astronomy at the University of South Carolina, oversaw the design and construction of the shield. His experimental nuclear and astroparticle physics research focuses on neutrino physics and ultra-low background experiments conducted deep underground.

    Deep Talks begins at 5 p.m. with a social hour; the talk begins at 6 p.m. Free beer from Crow Peak Brewing Company in Spearfish is available for those 21 and older. Deep Talks is sponsored by Sanford Lab, the Sanford Lab Homestake Visitor Center, Crow Peak Brewing Company and First National Bank in Lead. The event is free to the public.

    Deep Talks is a lecture series created by the Sanford Underground Research Facility and the Sanford Lab Homestake Visitor Center. The event is held the second Thursday of each month, October through May. Deep Talks is free to the public. Donations to support community education are welcome.

    Sanford Lab is operated by the South Dakota Science and Technology Authority (SDSTA) with funding from the Department of Energy. Our mission is to advance compelling underground, multidisciplinary research in a safe work environment and to inspire and educate through science, technology, and engineering. Visit us at http://www.SanfordLab.org.

    Visit the Sanford Lab Homestake Visitor Center at http://sanfordlabhomestake.com

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.
    LUX/Dark matter experiment at SURFLUX/Dark matter experiment at SURF

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    Fermilab LBNE
    LBNE

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: