Tagged: SURF – Sanford Underground Research Facility Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 7:56 am on March 28, 2017 Permalink | Reply
    Tags: , , , , , SURF - Sanford Underground Research Facility,   

    From U Wisconsin via SURF : “Dark matter detection receives 10-ton upgrade” 

    SURF

    U Wisconsin

    University of Wisconsin

    1
    The LUX-ZEPLIN dark matter experiment will be located one mile underground at the Sanford Underground Research Facility in South Dakota, in a cavern within the former Homestake gold mine. Illustration: SLAC National Accelerator Laboratory


    Lux Zeplin project at SURF

    In an abandoned gold m­­­ine one mile beneath Lead, South Dakota, the cosmos quiets down enough to potentially hear the faint whispers of the universe’s most elusive material — dark matter.


    SURF bilding in Lead SD USA

    Shielded from the deluge of cosmic rays constantly showering the Earth’s surface, and scrubbed of noisy radioactive metals and gasses, the mine, scientists think, will be the ideal setting for the most sensitive dark matter experiment to date. Known as LUX-ZEPLIN, the experiment will launch in 2020 and will listen for a rare collision between a dark matter particle with 10 tons of liquid xenon.

    Ten University of Wisconsin–Madison scientists are involved in designing and testing the detector, and are part of a team of more than 200 researchers from 38 institutions in five countries working on the project. This month, the Department of Energy approved proceeding with the final stages of assembly and construction of LZ at the Sanford Underground Research Facility in South Dakota, with a total project cost of $55 million. Additional support comes from international collaborators in the United Kingdom, South Korea and Portugal, as well as the South Dakota Science and Technology Authority. The researchers’ goal is to take the experiment online as quickly as possible to compete in a global race to be the first to detect dark matter.

    3
    Scientists install a miniversion of the future LUX-ZEPLIN dark matter detector at a test stand. The white container is a prototype of the detector’s core. SLAC National Acceleratory Laboratory

    In the 1930s, as astronomers studied the rotation of distant galaxies, they noticed that there wasn’t enough matter — stars, planets, hot gas — to hold the galaxies together through gravity. There had to be some extra mass that helped bind all the visible material together, but it was invisible, missing.

    Dark matter, scientists believe, comprises that missing mass, contributing a powerful gravitational counterbalance that keeps galaxies from flying apart. Although dark matter has so far proven to be undetectable, there may be a lot of it — about five times more than regular matter.

    “Dark matter particles could be right here in the room streaming through your head, perhaps occasionally running into one of your atoms,” says Duncan Carlsmith, a professor of physics at UW–Madison.

    One proposed explanation for dark matter is weakly interacting massive particles, or WIMPs, particles that usually pass undetected through normal matter but which may, on occasion, bump into it. The LZ experiment, and similar projects in Italy and China, are designed to detect — or rule out — WIMPs in the search to explain this ghostly material.

    The detector is set up like an enormous bell capable of ringing in response to the lightest tap from a dark matter particle. Nestled within two outer chambers designed to detect and remove contaminating particles lies a chamber filled with 10 tons of liquid xenon. If a piece of dark matter runs into a xenon atom, the xenon will collide with its neighbors, producing a burst of ultraviolet light and releasing electrons.

    Moments later, the free electrons will excite the xenon gas at the top of the chamber and release a second, brighter burst of light. More than 500 photomultiplier tubes will watch for these signals, which together can discriminate between a contaminating particle and true dark matter collisions.

    Kimberly Palladino, an assistant professor of physics at UW–Madison, and graduate student Shaun Alsum were part of the research team for LUX, the predecessor to LZ, which set records searching for WIMPs. Building on their experience from the previous experiment, Palladino, Alsum, graduate student Jonathan Nikoleyczik and undergraduate researchers are conducting simulations of dark matter collisions and prototyping the particle detector to increase the sensitivity of LZ and more stringently discard signals produced by ordinary matter.

    3
    The heart of the LZ detector will be a 5-foot-tall chamber filled with 10 tons of liquid xenon. Hopes are that hypothetical dark matter particles will produce flashes of light as they traverse the detector. Illustration: SLAC National Accelerator Laboratory

    The LZ project is “doing science the way you want to do science,” says Palladino, explaining how the collaboration provides the time, funding and expertise needed to address fundamental questions about the nature of the universe.

    The success of LZ depends in part on excluding contaminating materials, including reactive chemicals and trace amounts of radioactive elements, from the xenon, which relies on engineering prowess provided by UW–Madison’s Physical Sciences Laboratory. Jeff Cherwinka, chief engineer of the LZ project and a PSL mechanical engineer, is overseeing assembly of the dark matter detector in a special facility scrubbed of radioactive radon and is designing a system to continuously remove gas that leaches out of the xenon chamber lining. Together with PSL engineer Terry Benson, Cherwinka is also designing the xenon storage system to prevent any radioactive elements from leaking in during transport and installation.

    “It’s one of the strengths of the university that we have the engineering and manufacturing expertise to contribute to these big-scale projects,” says Cherwinka. “It helps UW gain more stake in these projects.”

    Meanwhile, Carlsmith and Sridhara Dasu, also a UW–Madison professor of physics, are designing computational systems to manage and analyze the data coming out of the detector in order to be ready to listen for dark matter collisions as soon as LZ is turned on in 2020. Once operational, LZ will quickly approach the fundamental limit of its detection capacity, the background noise of particles streaming out of the sun.

    4
    Kimberly Palladino, an assistant professor of physics at UW–Madison, works to assemble a prototype of the dark matter detection chamber. SLAC National Accelerator Laboratory.

    “In a year, if there are no WIMPs, or if they interact too weakly, we’ll see nothing,” says Carlsmith. The experiment is expected to operate for at least five years to confirm any initial observations and set new limits on potential interactions between WIMPs and ordinary matter.

    Other experiments, including Wisconsin IceCube Particle Astrophysics Center projects IceCube, HAWC, and CTA, are searching for the signatures of dark matter annihilation events as independent and indirect methods to investigate the nature of dark matter. In addition, UW–Madison scientists are working at the Large Hadron Collider, searching for evidence that dark matter is produced during high energy particle collisions. This combination of efforts provides the best opportunity yet for uncovering more about the nature of dark matter, and with it the evolution and structure of our universe.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    In achievement and prestige, the University of Wisconsin–Madison has long been recognized as one of America’s great universities. A public, land-grant institution, UW–Madison offers a complete spectrum of liberal arts studies, professional programs and student activities. Spanning 936 acres along the southern shore of Lake Mendota, the campus is located in the city of Madison.

     
  • richardmitnick 9:27 am on March 14, 2017 Permalink | Reply
    Tags: , Last but not least the poly shield, , , , , SURF - Sanford Underground Research Facility   

    From SURF: “Last, but not least, the poly shield” 

    SURF logo
    Sanford Underground levels

    Sanford Underground Research facility

    March 13, 2017
    Constance Walter

    1
    Vince Guiseppe stands next to an extra lead brick monolith, which keeps the shield sealed if a working module needs to be removed for service. Credit: Constance Walter

    For nearly seven years, the Majorana Demonstrator Project’s “shield team” has been building the six-layered shield that surrounds the experiment on the 4850 Level. In early March, they placed the last piece of polyethylene on the outermost layer of the shield.

    “I’m proud of what the team has produced,” said Vince Guiseppe, assistant professor of physics at the University of South Carolina. “This was a complicated project. Every layer was added at the right time and fit perfectly.”


    U Washington Majorana Demonstrator Experiment

    The Majorana collaboration uses germanium crystals to look for a rare form of radioactive decay called neutrinoless double-beta decay. The discovery could determine whether the neutrino is its own antiparticle. Its detection could help explain why matter exists. The shield is critical to the success of the experiment.

    Each layer of the shield was designed to target certain forms of radiation. “The closer the layer is to the experiment, the greater its impact,” Guiseppe said.

    The most important layer is the electroformed copper that sits closest to the experiment. Comprised of 40, half-inch thick copper plates, it was grown and machined underground. “This is clearly the hallmark of our shield system in terms of purity and cleanliness protocols,” Guiseppe said. Surrounding that portion of the shield, is a 2-inch thick layer of ultrapure commercial copper.

    Next is a “castle” built with 3,400 lead bricks. Two portable monoliths, each holding 570 bricks, support the cryostats filled with strings of germanium detectors and cryogenic hardware, what Guiseppe calls “the heart of the experiment.”

    An aluminum box encapsulating the lead castle protects the experiment from naturally occurring radon. Every minute, the team injects eight liters of nitrogen gas to purge the air within the enclosure. “We don’t want any lab air getting in.”

    Attached to the aluminum box are scintillating plastic “veto panels” designed to detect muons, the most penetrating of all cosmic rays.

    Finally, there’s the 12 inches of polyethylene enclosing the entire experiment, including the cryogenics (chilled water heat exchangers moderate the temperature). The poly slows down neutrons that could cause very rare backgrounds. Why worry about such rare events? High-energy neutrons can bounce through just about anything, including the 22 inches of lead and copper shielding. If a neutron hits a copper atom, it could create a gamma ray right next to the experiment.

    “The poly is the final defense against backgrounds in an experiment that requires extreme quiet,” Guiseppe said.

    The entire shield, weighing 145,000 pounds, rests on an over floor made of steel with channels for the poly.

    Jared Thompson, a research assistant, began his work with Majorana in 2010, etching lead bricks for the shield. In fact, in March 2014, he placed the last brick on the castle. And he was part of the group that recently placed the last piece of poly.

    “It’s really exciting,” Thompson said. “A complete shield could mean a whole new data set down the road.”

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.
    LUX/Dark matter experiment at SURFLUX/Dark matter experiment at SURF

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    Fermilab LBNE
    LBNE

     
  • richardmitnick 2:46 pm on March 7, 2017 Permalink | Reply
    Tags: CERN Proto Dune, , , Researchers face engineering puzzle, SURF - Sanford Underground Research Facility, , Transporting Argon   

    From Symmetry: “Researchers face engineering puzzle” 

    Symmetry Mag

    Symmetry

    03/07/17
    Daniel Garisto

    How do you transport 70,000 tons of liquid argon nearly a mile underground?


    FNAL DUNE Argon tank at SURF

    Nearly a mile below the surface of Lead, South Dakota, scientists are preparing for a physics experiment that will probe one of the deepest questions of the universe: Why is there more matter than antimatter?
    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA


    SURF


    Surf-Dune/LBNF Caverns at Sanford Lab

    Because neutrinos interact with matter so rarely and so weakly, DUNE scientists need a lot of material to create a big enough target for the particles to run into. The most widely available (and cost effective) inert substance that can do the job is argon, a colorless, odorless element that makes up about 1 percent of the atmosphere.

    The researchers also need to place the detector full of argon far below Earth’s surface, where it will be protected from cosmic rays and other interference.

    “We have to transfer almost 70,000 tons of liquid argon underground,” says David Montanari, a Fermilab engineer in charge of the experiment’s cryogenics. “And at this point we have two options: We can either transfer it as a liquid or we can transfer it as a gas.”

    Either way, this move will be easier said than done.

    Liquid or gas?

    The argon will arrive at the lab in liquid form, carried inside of 20-ton tanker trucks. Montanari says the collaboration initially assumed that it would be easier to transport the argon down in its liquid form—until they ran into several speed bumps.

    Transporting liquid vertically is very different from transporting it horizontally for one important reason: pressure. The bottom of a mile-tall pipe full of liquid argon would have a pressure of about 3000 pounds per square inch—equivalent to 200 times the pressure at sea level. According to Montanari, to keep these dangerous pressures from occurring, multiple de-pressurizing stations would have to be installed throughout the pipe.

    Even with these depressurizing stations, safety would still be a concern. While argon is non-toxic, if released into the air it can reduce access to oxygen, much like carbon monoxide does in a fire. In the event of a leak, pressurized liquid argon would spill out and could potentially break its vacuum-sealed pipe, expanding rapidly to fill the mine as a gas. One liter of liquid argon would become about 800 liters of argon gas, or four bathtubs’ worth.

    Even without a leak, perhaps the most important challenge in transporting liquid argon is preventing it from evaporating into a gas along the way, according to Montanari.

    To remain a liquid, argon is kept below a brisk temperature of minus 180 degrees Celsius (minus 300 degrees Fahrenheit).

    “You need a vacuum-insulated pipe that is a mile long inside a mine shaft,” Montanari says. “Not exactly the most comfortable place to install a vacuum-insulated pipe.”

    To avoid these problems, the cryogenics team made the decision to send the argon down as gas instead.

    Routing the pipes containing liquid argon through a large bath of water will warm it up enough to turn it into gas, which will be able to travel down through a standard pipe. Re-condensers located underground act as massive air conditioners will then cool the gas until becomes a liquid again.

    “The big advantage is we no longer have vacuum insulated pipe,” Montanari says. “It is just straight piece of pipe.”

    Argon gas poses much less of a safety hazard because it is about 1000 times less dense than liquid argon. High pressures would be unlikely to build up and necessitate depressurizing stations, and if a leak occurred, it would not expand as much and cause the same kind of oxygen deficiency.

    The process of filling the detectors with argon will take place in four stages that will take almost two years, Montanari says. This is due to the amount of available cooling power for re-condensing the argon underground. There is also a limit to the amount of argon produced in the US every year, of which only so much can be acquired by the collaboration and transported to the site at a time.

    1
    Illustration by Ana Kova

    Argon for answers

    Once filled, the liquid argon detectors will pick up light and electrons produced by neutrino interactions.

    Part of what makes neutrinos so fascinating to physicists is their habit of oscillating from one flavor—electron, muon or tau—to another. The parameters that govern this “flavor change” are tied directly to some of the most fundamental questions in physics, including why there is more matter than antimatter. With careful observation of neutrino oscillations, scientists in the DUNE collaboration hope to unravel these mysteries in the coming years.

    “At the time of the Big Bang, in theory, there should have been equal amounts of matter and antimatter in the universe,” says Eric James, DUNE’s technical coordinator. That matter and antimatter should have annihilated, leaving behind an empty universe. “But we became a matter-dominated universe.”

    James and other DUNE scientists will be looking to neutrinos for the mechanism behind this matter favoritism. Although the fruits of this labor won’t appear for several years, scientists are looking forward to being able to make use of the massive detectors, which are hundreds of times larger than current detectors that hold only a few hundred tons of liquid argon.

    Currently, DUNE scientists and engineers are working at CERN to construct Proto-DUNE, a miniature replica of the DUNE detector filled with only 300 tons of liquid argon that can be used to test the design and components.


    CERN Proto DUNE Maximillian Brice

    “Size is really important here,” James says. “A lot of what we’re doing now is figuring out how to take those original technologies which have already being developed… and taking it to this next level with bigger and bigger detectors.”

    To search for that answer, the Deep Underground Neutrino Experiment, or DUNE, will look at minuscule particles called neutrinos. A beam of neutrinos will travel 800 miles through the Earth from Fermi National Accelerator Laboratory to the Sanford Underground Research Facility, headed for massive underground detectors that can record traces of the elusive particles.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 2:04 pm on February 23, 2017 Permalink | Reply
    Tags: , , , SURF - Sanford Underground Research Facility   

    From FNAL: “The global reach of DUNE” 

    FNAL II photo

    FNAL Art Image
    FNAL Art Image by Angela Gonzales

    Fermilab is an enduring source of strength for the US contribution to scientific research world wide.

    [This post is dedicated to LH, a writer whose work I dealy love, and CW, the voice of SURF]

    February 23, 2017

    Leah Hesla

    The neutrino, it would seem, has global appeal.

    The mysteries surrounding the renegade particle are attracting a worldwide science community to the future DUNE experiment. DUNE — the Deep Underground Neutrino Experiment — is a multinational effort to address the biggest questions in neutrino physics. More than 950 researchers from 30 countries have joined the DUNE collaboration, and both numbers are trending upward: Back in 2015, the collaboration comprised about 560 scientists and engineers from 23 countries.

    It’s currently the largest particle physics project being undertaken anywhere in the world since the Large Hadron Collider at the European laboratory CERN. Modeled after CERN’s ATLAS and CMS experiments, the DUNE collaboration is established as an international organization. The experiment will be hosted in the United States by Fermi National Accelerator Laboratory.

    The latest countries to join DUNE include Chile and Peru. The most recent new institutes to join DUNE come from Colombia, the UK and the US.

    “It’s the excitement that’s being generated by the science,” said DUNE spokesperson Mark Thomson, a professor of physics at the University of Cambridge in the UK. “Everybody recognizes the DUNE program as strong, and the technology is interesting as well.”

    Collaborators are developing new technologies for DUNE’s two particle detectors, giant instruments that will help capture the experiment’s notoriously elusive quarry, the neutrino.

    FNAL Dune/LBNF
    FNAL Dune/LBNF map

    With DUNE, which is expected to be up and running in the mid-2020s, scientists plan to get a better grip on the neutrino’s subtleties to settle the question of, for instance, why there’s more matter than antimatter in our universe — in other words, how the stars planets and life as we know it were able to form. Also on the DUNE agenda are studies that could bolster certain theories of the unification of all fundamental forces and, with the help of neutrinos born in supernovae, provide a look into the birth of a black hole.

    It’s a tall order that will take a global village to fill, and researchers worldwide are currently building the experiment or signing up to build it, taking advantage of DUNE’s broad scientific and geographic scope.

    “We’re a country that does a lot of theoretical physics but not a lot of experimental physics, because it’s not so cheap to have a particle physics experiment here,” said DUNE collaborator Ana Amelia Machado, a collaborating scientist at the University of Campinas and a professor at the Federal University of ABC in the ABC region of Brazil. “So we participate in big collaborations like DUNE, which is attractive because it brings together theorists and experimentalists.”

    Machado is currently working on a device named Arapuca, which she describes as a photon catcher that could detect particle phenomena that DUNE is interested in, such as supernova neutrino interactions. She’s also working to connect more Latin American universities with DUNE, adding the University Antonio Nariño to the list of DUNE institutions.

    On the opposite side of the world, scientists and engineers from India are working on upgrading the high intensity superconducting proton accelerator at Fermilab, which will provide the world’s most intense neutrino beam to the DUNE experiment. Building on the past collaborations with other Fermilab experiments, the Indian scientists are also proposing to build the near detector for the DUNE experiment. Not only are India’s contributions important for DUNE’s success, they’re also potential seeds for India’s own future particle physics programs.

    2
    More than 950 researchers from 30 countries have joined DUNE. Collaborators are developing new technologies for DUNE’s particle detectors, giant instruments that will help capture the notoriously elusive neutrino.

    “It’s exciting because it’s something that India’s doing for the first time. India has never built a full detector for any particle physics experiment in the world,” said Bipul Bhuyan, a DUNE collaborator at the Indian Institution of Technology Guwahati. “Building a particle detector for an international science experiment like DUNE will bring considerable visibility to Indian institutions and better industry-academia partnership in developing advanced detector technology. It will help us to build our own future experimental facility in India as well.”

    DUNE’s two particle detectors will be separated by 800 miles: a two-story detector on the Fermilab site in northern Illinois and a far larger detector to be situated nearly a mile underground in South Dakota at the Sanford Underground Research Facility.

    surf-building-in-lead-sd-usa
    SURF logo
    FNAL DUNE Argon tank at SURF
    DUNE Argon tank at SURF
    Sanford Underground levels
    Sanford Underground levels
    surf-dune-lbnf-caverns-at-sanford-lab
    Surf-Dune/LBNF Caverns at Sanford Lab

    Fermilab particle accelerators, part of the Long-Baseline Neutrino Facility for DUNE, will create an intense beam of neutrinos that will pass first through the near detector and then continue straight through Earth to the far detector.

    FNAL LBNF/DUNE Near Detector
    FNAL/DUNE Near Site Layout

    Scientists will compare measurements from the two detectors to examine how the neutrinos morphed from one of three types into another over their interstate journey. The far detector will contain 70,000 tons of cryogenic liquid argon to capture a tiny fraction of the neutrinos that pass through it. DUNE scientists are currently working on ways to improve liquid-argon detection techniques.

    The near detector, which is close to the neutrino beam source and so sees the beam where it is most intense, will be packed with all kinds of components so that scientists can get as many readings as they can on the tricky particles: their energy, their momentum, the likelihood that they’ll interact with the detector material.

    “This is an opportunity for new collaborators, where new international groups can get involved in a big way,” said Colorado State University professor Bob Wilson, chair of the DUNE Institutional Board. “There’s a broad scope of physics topics that will come out of the near detector.”

    As the collaboration expands, so too does the breadth of DUNE physics topics, and the more research opportunities there are, the more other institutions are likely to join the project.

    “There aren’t that many new, big experiments out there,” Thomson said. “We have 950 collaborators now, and we’re likely to hit 1,000 in the coming months.”

    That will be a notable milestone for the collaboration, one that follows another sign of its international strength: Late last month, for the first time, DUNE held its collaboration meeting away from its home base of Fermilab. CERN served as the meeting host.

    DUNE is supported by funding agencies from many countries, including the Department of Energy Office of Science in the United States.

    “We have people from different countries that haven’t been that involved in neutrino physics before and who bring different perspectives,” Wilson said. “It’s all driven by the interest in the science, and the breadth of interest has been tremendous.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    FNAL Icon
    Fermilab Campus

    Fermi National Accelerator Laboratory (Fermilab), located just outside Batavia, Illinois, near Chicago, is a US Department of Energy national laboratory specializing in high-energy particle physics. Fermilab is America’s premier laboratory for particle physics and accelerator research, funded by the U.S. Department of Energy. Thousands of scientists from universities and laboratories around the world
    collaborate at Fermilab on experiments at the frontiers of discovery.

     
  • richardmitnick 10:02 pm on February 13, 2017 Permalink | Reply
    Tags: , , , LUX-ZEPLIN (LZ) dark matter-hunting experiment, SURF - Sanford Underground Research Facility,   

    From LBNL: “Next-Gen Dark Matter Detector in a Race to Finish Line” 

    Berkeley Logo

    Berkeley Lab

    February 13, 2017
    Glenn Roberts Jr.
    geroberts@lbl.gov
    510-486-5582

    1
    Light-amplifying devices known as photomultiplier tubes (PMTs), developed for use in the LUX-ZEPLIN (LZ) dark matter-hunting experiment, are prepared for a test at Brown University. This test bed, dubbed PATRIC, will be used to test over 600 PMTs in conditions simulating the temperature and pressure of the liquid xenon that will be used for LZ. (Credit: Brown University)

    The race is on to build the most sensitive U.S.-based experiment designed to directly detect dark matter particles. Department of Energy officials have formally approved a key construction milestone that will propel the project toward its April 2020 goal for completion.

    The LUX-ZEPLIN (LZ) experiment, which will be built nearly a mile underground at the Sanford Underground Research Facility (SURF) in Lead, S.D., is considered one of the best bets yet to determine whether theorized dark matter particles known as WIMPs (weakly interacting massive particles) actually exist. There are other dark matter candidates, too, such as “axions” or “sterile neutrinos,” which other experiments are better suited to root out or rule out.

    SURF logo
    SURF – Sanford Underground Research Facility at Lead, SD, USA

    The fast-moving schedule for LZ will help the U.S. stay competitive with similar next-gen dark matter direct-detection experiments planned in Italy and China.

    2
    This image shows a cutaway rendering of the LUX-ZEPLIN (LZ) detector that will search for dark matter nearly a mile below ground. An array of detectors, known as photomultiplier tubes, at the top and bottom of the liquid xenon tank are designed to pick up particle signals. (Credit: Matt Hoff/Berkeley Lab)

    On Feb. 9, the project passed a DOE review and approval stage known as Critical Decision 3 (CD-3), which accepts the final design and formally launches construction.

    “We will try to go as fast as we can to have everything completed by April 2020,” said Murdock “Gil” Gilchriese, LZ project director and a physicist at the DOE’s Lawrence Berkeley National Laboratory (Berkeley Lab), the lead lab for the project. “We got a very strong endorsement to go fast and to be first.” The LZ collaboration now has about 220 participating scientists and engineers who represent 38 institutions around the globe.

    The nature of dark matter—which physicists describe as the invisible component or so-called “missing mass” in the universe that would explain the faster-than-expected spins of galaxies, and their motion in clusters observed across the universe—has eluded scientists since its existence was deduced through calculations by Swiss astronomer Fritz Zwicky in 1933.

    The quest to find out what dark matter is made of, or to learn whether it can be explained by tweaking the known laws of physics in new ways, is considered one of the most pressing questions in particle physics.

    Successive generations of experiments have evolved to provide extreme sensitivity in the search that will at least rule out some of the likely candidates and hiding spots for dark matter, or may lead to a discovery.

    3
    The underground home of LZ and its supporting systems are shown in this computerized rendering. (Credit: Matt Hoff/Berkeley Lab)

    LZ will be at least 50 times more sensitive to finding signals from dark matter particles than its predecessor, the Large Underground Xenon experiment (LUX), which was removed from SURF last year to make way for LZ. The new experiment will use 10 metric tons of ultra-purified liquid xenon, to tease out possible dark matter signals. Xenon, in its gas form, is one of the rarest elements in Earth’s atmosphere.

    “The science is highly compelling, so it’s being pursued by physicists all over the world,” said Carter Hall, the spokesperson for the LZ collaboration and an associate professor of physics at the University of Maryland. “It’s a friendly and healthy competition, with a major discovery possibly at stake.”

    4
    This chart shows the sensitivity limits (solid-line curves) of various experiments searching for signs of theoretical dark matter particles known as WIMPs, with LZ (green dashed line) set to expand the search range. (Credit: Snowmass report, 2013)

    A planned upgrade to the current XENON1T experiment at National Institute for Nuclear Physics’ Gran Sasso Laboratory (the XENONnT experiment) in Italy, and China’s plans to advance the work on PandaX-II, are also slated to be leading-edge underground experiments that will use liquid xenon as the medium to seek out a dark matter signal.

    11
    Assembly of the XENON1T TPC in the cleanroom. (Image: INFN)

    Gran Sasso LABORATORI NAZIONALI del GRAN SASSO, located in the Abruzzo region of central Italy
    Gran Sasso LABORATORI NAZIONALI del GRAN SASSO, located in the Abruzzo region of central Italy

    5
    PandaX-II

    Both of these projects are expected to have a similar schedule and scale to LZ, though LZ participants are aiming to achieve a higher sensitivity to dark matter than these other contenders.

    Hall noted that while WIMPs are a primary target for LZ and its competitors, LZ’s explorations into uncharted territory could lead to a variety of surprising discoveries. “People are developing all sorts of models to explain dark matter,” he said. “LZ is optimized to observe a heavy WIMP, but it’s sensitive to some less-conventional scenarios as well. It can also search for other exotic particles and rare processes.”

    LZ is designed so that if a dark matter particle collides with a xenon atom, it will produce a prompt flash of light followed by a second flash of light when the electrons produced in the liquid xenon chamber drift to its top. The light pulses, picked up by a series of about 500 light-amplifying tubes lining the massive tank—over four times more than were installed in LUX—will carry the telltale fingerprint of the particles that created them.

    6
    Inside LZ: When a theorized dark matter particle known as a WIMP collides with a xenon atom, the xenon atom emits a flash of light (gold) and electrons. The flash of light is detected at the top and bottom of the liquid xenon chamber. An electric field pushes the electrons to the top of the chamber, where they generate a second flash of light (red). (Credit: SLAC National Accelerator Laboratory)

    Daniel Akerib, Thomas Shutt, and Maria Elena Monzani are leading the LZ team at SLAC National Accelerator Laboratory. The SLAC effort includes a program to purify xenon for LZ by removing krypton, an element that is typically found in trace amounts with xenon after standard refinement processes. “We have already demonstrated the purification required for LZ and are now working on ways to further purify the xenon to extend the science reach of LZ,” Akerib said.

    SLAC and Berkeley Lab collaborators are also developing and testing hand-woven wire grids that draw out electrical signals produced by particle interactions in the liquid xenon tank. Full-size prototypes will be operated later this year at a SLAC test platform. “These tests are important to ensure that the grids don’t produce low-level electrical discharge when operated at high voltage, since the discharge could swamp a faint signal from dark matter,” said Shutt.

    7
    Assembly of the prototype for the LZ detector’s core, known as a time projection chamber (TPC). From left: Jeremy Mock (State University of New York/Berkeley Lab), Knut Skarpaas, and Robert Conley. (Credit: SLAC National Accelerator Laboratory)

    Hugh Lippincott, a Wilson Fellow at Fermi National Accelerator Laboratory (Fermilab) and the physics coordinator for the LZ collaboration, said, “Alongside the effort to get the detector built and taking data as fast as we can, we’re also building up our simulation and data analysis tools so that we can understand what we’ll see when the detector turns on. We want to be ready for physics as soon as the first flash of light appears in the xenon.” Fermilab is responsible for implementing key parts of the critical system that handles, purifies, and cools the xenon.

    All of the components for LZ are painstakingly measured for naturally occurring radiation levels to account for possible false signals coming from the components themselves. A dust-filtering cleanroom is being prepared for LZ’s assembly and a radon-reduction building is under construction at the South Dakota site—radon is a naturally occurring radioactive gas that could interfere with dark matter detection. These steps are necessary to remove background signals as much as possible.

    8
    A rendering of the Surface Assembly Laboratory in [at SURF] South Dakota where LZ components will be assembled before they are relocated underground. (Credit: LZ collaboration)

    The vessels that will surround the liquid xenon, which are the responsibility of the U.K. participants of the collaboration, are now being assembled in Italy. They will be built with the world’s most ultra-pure titanium to further reduce background noise.

    To ensure unwanted particles are not misread as dark matter signals, LZ’s liquid xenon chamber will be surrounded by another liquid-filled tank and a separate array of photomultiplier tubes that can measure other particles and largely veto false signals. Brookhaven National Laboratory is handling the production of another very pure liquid, known as a scintillator fluid, that will go into this tank.

    9
    A production prototype of highly purified, gadolinium-doped scintillator fluid, viewed under ultraviolet light. Scintillator fluid will surround LZ’s xenon tank and will help scientists veto the background “noise” of unwanted particle signals. (Credit: Brookhaven National Laboratory)

    The cleanrooms will be in place by June, Gilchriese said, and preparation of the cavern where LZ will be housed is underway at SURF. Onsite assembly and installation will begin in 2018, he added, and all of the xenon needed for the project has either already been delivered or is under contract. Xenon gas, which is costly to produce, is used in lighting, medical imaging and anesthesia, space-vehicle propulsion systems, and the electronics industry.

    “South Dakota is proud to host the LZ experiment at SURF and to contribute 80 percent of the xenon for LZ,” said Mike Headley, executive director of the South Dakota Science and Technology Authority (SDSTA) that oversees SURF. “Our facility work is underway and we’re on track to support LZ’s timeline.”

    UK scientists, who make up about one-quarter of the LZ collaboration, are contributing hardware for most subsystems. Henrique Araújo, from Imperial College London, said, “We are looking forward to seeing everything come together after a long period of design and planning.”

    10
    LZ participants conduct a quality-control inspection of photomultiplier tube bases that are being manufactured at Imperial College London. (Credit: Henrique Araújo /Imperial College London)

    Kelly Hanzel, LZ project manager and a Berkeley Lab mechanical engineer, added, “We have an excellent collaboration and team of engineers who are dedicated to the science and success of the project.” The latest approval milestone, she said, “is probably the most significant step so far,” as it provides for the purchase of most of the major components in LZ’s supporting systems.

    For more information about LZ and the LZ collaboration, visit: http://lz.lbl.gov/.

    Major support for LZ comes from the DOE Office of Science’s Office of High Energy Physics, South Dakota Science and Technology Authority, the UK’s Science & Technology Facilities Council, and by collaboration members in South Korea and Portugal.

    Both of these projects are expected to have a similar schedule and scale to LZ, though LZ participants are aiming to achieve a higher sensitivity to dark matter than these other contenders.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    A U.S. Department of Energy National Laboratory Operated by the University of California

    University of California Seal

    DOE Seal

     
  • richardmitnick 4:48 pm on January 23, 2017 Permalink | Reply
    Tags: , , How do accelerators work?, SURF - Sanford Underground Research Facility   

    From SURF: “How do accelerators work?” 

    SURF logo
    Sanford Underground levels

    Sanford Underground Research facility

    1
    See bottom of the story for the numbered descriptions. Credit: Matt Kapust

    Researchers working on the Compact Accelerator System for Performing Astrophysical Research (CASPAR) will begin studying the processes in stars that create the heavier elements in the universe,. Using a low-energy accelerator on the 4850 Level, they’ll fire a beam of particles at various targets, including a particular type of neon gas (22Ne) as a way to better understand how all of that works.

    Sounds simple, but how do particle accelerators really work? Well, that depends on the type of accelerator. CASPAR’s accelerator is modeled on the Van de Graaff accelerator, which is based on concepts developed in the early 1930s. It uses a motorized insulated rotating belt to transport a positive charge from ground to a high-voltage terminal to help accelerate charged particles up to 1 million Volts (for comparison, the LHC can accelerate particles up to almost 7 trillion Volts).

    Accelerators rely on an ion or plasma source to produce charged particles. CASPAR uses radio-frequency energy to produce a beam of protons or alpha particles from hydrogen or helium gas.

    Once produced, ions enter the accelerating tube, which is kept at high vacuum. The tube, made up of insulating sections separated by metallic electrodes, must hold the entire high voltage between the terminal and ground. Connected to a resistor chain, the electrodes produce a nearly uniform voltage drop and ion acceleration, providing some focusing properties.

    The ion beam at the exit of the accelerator has a diameter of less than a few millimeters. Metallic circular rings enclose the belt and tubes, improving stability and keeping the electrical field as uniform as possible.

    The entire accelerator structure is placed in a high-pressure tank filled with electrically insulating gas (CO2/N2 mixture at 200 psi). To ensure that only particles with the right energy are directed to the target, a 25-degree bending magnet in CASPAR’s beam line is utilized as an energy filter.

    Check out this article in Symmetry http://www.symmetrymagazine.org/article/april-2014/ten-things-you-might-not-know-about-particle-accelerators

    1.Turbo molecular pumping system: Used to evacuate the beamlines of air. Transporting particles within a vacuum tube reduces energy loss and scattering that can happen through collisions.
    2. Beam profile monitors: These intercept the beam periodically providing information on beam shape, size and position.
    3. Quadrupole magnet doublet: Electromagnetic focusing elements used to confine the beam and deliver a focused beam to the target.
    4. Faraday cup system: This can be inserted when required and used to intercept the beam and measure the amount of particles per second you are working with.
    5. jaw slits: Slit systems are used to define a region you wish to tune the beam of particles through. This can help define the beam shape and size.
    6. .Accelerator tank: The accelerator is confined within a steel pressure vessel at ~ 200 psi of insulating gas. This helps maintain the voltage of the accelerator, independent of room conditions.
    7. Dipole analyzing magnet: This is an electromagnetic dipole magnet used to deflect ions (25 degrees). This is used to select an ion of interest based on its fundamental properties of mass, velocity and charge state.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.
    LUX/Dark matter experiment at SURFLUX/Dark matter experiment at SURF

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    Fermilab LBNE
    LBNE

     
  • richardmitnick 11:50 am on January 19, 2017 Permalink | Reply
    Tags: , , , SURF - Sanford Underground Research Facility   

    From SURF: “Ventilation critical to DUNE success” 

    SURF logo
    Sanford Underground levels

    Sanford Underground Research facility

    January 17, 2017
    Constance Walter

    1
    Above: The Oro Hondo shaft exhaust fan is essential to controling airflow underground. Below [?]: A laser scanner was lowered into the shaft to map its integrety. Credit: Matthew Kapust

    Air flows down the Yates and Ross shafts and is pulled through specific areas underground by two air shafts: Number 5 Shaft and the Oro Hondo. With the Deep Underground Neutrino Experiment (DUNE) just on the horizon, the reliability of the Oro Hondo ventilation system, in particular, is critical.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA
    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA

    A direct drive, variable-frequency fan powered by a 3000 horsepower synchronous motor (it currently draws less than 400 hp), the Oro Hondo was built in 1986. Since then, it has undergone repairs and had parts replaced as needed and, in 2010, underwent a significant rebuild as Sanford Lab prepared to install the first physics experiments on the 4850 Level.

    Deterioration of the shaft can inhibit airflow, so it was critical to understand the integrity of the wall rock, said Bryce Pietzyk, underground access director. However, because there is no conveyance in the shaft, Pietzyk turned to experts to find a way to get “eyes on” the rock from the surface to the current muck pile elevation. A special scanning method, developed by Professional Mapping Services, Firmatek and Mine Vision Systems, was lowered into the shaft to collect data on ground conditions.

    “We learned a lot from the baseline scan, and things look good right now,” Pietzyk said. “But we’ll need to do more scans over time to really understand locations of zones where rock wall conditions have deteriorated.” Additional scans will help create a more complete picture of the conditions of the shaft.

    Ventilation surveys helped Sanford Lab engineers determine that while the fan was operating well, the drive system is obsolete and unreliable, and the motor and bearings require preventive maintenance before Long-Baseline Neutrino Facilty (LBNF) starts major construction. Tests also revealed minor corrosion in the ducting, which will be sandblasted and coated to slow further corrosion.

    “But, overall, the entire system is much more efficient than we anticipated,” said Allan Stratman, engineering director.

    Finally, to improve air flow, a borehole needs to be raised from the 4850 to the 3650 Level and improvements made to 31 exhaust, an existing ventilation path. It’s all part of the plans for the LBNF, which will power DUNE.

    Scientists working on DUNE hope to answer questions about the role neutrinos play in the universe, learn more about the formation of neutron stars and black holes and, quite possibly, figure out just how much mass these elusive particles have.

    A neutrino beam will be sent from Fermilab [FNAL] near Chicago, Ill., 800 miles through the earth to Sanford Lab in Lead, S.D. Although no tunnel is required for the neutrino beam, huge caverns must be excavated to house four massive liquid argon detectors on the 4850 Level of Sanford Lab.

    FNAL DUNE Argon tank at SURF
    FNAL DUNE Argon tank at SURF

    Nearly 800,000 tons of rock will be excavated. Proper ventilation is critical when doing construction underground. And that’s why the Oro Hondo is so important to the success of DUNE.

    “This is the only shaft that can provide enough ventilation for the amount of excavation LBNF requires and to remove heat from the DUNE caverns during operations,” said Joshua Willhite, deputy project manager for the LBNF Far Site (Sanford Lab) Conventional Facilities. “The fan has to be highly reliable to reduce risk.”

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.
    LUX/Dark matter experiment at SURFLUX/Dark matter experiment at SURF

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    Fermilab LBNE
    LBNE

     
  • richardmitnick 3:54 pm on January 16, 2017 Permalink | Reply
    Tags: Life Underground, SURF - Sanford Underground Research Facility   

    From SURF: “Deep Talks looks at life underground” 

    SURF logo
    Sanford Underground levels

    Sanford Underground Research facility

    November 7, 2016 [I missed a change in how SURF put there articles up.]
    Constance Walter

    1
    Cynthia Anderson and Dave Bergmann collect biofilm samples underground at Sanford Lab.

    For more than 100 years, Homestake miners went deep to find gold. Today, scientists from around the world are going deep underground at Sanford Lab in search of microscopic organisims that could change life on the surface.

    South Dakota School of Mines and Technology biology professors and students are looking for ways to use microbes to convert solid waste into biofuels and bacteria into antibiotics.

    The NASA Astrobiology Institute, Desert Research Institute and Jet Propulsion Lab are studying life underground to develop technology that will be used to search for life on Mars.

    Black Hills State University (BHSU) professors are trying to understand how microbes survive without access to oxygen and limited nutritional resources.

    To shed some light on life underground, BHSU’s Dr. Dave Bergmann, professor of biology, and Dr. Cynthia Anderson, associate professor of biology, will discuss the microbial diversity present in the deep reaches of Sanford Lab Thursday, Nov. 10, at the Sanford Lab Homestake Visitor Center in Lead.

    “Our goal is to gain new knowledge about the adaptations and biochemical pathways microbes use to survive in the unique environments present underground,” Anderson said.

    In Sanford Lab’s unique ecosystems, microbes from the earth’s surface interact with microbes that are indigenous to the deep underground where there are limited nutritional resources, and no light.

    “Learning more about what is living deep underground, and understanding the biochemical pathways those microbes use to survive could lead to new biotechnological advances,” Anderson said.

    Deep Talks: Life Underground begins at 5 p.m. with a social hour; the talk begins at 6 p.m. Deep Talks is free to the public. Donations to support community education are welcome. Guests aged 21 and older may sample craft brews from Crow Peak Brewery. Light refreshments, sponsored by First National Bank, will be served during the social hour.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.
    LUX/Dark matter experiment at SURFLUX/Dark matter experiment at SURF

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    Fermilab LBNE
    LBNE

     
  • richardmitnick 3:45 pm on January 16, 2017 Permalink | Reply
    Tags: , , , , SURF - Sanford Underground Research Facility   

    From SURF: “Neutrinos: Spies of the sun” 

    SURF logo
    Sanford Underground levels

    Sanford Underground Research facility

    November 21, 2016 [Just caught up with this.]
    Constance Walter

    1
    Hydrogen plasma glows at the ion source of the LUNA accelerator. The plasma is needed to extract and accelerate protons. Credit: LUNA experiment

    As a young man, Frank Strieder was fascinated with astrophysics, reading every book he could find and taking high-level courses in math and physics while in high school in Germany. One day in particular stands out.

    “My teacher said, ‘Ah, but neutrinos have never been measured from the sun.’ I said, ‘No, no, no. There’s an experiment by Ray Davis somewhere in the United States at an underground gold mine.’ And the teacher said, ‘No, that is not the case,’” said Strieder, a professor of physics at the South Dakota School of Mines and Technology (SD Mines).

    “Now, almost 30 years later, I’m at that same place doing my own experiment in the same environment,” said Strieder, who is also the principal investigator for CASPAR (Compact Accelerator System for Performing Astrophysical Research) at Sanford Lab.

    For nearly three decades, Davis counted solar neutrinos on the 4850 Level of the former Homestake Mine. But there was a problem. Davis consistently counted only one-third the number of neutrinos predicted by theorists, creating what came to be called the “solar neutrino problem.”

    Initially, the scientific community thought the experiment must be wrong, but Davis insisted he was right. He was vindicated when two underground experiments in Canada and Japan showed that neutrinos oscillate, or change among three types, as they travel through space at nearly the speed of light. In 2002, Davis earned a share of the Nobel Prize in Physics.

    But even before the Nobel, Davis’s work inspired experiments around the world, including the Laboratory for Underground Nuclear Astrophysics (LUNA) at Gran Sasso National Laboratory in Italy.

    Gran Sasso LABORATORI NAZIONALI del GRAN SASSO
    Gran Sasso LABORATORI NAZIONALI del GRAN SASSO

    The first underground accelerator for astrophysics, LUNA has been looking at stellar nuclear burning in the sun for 25 years.

    “Ray Davis used neutrinos as spies of the sun, to try to prove what was happening in the sun,” said Matthias Junker, a scientist with the LUNA collaboration. “As we have fixed our idea of what is a neutrino, we can use it to probe what is going on inside the sun.”

    Strieder worked with Junker on the LUNA experiment for 22 years before moving to CASPAR two years ago.

    CASPAR's accelerator is expected to be operational by 2015
    CASPAR’s accelerator is expected to be operational by 2015

    Although both experiments are studying stellar burning and evolutionary phases in stars, their work is different. CASPAR is interested in understanding the production of elements heavier than iron, while LUNA concentrates on the production of elements up to magnesium, aluminum and others in that area.

    “This nuclear burning produces all the isotopes that make up life,” Junker said. “Where does carbon come from? Oxygen? Nitrogen? Lead? Gold? It’s all produced within stars. If you have a better understanding of the stars, you can use them to probe the universe.”

    LUNA and CASPAR are the only experiments doing this type of research, Junker said. “Of course, there is competition but there is also sharing knowledge and experience.”

    And it all started with neutrinos and the pioneering work done by Ray Davis.

    On a recent visit to Sanford Lab, Junker said, “For me, this moment is extremely thrilling. This is the root of neutrino research.”

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.
    LUX/Dark matter experiment at SURFLUX/Dark matter experiment at SURF

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    Fermilab LBNE
    LBNE

     
  • richardmitnick 10:16 am on December 7, 2016 Permalink | Reply
    Tags: , , Laboratory for Underground Nuclear Astrophysics (LUNA), Neutrinos: Spies of the sun, SURF - Sanford Underground Research Facility   

    From SURF: “Neutrinos: Spies of the sun” 

    SURF logo
    Sanford Underground levels

    Sanford Underground Research facility

    November 21, 2016
    Constance Walter

    1
    Hydrogen plasma glows at the ion source of the LUNA accelerator. The plasma is needed to extract and accelerate protons. Credit: LUNA experiment

    As a young man, Frank Strieder was fascinated with astrophysics, reading every book he could find and taking high-level courses in math and physics while in high school in Germany. One day in particular stands out.

    “My teacher said, ‘Ah, but neutrinos have never been measured from the sun.’ I said, ‘No, no, no. There’s an experiment by Ray Davis somewhere in the United States at an underground gold mine.’ And the teacher said, ‘No, that is not the case,’” said Strieder, a professor of physics at the South Dakota School of Mines and Technology (SD Mines).

    “Now, almost 30 years later, I’m at that same place doing my own experiment in the same environment,” said Strieder, who is also the principal investigator for CASPAR (Compact Accelerator System for Performing Astrophysical Research) at Sanford Lab.

    For nearly three decades, Davis counted solar neutrinos on the 4850 Level of the former Homestake Mine. But there was a problem. Davis consistently counted only one-third the number of neutrinos predicted by theorists, creating what came to be called the “solar neutrino problem.”

    Initially, the scientific community thought the experiment must be wrong, but Davis insisted he was right. He was vindicated when two underground experiments in Canada and Japan showed that neutrinos oscillate, or change among three types, as they travel through space at nearly the speed of light. In 2002, Davis earned a share of the Nobel Prize in Physics.

    But even before the Nobel, Davis’s work inspired experiments around the world, including the Laboratory for Underground Nuclear Astrophysics (LUNA) at Gran Sasso National Laboratory in Italy.

    1
    Nuclear (Astro-)physics, The University of Edinburgh

    The first underground accelerator for astrophysics, LUNA has been looking at stellar nuclear burning in the sun for 25 years.

    “Ray Davis used neutrinos as spies of the sun, to try to prove what was happening in the sun,” said Matthias Junker, a scientist with the LUNA collaboration. “As we have fixed our idea of what is a neutrino, we can use it to probe what is going on inside the sun.”

    Strieder worked with Junker on the LUNA experiment for 22 years before moving to CASPAR two years ago.

    3
    A new experiment designed to mimic the nuclear fusion that takes place in stars has moved into a space at the 4850 level of the underground Sanford Lab in the former Homestake gold mine in Lead, according to the Sanford Lab newsletter.

    Although both experiments are studying stellar burning and evolutionary phases in stars, their work is different. CASPAR is interested in understanding the production of elements heavier than iron, while LUNA concentrates on the production of elements up to magnesium, aluminum and others in that area.

    “This nuclear burning produces all the isotopes that make up life,” Junker said. “Where does carbon come from? Oxygen? Nitrogen? Lead? Gold? It’s all produced within stars. If you have a better understanding of the stars, you can use them to probe the universe.”

    LUNA and CASPAR are the only experiments doing this type of research, Junker said. “Of course, there is competition but there is also sharing knowledge and experience.”

    And it all started with neutrinos and the pioneering work done by Ray Davis.

    On a recent visit to Sanford Lab, Junker said, “For me, this moment is extremely thrilling. This is the root of neutrino research.”

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    About us.
    The Sanford Underground Research Facility in Lead, South Dakota, advances our understanding of the universe by providing laboratory space deep underground, where sensitive physics experiments can be shielded from cosmic radiation. Researchers at the Sanford Lab explore some of the most challenging questions facing 21st century physics, such as the origin of matter, the nature of dark matter and the properties of neutrinos. The facility also hosts experiments in other disciplines—including geology, biology and engineering.

    The Sanford Lab is located at the former Homestake gold mine, which was a physics landmark long before being converted into a dedicated science facility. Nuclear chemist Ray Davis earned a share of the Nobel Prize for Physics in 2002 for a solar neutrino experiment he installed 4,850 feet underground in the mine.

    Homestake closed in 2003, but the company donated the property to South Dakota in 2006 for use as an underground laboratory. That same year, philanthropist T. Denny Sanford donated $70 million to the project. The South Dakota Legislature also created the South Dakota Science and Technology Authority to operate the lab. The state Legislature has committed more than $40 million in state funds to the project, and South Dakota also obtained a $10 million Community Development Block Grant to help rehabilitate the facility.

    In 2007, after the National Science Foundation named Homestake as the preferred site for a proposed national Deep Underground Science and Engineering Laboratory (DUSEL), the South Dakota Science and Technology Authority (SDSTA) began reopening the former gold mine.

    In December 2010, the National Science Board decided not to fund further design of DUSEL. However, in 2011 the Department of Energy, through the Lawrence Berkeley National Laboratory, agreed to support ongoing science operations at Sanford Lab, while investigating how to use the underground research facility for other longer-term experiments. The SDSTA, which owns Sanford Lab, continues to operate the facility under that agreement with Berkeley Lab.

    The first two major physics experiments at the Sanford Lab are 4,850 feet underground in an area called the Davis Campus, named for the late Ray Davis. The Large Underground Xenon (LUX) experiment is housed in the same cavern excavated for Ray Davis’s experiment in the 1960s.
    LUX/Dark matter experiment at SURFLUX/Dark matter experiment at SURF

    In October 2013, after an initial run of 80 days, LUX was determined to be the most sensitive detector yet to search for dark matter—a mysterious, yet-to-be-detected substance thought to be the most prevalent matter in the universe. The Majorana Demonstrator experiment, also on the 4850 Level, is searching for a rare phenomenon called “neutrinoless double-beta decay” that could reveal whether subatomic particles called neutrinos can be their own antiparticle. Detection of neutrinoless double-beta decay could help determine why matter prevailed over antimatter. The Majorana Demonstrator experiment is adjacent to the original Davis cavern.

    Another major experiment, the Long Baseline Neutrino Experiment (LBNE)—a collaboration with Fermi National Accelerator Laboratory (Fermilab) and Sanford Lab, is in the preliminary design stages. The project got a major boost last year when Congress approved and the president signed an Omnibus Appropriations bill that will fund LBNE operations through FY 2014. Called the “next frontier of particle physics,” LBNE will follow neutrinos as they travel 800 miles through the earth, from FermiLab in Batavia, Ill., to Sanford Lab.

    Fermilab LBNE
    LBNE

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: