Tagged: Supermassive Black Holes Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:12 am on August 7, 2019 Permalink | Reply
    Tags: "ALMA Dives into Black Hole’s ‘Sphere of Influence’", , , , , , , Supermassive Black Holes, The giant elliptical galaxy NGC 3258   

    From ALMA via NRAO: “ALMA Dives into Black Hole’s ‘Sphere of Influence’” 

    ESO/NRAO/NAOJ ALMA Array in Chile in the Atacama at Chajnantor plateau, at 5,000 metres

    From ALMA

    via

    National Radio Astronomy Observatory

    Nicolás Lira
    Education and Public Outreach Coordinator
    Joint ALMA Observatory, Santiago – Chile
    Phone: +56 2 2467 6519
    Cell phone: +56 9 9445 7726
    Email: nicolas.lira@alma.cl

    Masaaki Hiramatsu
    Education and Public Outreach Officer, NAOJ Chile
    Observatory
, Tokyo – Japan
    Phone: +81 422 34 3630
    Email: hiramatsu.masaaki@nao.ac.jp

    Calum Turner
    ESO Assistant Public Information Officer
    Garching bei München, Germany
    Phone: +49 89 3200 6670
    Email: calum.turner@eso.org

    Charles E. Blue
    Public Information Officer
    National Radio Astronomy Observatory Charlottesville, Virginia – USA
    Phone: +1 434 296 0314
    Cell phone: +1 202 236 6324
    Email: cblue@nrao.edu

    1
    Credit: ALMA (ESO/NAOJ/NRAO), B. Boizelle; NRAO/AUI/NSF, S. Dagnello; Hubble Space Telescope (NASA/ESA); Carnegie-Irvine Galaxy Survey

    ALMA has made the most precise measurements of cold gas swirling around a supermassive black hole — the cosmic behemoth at the center of the giant elliptical galaxy NGC 3258. The multi-color ellipse reflects the motion of the gas orbiting the black hole, with blue indicating motion toward us and red motion away from us. The inset box represents how the orbital velocity changes with distance from the black hole. The material was found to rotate faster the closer in the astronomers observed to the black hole, enabling them to accurately calculate its mass: a whopping 2.25 billion times the mass of our Sun.

    What happens inside a black hole stays inside a black hole, but what happens inside a black hole’s “sphere of influence” – the innermost region of a galaxy where a black hole’s gravity is the dominant force – is of intense interest to astronomers and can help determine the mass of a black hole as well as its impact on its galactic neighborhood.

    New observations with the Atacama Large Millimeter/submillimeter Array (ALMA) provide an unprecedented close-up view of a swirling disk of cold interstellar gas rotating around a supermassive black hole. This disk lies at the center of NGC 3258, a massive elliptical galaxy about 100 million light-years from Earth. Based on these observations, a team led by astronomers from Texas A&M University and the University of California, Irvine, have determined that this black hole weighs a staggering 2.25 billion solar masses, the most massive black hole measured with ALMA to date.

    Though supermassive black holes can have masses that are millions to billions of times that of the Sun, they account for just a small fraction of the mass of an entire galaxy. Isolating the influence of a black hole’s gravity from the stars, interstellar gas, and dark matter in the galactic center is challenging and requires highly sensitive observations on phenomenally small scales.

    “Observing the orbital motion of material as close as possible to a black hole is vitally important when accurately determining the black hole’s mass.” said Benjamin Boizelle, a postdoctoral researcher at Texas A&M University and lead author on the study appearing in The Astrophysical Journal. “These new observations of NGC 3258 demonstrate ALMA’s amazing power to map the rotation of gaseous disks around supermassive black holes in stunning detail.”

    Astronomers use a variety of methods to measure black hole masses. In giant elliptical galaxies, most measurements come from observations of the orbital motion of stars around the black hole, taken in visible or infrared light. Another technique, using naturally occurring water masers (radio-wavelength lasers) in gas clouds orbiting around black holes, provides higher precision, but these masers are very rare and are associated almost exclusively with spiral galaxies having smaller black holes.

    During the past few years, ALMA has pioneered a new method to study black holes in giant elliptical galaxies. About 10 percent of elliptical galaxies contain regularly rotating disks of cold, dense gas at their centers. These disks contain carbon monoxide (CO) gas, which can be observed with millimeter-wavelength radio telescopes.

    By using the Doppler shift of the emission from CO molecules, astronomers can measure the velocities of orbiting gas clouds, and ALMA makes it possible to resolve the very centers of galaxies where the orbital speeds are highest.

    “Our team has been surveying nearby elliptical galaxies with ALMA for several years to find and study disks of molecular gas rotating around giant black holes,” said Aaron Barth of UC Irvine, a co-author on the study. “NGC 3258 is the best target we’ve found, because we’re able to trace the disk’s rotation closer to the black hole than in any other galaxy.”

    Just as the Earth orbits around the Sun faster than Pluto does because it experiences a stronger gravitational force, the inner regions of the NGC 3258 disk orbit faster than the outer parts due to the black hole’s gravity. The ALMA data show that the disk’s rotation speed rises from 1 million kilometers per hour at its outer edge, about 500 light-years from the black hole, to well over 3 million kilometers per hour near the disk’s center at a distance of just 65 light-years from the black hole.

    The researchers determined the black hole’s mass by modeling the disk’s rotation, accounting for the additional mass of the stars in the galaxy’s central region and other details such as the slightly warped shape of the gaseous disk. The clear detection of rapid rotation enabled the researchers to determine the black hole’s mass with a precision better than one percent, although they estimate an additional systematic 12 percent uncertainty in the measurement because the distance to NGC 3258 is not known very precisely. Even accounting for the uncertain distance, this is one of the most highly precise mass measurements for any black hole outside of the Milky Way galaxy.

    “The next challenge is to find more examples of near-perfect rotating disks like this one so that we can apply this method to measure black hole masses in a larger sample of galaxies,” concluded Boizelle. “Additional ALMA observations that reach this level of precision will help us better understand the growth of both galaxies and black holes across the age of the universe.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan.

    ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

    NRAO Small
    ESO 50 Large

     
  • richardmitnick 7:53 am on July 26, 2019 Permalink | Reply
    Tags: , , , , , , Dark Stars, Supermassive Black Holes   

    From Astronomy Magazine- “Dark stars: The seeds of supermassive black holes?” 

    Astronomy magazine

    From Astronomy Magazine

    July 19, 2019
    Jake Parks

    The early universe was a very different place than it is now. But it may have been the perfect environment for a strange class of giant, puffy stars that used dark matter as fuel.

    1
    Dark matter annihilations may have fueled some of the universe’s first stars, allowing them to grow into giant, puffy clouds that are millions of times the mass and billions of times the brightness of the Sun. Astronomy: Roen Kelly after NSF.

    Powered by dark matter, dark stars are hypothetical objects that may have inhabited the early universe. If they existed, these mysterious beasts would not only have been the first stars to form in the cosmos, they also might explain how supermassive black holes got their start.

    Fueled by dark matter

    2
    Astronomy: Roen Kelly

    Normal stars all power themselves in the same way: nuclear fusion. Stars are so massive that they’re constantly on the verge of collapsing in on themselves. But as gravity squeezes a star, it generates so much heat in the star’s core that it smooshes the atoms together, releasing energy. This energy provides just enough outward pressure to precisely counterbalance a star’s gravitational collapse.

    But for dark stars, the story’s a little different.

    Theories suggest that dark stars would be mostly made from the same material as normal stars — namely, hydrogen and helium. But because these hypothetical dark stars would have formed in the early universe, when the cosmos was a lot denser, they also likely contain a small but significant amount of dark matter in the form of Weakly Interacting Massive Particles (WIMPs) — a leading dark matter candidate.

    These WIMPs are thought to serve as their own antimatter particles, they can annihilate with one another, producing pure energy. Within a dark star, these extremely powerful WIMP annihilations could offer enough outward pressure to prevent the star’s collapse without the need for core fusion.

    According to dark star researcher Katherine Freese, the Kodosky Endowed Chair of Physics at UT-Austin, WIMPs only make up about 0.1 percent of a dark star’s total mass. But just this tiny bit of WIMP fuel could keep a dark star chugging along for millions or even billions of years.

    3
    Astronomy: Roen Kelly

    What did dark stars look like?

    Dark stars don’t just behave differently than normal stars. They also look different.

    Because dark stars don’t rely on core fusion to stave off gravitational collapse, they’re not extremely compressed like normal stars. Instead, dark stars are likely giant, puffy clouds that shine extremely bright. Due to their bloated nature, Freese says, dark stars could even reach diameters of up to about 10 astronomical units (AU), where 1 AU is the average Earth-Sun distance of 93 million miles (150 million kilometers).

    4
    Astronomy: Roen Kelly

    “They can keep growing as long as there is dark matter fuel,” Freese told Astronomy. “We’ve assumed they can get up to 10 million times the mass of the Sun and 10 billion times as bright as the Sun, but we don’t really know. There is no cutoff in principle.”

    Searching for dark stars

    One of the hurdles to proving dark stars truly exist, though, is that these ironically bright objects depend on dark-matter annihilations to survive. However, such annihilations primarily occurred in the very early universe, when dark-matter particles were sharing close quarters. So, in order to spot ancient dark stars, we need telescopes capable of peering back to the extremely distant past.

    Fortunately, according to Freese, the upcoming James Webb Space Telescope should be able to spot dark stars — as long as we know what to look for.

    NASA/ESA/CSA Webb Telescope annotated

    “They would look completely different from hot stars,” Freese told Astronomy. “Dark stars are cool [17,500 °F (9,700 °C)]. So, they would look more like the Sun in terms of frequency of light, even though they’re much brighter. That combination of cool and bright is hard to explain with other objects.”

    “It is an exciting prospect that an entirely new type of star may be discovered in these upcoming data,” Freese and her colleagues wrote in a review paper.

    Seeding supermassive black holes

    If researchers are able to uncover evidence for the existence of dark stars, it would change how we think about the early stages of the universe. Darks stars would swiftly become the top candidates for the first generation of stars, which formed some 200 million years after the Big Bang.

    But dark stars might also explain one of the most nagging questions in cosmology: How did supermassive black holes first form?

    “If a dark star of a million solar masses were found [by James Webb] from very early on, it’s pretty clear that such an object would end up as a big black hole,” Freese says. “Then these could merge together to make supermassive black holes. A very reasonable scenario!”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 7:13 am on July 21, 2019 Permalink | Reply
    Tags: "Where Do Supermassive Black Holes Come From?", , , , Caltech/MIT Advanced aLigo and Advanced VIRGO, , , , Supermassive Black Holes, ,   

    From Western University, CA and WIRED: “Where Do Supermassive Black Holes Come From?” 

    From Western University Canada

    2
    Scott Woods, Western University, Illustration of supermassive black hole
    via

    WIRED

    Wired logo
    NASA

    June 28, 2019

    Researchers decipher the history of supermassive black holes in the early universe.

    At Western University
    MEDIA CONTACT:
    Jeff Renaud, Senior Media Relations Officer,
    519-661-2111, ext. 85165,
    519-520-7281 (mobile),
    jrenaud9@uwo.ca, @jeffrenaud99

    07.18.19
    From Wired
    Meredith Fore

    1
    NASA

    A pair of researchers at Western University in Ontario, Canada, developed their model by looking at quasars, which are supermassive black holes.

    Astronomers have a pretty good idea of how most black holes form: A massive star dies, and after it goes supernova, the remaining mass (if there’s enough of it) collapses under the force of its own gravity, leaving behind a black hole that’s between five and 50 times the mass of our Sun. What this tidy origin story fails to explain is where supermassive black holes, which range from 100,000 to tens of billions of times the mass of the Sun, come from. These monsters exist at the center of almost all galaxies in the universe, and some emerged only 690 million years after the Big Bang. In cosmic terms, that’s practically the blink of an eye—not nearly long enough for a star to be born, collapse into a black hole, and eat enough mass to become supermassive.

    One long-standing explanation for this mystery, known as the direct-collapse theory, hypothesizes that ancient black holes somehow got big without the benefit of a supernova stage. Now a pair of researchers at Western University in Ontario, Canada—Shantanu Basu and Arpan Das—have found some of the first solid observational evidence for the theory. As they described late last month in The Astrophysical Journal Letters, they did it by looking at quasars.

    Quasars are supermassive black holes that continuously suck in, or accrete, large amounts of matter; they get a special name because the stuff falling into them emits bright radiation, making them easier to observe than many other kinds of black holes. The distribution of their masses—how many are bigger, how many are smaller, and how many are in between—is the main indicator of how they formed.

    Astrophysicists at Western University have found evidence for the direct formation of black holes that do not need to emerge from a star remnant. The production of black holes in the early universe, formed in this manner, may provide scientists with an explanation for the presence of extremely massive black holes at a very early stage in the history of our universe.

    After analyzing that information, Basu and Das proposed that the supermassive black holes might have arisen from a chain reaction. They can’t say exactly where the seeds of the black holes came from in the first place, but they think they know what happened next. Each time one of the nascent black holes accreted matter, it would radiate energy, which would heat up neighboring gas clouds. A hot gas cloud collapses more easily than a cold one; with each big meal, the black hole would emit more energy, heating up other gas clouds, and so on. This fits the conclusions of several other astronomers, who believe that the population of supermassive black holes increased at an exponential rate in the universe’s infancy.

    “This is indirect observational evidence that black holes originate from direct-collapses and not from stellar remnants,” says Basu, an astronomy professor at Western who is internationally recognized as an expert in the early stages of star formation and protoplanetary disk evolution.

    Basu and Das developed the new mathematical model by calculating the mass function of supermassive black holes that form over a limited time period and undergo a rapid exponential growth of mass. The mass growth can be regulated by the Eddington limit that is set by a balance of radiation and gravitation forces or can even exceed it by a modest factor.

    “Supermassive black holes only had a short time period where they were able to grow fast and then at some point, because of all the radiation in the universe created by other black holes and stars, their production came to a halt,” explains Basu. “That’s the direct-collapse scenario.”

    But at some point, the chain reaction stopped. As more and more black holes—and stars and galaxies—were born and started radiating energy and light, the gas clouds evaporated. “The overall radiation field in the universe becomes too strong to allow such large amounts of gas to collapse directly,” Basu says. “And so the whole process comes to an end.” He and Das estimate that the chain reaction lasted about 150 million years.

    The generally accepted speed limit for black hole growth is called the Eddington rate, a balance between the outward force of radiation and the inward force of gravity. This speed limit can theoretically be exceeded if the matter is collapsing fast enough; the Basu and Das model suggests black holes were accreting matter at three times the Eddington rate for as long as the chain reaction was happening. For astronomers regularly dealing with numbers in the millions, billions, and trillions, three is quite modest.

    “If the numbers had turned out crazy, like you need 100 times the Eddington accretion rate, or the production period is 2 billion years, or 10 years,” Basu says, “then we’d probably have to conclude that the model is wrong.”

    There are many other theories for how direct-collapse black holes could be created: Perhaps halos of dark matter formed ultramassive quasi-stars that then collapsed, or dense clusters of regular mass stars merged and then collapsed.

    For Basu and Das, one strength of their model is that it doesn’t depend on how the giant seeds were created. “It’s not dependent on some person’s very specific scenario, specific chain of events happening in a certain way,” Basu says. “All this requires is that some very massive black holes did form in the early universe, and they formed in a chain reaction process, and it only lasted a brief time.”

    The ability to see a supermassive black hole forming is still out of reach; existing telescopes can’t look that far back yet. But that may change in the next decade as powerful new tools come online, including the James Webb Space Telescope, the Wide Field Infrared Survey Telescope, and the Laser Interferometer Space Antenna—all of which will hover in low Earth orbit—as well as the Large Synoptic Survey Telescope, based in Chile.

    NASA/ESA/CSA Webb Telescope annotated

    NASA/WFIRST

    Gravity is talking. Lisa will listen. Dialogos of Eide

    ESA/LISA Pathfinder

    ESA/NASA eLISA space based, the future of gravitational wave research

    LSST Camera, built at SLAC

    LSST telescope, currently under construction at Cerro Pachón Chile, a 2,682-meter-high mountain in Coquimbo Region, in northern Chile, alongside the existing Gemini South and Southern Astrophysical Research Telescopes.

    In the next five or 10 years, Basu adds, as the “mountain of data” comes in, models like his and his colleague’s will help astronomers interpret what they see.

    Avi Loeb, one of the pioneers of direct-collapse black hole theory and the director of the Black Hole Initiative at Harvard, is especially excited for the Laser Interferometer Space Antenna. Set to launch in the 2030s, it will allow scientists to measure gravitational waves—fine ripples in the fabric of space-time—more accurately than ever before.

    “We have already started the era of gravitational wave astronomy with stellar-mass black holes,” he says, referring to the black hole mergers detected by the ground-based Laser Interferometer Gravitational-Wave Observatory.

    Its space-based counterpart, Loeb anticipates, could provide a better “census” of the supermassive black hole population.

    For Basu, the question of how supermassive black holes are created is “one of the big chinks in the armor” of our current understanding of the universe. The new model “is a way of making everything work according to current observations,” he says. But Das remains open to any surprises delivered by the spate of new detectors—since surprises, after all, are often how science progresses.

    MIT /Caltech Advanced aLigo



    VIRGO Gravitational Wave interferometer, near Pisa, Italy


    Caltech/MIT Advanced aLigo Hanford, WA, USA installation


    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    LSC LIGO Scientific Collaboration


    Cornell SXS, the Simulating eXtreme Spacetimes (SXS) project

    Gravitational waves. Credit: MPI for Gravitational Physics/W.Benger

    Gravity is talking. Lisa will listen. Dialogos of Eide

    ESA/eLISA the future of gravitational wave research

    Localizations of gravitational-wave signals detected by LIGO in 2015 (GW150914, LVT151012, GW151226, GW170104), more recently, by the LIGO-Virgo network (GW170814, GW170817). After Virgo came online in August 2018


    Skymap showing how adding Virgo to LIGO helps in reducing the size of the source-likely region in the sky. (Credit: Giuseppe Greco (Virgo Urbino group)

    See the full WIRED article here .
    See the full Western University article here .

    The University of Western Ontario (UWO), corporately branded as Western University as of 2012 and commonly shortened to Western, is a public research university in London, Ontario, Canada. The main campus is on 455 hectares (1,120 acres) of land, surrounded by residential neighbourhoods and the Thames River bisecting the campus’s eastern portion. The university operates twelve academic faculties and schools. It is a member of the U15, a group of research-intensive universities in Canada.

    The university was founded on 7 March 1878 by Bishop Isaac Hellmuth of the Anglican Diocese of Huron as the Western University of London, Ontario. It incorporated Huron University College, which had been founded in 1863. The first four faculties were Arts, Divinity, Law and Medicine. The Western University of London became non-denominational in 1908. Beginning in 1919, the university has affiliated with several denominational colleges. The university grew substantially in the post-World War II era, as a number of faculties and schools were added to university.

    Western is a co-educational university, with more than 24,000 students, and with over 306,000 living alumni worldwide. Notable alumni include government officials, academics, business leaders, Nobel Laureates, Rhodes Scholars, and distinguished fellows. Western’s varsity teams, known as the Western Mustangs, compete in the Ontario University Athletics conference of U Sports.

    Wired logo

    WIRED

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 2:08 pm on July 1, 2019 Permalink | Reply
    Tags: , , , , Supermassive Black Holes,   

    Western University Canada: “Researchers decipher the history of supermassive black holes in the early universe” 

    From Western University Canada

    June 28, 2019
    Jeff Renaud, Senior Media Relations Officer
    519-661-2111, ext. 85165
    519-520-7281 (mobile)
    jrenaud9@uwo.ca\
    @jeffrenaud99

    1
    Illustration of supermassive black hole. Scott Woods, Western University

    Astrophysicists at Western University have found evidence for the direct formation of black holes that do not need to emerge from a star remnant. The production of black holes in the early universe, formed in this manner, may provide scientists with an explanation for the presence of extremely massive black holes at a very early stage in the history of our universe.

    Shantanu Basu and Arpan Das from Western’s Department of Physics & Astronomy have developed an explanation for the observed distribution of supermassive black hole masses and luminosities, for which there was previously no scientific explanation. The findings were published today by Astrophysical Journal Letters.

    The model is based on a very simple assumption: supermassive black holes form very, very quickly over very, very short periods of time and then suddenly, they stop. This explanation contrasts with the current understanding of how stellar-mass black holes are formed, which is they emerge when the centre of a very massive star collapses in upon itself.

    “This is indirect observational evidence that black holes originate from direct-collapses and not from stellar remnants,” says Basu, an astronomy professor at Western who is internationally recognized as an expert in the early stages of star formation and protoplanetary disk evolution.

    Basu and Das developed the new mathematical model by calculating the mass function of supermassive black holes that form over a limited time period and undergo a rapid exponential growth of mass. The mass growth can be regulated by the Eddington limit that is set by a balance of radiation and gravitation forces or can even exceed it by a modest factor.

    “Supermassive black holes only had a short time period where they were able to grow fast and then at some point, because of all the radiation in the universe created by other black holes and stars, their production came to a halt,” explains Basu. “That’s the direct-collapse scenario.”

    During the last decade, many supermassive black holes that are a billion times more massive than the Sun have been discovered at high ‘redshifts,’ meaning they were in place in our universe within 800 million years after the Big Bang. The presence of these young and very massive black holes question our understanding of black hole formation and growth. The direct-collapse scenario allows for initial masses that are much greater than implied by the standard stellar remnant scenario, and can go a long way to explaining the observations. This new result provides evidence that such direct-collapse black holes were indeed produced in the early universe.

    Basu believes that these new results can be used with future observations to infer the formation history of the extremely massive black holes that exist at very early times in our universe.

    See the full article here .

    The University of Western Ontario (UWO), corporately branded as Western University as of 2012 and commonly shortened to Western, is a public research university in London, Ontario, Canada. The main campus is on 455 hectares (1,120 acres) of land, surrounded by residential neighbourhoods and the Thames River bisecting the campus’s eastern portion. The university operates twelve academic faculties and schools. It is a member of the U15, a group of research-intensive universities in Canada.

    The university was founded on 7 March 1878 by Bishop Isaac Hellmuth of the Anglican Diocese of Huron as the Western University of London, Ontario. It incorporated Huron University College, which had been founded in 1863. The first four faculties were Arts, Divinity, Law and Medicine. The Western University of London became non-denominational in 1908. Beginning in 1919, the university has affiliated with several denominational colleges. The university grew substantially in the post-World War II era, as a number of faculties and schools were added to university.

    Western is a co-educational university, with more than 24,000 students, and with over 306,000 living alumni worldwide. Notable alumni include government officials, academics, business leaders, Nobel Laureates, Rhodes Scholars, and distinguished fellows. Western’s varsity teams, known as the Western Mustangs, compete in the Ontario University Athletics conference of U Sports.

     
  • richardmitnick 10:51 am on April 28, 2019 Permalink | Reply
    Tags: , , , , , NGC 4258, , Star S0-2 Andrea Ghez Keck/UCLA Galactic Center Group at SGR A*, Supermassive Black Holes   

    From Science News: “The M87 black hole image showed the best way to measure black hole masses” 

    From Science News

    April 22, 2019
    Lisa Grossman

    Its diameter suggests the black hole is 6.5 billion times the mass of the sun.

    1
    SUPERMASSIVE SOURCE The gases and stars in galaxy Messier 87, shown in this composite image from the Chandra X-ray telescope and the Very Large Array, gave different numbers for the mass of the galaxy’s supermassive black hole.

    NASA/Chandra X-ray Telescope

    NRAO/Karl V Jansky Expanded Very Large Array, on the Plains of San Agustin fifty miles west of Socorro, NM, USA, at an elevation of 6970 ft (2124 m)

    The measure of a black hole is what it does with its stars.

    That’s one lesson astronomers are taking from the first-ever picture of a black hole, released on April 10 by an international telescope team (SN Online: 4/10/19).

    2
    SHADOW SIZE The Event Horizon Telescope captured the first image of M87’s black hole. That image showed that the black hole’s mass is about 6.5 billion times the mass of the sun, close to what astronomers expected based on the galaxy’s stars.

    That image confirmed that the mass of the supermassive black hole in the center of galaxy Messier 87 is close to what astronomers expected from how nearby stars orbit — solving a long-standing debate over how best to measure a black hole’s mass.

    The black hole in Messier 87, which is located about 55 million light-years from Earth, is the first black hole whose mass has been calculated by three precise methods: measuring the motion of stars, the swirl of surrounding gases and now, thanks to the Event Horizon Telescope imaging project, the diameter of the black hole’s shadow.

    EHT map

    In 1978, the first mass estimates to track the motions of stars whipping around the great gravitational center found that the stars must be orbiting something containing about 5 billion times the mass of the sun. A more precise estimate in 2011 using a similar stellar technique bumped its heft up to 6.6 billion times the mass of the sun.

    Star S0-2 Andrea Ghez Keck/UCLA Galactic Center Group at SGR A*, the supermassive black hole at the center of the milky way

    Meanwhile, astronomers in 1994 made another estimate by tracing how gases closer to the black hole than the stars swirl around the behemoth. That technique suggested that the black hole was 2.4 billion solar masses, which was revised in 2013 to 3.5 billion solar masses.

    For years, it wasn’t clear which technique got closer to the truth.

    Now the EHT picture showing a glowing orange ring of gases and dust around the black hole has solved the conflict. According to Einstein’s general theory of relativity, the diameter of the dark space in the center of the image — the black hole’s shadow — is directly related to its mass.

    “Bigger black holes cast bigger shadows,” EHT team member Michael Johnson, an astrophysicist at the Harvard Smithsonian Center for Astrophysics, said April 12 at a talk at MIT. “Easy check, we can see whether one or the other of these [mass measuring methods] is correct.” The shadow of M87’s black hole yielded a diameter of 38 billion kilometers, which let astronomers calculate a mass of 6.5 billion suns [The Astrophysical Journal Letters]— very close to the mass suggested by the motion of stars.

    The size of the shadow also negated the idea that the black hole is a wormhole, a theoretical bridge between distant points in spacetime (SN: 5/31/14, p. 16). If M87’s black hole had been a wormhole, theory predicts it should look smaller than it does. “It’s a stunning confirmation” of general relativity, Johnson said. “We instantly rule out all these exotic possibilities.”

    The mass confirmation may boost confidence in current simulations for how black holes develop, says Priyamvada Natarajan, a Yale University astrophysicist who was not involved with the EHT project. Most black hole mass estimates already use the stellar technique, in part because it’s easier to track a galaxy’s stars from farther away.

    3
    STARS AND STREAKS Astrophysicists have used both stars and gases to weigh in on the mass of the black hole in the galaxy NGC 4258, shown in this composite image. P.Ogle et al/Caltech/CXC/NASA, R.Gendler, STScI/NASA, Caltech-JPL/NASA, VLA/NRAO/NSF

    SGR A* , the supermassive black hole at the center of the Milky Way. NASA’s Chandra X-Ray Observatory

    Two other black holes whose masses have been measured in multiple ways, the Milky Way’s Sagittarius A* [Astronomy and Astrophysics] and the galaxy NGC 4258’s black hole, also suggest the star method works better. “These three cases now offer renewed faith in our current method,” Natarajan says.

    That faith won’t solve the most pressing black hole problems, such as how black holes grew so big so fast in the early universe — at least not right away (SN Online: 3/16/18). The gas versus star measurement of the M87 black hole mass differed by only a factor of two, which is not enough to explain how it got so massive in the first place. A black hole could double its mass in about a million years, at most.

    “What we don’t know is how we get supermassive black holes within a billion years,” says Hannalore Gerling-Dunsmore, a former Caltech physicist who is joining the University of Colorado Boulder later this year. She was not on the EHT team. “Once you’re already that big, what’s a million years between friends?”

    See the full article here .


    NSF press conference on the EHT Messier 87 Black Hole project


    European Research Council press conference on the EHT Messier 87 Black Hole project


    Katie Bouman on the EHT Messier 87 Black Hole project at Caltech


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

     
  • richardmitnick 11:26 am on April 26, 2019 Permalink | Reply
    Tags: , , , , , , , IPTA-International Pulsar Timing Array, , , Supermassive Black Holes,   

    From University of Maryland CMNS: “The Past, Present and Future of Gravitational Wave Astronomy” 

    U Maryland bloc

    From University of Maryland


    CMNS

    Matthew Wright
    301-405-9267
    mewright@umd.edu

    UMD Astronomy Professor Coleman Miller co-authored wide-ranging review article for 150th anniversary of the journal Nature.

    1
    Coleman Miller, University of Maryland Astronomy Professor and Co-Director of the Joint Space-Science Institute. Miller co-authored a new review of the past, present, and future of gravitational wave astronomy for the journal Nature. Image credit: Coleman Miller.

    When Albert Einstein published his general theory of relativity in 1915, he gave the scientific community a wealth of theoretical predictions about the nature of space, time, matter and gravity. Unlike much of his prior work, however, general relativity wasn’t easily testable with experiments and direct observation.

    That all changed a century later, on September 14, 2015, when the twin Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors registered gravitational waves from the merger of two black holes.

    For the first time, the scientific community had definitive support for one of the greatest predictions arising from Einstein’s general theory of relativity—that the acceleration of massive objects can produce ripples in the fabric of spacetime.

    In just three short years since that initial observation, LIGO has made or contributed to a landslide of new discoveries, helping to usher in the age of gravitational wave astronomy. University of Maryland Astronomy Professor Coleman Miller, an expert in the theory and modeling of gravity, co-authored a review of the past, present, and future of gravitational wave astronomy for the journal Nature, published on April 25, 2019. The article is part of a series that celebrates the 150th anniversary of the journal, which was first published on November 4, 1869.

    “Direct observation of gravitational waves was an important test of general relativity that gave us access to information we simply didn’t have before,” said Miller, who is also a co-director of the Joint Space-Science Institute (JSI), a partnership between UMD and NASA’s Goddard Space Flight Center. “There is a very limited set of ways we can get information about the distant universe beyond our solar system. We were missing a lot of non-trivial events before we could detect gravitational waves. To offer some perspective: the final plunge of a black hole merger emits tens of times more energy in gravitational waves than all the stars in the visible universe radiate within the same period of time.”

    Miller is a co-author of more than 20 publications related to gravitational radiation. Although he served as the chair of the LIGO Program Advisory Committee for four years (2010-2014), Miller has not been directly involved in LIGO’s science operations. This provides him with a uniquely knowledgeable, yet scientifically objective, viewpoint on the topic.

    Co-authored with Nicolás Yunes of Montana State University, the review article traces the early history of attempts to investigate general relativity, including several indirect observations and theoretical work. Then, Miller and Yunes describe the contributions of UMD Physics Professor Joseph Weber (1919-2000), who was the first to suggest that it was physically possible to detect and measure gravitational waves.

    Beginning in the 1960s, Weber designed, built and operated a pair of solid aluminum bars—one near UMD’s campus and another just outside Chicago—which he suggested would resonate like a bell when struck by passing gravitational waves. Thus began a decades-long scientific quest that would involve hundreds of scientists the world over, including many UMD faculty and staff members and alumni. The physics community eventually settled on a completely different interferometer design that would become the basis for LIGO’s twin detector facilities in Livingston, Louisiana, and Hanford, Washington.

    3
    The collision of two black holes—a tremendously powerful event detected for the first time ever by the Laser Interferometer Gravitational-Wave Observatory, or LIGO on September 14, 2015—is seen in this still from a computer simulation. LIGO detected gravitational waves, or ripples in space and time generated as the black holes spiraled in toward each other, collided, and merged. This simulation shows how the merger would appear to human eyes. It was created by solving equations from Albert Einstein’s general theory of relativity using the LIGO data. Illustration: SXS.

    With the help of UMD Physics Professor and JSI Fellow Peter Shawhan and UMD College Park Professor of Physics Alessandra Buonanno—both principal investigators with the LIGO Scientific Collaboration—the construction and fine-tuning of the detectors resulted in LIGO’s historic first observation in 2015. Just two years later, in 2017, LIGO project leads Rainer Weiss of the Massachusetts Institute of Technology and Kip Thorne and Barry Barish of Caltech were recognized with the Nobel Prize in physics for the groundbreaking observation.

    LIGO followed the initial 2015 detection with several more observations of black hole mergers. But another major turning point came on August 17, 2017, when scientists across the world made the first direct observation of a merger between two neutron stars—the dense, collapsed cores that remain after large stars die in a supernova. The merger was the first cosmological event observed in both gravitational waves and—with the help of a large array of ground- and space-based telescopes—the entire spectrum of light, from gamma rays to radio waves.

    “This event gave us instant confirmation that gravitational waves travel at a speed that is indistinguishable from the speed of light,” Miller explained. “For years, there have been alternate theories of gravity that would explain what dark matter is thought to do. But many of these relied on gravitational waves reacting to the gravity of massive objects differently than light does. This was not found to be the case in the wake of a neutron star merger, so observing this event eliminated a wide swath of these theories immediately.”

    The neutron star merger also yielded the first direct observation of a kilonova—a massive explosion now believed to create most of the heavy elements in the universe. Led by UMD’s Eleonora Troja, an associate research scientist in the Department of Astronomy, an early analysis of the kilonova suggested that the explosion produced a staggering amount of platinum and gold, with a combined mass several hundred times that of Earth.

    4
    This iconc illustration depicts the merger of two neutron stars. The rippling spacetime grid represents gravitational waves that travel out from the collision, while the narrow beams show the burst of gamma rays launched just seconds after the gravitational waves. Swirling clouds of material ejected from the merging stars glow with visible and other wavelengths of light. Image credit: National Science Foundation/LIGO/Sonoma State University/A. Simonnet

    This finding alone strongly swung the needle toward a conclusion that all elements heavier than iron are all produced in neutron star mergers,” Miller explained. “That’s very exciting.”

    On April 1, 2019, LIGO began its third observing run, after a series of upgrades to its lasers, mirrors and other components. While Miller is hesitant to set his own expectations too high, he is hopeful that the latest round will yield some new surprises.

    “The universe will give us what it will give us. That said, it would be wonderful to see a merger between a black hole and a neutron star,” Miller said. “And a few extra double neutron star mergers certainly wouldn’t hurt.”

    Looking further down the line, Miller and Yunes also assessed the prospects for observing the gravitational wave background. This ever-present hum of gravitational waves is thought to contain the fingerprints of orbiting black holes, neutron stars and other massive objects. These pairs of objects may be tens, hundreds or even thousands of years away from merging—and thus are unable to produce a spike in gravitational waves detectable with current technology. Miller likens the effort to adjusting one’s ears to the din of conversation in a crowded room.

    “Imagine arriving at a party. At first, you can see that everyone is talking, but the sound registers quietly, if at all,” Miller said. “Then your hearing gets better. You’re not yet able to hear every individual, but you can hear the sum total. Then, as your hearing gets better, you can hear some nearby conversations and can distinguish between people who are near and far.”

    Within the next few years, the International Pulsar Timing Array (IPTA) collaboration could become the first to detect the subtle drone from thousands of pairs of supermassive black holes.

    4

    With the help of the world’s largest radio telescopes, IPTA will carefully track deviations in the precise, clock-like flashing of roughly 100 small, rotating neutron stars called millisecond pulsars. These deviations will help IPTA detect gravitational fluctuations from orbiting pairs of supermassive black holes, each of which contains billions of times the mass of the sun.

    The next big step in gravitational wave astronomy will be the launch of the Laser Interferometer Space Antenna (LISA) mission, led by the European Space Agency in partnership with NASA.


    ESA/NASA eLISA space based, the future of gravitational wave research

    This trio of satellites, currently slated for deployment by 2034, will be sensitive to a lower range of gravitational wave frequencies than LIGO. As such, LISA should be able to observe events that LIGO cannot detect, such as mergers that involve one or more supermassive black holes.

    “A lot can happen in 15 years. In the meantime, I plan to eat my vegetables so I can be around to appreciate LISA’s findings when the satellites are launched,” Miller said. “The excitement in the astrophysical community is only increasing. Expectation of new discovery has been one the enduring excitements of gravitational wave astronomy.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    U Maryland Campus

    About CMNS

    The thirst for new knowledge is a fundamental and defining characteristic of humankind. It is also at the heart of scientific endeavor and discovery. As we seek to understand our world, across a host of complexly interconnected phenomena and over scales of time and distance that were virtually inaccessible to us a generation ago, our discoveries shape that world. At the forefront of many of these discoveries is the College of Computer, Mathematical, and Natural Sciences (CMNS).

    CMNS is home to 12 major research institutes and centers and to 10 academic departments: astronomy, atmospheric and oceanic science, biology, cell biology and molecular genetics, chemistry and biochemistry, computer science, entomology, geology, mathematics, and physics.

    Our Faculty

    Our faculty are at the cutting edge over the full range of these disciplines. Our physicists fill in major gaps in our fundamental understanding of matter, participating in the recent Higgs boson discovery, and demonstrating the first-ever teleportation of information between atoms. Our astronomers probe the origin of the universe with one of the world’s premier radio observatories, and have just discovered water on the moon. Our computer scientists are developing the principles for guaranteed security and privacy in information systems.

    Our Research

    Driven by the pursuit of excellence, the University of Maryland has enjoyed a remarkable rise in accomplishment and reputation over the past two decades. By any measure, Maryland is now one of the nation’s preeminent public research universities and on a path to become one of the world’s best. To fulfill this promise, we must capitalize on our momentum, fully exploit our competitive advantages, and pursue ambitious goals with great discipline and entrepreneurial spirit. This promise is within reach. This strategic plan is our working agenda.

    The plan is comprehensive, bold, and action oriented. It sets forth a vision of the University as an institution unmatched in its capacity to attract talent, address the most important issues of our time, and produce the leaders of tomorrow. The plan will guide the investment of our human and material resources as we strengthen our undergraduate and graduate programs and expand research, outreach and partnerships, become a truly international center, and enhance our surrounding community.

    Our success will benefit Maryland in the near and long term, strengthen the State’s competitive capacity in a challenging and changing environment and enrich the economic, social and cultural life of the region. We will be a catalyst for progress, the State’s most valuable asset, and an indispensable contributor to the nation’s well-being. Achieving the goals of Transforming Maryland requires broad-based and sustained support from our extended community. We ask our stakeholders to join with us to make the University an institution of world-class quality with world-wide reach and unparalleled impact as it serves the people and the state of Maryland.

    Our researchers are also at the cusp of the new biology for the 21st century, with bioscience emerging as a key area in almost all CMNS disciplines. Entomologists are learning how climate change affects the behavior of insects, and earth science faculty are coupling physical and biosphere data to predict that change. Geochemists are discovering how our planet evolved to support life, and biologists and entomologists are discovering how evolutionary processes have operated in living organisms. Our biologists have learned how human generated sound affects aquatic organisms, and cell biologists and computer scientists use advanced genomics to study disease and host-pathogen interactions. Our mathematicians are modeling the spread of AIDS, while our astronomers are searching for habitable exoplanets.

    Our Education

    CMNS is also a national resource for educating and training the next generation of leaders. Many of our major programs are ranked among the top 10 of public research universities in the nation. CMNS offers every student a high-quality, innovative and cross-disciplinary educational experience that is also affordable. Strongly committed to making science and mathematics studies available to all, CMNS actively encourages and supports the recruitment and retention of women and minorities.

    Our Students

    Our students have the unique opportunity to work closely with first-class faculty in state-of-the-art labs both on and off campus, conducting real-world, high-impact research on some of the most exciting problems of modern science. 87% of our undergraduates conduct research and/or hold internships while earning their bachelor’s degree. CMNS degrees command respect around the world, and open doors to a wide variety of rewarding career options. Many students continue on to graduate school; others find challenging positions in high-tech industry or federal laboratories, and some join professions such as medicine, teaching, and law.

     
  • richardmitnick 6:10 pm on April 11, 2019 Permalink | Reply
    Tags: , , , , , , , , , , Supermassive Black Holes   

    From Nautilus: “First Black-Hole Image: It’s Not Looks That Count” 

    Nautilus

    From Nautilus

    Apr 11, 2019
    Sabine Hossenfelder

    1
    FIRST LOOK: The Event Horizon Telescope measures wavelength in the millimeter regime, too long to be seen by eye, but ideally suited to the task of imaging a black hole: The gas surrounding the black hole is almost transparent at this wavelength and the light travels to Earth almost undisturbed. Since we cannot see light of such wavelength by eye, the released telescope image shows the observed signal shifted into the visible range.Event Horizon Telescope Collaboration.

    “The Day Feynman Worked Out Black-Hole Radiation on My Blackboard”
    2
    After a few minutes, Richard Feynman had worked out the process of spontaneous emission, which is what Stephen Hawking became famous for a year later.Wikicommons.

    The Italian 14th-century painter, Giotto di Bondone, when asked by the Pope to prove his talent, is said to have swung his arm and drawn a perfect circle. But geometric perfection is limited by the medium. Inspect a canvas closely enough, and every circle will eventually appear grainy. If perfection is what you seek, don’t look at man-made art, look at the sky. More precisely, look at a black hole.

    Looking at a black hole is what the Event Horizon Telescope has done for the past 12 years. Yesterday, the collaboration released the long-awaited results from its first full run in April 2017. Contrary to expectation, their inaugural image is not, as many expected, Sagittarius A*, the black hole at the center of the Milky Way. Instead, it is the supermassive black hole in the elliptic galaxy Messier 87, about 55 million light-years from here. This black hole weighs in at 6.5 billion times the mass of our sun, and is considerably larger than the black hole in our own galaxy [1,000 times the size of SGR A*]. So, even though the Messier 87 black hole is a thousand times farther away than Sagittarius A*, it still appears half the size in the sky.

    The Event Horizon Telescope (EHT) is not less remarkable than the objects it observes. With a collaboration of 200 people, the EHT uses not a single telescope, but a global network of nine telescopes. Its sites, from Greenland to the South Pole and from Hawaii to the French Alps, act in concert as one. Together, the collaboration commands a telescope the size of planet Earth, staring at a tiny patch in the northern sky that contains the Messier-87 black hole.

    Event Horizon Telescope Array

    Arizona Radio Observatory
    Arizona Radio Observatory/Submillimeter-wave Astronomy (ARO/SMT)

    ESO/APEX
    Atacama Pathfinder EXperiment

    CARMA Array no longer in service
    Combined Array for Research in Millimeter-wave Astronomy (CARMA)

    Atacama Submillimeter Telescope Experiment (ASTE)
    Atacama Submillimeter Telescope Experiment (ASTE)

    Caltech Submillimeter Observatory
    Caltech Submillimeter Observatory (CSO)

    IRAM 30m Radio telescope, on Pico Veleta in the Spanish Sierra Nevada,, Altitude 2,850 m (9,350 ft)


    Institut de Radioastronomie Millimetrique (IRAM) 30m

    James Clerk Maxwell Telescope interior, Mauna Kea, Hawaii, USA
    James Clerk Maxwell Telescope interior, Mauna Kea, Hawaii, USA

    Large Millimeter Telescope Alfonso Serrano
    Large Millimeter Telescope Alfonso Serrano

    CfA Submillimeter Array Mauna Kea, Hawaii, USA, Altitude 4,080 m (13,390 ft)

    Submillimeter Array Hawaii SAO

    ESO/NRAO/NAOJ ALMA Array
    ESO/NRAO/NAOJ ALMA Array, Chile [recently added]

    South Pole Telescope SPTPOL
    South Pole Telescope SPTPOL [recently added]

    Future Array/Telescopes

    NOEMA (NOrthern Extended Millimeter Array) will double the number of its 15 meter antennas of its predecessor from six to twelve, located in the French Alpes on the wide and isolated Plateau de Bure at an elevation of 2550 meters

    NSF CfA Greenland telescope


    Greenland Telescope

    ARO 12m Radio Telescope, Kitt Peak National Observatory, Arizona, USA, Altitude 1,914 m (6,280 ft)


    ARO 12m Radio Telescope

    In theory, black holes are regions of space where the gravitational pull is so large that everything, including light, becomes trapped for eternity. The surface of the trapping region is called the “event horizon.” It has no substance; it is a property of space itself. In the simplest case, the event horizon is a sphere—a perfect sphere, made of nothing.

    In reality, it’s complicated. Astrophysicists have had evidence for the existence of black holes since the 1990s, but so far all observations have been indirect—inferred from the motion of visible stars and gas, leaving doubt as to whether the dark object really possesses the defining event horizon. It turned out difficult to actually see a black hole. Trouble is, they’re black. They trap light. And while Stephen Hawking proved that black holes must emit radiation due to quantum effects, this quantum glow is far too feeble to observe.

    But much like the prisoners in Plato’s cave, we can see black holes by observing the shadows they cast. Black holes attract gas from their environment. This gas collects in a spinning disk, and heats up as it spirals into the event horizon, pushing around electric charges. This gives rise to strong magnetic fields that can create a “jet,” a narrow, directed stream of particles leaving the black hole at almost the speed of light. But whatever strays too close to the event horizon falls in and vanishes without a trace.

    At the same time black holes bend rays of light, bend them so strongly, indeed, that looking at the front of a black hole, we can see part of the disk behind it. The light that just about manages to escape reveals what happens nearby the horizon. It is an asymmetric image that the astrophysicists expect, brighter on the side of the black hole where the material surrounding it moves toward us, and darker where it moves away from us. The hot gas combined with the gravitational lensing creates the unique observable signature that the EHT looks out for.

    The experimental challenge is formidable. The network’s telescopes must synchronize their data-taking using atomic clocks. Weather conditions must be favorable at all locations simultaneously. Once recorded, the amount of data is so staggeringly large, it must be shipped on hard disks to central locations for processing.

    The theoretical challenges are not any lesser. Black holes bend light so much that it can wrap around the horizon multiple times. The resulting image is too complicated to capture in simple equations. Though the math had been known since the 1920s, it wasn’t until 1978 that physicists got a first glimpse of what a black hole would actually look like. In that year, the French astrophysicist Jean-Pierre Luminet programmed the calculation on an IBM 7040 using punchcards. He drew the image by hand.

    Today, astrophysicists use computers many times more powerful to predict the accretion of gas onto the black hole and how the light bends before reaching us. Still, the partly turbulent motion of the gas, the electric and magnetic fields created by it, and the intricacies of the particle’s interactions are not fully understood.

    The EHT’s observations agree with expectation. But this result is more than just another triumph of Einstein’s theory of general relativity. It is also a triumph of the astronomers’ resourcefulness. They joined hands and brains to achieve what they could not have done separately. And while their measurement settles a long-standing question—yes, black holes really do have event horizons!—it is also the start of further exploration. Physicists hope that the observations will help them understand better the extreme conditions in the accretion disk, the role of magnetic fields in jet formation, and the way supermassive black holes affect galaxy formation.

    When the Pope received Giotto’s circle, it was not the image itself that impressed him. It was the courtier’s report that the artist produced it without the aid of a compass. This first image of a black hole, too, is remarkable not so much for its appearance, but for its origin. A black sphere, spanning 40 billion kilometers, drawn on a background of hot gas by the greatest artist of all: Nature herself.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Welcome to Nautilus. We are delighted you joined us. We are here to tell you about science and its endless connections to our lives. Each month we choose a single topic. And each Thursday we publish a new chapter on that topic online. Each issue combines the sciences, culture and philosophy into a single story told by the world’s leading thinkers and writers. We follow the story wherever it leads us. Read our essays, investigative reports, and blogs. Fiction, too. Take in our games, videos, and graphic stories. Stop in for a minute, or an hour. Nautilus lets science spill over its usual borders. We are science, connected.

     
  • richardmitnick 12:16 pm on April 10, 2019 Permalink | Reply
    Tags: "Focus on the First Event Horizon Telescope Results", , , , , Supermassive Black Holes, The Astrophysical Journal Letters   

    The Astrophysical Journal Letters: “Focus on the First Event Horizon Telescope Results” 

    The Astrophysical Journal Letters

    April 10, 2019
    Shep Doeleman (EHT Director) on behalf of the EHT Collaboration

    1
    Figure 1. EHT images of M87 on four different observing nights. In each panel, the white circle shows the resolution of the EHT. All four images are dominated by a bright ring with enhanced emission in the south. From Paper IV (Figure 15).

    We report the first image of a black hole.

    This Focus Issue shows ultra-high angular resolution images of radio emission from the supermassive black hole believed to lie at the heart of galaxy Messier 87 (Figure 1). A defining feature of the images is an irregular but clear bright ring, whose size and shape agree closely with the expected lensed photon orbit of a 6.5 billion solar mass black hole. Soon after Einstein introduced general relativity, theorists derived the full analytic form of the photon orbit, and first simulated its lensed appearance in the 1970s. By the 2000s, it was possible to sketch the “shadow” formed in the image when synchrotron emission from an optically thin accretion flow is lensed in the black hole’s gravity. During this time, observational evidence began to build for the existence of black holes at the centers of active galaxies, and in our own Milky Way [SGR A*]. In particular, a steady progression in radio astronomy enabled very long baseline interferometry (VLBI) observations at ever-shorter wavelengths, targeting supermassive black holes with the largest apparent event horizons: Messier 87, and Sgr A* in the Galactic Center. The compact sizes of these two sources were confirmed by studies at 1.3mm, first exploiting baselines that ran from Hawai’i to the mainland US, then with increased resolution on baselines to Spain and Chile.

    Over the past decade, the EHT extended these first measurements of size to mount the more ambitious campaign of imaging the shadow itself. During 5-11 April 2017, the Event Horizon Telescope (EHT) observed Messier 87 and calibrators on four separate days using an array that included eight radio telescopes at six geographic locations: Arizona (USA), Chile, Hawai’i (USA), Mexico, the South Pole, and Spain (Figure 2). Years of preparation (and an astonishing spate of planet-wide good weather) paid off with an extraordinary multi-petabyte yield of data. The results presented here, from observations through images to interpretation, issue from a team of instrument, algorithm, software, modeling, and theoretical experts, following a tremendous effort by a group of scientists that span all career stages, from undergraduates to senior members of the field. More than 200 members from 59 institutes in 20 countries and regions have devoted years to the effort, all unified by a common scientific vision.

    2
    Figure 2. A map of the EHT. Stations active in 2017 and 2018 are shown with connecting lines and labeled in yellow, sites in commission are labeled in green, and legacy sites are labeled in red. From Paper II (Figure 1).

    The sequence of Letters in this issue provides the full scope of the project and the conclusions drawn to date. Paper II opens with a description of the EHT array, the technical developments that enabled precursor detections, and the full range of observations reported here. Through the deployment of novel instrumentation at existing facilities, the collaboration created a new telescope with unique capabilities for black hole imaging. Paper III details the observations, data processing, calibration algorithms, and rigorous validation protocols for the final data products used for analysis. Paper IV gives the full process and approach to image reconstruction. The final images emerged after a rigorous evaluation of traditional imaging algorithms and new techniques tailored to the EHT instrument–alongside many months of testing the imaging algorithms through the analysis of synthetic data sets. Paper V uses newly assembled libraries of general relativistic magnetohydrodynamic (GRMHD) simulations and advanced ray-tracing to analyze the images and data in the context of black hole accretion and jet-launching. Paper VI employs model fits, comparison of simulations to data, and feature extraction from images to derive formal estimates of the lensed emission ring size and shape, black hole mass, and constraints on the nature of the black hole and the space-time surrounding it. Paper I is a concise summary.

    Our image of the shadow confines the mass of Messier 87 to within its photon orbit, providing the strongest case for the existence of supermassive black holes. These observations are consistent with Doppler brightening of relativistically moving plasma close to the black hole lensed around the photon orbit. They strengthen the fundamental connection between active galactic nuclei and central engines powered by accreting black holes through an entirely new approach. In the coming years, the EHT Collaboration will extend efforts to include full polarimetry, mapping of magnetic fields on horizon scales, investigations of time variability, and increased resolution through shorter wavelength observations.

    In short, this work signals the development of a new field of research in astronomy and physics as we zero in on precision images of black holes on horizon scales. The prospects for sharpening our focus even further are excellent.

    First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole
    The Event Horizon Telescope Collaboration et al. 2019 ApJL 875 L1

    First M87 Event Horizon Telescope Results. II. Array and Instrumentation
    The Event Horizon Telescope Collaboration et al. 2019 ApJL 875 L2

    First M87 Event Horizon Telescope Results. III. Data Processing and Calibration
    The Event Horizon Telescope Collaboration et al. 2019 ApJL 875 L3

    First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole
    The Event Horizon Telescope Collaboration et al. 2019 ApJL 875 L4

    First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring
    The Event Horizon Telescope Collaboration et al. 2019 ApJL 875 L5

    First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole
    The Event Horizon Telescope Collaboration et al. 2019 ApJL 875 L6

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Welcome to IOP Publishing

    Working closely with the global scientific community has been at the heart of our publishing activity for more than a century.

    With a portfolio including journals, books, conference proceedings and science news resources, we focus on physics, materials science, biosciences, astronomy and astrophysics, environmental sciences, mathematics and education. IOP Publishing also publishes on behalf of other scientific organisations and represents their needs and those of their members.

    With almost 400 staff in locations across the world, we support researchers, librarians and societies in their endeavours.

    IOP Publishing – delivering impact, recognition and value to the scientific community.
    About IOP Publishing

    IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide. IOP Publishing is central to the Institute of Physics (IOP), a not-for-profit society. Any financial surplus earned by IOP Publishing goes to support science through the activities of IOP.

    Beyond our traditional journals programme, we make high-value scientific information easily accessible through an ever-evolving portfolio of community websites, magazines, conference proceedings and a multitude of electronic services. Focused on making the most of new technologies, we’re continually improving our electronic interfaces to make it easier for researchers to find exactly what they need, when they need it, in the format that suits them best.

    About IOPscience

    IOPscience is an online service for journal content published by IOP Publishing. IOPscience embraces innovative technologies to make it easier for researchers to access scientific, technical and medical content.
    What makes IOPscience different?

    IOPscience has been designed to make it easy for researchers to discover relevant content and manage their research information.

    With IOPscience you can:

    Speed up your research: find relevant content quickly with enhanced search filtering
    Save time: re-run previous searches, tagging your favorite articles
    Keep up to date: receive RSS feeds and email alerts when new content is published
    Access more content: view articles plus preprints and news
    Interact and share: embrace social bookmarking to share articles
    Discover related research: explore relevant articles based on subject classification codes
    Make it personal: customize your alerts, save articles of interest, and view newly published articles within your subject areas

    Find out more

    To find out more about IOPscience you can:

    View our series of six short, easy-to-follow videos that demonstrate the search functionality and additional support available on the IOPscience platform. Whether you are new to IOPscience or already use it, these tutorials will help you get the most out of your searches.

    If you have any questions, please contact our customer services team at Customerservices@ioppublishing.org.

    If you are taking part in a demonstration of IOPscience please use the demonstration site.

     
  • richardmitnick 2:24 pm on March 28, 2019 Permalink | Reply
    Tags: , LOFAR is the first radio facility operating at long radio wavelengths which produces sharp images with a resolution similar to that of the Hubble Space Telescope, Low Frequency Array (LOFAR) telescope, Quasar 4C+19.44, , Supermassive Black Holes   

    Netherlands Institute for Radio Astronomy (ASTRON): “Energy loss gives unexpected insights in evolution of quasar jets” 

    ASTRON bloc

    Netherlands Institute for Radio Astronomy (ASTRON)

    1
    The radio jet of the quasar 4C+19.44, powered by a supermassive black hole lying in the center of its host galaxy and shining at long radio wavelengths as seen by the LOFAR radio telescope (magenta). The background image shows neighboring galaxies in the visible light highlighted thanks to the Hubble Space Telescope (cyan and orange) having the radio jet passing into the dark voids of intergalactic space (Harris et al. 2019). Image Credit: NASA/HST/LOFAR; Courtesy of J. DePasquale

    An international team of astrophysicists observed for the first time that the jet of a quasar is less powerful on long radio wavelengths than earlier predicted. This discovery gives new insights in the evolution of quasar jets. They made this observation using the international Low Frequency Array (LOFAR) telescope [below], that produced high resolution radio images of quasar 4C+19.44 located over 5 billion light-years from Earth.

    Supermassive black holes, many millions of times more massive than our Sun reside in the central regions of galaxies. They grow even larger by attracting and consuming nearby gas and dust. If they consume material rapidly, the infalling matter shines brightly and the source is known as a quasar. Some of this infalling matter is not digested, but instead is ejected in the form of so-called jets that punch through the surrounding galaxy and into intergalactic space for millions of light years. These jets, shining brightly at radio wavelengths, are composed of particles accelerated up to nearly the speed of light, but exactly how these particles achieve energies not attainable on the Earth is yet to be completely solved.

    The discovery on quasar 4C+19.44 gives new insights to the balance between the energy in the field surrounding the quasar and that residing in the quasar jet. This finding indicates to an intrinsic property of the source rather than due to absorption effects. It implies that the energy budget available to accelerate particles and the balance between energy stored in particles and in the magnetic field, is less than expected.

    “This is an important discovery that will be used for the years to come to improve simulations of jets. We observed for the first time a new signature of particle acceleration in the power emitted of quasar jets at long radio wavelengths. An unexpected behaviour that changes our interpretation on their evolution.” Said Prof. Francesco Massaro from University of Turin. “We knew that this was already discovered in other cosmic sources but it was never before observed in quasars.”

    The international team of astrophysicists had observed the jet of the quasar 4C+19.44 at short radio wavelengths, in visible light, and X-ray wavelengths. The addition of the LOFAR images allowed astrophysicists to make this discovery. LOFAR is the first radio facility operating at long radio wavelengths, which produces sharp images with a resolution similar to that of the Hubble Space Telescope.

    “We have been able to perform this experiment thanks to the highest resolution ever achieved at these long radio wavelengths, made possible by LOFAR.” Said Dr Adam Deller, an astrophysicist of the Swinburne University of Technology who contributed to the LOFAR data analysis and imaging of 4C +19.44 while at ASTRON in the Netherlands, heart of the LOFAR collaboration.

    Dr Raymond Oonk, an astronomer at ASTRON and Leiden University and Dr Javier Moldon, astronomer at the University of Manchester, explained that “We have developed new calibration techniques for LOFAR and this has allowed us to separate compact radio structures in the quasar jet known as radio knots, and measure their emitted light. This result was unexpected and demands to future deeper investigations. New insights and clues on particle acceleration will come soon thanks to the international stations of LOFAR.”

    The observation performed on the radio jet of 4C+19.44 was designed by Dr D. E. Harris, supervisor of Prof. Francesco Massaro, while working at the Harvard-Smithsonian Center for Astrophysics, several years ago. He performed the observation in collaboration with Dr Raffaella Morganti and his friends and colleagues at ASTRON. He only got the opportunity to see preliminary results as he passed away on 2015 December 6th. This publication, published in the first March issue of The Astrophysical Journal, is in memory of a career spanned much of the history of radio astronomy.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    LOFAR is a radio telescope composed of an international network of antenna stations and is designed to observe the universe at frequencies between 10 and 250 MHz. Operated by ASTRON, the network includes stations in the Netherlands, Germany, Sweden, the U.K., France, Poland and Ireland.

    ASTRON LOFAR Radio Antenna Bank, Netherlands

    ASTRON-Westerbork Synthesis Radio Telescope
    Westerbork Synthesis Radio Telescope (WSRT)

    ASTRON was founded in 1949, as the Foundation for Radio radiation from the Sun and Milky Way (SRZM). Its original charge was to develop and operate radio telescopes, the first being systems using surplus wartime radar dishes. The organisation has grown from twenty employees in the early 1960’s to about 180 staff members today.

     
  • richardmitnick 11:50 am on March 19, 2019 Permalink | Reply
    Tags: , , , , “Missing Gamma-Ray Halos and the Need for New Physics in the Gamma-Ray Sky”, , , High-energy gamma-ray photons, Supermassive Black Holes   

    From AAS NOVA: ” Missing Halos in the High-Energy Sky” 

    AASNOVA

    From AAS NOVA

    18 March 2019
    Susanna Kohler

    1
    This composite image reveals Centaurus A, a galaxy with an active nucleus spewing fast-moving jets into its surroundings. Active galactic nuclei like this one produce extremely high-energy photons. [ESO/WFI (Optical); MPIfR/ESO/APEX/A.Weiss et al. (Submillimetre); NASA/CXC/CfA/R.Kraft et al. (X-ray)]

    Wide Field Imager on the 2.2 meter MPG/ESO telescope at Cerro LaSilla

    MPG/ESO 2.2 meter telescope at Cerro La Silla, Chile, 600 km north of Santiago de Chile at an altitude of 2400 metres

    ESO/MPIfR APEX high on the Chajnantor plateau in Chile’s Atacama region, at an altitude of over 4,800 m (15,700 ft)

    NASA/Chandra X-ray Telescope

    What’s going on in our high-energy sky? Powerful phenomena abound in our universe, and they can produce photons with tremendous energies. A new study explores a high-energy mystery from one of these sources: active galactic nuclei, or AGN.

    3
    Gamma rays span a broad range of energies in the most energetic part of the electromagnetic spectrum. Very high-energy gamma rays initially emitted from AGN have energies above 100 GeV, but these are reprocessed by interactions with background photons to energies of 1–100 GeV. [Ulflund]

    Where Are the Gamma Rays?

    Active galactic nuclei — the accreting supermassive black holes lurking at the centers of some galaxies — dot our universal landscape, spewing out very high-energy gamma-ray photons within jets moving at nearly the speed of light. These energetic photons speed across the sky — but they don’t travel unencumbered.

    Theory predicts that this energetic emission should be effectively reprocessed as it slams into the cosmic microwave background, generating a compact sheath of gamma-ray emission in the 1–100 GeV range, beamed forward in the direction of the jets emitted from each AGN. But there’s a problem: we don’t see this expected flux.

    3
    Galactic coordinates of the sources used to generate the authors’ stacked analysis. Two types of AGN-containing galaxies are included: FR I and FR II galaxies. [Broderick et al. 2019]

    One possible explanation for the missing light is that these traveling photons could be deflected from their path by a strong, large-scale magnetic field threading through intergalactic space. This would convert the compact, forward-beamed sheath into a more diffuse, harder-to-spot gamma-ray halo around each AGN. In a new study, a team of scientists led by Avery Broderick (University of Waterloo and the Perimeter Institute for Theoretical Physics, Canada) has gone on the hunt for these missing gamma-ray halos.

    Perimeter Institute in Waterloo, Canada


    Stacks of Galaxies

    Though the proposed gamma-ray halos may be too faint to spot individually, Broderick and collaborators suggest that by stacking a bunch of gamma-ray observations of off-axis AGN on top of one another, we should easily be able to detect their combined halo — if it exists.

    5
    The process of aligning the jets in two different radio images: an FR I galaxy (top) and an FR II galaxy (bottom). [Broderick et al. 2019]

    To do this, the AGN must first be oriented in the same direction. Broderick and collaborators use radio observations of AGN jets pointed off our line of sight to identify each jet’s orientation. They determine the transformations needed to align each of the radio jets, and then apply this transformation to corresponding Fermi-telescope gamma-ray observations of the active galaxies. The result is a sample of nearly 9,000 gamma-ray observations of AGN, all oriented in the same direction.

    Broderick and collaborators then stack these observations and compare their results to a model of what we would expect to see if an intergalactic magnetic field were deflecting the gamma-ray photons, generating a faint halo around the AGN.

    Still No Halos

    6
    Top: the authors’ stacked gamma-ray observations for FR I (left) and FR II (right) galaxies. Bottom: the expected signals if gamma-ray halos were present. The observations clearly rule out the presence of faint halos. [Broderick et al. 2019]

    Intriguingly, the authors find no hint of a combined gamma-ray halo. Their non-detection places strict limits on the strength of the intergalactic magnetic field allowed in this picture, and it rules out magnetic fields as an explanation for why we don’t see the gamma rays we expect from AGN.

    What does this mean? Broderick and collaborators argue that this requires us to consider brand new physics in high-energy processes. There must be some unexpected mechanism that prevents the creation of the expected gamma-ray halos, either because the highest-energy emission is suppressed in gamma-ray bright AGN, or because some process affects this emission before it can lead to the generation of halos. The mystery deepens!

    Citation

    “Missing Gamma-Ray Halos and the Need for New Physics in the Gamma-Ray Sky,” Avery E. Broderick et al 2018 ApJ 868 87.
    https://iopscience.iop.org/article/10.3847/1538-4357/aae5f2/meta

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    1

    AAS Mission and Vision Statement

    The mission of the American Astronomical Society is to enhance and share humanity’s scientific understanding of the Universe.

    The Society, through its publications, disseminates and archives the results of astronomical research. The Society also communicates and explains our understanding of the universe to the public.
    The Society facilitates and strengthens the interactions among members through professional meetings and other means. The Society supports member divisions representing specialized research and astronomical interests.
    The Society represents the goals of its community of members to the nation and the world. The Society also works with other scientific and educational societies to promote the advancement of science.
    The Society, through its members, trains, mentors and supports the next generation of astronomers. The Society supports and promotes increased participation of historically underrepresented groups in astronomy.
    The Society assists its members to develop their skills in the fields of education and public outreach at all levels. The Society promotes broad interest in astronomy, which enhances science literacy and leads many to careers in science and engineering.

    Adopted June 7, 2009

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: