Tagged: Supernova 1987A (SN 1987A) Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 9:16 am on July 28, 2019 Permalink | Reply
    Tags: A dull and asphalt black mineral formation called a ferromanganese crust grows on the bare bedrock of underwater mountains—incomprehensibly slowly, , , , , Fe-60- a heavy isotope of iron with four more neutrons than the regular isotope and a half-life of 2.6 million years., Ferromanganese crusts in their thin laminated layers it records the history of planet Earth and- according to some-the first direct evidence of a nearby supernova., , How a star explosion may have shaped life on Earth, Klaus Knie, Knie’s new tool gives scientists the ability to date other- possibly more ancient- supernovas that may have passed in the vicinity of Earth and to study their influence on our planet., Like many supernovas SN 1987A announced the violent collapse of a massive star., , Neil Gehrels, Supernova 1987A (SN 1987A), The crusts’ growth is one the slowest processes known to science—they put on about five millimeters every million years., The most compelling evidence for a nearby supernova comes—somewhat paradoxically—from the bottom of the sea., To understand just how supernovas affected life scientists needed to link the timing of their explosions to pivotal events on earth such as mass extinctions or evolutional leaps.   

    From Nautilus: “The Secret History of the Supernova at the Bottom of the Sea” 

    Nautilus

    From Nautilus

    July 2019
    Julia Rosen

    How a star explosion may have shaped life on Earth.

    1

    2
    Photograph of Neil Gehrels in his office at NASA Goddard Space Flight Center in October 2005. GNU Free Documentation License

    NASA Neil Gehrels Swift Observatory

    In February 1987, Neil Gehrels, a young researcher at NASA’s Goddard Space Flight Center, boarded a military plane bound for the Australian Outback. Gehrels carried some peculiar cargo: a polyethylene space balloon and a set of radiation detectors he had just finished building back in the lab. He was in a hurry to get to Alice Springs, a remote outpost in the Northern Territory, where he would launch these instruments high above Earth’s atmosphere to get a peek at the most exciting event in our neck of the cosmos: a supernova exploding in one of the Milky Way’s nearby satellite galaxies.

    2
    Alice Springs

    Like many supernovas, SN 1987A announced the violent collapse of a massive star.

    SN1987a from NASA/ESA Hubble Space Telescope in Jan. 2017 using its Wide Field Camera 3 (WFC3).

    This is an artist’s impression of the SN 1987A remnant. The image is based on real data and reveals the cold, inner regions of the remnant, in red, where tremendous amounts of dust were detected and imaged by ALMA. This inner region is contrasted with the outer shell, lacy white and blue circles, where the blast wave from the supernova is colliding with the envelope of gas ejected from the star prior to its powerful detonation. Image credit: ALMA / ESO / NAOJ / NRAO / Alexandra Angelich, NRAO / AUI / NSF.

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    NRAO/Karl V Jansky Expanded Very Large Array, on the Plains of San Agustin fifty miles west of Socorro, NM, USA, at an elevation of 6970 ft (2124 m)

    Back in the 1970s, researchers hypothesized that radiation from a nearby supernova could annihilate the ozone layer, exposing plants and animals to harmful ultraviolet light, and possibly cause a mass extinction. Armed with new data from SN 1987A, Gehrels could now calculate a theoretical radius of doom, inside which a supernova would have grievous effects, and how often dying stars might stray inside it.

    Like many supernovas, SN 1987A announced the violent collapse of a massive star. What set it apart was its proximity to Earth; it was the closest stellar cataclysm since Johannes Kepler spotted one in our own Milky Way galaxy in 1604. Since then, scientists have thought up many questions that to answer would require a front row seat to another supernova. They were questions like this: How close does a supernova need to be to devastate life on Earth?

    _______________________________________________
    To understand just how supernovas affected life, scientists needed to link the timing of their explosions to pivotal events on earth such as mass extinctions or evolutional leaps.
    _______________________________________________

    “The bottom line was that there would be a supernova close enough to the Earth to drastically affect the ozone layer about once every billion years,” says Gehrels, who still works at Goddard.

    NASA Goddard Campus

    That’s not very often, he admits, and no threatening stars prowl the solar system today. But Earth has existed for 4.6 billion years, and life for about half that time, meaning the odds are good that a supernova blasted the planet sometime in the past. The problem is figuring out when. Because supernovas mainly affect the atmosphere, it’s hard to find the smoking gun,” Gehrels says.

    Astronomers have searched the surrounding cosmos for clues, but the most compelling evidence for a nearby supernova comes—somewhat paradoxically—from the bottom of the sea. Here, a dull and asphalt black mineral formation called a ferromanganese crust grows on the bare bedrock of underwater mountains—incomprehensibly slowly.

    3
    PLAIN-LOOKING, BUT IMPORTANT: Ferromanganese crusts collected by James Hein nearby
    James Hein

    In its thin, laminated layers, it records the history of planet Earth and, according to some, the first direct evidence of a nearby supernova.

    These kinds of clues about ancient cosmic explosions are immensely valuable to scientists, who suspect that supernovas may have played a little-known role in shaping the evolution of life on Earth. “This actually could have been part of the story of how life has gone on, and the slings and arrows that it had to dodge,” says Brian Fields, an astronomer at the University of Illinois at Urbana-Champaign. But to understand just how supernovas affected life, scientists needed to link the timing of their explosions to pivotal events on earth such as mass extinctions or evolutional leaps. The only way to do that is to trace the debris they deposited on Earth by finding elements on our planet that are primarily fused inside supernovas.

    Fields and his colleagues named a few such supernova-forged elements—mainly rare radioactive metals that decay slowly, making their presence a sure sign of an expired star. One of the most promising candidates was Fe-60, a heavy isotope of iron with four more neutrons than the regular isotope and a half-life of 2.6 million years. But finding Fe-60 atoms scattered on the Earth’s surface was no easy task.

    3
    GAMS – Group: Supernova-produced Fe-60 on earth

    Fields estimated that only a very small amount of Fe-60 would have actually reached our planet, and on land, it would have been diluted by natural iron, or been eroded and washed away over millions of years.

    _______________________________________________
    The crusts’ growth is one the slowest processes known to science—they put on about five millimeters every million years.
    _______________________________________________

    So scientists looked instead at the bottom of the sea, where they found Fe-60 atoms in the ferromanganese crusts, which are rocks that form a bit like stalagmites: They precipitate out of liquid, adding successive layers, except they are composed of metals and form extensive blankets instead of individual spires. Composed primarily of iron and manganese oxides, they also contain small amounts of almost every metal in the periodic table, from cobalt to yttrium.

    As iron, manganese, and other metal ions wash into the sea from land or gush from underwater volcanic vents, they react with the oxygen in seawater, forming solid substances that precipitate onto the ocean floor or float around until they adhere to existing crusts. James Hein at the United States Geological Survey, who studied crusts for more than 30 years, says that it remains a mystery exactly how they establish themselves on rocky stretches of seafloor, but once the first layer accumulates, more layers pile on—up to 25 centimeters thick.

    That enables crusts to serve as cosmic historians that keep records of seawater chemistry, including the elements that serve as timestamps of dying stars. One of the oldest crusts, fished out by Hein southwest of Hawaii in the 1980s, dates back more than 70 million years, to a time when dinosaurs roamed the planet and the Indian subcontinent was just an island in the ocean halfway between Antarctica and Asia.

    The crusts’ growth is one the slowest processes known to science—they put on about five millimeters every million years. For comparison, human fingernails grow about 7 million times faster. The reason for that is plain math. There’s less than one atom of iron or manganese for every billion molecules of water in the ocean—and then they must resist the pull of passing currents and the power of other chemical interactions that might pry them loose until they get trapped by the next layer.

    Unlike the slow-growing crusts, however, supernova explosions happen almost instantly. The most common type of supernova occurs when a star runs out of its hydrogen and helium fuel, causing its core to burn heavier elements until it eventually produces iron. That process can take millions of years, but the star’s final moments take only milliseconds. As heavy elements accumulate in the core, it becomes unstable and implodes, sucking the outer layers inward at a quarter of the speed of light. But the density of particles in the core soon repels the implosion, triggering a massive explosion that shoots a cloud of stellar debris out into space—including Fe-60 isotopes, some of which eventually find their home in ferromanganese crusts.

    5
    MEET THE EARTH’S HISTORIAN: Klaus Knie used this 25 cm-thick ferromanganese crust sampled from the depth of 4,830m in the Pacific Ocean to trace the Fe-60 isotopes. Anton Wallner

    The first people to look for the Fe-60 in these crusts were Klaus Knie, an experimental physicist then at the Technical University of Munich, and his collaborators.

    Knie’s team was studying neither supernovas nor crusts—they were developing methods for measuring rare isotopes of various elements—including Fe-60.

    6
    Haut, Knie, Hüfte, Rücken – alles verständlich erklärt

    After another scientist measured an isotope of beryllium, which can be used to date the layers of the crusts, Knie decided to examine the same specimen for Fe-60, which he knew was produced in supernovas. “We are part of the universe and we have the chance to hold the ‘astrophysical’ matter in our hand, if we look at the right places,” says Knie, who is now at the GSI Helmholtz Center for Heavy Ion Research.

    GSI Helmholtz Centre for Heavy Ion Research GmbH, Darmstadt, Germany,

    _______________________________________________

    Knie’s new tool gives scientists the ability to date other, possibly more ancient, supernovas that may have passed in the vicinity of Earth, and to study their influence on our planet.
    _______________________________________________

    The crust, also plucked from the seafloor not far from Hawaii, turned out to be the right place: Knie and his colleagues found a spike in Fe-60 in layers that dated back about 2.8 million years, which they say signaled the death of a nearby star around that time. Knie’s discovery was important in several ways. It represented the first evidence that supernova debris can be found here on Earth and it pinpointed the approximate timing of the last nearby supernova blast (if there had been a more recent one, Knie would have found more recent Fe-60 spikes.). But it also enabled Knie to propose an interesting evolutionary theory.

    Based on the concentration of Fe-60 in the crust, Knie estimated that the supernova exploded at least 100 light-years from Earth—three times the distance at which it could’ve obliterated the ozone layer—but close enough to potentially alter cloud formation, and thus, climate. While no mass-extinction events happened 2.8 million years ago, some drastic climate changes did take place—and they may have given a boost to human evolution. Around that time, the African climate dried up, causing the forests to shrink and give way to grassy savanna. Scientists think this change may have encouraged our hominid ancestors as they descended from trees and eventually began walking on two legs.

    That idea, as any young theory, is still speculative and has its opponents. Some scientists think Fe-60 may have been brought to Earth by meteorites, and others think these climate changes can be explained by decreasing greenhouse gas concentrations, or the closing of the ocean gateway between North and South America. But Knie’s new tool gives scientists the ability to date other, possibly more ancient, supernovas that may have passed in the vicinity of Earth, and to study their influence on our planet. It is remarkable that we can use these dull, slow-growing rocks to study the luminous, rapid phenomena of stellar explosions, Fields says. And they’ve got more stories to tell.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Welcome to Nautilus. We are delighted you joined us. We are here to tell you about science and its endless connections to our lives. Each month we choose a single topic. And each Thursday we publish a new chapter on that topic online. Each issue combines the sciences, culture and philosophy into a single story told by the world’s leading thinkers and writers. We follow the story wherever it leads us. Read our essays, investigative reports, and blogs. Fiction, too. Take in our games, videos, and graphic stories. Stop in for a minute, or an hour. Nautilus lets science spill over its usual borders. We are science, connected.

    “The bottom line was that there would be a supernova close enough to the Earth to drastically affect the ozone layer about once every billion years,” says Gehrels, who still works at Goddard. That’s not very often, he admits, and no threatening stars prowl the solar system today. But Earth has existed for 4.6 billion years, and life for about half that time, meaning the odds are good that a supernova blasted the planet sometime in the past. The problem is figuring out when. Because supernovas mainly affect the atmosphere, it’s hard to find the smoking gun,” Gehrels says.

    Astronomers have searched the surrounding cosmos for clues, but the most compelling evidence for a nearby supernova comes—somewhat paradoxically—from the bottom of the sea. Here, a dull and asphalt black mineral formation called a ferromanganese crust grows on the bare bedrock of underwater mountains—incomprehensibly slowly. In its thin, laminated layers, it records the history of planet Earth and, according to some, the first direct evidence of a nearby supernova.

     
  • richardmitnick 11:53 am on July 12, 2018 Permalink | Reply
    Tags: A cosmic particle spewed from a distant galaxy strikes Earth, , , , , , , , , , Supernova 1987A (SN 1987A),   

    From Astronomy Magazine: “A cosmic particle spewed from a distant galaxy strikes Earth” 

    Astronomy magazine

    From Astronomy Magazine

    July 12, 2018
    Michelle Hampson

    The rare detection of a high-energy neutrino hints at how these strange particles are created.

    U Wisconsin ICECUBE neutrino detector at the South Pole



    IceCube Gen-2 DeepCore PINGU annotated

    Four billion years ago, an immense galaxy with a black hole at its heart spewed forth a jet of particles at nearly the speed of light. One of those particles, a neutrino that is just a fraction of the size of a regular atom, traversed across the universe on a collision course for Earth, finally striking the ice sheet of Antarctica last September. Coincidentally, a neutrino detector planted by scientists within the ice recorded the neutrino’s charged interaction with the ice, which resulted in a blue flash of light lasting just a moment. The results are published today in the journal Science.

    This detection marks the second time in history that scientists have pinpointed the origins of a neutrino from outside of our solar system. And it’s the first time they’ve confirmed that neutrinos are created in the supermassive black holes at the centers of galaxies — a somewhat unexpected source.

    Neutrinos are highly energetic particles that rarely ever interact with matter, passing through it as though it weren’t even there. Determining the type of cosmological events that create these particles is critical for understanding the nature of the universe. But the only confirmed source of neutrinos, other than our Sun, is a supernova that was recorded in 1987.

    2
    The most recent Hubble image of SN 1987A, taken in January 2017, captures the glow of hydrogen gas around the supernova remnant.
    NASA, ESA, and R. Kirshner (Harvard-Smithsonian Center for Astrophysics and Gordon and Betty Moore Foundation) and P. Challis (Harvard-Smithsonian Center for Astrophysics)

    Physicists have a number of theories about what sort of astronomical events may create neutrinos, with some suggesting that blazars could be a source. Blazars are massive galaxies with black holes at their center, trying to suck in too much matter at once, causing jets of particles to be ejected outward at incredible speeds. Acting like the giant counterparts to terrestrial particle accelerators, blazar jets are believed to produce cosmic rays that can in turn create neutrinos.

    “This [detection] in particular is a chance of nature,” says Darren Grant, a lead scientist of the team that first discovered the high-energy neutrino, as part of the neutrino detection project IceCube. “There’s a blazar there that just happened to turn on at the right time and we happened to capture it. It’s one of those eureka moments. You hope to experience those a few times in your career and this was one of them, where everything aligned.”

    A cosmic messenger

    On September 22, 2017, the neutrino reached the Antarctica ice sheet, passing by an ice crystal at just the right angle to cause a subatomic particle (called a muon) to be created from the interaction. The resulting blue flash was recorded by one of IceCube’s 5,160 detectors, embedded within the ice. Grant was in the office when the detection occurred. This neutrino was about 300 million times more energetic than those that are emitted by the Sun.

    Grant and his colleague briefly admired the excellent image depicting the trajectory of the muon, which provides basic information necessary to begin tracing back the neutrino’s origin. However, they weren’t overly excited quite yet. His team observes about 10 to 20 high-energy neutrinos each year, but the right combination of events — in space, time and energy, for example — is required to precisely pinpoint the source of the neutrino. Such an alignment had eluded scientists so far. As Grant’s team began their analysis, though, they began to narrow in on a region: an exceptionally bright blazar called TXS 0506+056.

    3
    IceCube employs more than 5,000 detectors lowered on 86 strings into almost 100 holes in the Antarctic ice.
    NSF / B. Gudbjartsson, IceCube Collaboration

    Upon the detection, an automatic alert was sent to other astronomy teams around the world, which monitor various incoming cosmic signals, such as radio and gamma rays. A few days later a team of scientists using the MAGIC telescope in the Canary Islands responded with some exciting news: the arrival of the neutrino had coincided with a burst of gamma rays – which are extremely energetic photons – also coming from the direction of TXS 0506+056.

    MAGIC Cherenkov gamma ray telescope on the Canary island of La Palma, Spain, Altitude 2,200 m (7,200 ft)

    Other teams analyzing the region following the initial detection observed changes in X-ray emissions and radio signals too. Collectively, the data is a huge step forward for physicists in understanding blazars, and high-energy cosmological events in general.

    John Learned of University of Hawaii, Manoa, who was not involved in the study, says that the data linking the blazar as the source is “overwhelmingly convincing” and he emphasizes the importance of this finding. “This is the realization of many long-standing scientific dreams. Neutrinos at high energies can tell us about the guts of these extremely luminous objects … The implications of the finding are that we are now finally … [able] to see inside the most dense and luminous objects, and to further our grasp of the ‘deus ex machina’ which drives them and powers these awesome phenomena.”

    For example, this detection also provides the first evidence that a blazar can produce the high-energy protons needed to generate neutrinos such as the one IceCube saw.

    4
    Blazars are active supermassive black holes sucking in immense amounts of material, which form swirling accretion disks and generate high-powered particle jets that churn out particles that astronomers have believed eventually result in neutrinos. DESY, Science Communication Lab

    Sources of high-energy protons also remain largely a mystery, so the identification of one such source is another big step forward for astronomers. “It’s really quite convincing that we’ve unlocked one piece of that puzzle,” says Grant.

    Gems from the past

    And it gets even better. “We looked back at [archival] data [that had been collected since 2010], in the direction of this particular blazar source, and what we discovered was really quite remarkable,” Grant says. A barrage of high-energy neutrinos and gamma rays from TXS 0506+056 reached Earth in late 2014 and early 2015. At the time, IceCube’s real-time alert system was not fully functioning, so other scientific teams were not aware of the detection. But now these previous neutrinos are on scientists’ radar, providing a more long-term glimpse into the life of a blazar.

    “That was really icing on the cake, because what [the archived data indicated] was that the source had been active in neutrinos in the past, and then again, with this very high-energy neutrino in September — those are the pieces that really start to come together, to make a picture of what’s happening there,” explains Grant.

    6
    The alert IceCube sent once the neutrino’s interaction with the ice was detected resulted in follow-up observations from about 20 Earth- and space-based observatories. This immense effort resulted in the clear identification of a distant blazar as the source of the neutrino — as well as gamma rays, X-rays, radio emission, and optical light.
    Nicolle R. Fuller/NSF/IceCube

    The data also reveal that radio emissions from TXS 0506+056 gradually increased in the 18 months leading up to the September neutrino detection. Greg Sivakoff, an associate professor at the University of Alberta who helped analyze the data, says one possibility is that the black hole began to consume surrounding matter much faster during this time, causing the jet of particles being emitted to speed up. He says, “If the jet gets too fast too quickly, it might run into some of its own material, creating what astronomers call a shock. Shocks have long been used in astronomy to explain how particles are accelerated to high energies. We are not sure that this is the answer yet, but this may be part of the story.”

    Scientists are continuing to monitor TXS 0506+056, hoping to learn more about this colossal event. One team conducted a detailed analysis to determine how far away the blazar is from us, astounded to discover that it is a whopping four billion light years away. While TXS 0506+056 was always considered a bright object in the sky, this luminosity at such a distance makes it one of the brightest objects in the universe. No doubt future studies of this powerful blazar will yield valuable insights into the most energetic events to occur in our universe.

    Learned says, “We are just opening a new door and I would love to be able to say what we shall find beyond. But I guarantee that initiating this new means of observing the universe will bring surprises and new insights. In an extreme analogy it is like asking Galileo what his new astronomical telescope will reveal.”

    See the full article here .
    See also From CfA: VERITAS Supplies Critical Piece to Neutrino Discovery Puzzle


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 3:21 pm on June 29, 2018 Permalink | Reply
    Tags: , , , , , Supernova 1987A (SN 1987A)   

    From Dunlap Institute for Astronomy and Astrophysics: “Astronomers Observe the Magnetic Field of the Remains of Supernova 1987A” 

    Dunlap Institute bloc
    From Dunlap Institute for Astronomy and Astrophysics

    6.29.18

    CONTACT INFORMATION:

    Prof. Bryan Gaensler, Director
    Dunlap Institute for Astronomy & Astrophysics
    University of Toronto
    p: 416-978-6623
    e: bgaensler@dunlap.utoronto.ca
    w: dunlap.utoronto.ca

    Chris Sasaki
    Communications Coordinator | Press Officer
    Dunlap Institute for Astronomy & Astrophysics
    University of Toronto
    p: 416-978-6613
    e: csasaki@dunlap.utoronto.ca
    w: dunlap.utoronto.ca

    At U Toronto

    1
    This Hubble Space Telescope image of the remnant of Supernova 1987A shows a bright inner ring glowing as it interacts with material from the supernova blast. The ring is approximately one light-year in diameter. It is not clear what is causing the two larger, fainter rings. The two bright objects are stars in the Large Magellanic Cloud. The image was taken in 2010. Image: NASA, ESA, R. Kirshner and P. Challis (Harvard-Smithsonian Center for Astrophysics)

    NASA/ESA Hubble Telescope

    Large Magellanic Cloud. Adrian Pingstone December 2003

    For the first time, astronomers have directly observed the magnetism in one of astronomy’s most studied objects: the remains of Supernova 1987A (SN 1987A), a dying star that appeared in our skies over thirty years ago.

    In addition to being an impressive observational achievement, the detection provides insight into the early stages of the evolution of supernova remnants and the cosmic magnetism within them.

    “The magnetism we’ve detected is around 50,000 times weaker than a fridge magnet,” says Prof. Bryan Gaensler. “And we’ve been able to measure this from a distance of around 1.6 million trillion kilometres.”

    “This is the earliest possible detection of the magnetic field formed after the explosion of a massive star,” says Dr. Giovanna Zanardo.

    Gaensler is Director of the Dunlap Institute for Astronomy & Astrophysics at the University of Toronto, and a co-author on the paper announcing the discovery being published in The Astrophysical Journal Letters on June 29th. The lead author, Zanardo, and co-author Prof. Lister Staveley-Smith are both from the University of Western Australia’s node of the International Centre for Radio Astronomy Research.

    SN 1987A was co-discovered by University of Toronto astronomer Ian Shelton in February 1987 from the then Southern Observatory of the University of Toronto in northern Chile. It is located in the Large Magellanic Cloud, a dwarf galaxy companion to the Milky Way Galaxy, at a distance of 168,000 light-years from Earth. It was the first naked-eye supernova to be observed since the astronomer Johannes Kepler witnessed a supernova over 400 years ago.

    CSIRO Australia Compact Array, six radio telescopes at the Paul Wild Observatory, is an array of six 22-m antennas located about twenty five kilometres (16 mi) west of the town of Narrabri in Australia.

    In the thirty years since the supernova occurred, material expelled by the blast, as well as the shockwave from the star’s death throes, have been travelling outward through the gas and dust that surrounded the star before it exploded. Today, when we look at the remnant, we see rings of material set aglow by the supernova’s expanding debris and shockwave.

    Using the Australia Telescope Compact Array at the Paul Wild Observatory, Gaensler and his colleagues observed the magnetic field by studying the radiation coming from the object. By analyzing the properties of this radiation, they were able to trace the magnetic field.

    “The picture shows what it would look like if you could sprinkle iron filings over the expanding cloud of debris, 170 thousand light years away”, says Gaensler.

    3
    A map of the SN 1987A remnant with short orange lines showing the orientation of the magnetic field. Image: Giovanna Zanardo

    What they found was that the remnant’s magnetic field was not chaotic but already showed a degree of order. Astronomers have known that as supernova remnants get older, their magnetic fields are stretched and aligned into ordered patterns. So, the team’s observation showed that a supernova remnant can bring order to a magnetic field in the relatively short period of thirty years.

    The magnetic field lines of the Earth run north and south, causing a compass to point to the Earth’s poles. By comparison, the magnetic field lines associated with SN 1987A are like the spokes of a bicycle wheel aligned from the centre out.

    “At such a young age,” says Zanardo, “everything in the stellar remnant is moving incredibly fast and changing rapidly, but the magnetic field looks nicely combed out all the way to the edge of the shell.”

    Gaensler and his colleagues will continue to observe the constantly evolving remnant. “As it continues to expand and evolve,” says Gaensler, “we will be watching the shape of the magnetic field to see how it changes as the shock wave and debris cloud run into new material.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Dunlap Institute campus

    The Dunlap Institute is committed to sharing astronomical discovery with the public. Through lectures, the web, social and new media, an interactive planetarium, and major events like the Toronto Science Festival, we are helping to answer the public’s questions about the Universe.
    Our work is greatly enhanced through collaborations with the Department of Astronomy & Astrophysics, Canadian Institute for Theoretical Astrophysics, David Dunlap Observatory, Ontario Science Centre, Royal Astronomical Society of Canada, the Toronto Public Library, and many other partners.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: