Tagged: STFC Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 2:57 pm on June 28, 2019 Permalink | Reply
    Tags: , , , , How did our Milky Way take shape?, New astronomical instrument called MOONS for the ESO VLT, STFC   

    From Science and Technology Facilities Council: “How did our Milky Way take shape?” 


    From Science and Technology Facilities Council

    28 June 2019
    Eve Laird, Communications Manager, UK ATC
    eve.laird@stfc.ukri.org
    0779 626 0787

    Becky Parker-Ellis, STFC Media Officer
    becky.parker-ellis@stfc.ukri.org
    07808 879294

    Puzzles like this soon to be solved thanks to an international team led by scientists and engineers in Scotland.

    The ‘eye’ of one of the world’s most advanced telescopes is soon to become even more powerful, thanks to the work of an international team led by scientists and engineers in Scotland. A new ground breaking astronomical instrument is currently being built in Scotland that will soon allow astronomers to ‘see through’ cosmic dust and study in ‘never-been-seen-before’ detail the innermost regions of our Milky Way – to solve astronomical puzzles such as how our Milky Way took shape!

    During its 10-year design lifetime this new astronomical instrument, called MOONS, is expected to observe in the order of ten million objects.

    Depiction of STFC MOONS instrument for the ESO VLT

    By viewing objects up to 40,000 light-years from the Earth, astronomers will be able to see in unprecedented detail the innermost regions of our galaxy, the Milky Way. Not only that, MOONS will allow astronomers to see across even more vast distances so that they will be able to study the formation and evolution of galaxies over the entire history of the Universe.

    MOONS is a unique astronomical instrument which is being designed, built and assembled at the UK Astronomy Technology Centre (UK ATC) in Edinburgh, in collaboration with an international consortium of institutions and commercial partners. The next generation Multi-Object Optical and Near-infrared Spectrograph, MOONS, will be operational in 2021 on the European Southern Observatory’s (ESO) Very Large Telescope (VLT) at the Paranal Observatory in Northern Chile.

    Dr Oscar Gonzalez, Instrument Scientist at UK ATC, says “To explore galaxy formation and evolution we need to investigate the properties of millions of stars from the very centre of our own galaxy to as far away as the other millions of galaxies in the early Universe. For example, to understand how our galaxy reached its current form, we need to map in detail its innermost regions. This is tremendously challenging because of the large amounts of dust between us, and the stellar populations we need to target.

    “MOONS is able to observe in the Infrared, and so we will finally be able to ‘see through’ the dust.”

    In a marriage of precision and scale, two significant technical milestones in the design and build of MOONS have now been achieved. These technical milestones, one in the development of robotic arms to assist in the alignment of the telescope with celestial objects in the sky, and one in optics, are important because the cutting edge capability of MOONS is in turn demanding cutting edge design to push the boundaries of technical innovation, and blaze a trail for future spectrographs.

    Precision-engineered robotic arms

    “One thousand small robotic arms are at the heart of the MOONS instrument.” says Dr William Taylor, Instrument Scientist at UK ATC. “Called Fibre Positioning Units (FPUs), these robotic arms move quickly and with an accuracy of about the width of human hair (25 microns), to allow the telescope to align with about 1000 celestial objects, at the same time! It is now all systems go on delivering a production run of 1000 of these robotic arms”

    “It’s been a complex design challenge,” continues William. “The FPUs sit on a large focal plate measuring over 1m in diameter and are monitored as they move around each other by 12 cameras. Interspersed throughout the FPUs are a further 20 cameras which are responsible for the fine alignment of the instrument with objects in the sky. With the design now tested and validated, 1000 FPUs are currently being manufactured and will soon be delivered to us here in Edinburgh for assembly.”

    Very large optics

    At the magnitude of celestial observing required of MOONS, the new instrument needs very fast, and very large optics to capture the light from as many astronomical targets as possible in a single shot. The optical design of the MOONS cameras, which will sit within the incredibly low temperatures of a 7-tonne cryostat, is a ground-breaking never-been-done-before technical innovation.

    “It’s the green light for the alignment of the cameras after the successful mounting of the incredibly large and tricky-to-handle 40cm lenses into the camera housings.” says Dr David Lee, Optical Engineer at UK ATC.

    “The design and construction of the cameras is a multi-disciplinary, multi-organisation achievement involving colleagues in Italy, France and England,” continues David.

    “What makes the camera so novel,” adds David, “is that it has been specifically designed to have fewer optical components, with the aim of making the alignment easier. Essentially, two lenses have been glued together – a smaller lens inside a larger lens, which is an alarming idea, because of the constraints this puts on the glass during the cooling process. But the beauty in the idea is that there are only two optical elements to align – so whilst one is held still, the other can tilt to focus.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    STFC Hartree Centre

    Helping build a globally competitive, knowledge-based UK economy

    We are a world-leading multi-disciplinary science organisation, and our goal is to deliver economic, societal, scientific and international benefits to the UK and its people – and more broadly to the world. Our strength comes from our distinct but interrelated functions:

    Universities: we support university-based research, innovation and skills development in astronomy, particle physics, nuclear physics, and space science
    Scientific Facilities: we provide access to world-leading, large-scale facilities across a range of physical and life sciences, enabling research, innovation and skills training in these areas
    National Campuses: we work with partners to build National Science and Innovation Campuses based around our National Laboratories to promote academic and industrial collaboration and translation of our research to market through direct interaction with industry
    Inspiring and Involving: we help ensure a future pipeline of skilled and enthusiastic young people by using the excitement of our sciences to encourage wider take-up of STEM subjects in school and future life (science, technology, engineering and mathematics)

    We support an academic community of around 1,700 in particle physics, nuclear physics, and astronomy including space science, who work at more than 50 universities and research institutes in the UK, Europe, Japan and the United States, including a rolling cohort of more than 900 PhD students.

    STFC-funded universities produce physics postgraduates with outstanding high-end scientific, analytic and technical skills who on graduation enjoy almost full employment. Roughly half of our PhD students continue in research, sustaining national capability and creating the bedrock of the UK’s scientific excellence. The remainder – much valued for their numerical, problem solving and project management skills – choose equally important industrial, commercial or government careers.

    Our large-scale scientific facilities in the UK and Europe are used by more than 3,500 users each year, carrying out more than 2,000 experiments and generating around 900 publications. The facilities provide a range of research techniques using neutrons, muons, lasers and x-rays, and high performance computing and complex analysis of large data sets.

    They are used by scientists across a huge variety of science disciplines ranging from the physical and heritage sciences to medicine, biosciences, the environment, energy, and more. These facilities provide a massive productivity boost for UK science, as well as unique capabilities for UK industry.

    Our two Campuses are based around our Rutherford Appleton Laboratory at Harwell in Oxfordshire, and our Daresbury Laboratory in Cheshire – each of which offers a different cluster of technological expertise that underpins and ties together diverse research fields.

    STFC Rutherford Appleton Laboratory at Harwell in Oxfordshire

    Daresbury Laboratory at Sci-Tech Daresbury in the Liverpool City Region,

    The combination of access to world-class research facilities and scientists, office and laboratory space, business support, and an environment which encourages innovation has proven a compelling combination, attracting start-ups, SMEs and large blue chips such as IBM and Unilever.

    We think our science is awesome – and we know students, teachers and parents think so too. That’s why we run an extensive Public Engagement and science communication programme, ranging from loans to schools of Moon Rocks, funding support for academics to inspire more young people, embedding public engagement in our funded grant programme, and running a series of lectures, travelling exhibitions and visits to our sites across the year.

    Ninety per cent of physics undergraduates say that they were attracted to the course by our sciences, and applications for physics courses are up – despite an overall decline in university enrolment.

     
  • richardmitnick 8:58 am on June 25, 2019 Permalink | Reply
    Tags: , , Formeric spin-off, STFC   

    From Science and Technology Facilities Council: “UK start-up meets manufacturers’ need for speed in new product innovation” 


    From Science and Technology Facilities Council

    24 June 2019

    Wendy Ellison
    STFC Communications
    Daresbury Laboratory
    Tel: 01925 603232
    Wendy Ellison

    For chemical manufacturing companies, speed to market for developing, testing and improving product formulations is critical against a tough, highly competitive market environment. Access to high performance computing can drastically speed up time-to-market, but is a complex process and can be a daunting task without an in-house specialist.

    1
    Formeric Infographic. (Credit: Formeric)

    Eco-friendly cleaning products and fuels, more sustainable crop protection products and breakthrough personal care products – these are just some of the consumer and industrial goods that will benefit from this capability. Company needs can be very different, but they all have in common the need to understand the ingredients they use as quickly and efficiently as possible.

    Now, UK start-up company Formeric is meeting this need for speed with a revolutionary cloud-based app that puts supercomputing into the hands of manufacturers to develop new products, with no supercomputer specialist required.

    Formeric is a spin out of the world leading expertise and supercomputing technologies of the Hartree Centre, part of the Science and Technology Facilities Council (STFC).

    1

    Located at STFC’s Daresbury Laboratory, at Sci-Tech Daresbury in the Liverpool City Region, the Hartree Centre’s key mission is to transform the UK industry through high performance computing, data analytics and artificial intelligence technologies.

    Daresbury Laboratory at Sci-Tech Daresbury in the Liverpool City Region

    Formeric’s platform application, which connects to the Hartree Centre, enables manufacturers and materials scientists to use the latest high performance and cloud computing technologies to accurately predict the behaviour and structure of different concentrations of liquid compounds. It will also show how they will interact with each other, both in the packaging, throughout shelf-life and in use. It means that a single simulation can be requested in seconds, helping researchers to plan fewer and more focussed experiments, reducing time to market.

    STFC’s Dr Rick Anderson, a founder of Formeric, said: “STFC, through its Scientific Computing Department and Hartree Centre, is well known for its expertise in modelling and simulation that can be used to benefit UK companies competing on an international scale. Formeric has been a few years in the planning since concept, so I’m thrilled that our cloud-based app is now ready to speed up design processes and reduce manufacturing costs. The resulting advances in materials chemistry will bring significant benefits to consumers, the environment and the wider economy.”

    Dr Elizabeth Kirby, Director of Innovation at STFC, said: “Manufacturing companies are seeking to embrace digital technologies more and more in their efforts to deliver increasingly efficient and profitable products in a global market. Formeric can now provide these companies with valuable access to supercomputing capabilities, without the need for the specialist skills, in their efforts to embrace digital transformation. I’m excited that we have harnessed the commercial potential for digital transformation from our innovative research by creating this new business.”

    Daresbury Laboratory is part of the Science and Technology Facilities Council. Further information at the website.

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    STFC Hartree Centre

    Helping build a globally competitive, knowledge-based UK economy

    We are a world-leading multi-disciplinary science organisation, and our goal is to deliver economic, societal, scientific and international benefits to the UK and its people – and more broadly to the world. Our strength comes from our distinct but interrelated functions:

    Universities: we support university-based research, innovation and skills development in astronomy, particle physics, nuclear physics, and space science
    Scientific Facilities: we provide access to world-leading, large-scale facilities across a range of physical and life sciences, enabling research, innovation and skills training in these areas
    National Campuses: we work with partners to build National Science and Innovation Campuses based around our National Laboratories to promote academic and industrial collaboration and translation of our research to market through direct interaction with industry
    Inspiring and Involving: we help ensure a future pipeline of skilled and enthusiastic young people by using the excitement of our sciences to encourage wider take-up of STEM subjects in school and future life (science, technology, engineering and mathematics)

    We support an academic community of around 1,700 in particle physics, nuclear physics, and astronomy including space science, who work at more than 50 universities and research institutes in the UK, Europe, Japan and the United States, including a rolling cohort of more than 900 PhD students.

    STFC-funded universities produce physics postgraduates with outstanding high-end scientific, analytic and technical skills who on graduation enjoy almost full employment. Roughly half of our PhD students continue in research, sustaining national capability and creating the bedrock of the UK’s scientific excellence. The remainder – much valued for their numerical, problem solving and project management skills – choose equally important industrial, commercial or government careers.

    Our large-scale scientific facilities in the UK and Europe are used by more than 3,500 users each year, carrying out more than 2,000 experiments and generating around 900 publications. The facilities provide a range of research techniques using neutrons, muons, lasers and x-rays, and high performance computing and complex analysis of large data sets.

    They are used by scientists across a huge variety of science disciplines ranging from the physical and heritage sciences to medicine, biosciences, the environment, energy, and more. These facilities provide a massive productivity boost for UK science, as well as unique capabilities for UK industry.

    Our two Campuses are based around our Rutherford Appleton Laboratory at Harwell in Oxfordshire, and our Daresbury Laboratory in Cheshire – each of which offers a different cluster of technological expertise that underpins and ties together diverse research fields.

    The combination of access to world-class research facilities and scientists, office and laboratory space, business support, and an environment which encourages innovation has proven a compelling combination, attracting start-ups, SMEs and large blue chips such as IBM and Unilever.

    We think our science is awesome – and we know students, teachers and parents think so too. That’s why we run an extensive Public Engagement and science communication programme, ranging from loans to schools of Moon Rocks, funding support for academics to inspire more young people, embedding public engagement in our funded grant programme, and running a series of lectures, travelling exhibitions and visits to our sites across the year.

    Ninety per cent of physics undergraduates say that they were attracted to the course by our sciences, and applications for physics courses are up – despite an overall decline in university enrolment.

     
  • richardmitnick 8:54 am on September 8, 2018 Permalink | Reply
    Tags: , Google Dataset Search, JASMIN supercmputer, NERC, STFC, , UK dataset expertise informs Google's new dataset search   

    From Science and Technology Facilities Council: “UK dataset expertise informs Google’s new dataset search” 


    From Science and Technology Facilities Council

    6 September 2018

    1
    False colour image of Europe captured by Sentinel 3. (Credit: contains modified Copernicus Sentinel data (2018)

    ESA Sentinel 3

    Experts from UK Research and Innovation have contributed to a search tool newly launched by Google that aims to help scientists, policy makers and other user groups more easily find the data required for their work and their stories, or simply to satisfy their intellectual curiosity.

    In today’s world, scientists in many disciplines and a growing number of journalists live and breathe data. There are many thousands of data repositories on the web, providing access to millions of datasets; and local and national governments around the world publish their data as well. As part of the UK Research and Innovation commitment to easy access to data, their experts worked with Google to help develop the Dataset Search, launched today.

    Similar to how Google Scholar works, Dataset Search lets users find datasets wherever they’re hosted, whether it’s a publisher’s site, a digital library, or an author’s personal web page.

    Google approached UK Research and Innovation’s Natural Environment Research Council (NERC) and Science and Technology Facilities Council (STFC) to help ensure their world-leading environmental datasets were included. The heritage in these organisations for managing huge complex datasets on the atmosphere, oceans, climate change, and even data about the solar system, managed by Dr Sarah Callaghan, the Data and Programme Manager at the UKRI’s national space laboratory STFC RAL Space, led to them working with Google on the project.

    Dr Sarah Callaghan said: “In RAL Space we manage, archive and distribute thousands of terabytes of data to make it available to scientific researchers and other interested parties. My experience making datasets findable, usable and interoperable enabled me to advise Google on their Dataset Search and how to best display their search results.”

    “I was able to draw on my work with NERC and STFC datasets, not only in just archiving and managing data for the long term and the scientific record, but also helping users to understand if a dataset is the right one for their purposes.”

    3
    Temperature of Europe during the April 2018 heatwave. (Credit: contains modified Copernicus Sentinel data (2018)

    To create Dataset Search, Google developed guidelines for dataset providers to describe their data in a way that search engines can better understand the content of their pages. These guidelines include salient information about datasets: who created the dataset, when it was published, how the data was collected, what the terms are for using the data, etc. This enables search engines to collect and link this information, analyse where different versions of the same dataset might be, and find publications that may be describing or discussing the dataset. The approach is based on an open standard for describing this information (schema.org). Many STFC and NERC datasets for environmental data are already described in this way and are particularly good examples of findable, user-friendly datasets.

    “Standardised ways of describing data allows us to help researchers by building tools and services to make it easier to find and use data” said Dr Callaghan, “If people don’t know what datasets exist, they won’t know how to look for what they need to solve their environmental problems. For example, an ecologist might not know where to go to find, or how to access the rainfall data needed to understand a changing habitat. Making data easier to find, will help introduce researchers from a variety of disciplines to the vast amount of data I and my colleagues manage for NERC and STFC.”

    The new Google Dataset Search offers references to most datasets in environmental and social sciences, as well as data from other disciplines including government data and data provided by news organisations.

    Professor Tim Wheeler, Director of Research and Innovation at NERC, said: “NERC is constantly working to raise awareness of the wealth of environmental information held within its Data Centres, and to improve access to it. This new tool will make it easier than ever for the public, business and science professionals to find and access the data that they’re looking for. We want to get as many people as possible interested in and able to benefit from data collected by the environmental science that we fund.”

    NERC JASMIN supercomputer based at STFC’s Rutherford Appleton Laboratory (Credit: STFC)

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    STFC Hartree Centre

    Helping build a globally competitive, knowledge-based UK economy

    We are a world-leading multi-disciplinary science organisation, and our goal is to deliver economic, societal, scientific and international benefits to the UK and its people – and more broadly to the world. Our strength comes from our distinct but interrelated functions:

    Universities: we support university-based research, innovation and skills development in astronomy, particle physics, nuclear physics, and space science
    Scientific Facilities: we provide access to world-leading, large-scale facilities across a range of physical and life sciences, enabling research, innovation and skills training in these areas
    National Campuses: we work with partners to build National Science and Innovation Campuses based around our National Laboratories to promote academic and industrial collaboration and translation of our research to market through direct interaction with industry
    Inspiring and Involving: we help ensure a future pipeline of skilled and enthusiastic young people by using the excitement of our sciences to encourage wider take-up of STEM subjects in school and future life (science, technology, engineering and mathematics)

    We support an academic community of around 1,700 in particle physics, nuclear physics, and astronomy including space science, who work at more than 50 universities and research institutes in the UK, Europe, Japan and the United States, including a rolling cohort of more than 900 PhD students.

    STFC-funded universities produce physics postgraduates with outstanding high-end scientific, analytic and technical skills who on graduation enjoy almost full employment. Roughly half of our PhD students continue in research, sustaining national capability and creating the bedrock of the UK’s scientific excellence. The remainder – much valued for their numerical, problem solving and project management skills – choose equally important industrial, commercial or government careers.

    Our large-scale scientific facilities in the UK and Europe are used by more than 3,500 users each year, carrying out more than 2,000 experiments and generating around 900 publications. The facilities provide a range of research techniques using neutrons, muons, lasers and x-rays, and high performance computing and complex analysis of large data sets.

    They are used by scientists across a huge variety of science disciplines ranging from the physical and heritage sciences to medicine, biosciences, the environment, energy, and more. These facilities provide a massive productivity boost for UK science, as well as unique capabilities for UK industry.

    Our two Campuses are based around our Rutherford Appleton Laboratory at Harwell in Oxfordshire, and our Daresbury Laboratory in Cheshire – each of which offers a different cluster of technological expertise that underpins and ties together diverse research fields.

    The combination of access to world-class research facilities and scientists, office and laboratory space, business support, and an environment which encourages innovation has proven a compelling combination, attracting start-ups, SMEs and large blue chips such as IBM and Unilever.

    We think our science is awesome – and we know students, teachers and parents think so too. That’s why we run an extensive Public Engagement and science communication programme, ranging from loans to schools of Moon Rocks, funding support for academics to inspire more young people, embedding public engagement in our funded grant programme, and running a series of lectures, travelling exhibitions and visits to our sites across the year.

    Ninety per cent of physics undergraduates say that they were attracted to the course by our sciences, and applications for physics courses are up – despite an overall decline in university enrolment.

     
  • richardmitnick 9:07 am on April 2, 2018 Permalink | Reply
    Tags: , , , , STFC,   

    From STFC: “Why would we want test the robustness of space electronics against neutrons?” 


    STFC

    1
    STFC ISIS Neutron and Muon Source

    In spite of their size high energy neutrons cause severe disruption to the normal operation of integrated circuits, which make up the advanced electronic devices used in space missions. 🚀 These neutrons are generated by the collision of cosmic rays with the atmosphere, spacecraft components and even the surface of planets. With space missions filled with advanced electronic devices it is of great importance to thoroughly assess their robustness before they even leave the ground.

    Researchers from Italy 🇮🇹 and the UK 🇬🇧 have utilised two neutron beamlines at ISIS Neutron and Muon Source, ChipIr and VESUVIO, to test flash memory devices of interest for space applications.

    1
    STFC ISIS Neutron and Muon Source

    The beamlines generate neutron spectra similar to that we would expect to see in space and planetary environments. Just one hour in the beam mimics the exposure a device would receive over hundreds of thousands of years in the real environment, allowing researchers to rapidly assess the susceptibility of their device to high-energy neutrons.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    STFC Hartree Centre

    Helping build a globally competitive, knowledge-based UK economy

    We are a world-leading multi-disciplinary science organisation, and our goal is to deliver economic, societal, scientific and international benefits to the UK and its people – and more broadly to the world. Our strength comes from our distinct but interrelated functions:

    Universities: we support university-based research, innovation and skills development in astronomy, particle physics, nuclear physics, and space science
    Scientific Facilities: we provide access to world-leading, large-scale facilities across a range of physical and life sciences, enabling research, innovation and skills training in these areas
    National Campuses: we work with partners to build National Science and Innovation Campuses based around our National Laboratories to promote academic and industrial collaboration and translation of our research to market through direct interaction with industry
    Inspiring and Involving: we help ensure a future pipeline of skilled and enthusiastic young people by using the excitement of our sciences to encourage wider take-up of STEM subjects in school and future life (science, technology, engineering and mathematics)

    We support an academic community of around 1,700 in particle physics, nuclear physics, and astronomy including space science, who work at more than 50 universities and research institutes in the UK, Europe, Japan and the United States, including a rolling cohort of more than 900 PhD students.

    STFC-funded universities produce physics postgraduates with outstanding high-end scientific, analytic and technical skills who on graduation enjoy almost full employment. Roughly half of our PhD students continue in research, sustaining national capability and creating the bedrock of the UK’s scientific excellence. The remainder – much valued for their numerical, problem solving and project management skills – choose equally important industrial, commercial or government careers.

    Our large-scale scientific facilities in the UK and Europe are used by more than 3,500 users each year, carrying out more than 2,000 experiments and generating around 900 publications. The facilities provide a range of research techniques using neutrons, muons, lasers and x-rays, and high performance computing and complex analysis of large data sets.

    They are used by scientists across a huge variety of science disciplines ranging from the physical and heritage sciences to medicine, biosciences, the environment, energy, and more. These facilities provide a massive productivity boost for UK science, as well as unique capabilities for UK industry.

    Our two Campuses are based around our Rutherford Appleton Laboratory at Harwell in Oxfordshire, and our Daresbury Laboratory in Cheshire – each of which offers a different cluster of technological expertise that underpins and ties together diverse research fields.

    The combination of access to world-class research facilities and scientists, office and laboratory space, business support, and an environment which encourages innovation has proven a compelling combination, attracting start-ups, SMEs and large blue chips such as IBM and Unilever.

    We think our science is awesome – and we know students, teachers and parents think so too. That’s why we run an extensive Public Engagement and science communication programme, ranging from loans to schools of Moon Rocks, funding support for academics to inspire more young people, embedding public engagement in our funded grant programme, and running a series of lectures, travelling exhibitions and visits to our sites across the year.

    Ninety per cent of physics undergraduates say that they were attracted to the course by our sciences, and applications for physics courses are up – despite an overall decline in university enrolment.

     
  • richardmitnick 10:23 am on March 9, 2018 Permalink | Reply
    Tags: , JASMIN supercomputer, STFC, , Upgrade to UK environmental science super computer will make it twice as capable   

    From STFC: “Upgrade to UK environmental science super computer will make it twice as capable” 


    STFC

    8 March 2018
    Madeleine Russell, Communications Officer, RAL Space
    madeleine.russell@stfc.ac.uk
    Tel: +44 (0) 1235 446288
    Mob: +44 (0) 7594 083386

    Jake Gilmore, Media Manager, STFC
    jake.gilmore@stfc.ac.uk
    Tel: +44 (0) 1793 442092
    Mob: +44 (0) 7970 994586

    A major upgrade is being made to double the storage available in the UK’s leading environmental science supercomputer. The upgraded system will support the global analysis of the next generation of climate models and provide a venue for UK academia and industry to exploit Earth observation data.

    Called JASMIN, this supercomputer provides the UK and European climate and earth-system science communities with the ability to access very large sets of environmental data, which are typically too big for them to download to their own computers, and process it rapidly, reducing the time it takes to test new ideas and get results; from months or weeks to days or hours.

    NERC JASMIN supercomputer based at STFC’s Rutherford Appleton Laboratory

    The upgrade will double the available storage to more than 44 Petabytes, equivalent to over 10 billion photos. It will also add around 40% to the processing capability, with 11,500 cores on 600 nodes, similar to adding the power of several thousand high-end laptops. This means that the 1700 registered users of JASMIN can process and analyse big datasets simultaneously and in very little time.

    JASMIN is a globally unique data intensive supercomputer for environmental science and currently supports over 160 science projects. JASMIN users research topics ranging from earthquake detection and oceanography to air pollution and climate science.

    When JASMIN was brought online 6 years ago with just 4.5 Petabytes of storage it revolutionised access to data for the environmental science community in the UK. This latest upgrade offers a huge leap in the capability of the system for users.

    RAL Space’s Centre for Environmental Data Analysis (CEDA), part of the Science and Technology Facilities Council (STFC), jointly manages JASMIN.

    Dr Victoria Bennett, Head of CEDA, said “We are excited to be expanding JASMIN to manage the increasingly large datasets, from satellites, climate models and other sources. For example the current Sentinel Earth observation satellites alone are producing 10 Terabytes of data every day and this will grow as more are launched as part of the European Commission’s Copernicus programme. This upgrade will allow us to build on the successes we’ve already seen in enabling our users in the science community to efficiently process and analyse these massive datasets.”

    Funded with a multi-million pound investment from the Natural Environment Research Council (NERC), the upgraded system will also continue to provide the “UK environmental data commons” – an online collaborative space bringing together data, services and expertise – underpinning much of academic environmental science.

    NERC Associate Director for National Capability and Capital, Dr Liz Fellman, said, “The JASMIN supercomputer is central to delivering NERC science across its portfolio and provides a globally unique and increasingly powerful capability for the UK’s environmental science community, enabling significant improvement of predictive environmental science to benefit the UK and beyond. NERC welcomes this major upgrade to a world-class facility.”

    Professor Pier Luigi Vidale from the University of Reading has been using JASMIN since 2012 to store and analyse high-resolution global climate model data and said of the upgrade “The project we’re currently leading involves 21 institutions across Europe and will output more than 4 Petabytes of data. The JASMIN upgrade will allow us to store all data and to do most of the analysis online, thus dramatically speeding up the extraction of science, at unprecedented resolution and enabling scientific publication at a far higher rate. We would not have embarked on the project without the enhanced JASMIN.”

    As a “customised” data intensive supercomputer, the JASMIN upgrade involves the integration of computing equipment from many suppliers, a specialised new network, the development and deployment of new software, and the migration of Petabytes of archived data from old hardware, in need of retirement, to new. The entire process will take many months, from the integration of the first new equipment in March until the last of the old storage is retired. Completion is expected by the end of 2018. The system integration is being led by STFC Scientific Computing Department (SCD), and the software and data management by CEDA.

    Jonathan Churchill, JASMIN Systems Architect and Manager for SCD, is part of the team that has designed and are now installing the upgrade that will be exploited by the ever expanding JASMIN science communities. He said “Not only have we dramatically scaled out JASMIN storage, compute and networking, but the new storage and networking technologies will improve the user ‘experience’ and provide capabilities that we have never been able to make available to users before. The compute upgrade will provide not only much needed extra batch computing cores but also provide the deep, on-demand cloud computing capacity and flexibility that releases new analysis environments to our science communities.”

    Further information

    JASMIN is jointly managed on behalf of NERC by CEDA, part of RAL Space, and SCD all based within STFC at Harwell campus in Oxfordshire.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    STFC Hartree Centre

    Helping build a globally competitive, knowledge-based UK economy

    We are a world-leading multi-disciplinary science organisation, and our goal is to deliver economic, societal, scientific and international benefits to the UK and its people – and more broadly to the world. Our strength comes from our distinct but interrelated functions:

    Universities: we support university-based research, innovation and skills development in astronomy, particle physics, nuclear physics, and space science
    Scientific Facilities: we provide access to world-leading, large-scale facilities across a range of physical and life sciences, enabling research, innovation and skills training in these areas
    National Campuses: we work with partners to build National Science and Innovation Campuses based around our National Laboratories to promote academic and industrial collaboration and translation of our research to market through direct interaction with industry
    Inspiring and Involving: we help ensure a future pipeline of skilled and enthusiastic young people by using the excitement of our sciences to encourage wider take-up of STEM subjects in school and future life (science, technology, engineering and mathematics)

    We support an academic community of around 1,700 in particle physics, nuclear physics, and astronomy including space science, who work at more than 50 universities and research institutes in the UK, Europe, Japan and the United States, including a rolling cohort of more than 900 PhD students.

    STFC-funded universities produce physics postgraduates with outstanding high-end scientific, analytic and technical skills who on graduation enjoy almost full employment. Roughly half of our PhD students continue in research, sustaining national capability and creating the bedrock of the UK’s scientific excellence. The remainder – much valued for their numerical, problem solving and project management skills – choose equally important industrial, commercial or government careers.

    Our large-scale scientific facilities in the UK and Europe are used by more than 3,500 users each year, carrying out more than 2,000 experiments and generating around 900 publications. The facilities provide a range of research techniques using neutrons, muons, lasers and x-rays, and high performance computing and complex analysis of large data sets.

    They are used by scientists across a huge variety of science disciplines ranging from the physical and heritage sciences to medicine, biosciences, the environment, energy, and more. These facilities provide a massive productivity boost for UK science, as well as unique capabilities for UK industry.

    Our two Campuses are based around our Rutherford Appleton Laboratory at Harwell in Oxfordshire, and our Daresbury Laboratory in Cheshire – each of which offers a different cluster of technological expertise that underpins and ties together diverse research fields.

    The combination of access to world-class research facilities and scientists, office and laboratory space, business support, and an environment which encourages innovation has proven a compelling combination, attracting start-ups, SMEs and large blue chips such as IBM and Unilever.

    We think our science is awesome – and we know students, teachers and parents think so too. That’s why we run an extensive Public Engagement and science communication programme, ranging from loans to schools of Moon Rocks, funding support for academics to inspire more young people, embedding public engagement in our funded grant programme, and running a series of lectures, travelling exhibitions and visits to our sites across the year.

    Ninety per cent of physics undergraduates say that they were attracted to the course by our sciences, and applications for physics courses are up – despite an overall decline in university enrolment.

     
  • richardmitnick 1:07 pm on January 28, 2018 Permalink | Reply
    Tags: , , , , , HARMONI spectrograph, Professor Niranjan Thatte, STFC   

    From STFC: “The astronomer bringing HARMONI to the Extremely Large Telescope – with Professor Niranjan Thatte” 


    STFC

    1.28.18


    ESO/E-ELT,to be on top of Cerro Armazones in the Atacama Desert of northern Chile, at an altitude 3,046 m (9,993 ft)

    While the foundations for the Extremely Large Telescope ( ESO ELT) are taking shape on the Cerro Armazones mountain in Chile, teams in the UK are getting to work on the instrument that will allow the ELT to deliver amazing discoveries for decades to come.

    1
    Professor Niranjan Thatte, principle investigator for the HARMONI instrument, with a Lego model of the ELT. (Credit: Dave Fleming)

    This instrument is HARMONI: it will be the ELT’s work-horse spectrograph, analysing the light collected by the telescope to tell us about the properties of distant objects. While other instruments can be added to the ELT once it’s been built, HARMONI is one of its critical first-light instruments, and so must be designed and built in parallel with the telescope itself.

    Niranjan Thatte, Professor of Astrophysics at the University of Oxford, is leading the project in collaboration with the Science and Technology Facility Council’s UK Astronomy Technology Centre and Rutherford Appleton Laboratory, and experts at Durham University. We caught up with him to find out how he became involved with the ELT and what it’s like to take the lead on such an incredible international project.

    How did you first get involved with the ELT?

    In 2006, I was at a meeting in Marseille where the ELT concept was presented to the astronomy community for the first time. Back in Oxford, I had been working on an instrument (an integral field spectrograph), which is now part of SINFONI on the Very Large Telescope (VLT).

    ESO/SINFONI

    ESO VLT Platform at Cerro Paranal elevation 2,635 m (8,645 ft)

    The spectrograph had been very successful on the VLT – providing unprecedented views of some of the most distant galaxies known, and seeing a giant gas cloud being ripped apart by the black hole at the centre of our galaxy.

    But there were no plans for a similar ‘integral field’ spectrograph to be included on the ELT at first light…

    There had been a lot of focus on the next generation instruments, but that didn’t mean there wasn’t a need for a workhorse instrument like HARMONI.

    After the meeting, in light of the discussions, ESO released a call for proposals for instrument concepts, and after 11 conceptual studies were carried out by leading instrument builders across Europe, they selected two instruments to be part of the ELT at first light – the camera MICADO and our integral-field spectrograph HARMONI.

    We’ve been hearing a lot about how the design and construction of HARMONI is being led by the UK – what does this mean for UK scientists and researchers?

    The UK is very much in a leadership role with HARMONI. It takes a lot of drive to pull a project like this together, and that drive is coming from the UK.

    It also means that we are taking on lot of the responsibility.

    Because of the scale of the project, all of the partners are taking on a part of the instrument and it will be assembled towards the end of the process. At that later stage, we want to have a coherent system – as the project leaders we’re responsible for addressing any problems and filling any gaps.

    The upside to this is that UK scientists will have guaranteed observing time on the ELT, and early access to use the telescope and all of its instruments to do nifty pieces of science. The science team will put together a coherent programme, and all the members of the consortium will have use of the telescope.

    Unfortunately, the glory part is still 10 years away! Really, we’re building the telescope for the next generation.

    Wow! So how can you make sure that HARMONI will work the way it needs to?

    It would be a different experience if we could walk down the hall and just talk to each other, but the size of the project that we are envisioning makes it impossible.

    It all depends on a lot of motivated people going above and beyond the requirements of their job.

    There are about 70 of us altogether – as well as at Oxford and the UK Astronomy Technology Centre in Edinburgh, we have other partners Lyon, Marseille, Tenerife, and Madrid – and we try to come together 2-3 times a year in person. We need to make the sum of the parts built at each institute to come together to form a coherent whole; an instrument that is more than the sum of its parts. This requires excellent communication so everyone can see the big picture.

    There are a lot of video conferences and telephone calls, and it can be difficult, especially when we are working in different languages and cultures, so we have to be disciplined in how we work.

    I’ve not found there are cultural differences; there are just differences between individuals. People are people and they have different approaches. You have to get to know them, and know how best to interact with them.

    What is it about the project that excites you the most?

    I enjoy the technical side of things and getting stuck into the detail of the project, thinking about why something should be done one way rather than another. It can seem obvious if you are using experience built up on other instruments, but sometimes the discussions you have make you think, and you have other ideas and see other ways of doing things.

    That’s why I really enjoy brainstorms with other members of the team; it’s satisfying when ideas from a brainstorm turn into a concept for an instrument.

    The adaptive optics, for example, are a phenomenal piece of technology: they are really advanced and can make minute adjustments to deformable mirrors 1000 times a second to compensate for the earth’s atmosphere, and learning about them has been really rewarding.

    We are always learning, and doing things that we haven’t done before – this project is on a totally different scale to anything else I have worked on. These are not instruments that will fit in our labs, so testing will be interesting!

    How does it feel working on such a ground-breaking project?

    I feel extremely privileged. Astronomy was my hobby when I was in Bombay, when I built a little amateur telescope from scratch. Now I’m paid to do what I love. The only downside is that I don’t have any hobbies anymore!

    I remember the first time I went to the Southern Hemisphere, to Australia, and the sky there is so spectacular. You can see the Milky Way stretching across the entire sky, and it creates an amazing sense of awe and wonder. We talk a lot about impact in terms of new technologies, but this type of project is also important because it fuels our curiosity about our place in the Universe.

    It’s scary, but it’s very exciting. We want to do the most we can with the funding we have.

    We are always trying to push the limits of what we can deliver.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    STFC Hartree Centre

    Helping build a globally competitive, knowledge-based UK economy

    We are a world-leading multi-disciplinary science organisation, and our goal is to deliver economic, societal, scientific and international benefits to the UK and its people – and more broadly to the world. Our strength comes from our distinct but interrelated functions:

    Universities: we support university-based research, innovation and skills development in astronomy, particle physics, nuclear physics, and space science
    Scientific Facilities: we provide access to world-leading, large-scale facilities across a range of physical and life sciences, enabling research, innovation and skills training in these areas
    National Campuses: we work with partners to build National Science and Innovation Campuses based around our National Laboratories to promote academic and industrial collaboration and translation of our research to market through direct interaction with industry
    Inspiring and Involving: we help ensure a future pipeline of skilled and enthusiastic young people by using the excitement of our sciences to encourage wider take-up of STEM subjects in school and future life (science, technology, engineering and mathematics)

    We support an academic community of around 1,700 in particle physics, nuclear physics, and astronomy including space science, who work at more than 50 universities and research institutes in the UK, Europe, Japan and the United States, including a rolling cohort of more than 900 PhD students.

    STFC-funded universities produce physics postgraduates with outstanding high-end scientific, analytic and technical skills who on graduation enjoy almost full employment. Roughly half of our PhD students continue in research, sustaining national capability and creating the bedrock of the UK’s scientific excellence. The remainder – much valued for their numerical, problem solving and project management skills – choose equally important industrial, commercial or government careers.

    Our large-scale scientific facilities in the UK and Europe are used by more than 3,500 users each year, carrying out more than 2,000 experiments and generating around 900 publications. The facilities provide a range of research techniques using neutrons, muons, lasers and x-rays, and high performance computing and complex analysis of large data sets.

    They are used by scientists across a huge variety of science disciplines ranging from the physical and heritage sciences to medicine, biosciences, the environment, energy, and more. These facilities provide a massive productivity boost for UK science, as well as unique capabilities for UK industry.

    Our two Campuses are based around our Rutherford Appleton Laboratory at Harwell in Oxfordshire, and our Daresbury Laboratory in Cheshire – each of which offers a different cluster of technological expertise that underpins and ties together diverse research fields.

    The combination of access to world-class research facilities and scientists, office and laboratory space, business support, and an environment which encourages innovation has proven a compelling combination, attracting start-ups, SMEs and large blue chips such as IBM and Unilever.

    We think our science is awesome – and we know students, teachers and parents think so too. That’s why we run an extensive Public Engagement and science communication programme, ranging from loans to schools of Moon Rocks, funding support for academics to inspire more young people, embedding public engagement in our funded grant programme, and running a series of lectures, travelling exhibitions and visits to our sites across the year.

    Ninety per cent of physics undergraduates say that they were attracted to the course by our sciences, and applications for physics courses are up – despite an overall decline in university enrolment.

     
  • richardmitnick 2:15 pm on January 25, 2018 Permalink | Reply
    Tags: , , , , , First gas jet detection from massive young star outside our galaxy, STFC   

    From STFC: “First gas jet detection from massive young star outside our galaxy” 


    STFC

    25 January 2018
    No writer credit found

    ESO VLT Platform at Cerro Paranal elevation 2,635 m (8,645 ft)

    An international team of astronomers, including two STFC scientists, have made the very first detection of a jet from a very young, massive star in a galaxy that is not our own.

    The paper [Nature] was co-authored by Pamela Klaassen, instrument scientist at the STFC’s Edinburgh site, the UK Astronomy Technology Centre (UK ATC), and UK ATC’s Head of Science Chris Evans. [Other authors credited: Anna F. McLeod, Megan Reiter, Rolf Kuiper, Pamela D. Klaassen, Christopher J. Evans.]

    1
    Marsden Fellow Dr Anna McLeod, of UC’s School of Physical and Chemical Sciences, says this discovery will drive significant advancement in the field of star formation.

    Dr Klaassen said: “With this observation, we see that the details of star formation we see in our galaxy are also possible elsewhere, even when the conditions and material available are quite different to those we’re used to.”

    Stars like the Sun are constantly forming in our galaxy and further afield in more distant galaxies. They form in predictable ways, emerging from their natal environment often surrounded by a system of planets which formed from a disk.

    Stars with more mass, upwards of eight times that of the Sun, are much rarer and their formation remains something of a mystery. These more massive stars form deep within their natal clouds of gas and dust and are generally too obscured to be visible with optical telescopes. Under the right conditions, it is sometimes possible to see a jet or outflow of expelled gas, but only if it’s powerful enough to push out of the natal cloud. These narrow streams of gas move away from the forming star at high speeds – and often the bigger the star, the bigger and faster the jet.

    Astronomical instruments like MUSE (Multi Unit Spectroscopic Explorer) on the European Southern Observatory’s Very Large Telescope (ESO VLT) in Chile are vital for understanding these jets of gas.

    ESO MUSE on the VLT

    Dr Klaassen said: “In this paper, we present the first evidence for such a jet from a young stellar object in another galaxy, the nearby Large Magellanic Cloud (LMC).

    Large Magellanic Cloud. Adrian Pingstone December 2003

    “The LMC has a lower abundance of ‘metals’ (atoms heavier than hydrogen and helium) than our own galaxy, which means that the environment of the young star is less opaque than an equivalent region in the Milky Way helping make this detection robust.

    “The jet spans about 36 light years (or 11 parsecs), which makes it among the largest jets of its kind ever found. The star powering the jet appears to be about 12 times as massive as the Sun, and its velocity structure was revealed by the high spectral resolution of MUSE – we know which part of the jet is angled towards us, and which is angled away.”

    The data used for this work comes from the VLT in Chile’s Atacama Desert, which is among the largest optical telescopes in the world and is one of the most competitive telescopes on which to obtain precious observing time.

    It is only with this kind of instrument that this could be done; regular instruments would not have detected the jet. The VLT can detect objects roughly four billion times fainter than can be detected with the naked eye.

    The project team was led by Dr Anna McLeod from the University of Canterbury in New Zealand, who says this discovery will drive significant advancement in the field of star formation: “The formation mechanism of massive stars was predicted three decades ago and involved an accretion disk, similar to how their lower-mass siblings form. Over the years numerical simulations were produced which support this scenario. Recently there has been some initial observational evidence that this might indeed be the case. In our paper, we present compelling evidence that high-mass stars form in a similar way to Sun-like stars.

    “We have detected a very young and still forming massive star – a so-called young stellar object – which is launching a bipolar jet. The jet is direct evidence for what we call an accretion disk, i.e. a disk around the equator of the star through which the star is gathering matter and thus growing, which is what we see in low-mass stars.”

    This discovery brings direct evidence that massive stars up to 12 times that of our Sun form like low-mass stars.

    More information is available on the University of Canterbury website.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    STFC Hartree Centre

    Helping build a globally competitive, knowledge-based UK economy

    We are a world-leading multi-disciplinary science organisation, and our goal is to deliver economic, societal, scientific and international benefits to the UK and its people – and more broadly to the world. Our strength comes from our distinct but interrelated functions:

    Universities: we support university-based research, innovation and skills development in astronomy, particle physics, nuclear physics, and space science
    Scientific Facilities: we provide access to world-leading, large-scale facilities across a range of physical and life sciences, enabling research, innovation and skills training in these areas
    National Campuses: we work with partners to build National Science and Innovation Campuses based around our National Laboratories to promote academic and industrial collaboration and translation of our research to market through direct interaction with industry
    Inspiring and Involving: we help ensure a future pipeline of skilled and enthusiastic young people by using the excitement of our sciences to encourage wider take-up of STEM subjects in school and future life (science, technology, engineering and mathematics)

    We support an academic community of around 1,700 in particle physics, nuclear physics, and astronomy including space science, who work at more than 50 universities and research institutes in the UK, Europe, Japan and the United States, including a rolling cohort of more than 900 PhD students.

    STFC-funded universities produce physics postgraduates with outstanding high-end scientific, analytic and technical skills who on graduation enjoy almost full employment. Roughly half of our PhD students continue in research, sustaining national capability and creating the bedrock of the UK’s scientific excellence. The remainder – much valued for their numerical, problem solving and project management skills – choose equally important industrial, commercial or government careers.

    Our large-scale scientific facilities in the UK and Europe are used by more than 3,500 users each year, carrying out more than 2,000 experiments and generating around 900 publications. The facilities provide a range of research techniques using neutrons, muons, lasers and x-rays, and high performance computing and complex analysis of large data sets.

    They are used by scientists across a huge variety of science disciplines ranging from the physical and heritage sciences to medicine, biosciences, the environment, energy, and more. These facilities provide a massive productivity boost for UK science, as well as unique capabilities for UK industry.

    Our two Campuses are based around our Rutherford Appleton Laboratory at Harwell in Oxfordshire, and our Daresbury Laboratory in Cheshire – each of which offers a different cluster of technological expertise that underpins and ties together diverse research fields.

    The combination of access to world-class research facilities and scientists, office and laboratory space, business support, and an environment which encourages innovation has proven a compelling combination, attracting start-ups, SMEs and large blue chips such as IBM and Unilever.

    We think our science is awesome – and we know students, teachers and parents think so too. That’s why we run an extensive Public Engagement and science communication programme, ranging from loans to schools of Moon Rocks, funding support for academics to inspire more young people, embedding public engagement in our funded grant programme, and running a series of lectures, travelling exhibitions and visits to our sites across the year.

    Ninety per cent of physics undergraduates say that they were attracted to the course by our sciences, and applications for physics courses are up – despite an overall decline in university enrolment.

     
  • richardmitnick 5:11 pm on January 18, 2018 Permalink | Reply
    Tags: , , , , STFC,   

    From Symmetry: “The biggest little detectors” 

    Symmetry Mag

    Symmetry

    01/18/18
    Leah Hesla

    1
    Photo by Maximilien Brice, CERN

    The ProtoDUNE detectors for the Deep Underground Neutrino Experiment are behemoths in their own right.

    In one sense, the two ProtoDUNE detectors are small. As prototypes of the much larger planned Deep Underground Neutrino Experiment, they are only representative slices, each measuring about 1 percent of the size of the final detector. But in all other ways, the ProtoDUNE detectors are simply massive.

    CERN Proto DUNE Maximillian Brice

    Once they are complete later this year, these two test detectors will be larger than any detector ever built that uses liquid argon, its active material. The international project involves dozens of experimental groups coordinating around the world. And most critically, the ProtoDUNE detectors, which are being installed and tested at the European particle physics laboratory CERN, are the rehearsal spaces in which physicists, engineers and technicians will hammer out nearly every engineering problem confronting DUNE, the biggest international science project ever conducted in the United States.

    Gigantic detector, tiny neutrino

    DUNE’s mission, when it comes online in the mid-2020s, will be to pin down the nature of the neutrino, the most ubiquitous particle of matter in the universe. Despite neutrinos’ omnipresence—they fill the universe, and trillions of them stream through us every second—they are a pain in the neck to capture. Neutrinos are vanishingly small, fleeting particles that, unlike other members of the subatomic realm, are heedless of the matter through which they fly, never stopping to interact.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA


    FNAL DUNE Argon tank at SURF


    Surf-Dune/LBNF Caverns at Sanford



    SURF building in Lead SD USA

    Well, almost never.

    Once in a while, scientists can catch one. And when they do, it might tell them a bit about the origins of the universe and why matter predominates over antimatter—and thus how we came to be here at all.

    A global community of more than 1000 scientists from 31 countries are building DUNE, a megascience experiment hosted by the Department of Energy’s Fermi National Accelerator Laboratory. The researchers’ plan is to observe neutrinos using two detectors separated by 1300 kilometers—one at Fermilab outside Chicago and a second one a mile underground in South Dakota at the Sanford Underground Research Facility. Having one at each end enables scientists to see how neutrinos transform as they travel over a long distance.

    The DUNE collaboration is going all-in on the bigger-is-better strategy; after all, the bigger the detector, the more likely scientists are to snag a neutrino. The detector located in South Dakota, called the DUNE far detector, will hold 70,000 metric tons (equivalent to about 525,000 bathtubs) of liquid argon to serve as the neutrino fishing net. It comprises four large modules. Each will stand four stories high and, not including the structures that house the utilities, occupy a footprint roughly equal to a soccer field.

    In short, DUNE is giant.

    Lots of room in ProtoDUNE

    The ProtoDUNE detectors are small only when compared to the giant DUNE detector. If each of the four DUNE modules is a 20-room building, then each ProtoDUNE detector is one room.

    But one room large enough to envelop a small house.

    As one repeatable unit of the ultimate detector, the ProtoDUNE detectors are necessarily big. Each is an enormous cube—about two stories high and about as wide—and contains about 800 metric tons of liquid argon.

    Why two prototypes? Researchers are investigating two ways to use argon and so are constructing two slightly different but equally sized test beds. The single-phase ProtoDUNE uses only liquid argon, while the dual-phase ProtoDUNE uses argon as both a liquid and a gas.

    “They’re the largest liquid-argon particle detectors that have ever been built,” says Ed Blucher, DUNE co-spokesperson and a physicist at the University of Chicago.

    As DUNE’s test bed, the ProtoDUNE detectors also have to offer researchers a realistic picture of how the liquid-argon detection technology will work in DUNE, so the instrumentation inside the detectors is also at full, giant scale.

    “If you’re going to build a huge underground detector and invest all of this time and all of these resources into it, that prototype has to work properly and be well-understood,” says Bob Paulos, director of the University of Wisconsin–Madison Physical Sciences Lab and a DUNE engineer. “You need to understand all the engineering problems before you proceed to build literally hundreds of these components and try to transport them all underground.”

    3
    A crucial step for ProtoDUNE was welding together the cryostat, or cold vessel, that will house the detector components and liquid argon. Photo by CERN.

    Partners in ProtoDUNE

    ProtoDUNE is a rehearsal for DUNE not only in its technical orchestration but also in the coordination of human activity.

    When scientists were planning their next-generation neutrino experiment around 2013, they realized that it could succeed only by bringing the international scientific community together to build the project. They also saw that even the prototyping would require an effort of global proportions—both geographically and professionally. As a result, DUNE and ProtoDUNE actively invite students, early-career scientists and senior researchers from all around the world to contribute.

    “The scale of ProtoDUNE, a global collaboration at CERN for a US-based megaproject, is a paradigm change in the way neutrino science is done,” says Christos Touramanis, a physicist at the University of Liverpool and one of the co-coordinators of the single-phase detector. For both DUNE and ProtoDUNE, funding comes from partners around the world, including the Department of Energy’s Office of Science and CERN.

    The successful execution of ProtoDUNE’s assembly and testing by international groups requires a unity of purpose from parties that could hardly be farther apart, geographically speaking.

    Scientists say the effort is going smoothly.

    “I’ve been doing neutrino physics and detector technology for the last 20 or 25 years. I’ve never seen such an effort go up so nicely and quickly. It’s astonishing,” says Fermilab scientist Flavio Cavanna, who co-coordinates the single-phase ProtoDUNE project. “We have a great collaboration, great atmosphere, great willingness to make it. Everybody is doing his or her best to contribute to the success of this big project. I used to say that ProtoDUNE was mission impossible, because—in the short time we were given to make the two detectors, it looked that way in the beginning. But looking at where we are now, and all the progress made so far, it starts turning out to be mission possible.”

    4
    The anode plane array (APA) [STFC] is prepped for shipment at Daresbury Laboratory in the UK. Christos Touramanis.

    Inside the liquid-argon test bed

    The first signal emerges as a streak of ionization electrons.

    To record the signal, scientists will use something called an anode plane array, or APA. An APA is a screen created using 24 kilometers of precisely tensioned, closely spaced, continuously wound wire. This wire screen is positively charged, so it attracts the negatively charged electrons.

    Much the way a wave front approaches the beach’s shore, the particle track—a string of the ionization electrons—will head toward the positively charged wires inside the ProtoDUNE detectors. The wires will send information about the track to computers, which will record its properties and thus information about the original neutrino interaction.

    A group in the University of Wisconsin–Madison Physical Sciences Lab led by Paulos designed the single-phase ProtoDUNE wire arrays. The Wisconsin group, Daresbury Laboratory in the UK and several UK universities are building APAs for the same detector. The first APA from Wisconsin arrived at CERN last year; the first from Daresbury Lab arrived earlier this week.

    “These are complicated to build,” Paulos says, noting that it currently takes about three months to build just one. “Building these 6-meter-tall anode planes with continuously wound wire—that’s something that hasn’t been done before.”

    The anode planes attract the electrons. Pushing away the electrons will be a complementary set of panels, called the cathode plane. Together, the anode and cathode planes behave like battery terminals, with one repelling electron tracks and the other drawing them in. A group at CERN designed and is building the cathode plane.

    The dual-phase detector will operate on the same principle but with a different configuration of wire arrays. A special layer of electronics near the cathode will allow for the amplification of faint electron tracks in a layer of gaseous argon. Groups at institutions in France, Germany and Switzerland are designing those instruments. Once complete, they will also send their arrays to be tested at CERN.

    Then there’s the business of observing light.

    The flash of light is the result of a release of energy from the electron in the process of getting bumped from an argon atom. The appearance of light is like the signal to start a stopwatch; it marks the moment the neutrino interaction in a detector takes place. This enables scientists to reconstruct in three dimensions the picture of the interaction and resulting particles.

    On the other side of the equator, a group at the University of Campinas in Brazil is coordinating the installation of instruments that will capture the flashes of light resulting from particle interactions in the single-phase ProtoDUNE detector.

    Two of the designs for the single-phase prototype—one by Indiana University, the other by Fermilab and MIT—are of a type called guiding bars. These long, narrow strips work like fiber optic cables: they capture the light, convert it into light in the visible spectrum and finally guide it to an external sensor.

    A third design, called ARAPUCA, was developed by three Brazilian universities and Fermilab and is being partially produced at Colorado State University. Named for the Guaraní word for a bird trap, the efficient ARAPUCA design will be able to “trap” even very low light signals and transmit them to its sensors.

    5
    The ARAPUCA array, designed by three Brazilian universities and Fermilab, was partially produced at Colorado State University. D. Warner, Colorado State University.

    “The ARAPUCA technology is totally new,” says University of Campinas scientist Ettore Segreto, who is co-coordinating the installation of the light detection systems in the single-phase prototype. “We might be able to get more information from the light detection—for example, greater energy resolution.”

    Groups from France, Spain and the Swiss Federal Institute of Technology are developing the light detection system for the dual-phase prototype, which will comprise 36 photomultiplier tubes, or PMTs, situated near the cathode plane. A PMT works by picking up the light from the particle interaction and converting it into electrons, multiplying their number and so amplifying the signal’s strength as the electrons travel down the tube.

    With two tricked-out detectors, the DUNE collaboration can test their picture-taking capabilities and prepare DUNE to capture in exquisite detail the fleeting interactions of neutrinos.

    Bringing instruments into harmony

    But even if they’re instrumented to the nines inside, two isolated prototypes do not a proper test bed make. Both ProtoDUNE detectors must be hooked up to computing systems so particle interaction signals can be converted into data. Each detector must be contained in a cryostat, which functions like a thermos, for the argon to be cold enough to maintain a liquid state. And the detectors must be fed particles in the first place.

    CERN is addressing these key areas by providing particle beam, innovative cryogenics and computing infrastructures, and connecting the prototype detectors with the DUNE experimental environment.

    DUNE’s neutrinos will be provided by the Long-Baseline Neutrino Facility, or LBNF, which held an underground groundbreaking for the start of its construction in July. LBNF, led by Fermilab, will provide the construction, beamline and cryogenics for the mammoth DUNE detector, as well as Fermilab’s chain of particle accelerators, which will provide the world’s most intense neutrino beam to the experiment.

    CERN is helping simulate that environment as closely as possible with the scaled-down ProtoDUNE detectors, furnishing them with particle beams so researchers can characterize how the detectors respond. Under the leadership of scientist Marzio Nessi, last year the CERN group built a new facility for the test beds, where CERN is now constructing two new particle beamlines that extend the lab’s existing network.

    7
    The recently arrived anode plane array (hanging on the left) is moved by a crane to its new home in the ProtoDUNE cryostat. Photo by CERN.

    In addition, CERN built the ProtoDUNE cryostats—the largest ever constructed for a particle physics experiment—which also will serve as prototypes for those used in DUNE. Scientists will be able to gather and interpret the data generated from the detectors with a CERN computing farm and software and hardware from several UK universities.

    “The very process of building these prototype detectors provides a stress test for building them in DUNE,” Blucher says.

    CERN’s beam schedule sets the schedule for testing. In December, the European laboratory will temporarily shut off beam to its experiments for upgrades to the Large Hadron Collider. DUNE scientists aim to position the ProtoDUNE detectors in the CERN beam before then, testing the new technologies pioneered as part of the experiment.

    “ProtoDUNE is a necessary and fundamental step towards LBNF/DUNE,” Nessi says. “Most of the engineering will be defined there and it is the place to learn and solve problems. The success of the LBNF/DUNE project depends on it.”

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    Symmetry is a joint Fermilab/SLAC publication.


     
  • richardmitnick 2:27 pm on January 16, 2018 Permalink | Reply
    Tags: , , , , , , STFC   

    From STFC: “UK builds vital component of global neutrino experiment” 


    STFC

    16 January 2018
    Becky Parker-Ellis
    becky.parker-ellis@stfc.ac.uk
    Tel: +44(0)1793 444564
    Mob: +44(0)7808 879294

    1
    The APA being prepped for shipment at Daresbury Laboratory. (Credit: STFC)

    The UK has built an essential piece of the globally-anticipated DUNE experiment, which will study the differences between neutrinos and anti-neutrinos in a bid to understand how the Universe came to be made up of matter.

    FNAL LBNF/DUNE from FNAL to SURF, Lead, South Dakota, USA


    FNAL DUNE Argon tank at SURF


    Surf-Dune/LBNF Caverns at Sanford



    SURF building in Lead SD USA

    Vital components of the DUNE detectors have been constructed in the UK and have now been shipped to CERN for initial testing, marking a significant milestone for the experiment’s progress.

    DUNE (the Deep Underground Neutrino Experiment) is a flagship international experiment run by the United States Department of Energy’s Fermilab [FNAL] that involves over 1,000 scientists from 31 countries. Various elements of the experiment are under construction across the world, with the UK taking a major role in contributing essential expertise and components to the experiment and facility.

    Using a particle accelerator, an intense beam of neutrinos will be fired 800 miles through the earth from Fermilab in Chicago to the DUNE experiment in South Dakota. There the incoming beam will be studied using DUNE’s liquid-argon detector.

    The DUNE project aims to advance our understanding of the origin and structure of the universe. One aspect of study is the behaviour of particles called neutrinos and their antimatter counterparts, antineutrinos. This could provide insight as to why we live in a matter-dominated universe and inform the debate on why the universe survived the Big Bang.

    A UK team has just completed their first prototype Anode Plane Assembly (APA), the largest component of the DUNE detector, to be used in the protoDUNE detector at CERN.

    2
    First APA (Anode Plane Assembly) ready to be installed in the protoDUNE-SP detector Photograph: Ordan, Julien Marius

    CERN Proto DUNE Maximillian Brice

    The APA, which was built at the Science and Technology Facilities Council’s (STFC) Daresbury Laboratory, is the first such anode plane to ever have been built in the UK.

    The APAs are large rectangular steel frames covered with approximately 4000 wires that are used to read the signal from particle tracks generated inside the liquid-argon detector. At 2.3m by 6.3m, the impressive frames are roughly as large as five full-size pool tables led side-by-side.

    Dr Justin Evans of the University of Manchester, who is leading the protoDUNE APA-construction project in the UK, said: “This shipment marks the culmination of a year of very hard work by the team, which has members from STFC Daresbury and the Universities of Manchester, Liverpool, Sheffield and Lancaster. Constructing this anode plane has required relentless attention to detail, and huge dedication to addressing the challenges of building something for the first time. This is a major milestone on our way to doing exciting physics with the protoDUNE and DUNE detectors.”

    These prototype frames were funded through an STFC grant. The 150 APAs that the UK will produce for the large-scale DUNE detector will be paid for as part of the £65million investment by the UK in the UK-US Science and Technology agreement, which was announced in September last year.

    Mechanical engineer Alan Grant has led the organisation of the project on behalf of STFC’s Daresbury Laboratory. He said: “This is an exciting milestone for the UK’s contribution to the DUNE project.

    “The planes are a vital part of the liquid-argon detectors and are one of the biggest component contributions the UK is making to DUNE, so it is thrilling to have the first one ready for shipping and testing.

    “We have a busy few years ahead of us at the Daresbury Laboratory as we are planning to build 150 panels for one of DUNE’s modules, but we are looking forward to meeting the challenge.”

    3
    The ProtoDUNE core installation team members at CERN, in front of the truck from Daresbury. (Credit: University of Liverpool)

    The UK’s first complete APA began the long journey to CERN by road on Friday (January 12), and arrived in Geneva today (January 16). Once successfully tested on the protoDUNE experiment at CERN, a full set of panels will be created and eventually be installed one-mile underground at Fermilab’s Long-Baseline Neutrino Facility (LBNF) in the Sanford Underground Research Facility in South Dakota.

    This is the first such plane to be delivered by the UK to CERN for testing, with the second and third panels set to be shipped in spring. It is expected to take two to three years to produce the full 150 APAs for one module.

    Professor Alfons Weber, of STFC and Oxford University, is the overall Principal Investigator of DUNE UK. He said: “We in the UK are gearing up to deliver several major components for the DUNE experiment and the LBNF facility, which also include the data acquisition system, accelerator components and the neutrino production target. These prototype APAs, which will be installed and tested at CERN, are one of the first major deliveries that will make this exciting experiment a reality.”

    The DUNE APA consortium is led by Professor Stefan Söldner-Rembold of the University of Manchester, with contributions from several other North West universities including Liverpool, Sheffield and Lancaster.

    Professor Söldner-Rembold said: “Each one of the four final DUNE modules will contain 17,000 tons of liquid argon. For a single module, 150 APAs will need to be built which represents a major construction challenge. We are working with UK industry to prepare this large construction project. The wires are kept under tension and we need to ensure that none of the wires will break during several decades of detector operation as the inside of the detector will not be accessible. The planes will now undergo rigorous testing to make sure they are up for the job.

    “Physicists across the world are excited to see what DUNE will be capable of, as unlocking the secrets of the neutrino will help us understand more about the structure of the Universe.

    “Although neutrinos are the second most abundant particle in the Universe, they are enormously difficult to catch as they have very nearly no mass, are not charged and rarely interact with other particles. This is why DUNE is such an exciting experiment and why we are celebrating this milestone in its construction.”

    Christos Touramanis, from the University of Liverpool and co-spokesperson for the protoDUNE project, said: “ProtoDUNE is the first CERN experiment which is a prototype for an experiment at Fermilab, a demonstration of global strategy and coordination in modern particle physics. We in the UK have been instrumental in setting up protoDUNE and in addition to my role we provide leadership in the data acquisition sub-project, and of course anode planes.”

    DUNE will also watch for neutrinos produced when a star explodes, which could reveal the formation of neutron stars and black holes, and will investigate whether protons live forever or eventually decay, bringing us closer to fulfilling Einstein’s dream of a grand unified theory.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    STFC Hartree Centre

    Helping build a globally competitive, knowledge-based UK economy

    We are a world-leading multi-disciplinary science organisation, and our goal is to deliver economic, societal, scientific and international benefits to the UK and its people – and more broadly to the world. Our strength comes from our distinct but interrelated functions:

    Universities: we support university-based research, innovation and skills development in astronomy, particle physics, nuclear physics, and space science
    Scientific Facilities: we provide access to world-leading, large-scale facilities across a range of physical and life sciences, enabling research, innovation and skills training in these areas
    National Campuses: we work with partners to build National Science and Innovation Campuses based around our National Laboratories to promote academic and industrial collaboration and translation of our research to market through direct interaction with industry
    Inspiring and Involving: we help ensure a future pipeline of skilled and enthusiastic young people by using the excitement of our sciences to encourage wider take-up of STEM subjects in school and future life (science, technology, engineering and mathematics)

    We support an academic community of around 1,700 in particle physics, nuclear physics, and astronomy including space science, who work at more than 50 universities and research institutes in the UK, Europe, Japan and the United States, including a rolling cohort of more than 900 PhD students.

    STFC-funded universities produce physics postgraduates with outstanding high-end scientific, analytic and technical skills who on graduation enjoy almost full employment. Roughly half of our PhD students continue in research, sustaining national capability and creating the bedrock of the UK’s scientific excellence. The remainder – much valued for their numerical, problem solving and project management skills – choose equally important industrial, commercial or government careers.

    Our large-scale scientific facilities in the UK and Europe are used by more than 3,500 users each year, carrying out more than 2,000 experiments and generating around 900 publications. The facilities provide a range of research techniques using neutrons, muons, lasers and x-rays, and high performance computing and complex analysis of large data sets.

    They are used by scientists across a huge variety of science disciplines ranging from the physical and heritage sciences to medicine, biosciences, the environment, energy, and more. These facilities provide a massive productivity boost for UK science, as well as unique capabilities for UK industry.

    Our two Campuses are based around our Rutherford Appleton Laboratory at Harwell in Oxfordshire, and our Daresbury Laboratory in Cheshire – each of which offers a different cluster of technological expertise that underpins and ties together diverse research fields.

    The combination of access to world-class research facilities and scientists, office and laboratory space, business support, and an environment which encourages innovation has proven a compelling combination, attracting start-ups, SMEs and large blue chips such as IBM and Unilever.

    We think our science is awesome – and we know students, teachers and parents think so too. That’s why we run an extensive Public Engagement and science communication programme, ranging from loans to schools of Moon Rocks, funding support for academics to inspire more young people, embedding public engagement in our funded grant programme, and running a series of lectures, travelling exhibitions and visits to our sites across the year.

    Ninety per cent of physics undergraduates say that they were attracted to the course by our sciences, and applications for physics courses are up – despite an overall decline in university enrolment.

     
  • richardmitnick 8:10 pm on August 24, 2017 Permalink | Reply
    Tags: , , , , , , , STFC, U Birmingham   

    STFC: “Gravitational wave research may tell us how black holes are formed” 


    STFC

    24 August 2017

    1

    The new field of gravitational wave astronomy, which started with the first gravitational wave detection two years ago, is already offering possible explanations of how black holes form.

    A team of physicists from the UK and the United States has studied the landmark observations of gravitational waves by the LIGO gravitational wave detector in 2015 and again in 2017.

    1

    The UK’s Science and Technology Facilities Council provides grant funding to enable UK researchers, including those at the University of Birmingham, to be involved in the LIGO scientific collaboration.


    Caltech/MIT Advanced aLigo Hanford, WA, USA installation


    Caltech/MIT Advanced aLigo detector installation Livingston, LA, USA

    In the paper published in Nature today, the team says the evidence gathered from these detections limit the possible explanations for the formation of black holes outside of our galaxy; either they are spinning more slowly than black holes in our own galaxy or they spin rapidly but are ‘tumbled around’ with spins randomly oriented to their orbit.

    By ruling out other explanations and narrowing it down to two, researchers will now be able to carry out more specific research and get closer to a definite answer.

    Professor Ilya Mandel, also from the University of Birmingham, said: “We will know which explanation is right within the next few years. This is something that has only been made possible by the recent LIGO detections of gravitational waves.

    “This field is in its infancy; I’m confident that in the near future we will look back on these first few detections and rudimentary models with nostalgia and a much better understanding of how these exotic binary systems form.”

    More information is available on the University of Birmingham website.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    STFC Hartree Centre

    Helping build a globally competitive, knowledge-based UK economy

    We are a world-leading multi-disciplinary science organisation, and our goal is to deliver economic, societal, scientific and international benefits to the UK and its people – and more broadly to the world. Our strength comes from our distinct but interrelated functions:

    Universities: we support university-based research, innovation and skills development in astronomy, particle physics, nuclear physics, and space science
    Scientific Facilities: we provide access to world-leading, large-scale facilities across a range of physical and life sciences, enabling research, innovation and skills training in these areas
    National Campuses: we work with partners to build National Science and Innovation Campuses based around our National Laboratories to promote academic and industrial collaboration and translation of our research to market through direct interaction with industry
    Inspiring and Involving: we help ensure a future pipeline of skilled and enthusiastic young people by using the excitement of our sciences to encourage wider take-up of STEM subjects in school and future life (science, technology, engineering and mathematics)

    We support an academic community of around 1,700 in particle physics, nuclear physics, and astronomy including space science, who work at more than 50 universities and research institutes in the UK, Europe, Japan and the United States, including a rolling cohort of more than 900 PhD students.

    STFC-funded universities produce physics postgraduates with outstanding high-end scientific, analytic and technical skills who on graduation enjoy almost full employment. Roughly half of our PhD students continue in research, sustaining national capability and creating the bedrock of the UK’s scientific excellence. The remainder – much valued for their numerical, problem solving and project management skills – choose equally important industrial, commercial or government careers.

    Our large-scale scientific facilities in the UK and Europe are used by more than 3,500 users each year, carrying out more than 2,000 experiments and generating around 900 publications. The facilities provide a range of research techniques using neutrons, muons, lasers and x-rays, and high performance computing and complex analysis of large data sets.

    They are used by scientists across a huge variety of science disciplines ranging from the physical and heritage sciences to medicine, biosciences, the environment, energy, and more. These facilities provide a massive productivity boost for UK science, as well as unique capabilities for UK industry.

    Our two Campuses are based around our Rutherford Appleton Laboratory at Harwell in Oxfordshire, and our Daresbury Laboratory in Cheshire – each of which offers a different cluster of technological expertise that underpins and ties together diverse research fields.

    The combination of access to world-class research facilities and scientists, office and laboratory space, business support, and an environment which encourages innovation has proven a compelling combination, attracting start-ups, SMEs and large blue chips such as IBM and Unilever.

    We think our science is awesome – and we know students, teachers and parents think so too. That’s why we run an extensive Public Engagement and science communication programme, ranging from loans to schools of Moon Rocks, funding support for academics to inspire more young people, embedding public engagement in our funded grant programme, and running a series of lectures, travelling exhibitions and visits to our sites across the year.

    Ninety per cent of physics undergraduates say that they were attracted to the course by our sciences, and applications for physics courses are up – despite an overall decline in university enrolment.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: