Tagged: Stanford Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 7:28 am on May 12, 2017 Permalink | Reply
    Tags: , , , , , Stanford   

    From Stanford: “Despite a popular media story, rumors of inflationary theory’s demise is premature, Stanford researchers say” 

    Stanford University Name
    Stanford University

    May 10, 2017
    Amy Adams

    From the earliest human civilizations, people have looked to the heavens and pondered the origins of the stars and constellations above. Once, those stories involved gods and magical beings. Now, there’s science, and a large research enterprise focused on understanding how the universe came to be.

    1
    Professor Andrei Linde is among the physicists responding to a recent media story taking aim at inflationary theory. (Image credit: L.A. Cicero)

    Squarely in the center of this research enterprise is what’s known as inflationary theory. It argues that the universe was born out of an unstable, energetic vacuum-like state then expanded dramatically, spinning off entire galaxies produced by quantum fluctuations. This theory was proposed in 1980 by Alan Guth, presently at MIT.

    2
    Alan Guth: https://alchetron.com/Alan-Guth-589833-W

    A year later, this theory was improved and extended by Andrei Linde, Stanford professor of physics, who has spent a lifetime modifying and updating it as new data emerged.

    During the last 35 years, many predictions of inflationary theory have been verified by theorists and confirmed by cosmological observations. Gradually, this theory became a generally accepted description of the origin of the universe. So imagine Linde’s surprise when Scientific American published a story in February by Paul Steinhardt, a professor of physics at Princeton, and his colleagues declaring its demise.

    In response, Linde and Guth, along with their colleagues David Kaiser from MIT and Yasunori Nomura from the University of California, Berkeley, have written a letter [Scientific American] defending the inflationary theory, published in Scientific American May 10. It was signed by 33 academics who read like a Who’s Who of theoretical physicists, including Stephen Hawking of Cambridge University. In it, they take aim at the primary argument in the story: that inflationary theory isn’t really a scientific theory because it doesn’t predict anything and therefore can’t be tested.

    “As the work of several major, international collaborations has made clear, inflation is not only testable but it has been subjected to a significant number of tests and so far has passed every one,” the group wrote.

    A flat universe

    As one example, the inflationary model had predicted that if the universe is ever expanding, it would now be flat rather than open or closed. (Imagine a balloon growing infinitely large. Eventually its surface would appear completely flat.) A flat universe would be represented by a variable called Omega that is equal to 1, “Well, plus or minus a little bit because of quantum uncertainty,” Linde said.

    In fact, in the mid-’90s many astrophysicists believed that the universe was actually not flat, with an Omega closer to about 0.3. “That would be a disaster for inflation,” Linde said. He then tried to find the flaw in his own theory. However, all attempts to construct a model of inflation with Omega equal 0.3 were unsuccessful; the proposed modifications of inflationary theory were extremely complicated and unnatural, and most of them simply did not work. Fortunately, in 1998, a series of cosmological observations revealed the existence of dark energy. It turned out that the energy of a vacuum is not zero, as previously thought, and Omega was restored to 1.

    “If inflationary theory can’t predict anything, why could it appear to be dead when a prediction turned out not to be true?” Linde asked. And how could it be restored by new data that validated the prediction?

    A tense time

    A similarly dramatic situation emerged five years ago, when rumors circulated about a fairly technical issue that’s known as the Gaussianity of inflationary perturbations. The main thing to know about Gaussianity is that the discovery of a large non-Gaussianity of a specific type would rule out 99.9% of the existing inflationary models.

    In 2012 and winter 2013, there were persistent rumors that this non-Gaussianity would soon to be reported by the Planck satellite, and in fact preliminary data by the WMAP satellite indicated a possibility of a very large non-Gaussianity. If that had turned out to be true, it could be a crucial blow to the inflationary theory.

    However, the Planck data revealed no traces of non-Gaussianity. The very last sentence of the Planck paper describing that data read, “With these results, the paradigm of standard single-field slow-roll inflation has survived its most stringent tests to-date.”

    This and many other successful predictions of inflationary theory are undeniable facts, Linde said. “If we trust the arguments made in the Scientific American story, all successful predictions of inflationary cosmology are the result of pure luck, like winning the lottery,” Linde said. “One can do that once, twice, but not this many times. That is why so many leaders of modern physics signed our letter.”

    Linde added that the letters section of a popular magazine is not normally where scientific debate plays out. “A long time ago, when I was young and naive, I thought that things like that are impossible in science,” he said. Now, he just hopes people see that the opinions in the story are not shared by many of the biggest names in theoretical physics and observational cosmology.

    Linde added that he worries about the younger generation of scientists getting the wrong impression from this story. “I don’t want them to read this article and think that they are spending their time on inflationary theory in vain. But the enthusiastic support that we are receiving makes us optimistic that this is not going to happen,” he said.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
  • richardmitnick 8:56 am on May 10, 2017 Permalink | Reply
    Tags: , , Stanford   

    From Stanford: “Stanford team brings quantum computing closer to reality with new materials” 

    Stanford University Name
    Stanford University

    May 9, 2017
    Tom Abate

    1
    Researchers are developing quantum computers based on light rather than electricity. At Stanford, new materials could be the key to progress in this field. (Image credit: iStock/Pobytov)

    For 60 years computers have become smaller, faster and cheaper. But engineers are approaching the limits of how small they can make silicon transistors and how quickly they can push electricity through devices to create digital ones and zeros.

    That limitation is why Stanford electrical engineering Professor Jelena Vuckovic is looking to quantum computing, which is based on light rather than electricity. Quantum computers work by isolating spinning electrons inside a new type of semiconductor material. When a laser strikes the electron, it reveals which way it is spinning by emitting one or more quanta, or particles, of light. Those spin states replace the ones and zeros of traditional computing.

    Vuckovic, who is one of the world’s leading researchers in the field, said quantum computing is ideal for studying biological systems, doing cryptography or data mining – in fact, solving any problem with many variables.

    “When people talk about finding a needle in a haystack, that’s where quantum computing comes in,” she said.

    Marina Radulaski, a postdoctoral fellow in Vuckovic’s lab, said the problem-solving potential of quantum computers stems from the complexity of the laser-electron interactions at the core of the concept.

    “With electronics you have zeros and ones,” Radulaski said. “But when the laser hits the electron in a quantum system, it creates many possible spin states, and that greater range of possibilities forms the basis for more complex computing.”

    Capturing electrons

    Harnessing information based on the interactions of light and electrons is easier said than done. Some of the world’s leading technology companies are trying to build massive quantum computers that rely on materials super-cooled to near absolute zero, the theoretical temperature at which atoms would cease to move.

    In her own studies of nearly 20 years, Vuckovic has focused on one aspect of the challenge: creating new types of quantum computer chips that would become the building blocks of future systems.

    “To fully realize the promise of quantum computing we will have to develop technologies that can operate in normal environments,” she said. “The materials we are exploring bring us closer toward finding tomorrow’s quantum processor.”

    The challenge for Vuckovic’s team is developing materials that can trap a single, isolated electron. Working with collaborators worldwide, they have recently tested three different approaches to the problem, one of which can operate at room temperature – a critical step if quantum computing is going to become a practical tool.

    In all three cases the group started with semiconductor crystals, material with a regular atomic lattice like the girders of a skyscraper. By slightly altering this lattice, they sought to create a structure in which the atomic forces exerted by the material could confine a spinning electron.

    “We are trying to develop the basic working unit of a quantum chip, the equivalent of the transistor on a silicon chip,” Vuckovic said.

    Quantum dots

    One way to create this laser-electron interaction chamber is through a structure known as a quantum dot. Physically, the quantum dot is a small amount of indium arsenide inside a crystal of gallium arsenide. The atomic properties of the two materials are known to trap a spinning electron.

    In a recent paper in Nature Physics, Kevin Fischer, a graduate student in the Vuckovic lab, describes how the laser-electron processes can be exploited within such a quantum dot to control the input and output of light. By sending more laser power to the quantum dot, the researchers could force it to emit exactly two photons rather than one. They say the quantum dot has practical advantages over other leading quantum computing platforms but still requires cryogenic cooling, so it may not be useful for general-purpose computing. However, it could have applications in creating tamper-proof communications networks.

    Color centers

    In two other papers Vuckovic took a different approach to electron capture, by modifying a single crystal to trap light in what is called a color center.

    In a recent paper published in NanoLetters, her team focused on color centers in diamond. In nature the crystalline lattice of a diamond consists of carbon atoms. Jingyuan Linda Zhang, a graduate student in Vuckovic’s lab, described how a 16-member research team replaced some of those carbon atoms with silicon atoms. This one alteration created color centers that effectively trapped spinning electrons in the diamond lattice.

    But like the quantum dot, most diamond color center experiments require cryogenic cooling. Though that is an improvement over other approaches that required even more elaborate cooling, Vuckovic wanted to do better.

    So she worked with another global team to experiment with a third material, silicon carbide. Commonly known as carborundum, silicon carbide is a hard, transparent crystal used to make clutch plates, brake pads and bulletproof vests. Prior research had shown that silicon carbide could be modified to create color centers at room temperature. But this potential had not yet been made efficient enough to yield a quantum chip.

    Vuckovic’s team knocked certain silicon atoms out of the silicon carbide lattice in a way that created highly efficient color centers. They also fabricated nanowire structures around the color centers to improve the extraction of photons. Radulaski was the first author on that experiment, which is described in another NanoLetters paper. She said the net results – an efficient color center, operating at room temperature, in a material familiar to industry – were huge pluses.

    “We think we’ve demonstrated a practical approach to making a quantum chip,” Radulaski said.

    But the field is still in its early days and electron tapping is no simple feat. Even the researchers aren’t sure which method or methods will win out.

    “We don’t know yet which approach is best, so we continue to experiment,” Vuckovic said.

    The diamond research team included Stanford faculty members Zhi-Xun Shen, the Paul Pigott Professor in Physical Sciences, professor of photon science, of physics and of applied physics, and a senior fellow at the Precourt Institute for Energy; Nicholas Melosh, an associate professor of materials science and engineering and of photon science; and Steven Chu, the William R. Kenan Jr. Professor, professor of physics and of molecular and cellular physiology, and member of Stanford Bio-X and the Stanford Neurosciences Institute.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
  • richardmitnick 9:19 am on April 10, 2017 Permalink | Reply
    Tags: , , , Nanoporous materials, , , Stanford, Stanford scientist’s new approach may accelerate design of high-power batteries, Storing electricity, Supercapacitors   

    From Stanford: “Stanford scientist’s new approach may accelerate design of high-power batteries” 

    Stanford University Name
    Stanford University

    April 6, 2017
    Danielle Torrent Tucker

    1
    Electric vehicles plug in to charging stations. New research may accelerate discovery of materials used in electrical storage devices, such as car batteries. (Image credit: Shutterstock)

    In work published this week in Applied Physics Letters, the researchers describe a mathematical model for designing new materials for storing electricity. The model could be a huge benefit to chemists and materials scientists, who traditionally rely on trial and error to create new materials for batteries and capacitors. Advancing new materials for energy storage is an important step toward reducing carbon emissions in the transportation and electricity sectors.

    “The potential here is that you could build batteries that last much longer and make them much smaller,” said study co-author Daniel Tartakovsky, a professor in the School of Earth, Energy & Environmental Sciences. “If you could engineer a material with a far superior storage capacity than what we have today, then you could dramatically improve the performance of batteries.”

    Lowering a barrier

    One of the primary obstacles to transitioning from fossil fuels to renewables is the ability to store energy for later use, such as during hours when the sun is not shining in the case of solar power. Demand for cheap, efficient storage has increased as more companies turn to renewable energy sources, which offer significant public health benefits.

    Tartakovsky hopes the new materials developed through this model will improve supercapacitors, a type of next-generation energy storage that could replace rechargeable batteries in high-tech devices like cellphones and electric vehicles. Supercapacitors combine the best of what is currently available for energy storage – batteries, which hold a lot of energy but charge slowly, and capacitors, which charge quickly but hold little energy. The materials must be able to withstand both high power and high energy to avoid breaking, exploding or catching fire.

    “Current batteries and other storage devices are a major bottleneck for transition to clean energy,” Tartakovsky said. “There are many people working on this, but this is a new approach to looking at the problem.”

    The types of materials widely used to develop energy storage, known as nanoporous materials, look solid to the human eye but contain microscopic holes that give them unique properties. Developing new, possibly better nanoporous materials has, until now, been a matter of trial and error – arranging minuscule grains of silica of different sizes in a mold, filling the mold with a solid substance and then dissolving the grains to create a material containing many small holes. The method requires extensive planning, labor, experimentation and modifications, without guaranteeing the end result will be the best possible option.

    “We developed a model that would allow materials chemists to know what to expect in terms of performance if the grains are arranged in a certain way, without going through these experiments,” Tartakovsky said. “This framework also shows that if you arrange your grains like the model suggests, then you will get the maximum performance.”

    Beyond energy

    Energy is just one industry that makes use of nanoporous materials, and Tartakovsky said he hopes this model will be applicable in other areas, as well.

    “This particular application is for electrical storage, but you could also use it for desalination, or any membrane purification,” he said. “The framework allows you to handle different chemistry, so you could apply it to any porous materials that you design.”

    Tartakovsky’s mathematical modeling research spans neuroscience, urban development, medicine and more. As an Earth scientist and professor of energy resources engineering, he is an expert in the flow and transport of porous media, knowledge that is often underutilized across disciplines, he said. Tartakovsky’s interest in optimizing battery design stemmed from collaboration with a materials engineering team at the University of Nagasaki in Japan.

    “This Japanese collaborator of mine had never thought of talking to hydrologists,” Tartakovsky said. “It’s not obvious unless you do equations – if you do equations, then you understand that these are similar problems.”

    The lead author of the study, “Optimal design of nanoporous materials for electrochemical devices,” is Xuan Zhang, Tartakovsky’s former PhD student at the University of California, San Diego. The research was supported by the Defense Advanced Research Projects Agency and the National Science Foundation.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
  • richardmitnick 9:13 am on April 6, 2017 Permalink | Reply
    Tags: , Stanford, Stanford sociologists encourage researchers to study human behavior with help of existing online communities big data   

    From Stanford: “Stanford sociologists encourage researchers to study human behavior with help of existing online communities, big data” 

    Stanford University Name
    Stanford University

    April 4, 2017
    Alex Shashkevich

    1
    A new paper urges sociologists and social psychologists to focus on developing online research studies with the help of big data to advance theories of social interaction and structure. (Image credit: pixelfit / Getty Images)

    The internet dominates our world and each one of us is leaving a larger digital footprint as more time passes. Those footprints are ripe for studying, experts say.

    In a recently published paper [Social Psychology Quarterly], a group of Stanford sociology experts encourage other sociologists and social psychologists to focus on developing online research studies with the help of big data in order to advance the theories of social interaction and structure.

    Companies have long used information they gather about their online customers to get insights into performance of their products, a process called A/B testing. Researchers in other fields, such as computer science, have also been taking advantage of the growing amount of data.

    But the standard for many experiments on social interactions remains limited to face-to-face laboratory studies, said Paolo Parigi, a lead author of the study, titled “Online Field Experiments: Studying Social Interactions in Context.”

    Parigi, along with co-authors Karen Cook, a professor of sociology, and Jessica Santana, a graduate student in sociology, are urging more sociology researchers to take advantage of the internet.

    “What I think is exciting is that we now have data on interactions to a level of precision that was unthinkable 20 years ago,” said Parigi, who is also an adjunct professor in the Department of Civil and Environmental Engineering.

    Online field experiments

    In the new study, the researchers make a case for “online field experiments” that could be embedded within the structure of existing communities on the internet.

    The researchers differentiate online field experiments from online lab experiments, which create a controlled online situation instead of using preexisting environments that have engaged participants.

    “The internet is not just another mechanism for recruiting more subjects,” Parigi said. “There is now space for what we call computational social sciences that lies at the intersection of sociology, psychology, computer science and other technical sciences, through which we can try to understand human behavior as it is shaped and illuminated by online platforms.”

    As part of this type of experiment, researchers would utilize online platforms to take advantage of big data and predictive algorithms. Recruiting and retaining participants for such field studies is therefore more challenging and time-consuming because of the need for a close partnership with the platforms.

    But online field experiments allow researchers to gain an enhanced look at certain human behaviors that cannot be replicated in a laboratory environment, the researchers said.

    For example, theories about how and why people trust each other can be better examined in the online environments, the researchers said, because the context of different complex social relationships is recorded. In laboratory experiments, researchers can only isolate the type of trust that occurs between strangers, which is called “thin” trust.

    Most recently, Cook and Parigi have used the field experiment design to research the development of trust in online sharing communities, such as Airbnb, a home and room rental service. The results of the study are scheduled to be published later this year. More information about that experiment is available at stanfordexchange.org.

    “It’s a new social world out there,” Cook said, “and it keeps expanding.”

    Ethics of studying internet behavior

    Using big data does come with a greater need for ethical responsibility. In order for the online studies of social interactions to be as accurate as possible, researchers require access to private information for their participants.

    One solution that protects participants’ privacy is linking their information, such as names or email addresses, to unique identifiers, which could be a set of letters or numbers assigned to each research subject. The administrators of the platform would then provide those identifiers to researchers without compromising privacy.

    It’s also important to make sure researchers acquire the permission of the online platforms’ participants. Transparency is key in those situations, Cook said.

    The research was funded by the National Science Foundation.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
  • richardmitnick 7:22 am on March 29, 2017 Permalink | Reply
    Tags: , , , Stanford, Stanford Extreme Environment Microsystems Laboratory   

    From Stanford: “New nano devices could withstand extreme environments in space and on earth” 

    Stanford University Name
    Stanford University

    March 28, 2017
    Ula Chrobak

    1
    Professor Debbie Senesky, left, works with graduate student Caitlin Chapin on electronics that can resist extreme environments. (Image credit: L.A. Cicero)

    Behind its thick swirling clouds, Venus is hiding a hot surface pelted with sulfuric acid rains. At 480 degrees C, the planet’s atmosphere would fry any of today’s electronics, posing a challenge to scientists hoping to study this extreme environment.

    Researchers at the Stanford Extreme Environment Microsystems Laboratory, or the XLab, are on a mission to conquer these conditions. By developing heat-, corrosion- and radiation-resistant electronics, they hope to move research into extreme places in the universe – including here on Earth. And it all starts with tiny, nano-scale slices of material.

    “I think it’s important to understand and gain new insight through probing these unique environments,” said Debbie Senesky, assistant professor of aeronautics and astronautics and principal investigator at the XLab.

    Senesky hopes that by studying Venus we can better understand our own world. While it’s hard to imagine that hot and corrosive Venus ever looked like Earth, scientists think that it used to be much cooler. Billions of years ago, a runaway greenhouse effect may have caused the planet to absorb far more heat than it could reflect, creating today’s scorching conditions. Understanding how Venus got so hot can help us learn about our atmosphere.

    “If we can understand the history of Venus, maybe we can understand and positively impact the future evolution of our own habitat,” said Senesky.

    What’s more, devices that can withstand the rigors of space travel could also monitor equally challenging conditions here on earth, such as in our cars.

    Scorching heat

    One hurdle to studying extreme environments is the heat. Silicon-based semiconductors, which power our smartphones and laptops, stop working at about 300 degrees C. As they heat up, the metal parts begin to melt into neighboring semiconductor and don’t move electricity as efficiently.

    Ateeq Suria, graduate student in mechanical engineering, is one of the people at the XLab working to overcome this temperature barrier. To do that, he hopped into his bunny suit — overall lab apparel that prevents contamination — and made use of ultra-clean work spaces to create an atoms-thick, heat-resistant layer that can coat devices and allow them to work at up to 600 degrees C in air [sorry, no image].

    “The diameter of human hair is about 70 micrometers,” said Suria. “These coatings are about a hundredth of that width.”

    Suria and others at the XLab are working to improve these nano-devices, testing materials at temperatures of up to 900 C degrees. For space electronics, it’s a key step in understanding how they survive for long periods of time. Although a device might not be exposed to such temperature extremes in space, the test conditions rapidly age materials, indicating how long they could last.

    The team at XLab tests materials and nano-devices they create either in-house in high-temperature probe stations or in a Venus simulator at the NASA Glenn Research Center in Cleveland, Ohio. That simulator mimics the pressure, chemistry and temperature of Venus. To mirror the effects of space radiation, they also test materials at Los Alamos National Laboratory and at NASA Ames Research Center.

    Radiation damage

    More than just surviving on Venus, getting there is important, too. Objects in space are pounded by a flurry of gamma and proton radiation that knock atoms around and degrade materials. Preliminary work at the XLab demonstrates that sensors they’ve developed could survive up to 50 years of radiation bombardment while in Earth’s orbit.

    Senesky said that if their fabrication process for nano-scale materials proves effective it could get incorporated into technologies being launched into space.

    “I’m super excited about the possibility of NASA adopting our technology in the design of their probes and landers,” said Senesky.

    Hot electronics at home

    While space is an exciting frontier, Suria said that interest in understanding car engines initially fueled this research. Inside an engine, temperatures reach up to 1000 degrees C, and the outer surface of a piston is 600 degrees C. Current technology to monitor and optimize engine performance can’t handle this heat, introducing error because measuring devices have to be placed far away from the pistons.

    Electronics designed to survive the intense conditions of space could be placed next to the engine’s pistons to directly monitor performance and improve efficiency.

    “You just put the sensor right in the engine and get much better information out,” said Suria.

    Other fiery, high pressure earth-bound environments that would benefit from these robust electronics include oil and gas wellbores, geothermal vents, aircraft engines, gas turbines and hypersonic structures.

    Media Contacts

    Amy Adams, Stanford News Service; (650) 796-3695, amyadams@stanford.edu

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
  • richardmitnick 10:31 am on March 21, 2017 Permalink | Reply
    Tags: , , Heavy California rains par for the course for climate change, Stanford   

    From Stanford: “Heavy California rains par for the course for climate change” 

    Stanford University Name
    Stanford University

    March 21, 2017
    Ker Than

    Here’s a question that Stanford climatologist Noah Diffenbaugh gets asked a lot lately: “Why did California receive so much rain lately if we’re supposed to be in the middle of a record-setting drought?”

    When answering, he will often refer the questioner to a Discover magazine story published in 1988, when Diffenbaugh was still in middle school.

    The article, written by veteran science writer Andrew Revkin, detailed how a persistent rise in global temperatures would affect California’s water system. It predicted that as California warmed, more precipitation would fall as rain rather than snow, and more of the snow that did fall would melt earlier in the season. This in turn would cause reservoirs to fill up earlier, increasing the odds of both winter flooding and summer droughts.

    “It is amazing how the state of knowledge in 1988 about how climate change would affect California’s water system has played out in reality over the last three decades,” said Diffenbaugh, a professor of Earth System Science at Stanford’s School of Earth, Energy & Environmental Sciences.

    Diffenbaugh, who specializes in using historical observations and mathematical models to study how climate change affects water resources, agriculture, and human health, sees no contradiction in California experiencing one of its wettest years on record right on the heels of a record-setting extended drought.

    “When you look back at the historical record of climate in California, you see this pattern of intense drought punctuated by wet conditions, which can lead to a lot of runoff,” said Diffenbaugh, who is also the Kimmelman Family senior fellow at the Stanford Woods Institute for the Environment. “This is exactly what state-of-the-art climate models predicted should have happened, and what those models project to intensify in the future as global warming continues.”

    That intensifying cycle poses risks for many Western states in the decades ahead. “In California and throughout the Western U.S., we have a water system that was designed and built more than 50 years ago,” Diffenbaugh said. “We are now in a very different climate, one where we’re likely to experience more frequent occurrences of hot, dry conditions punctuated by wet conditions. That’s not the climate for which our water system was designed and built.”

    Viewed through this lens, the recent disastrous flooding at Oroville Dam and the flooding in parts of San Jose as a result of the winter rains could foreshadow what’s to come. “What we’ve seen in Oroville and in San Jose is that not only is our infrastructure old, and not only has maintenance not been a priority, but we’re in a climate where we’re much more likely to experience these kinds of extreme conditions than we were 50 or 100 years ago,” Diffenbaugh said.

    It’s not too late, however, for California to catch up or even leap ahead in its preparations for a changing climate, scientists say. Diffenbaugh argues that there are plenty of “win-win” investment opportunities that will not only make Americans safer and more secure in the present, but also prepare for the future.

    California could, for example, boost its groundwater storage capacity, which research at Stanford shows to be a very cost-effective method for increasing water supply. This would have the dual benefit of siphoning off reservoirs at risk of flooding and storing water for future dry spells. It would also help jurisdictions reach the groundwater sustainability targets mandated by the state’s Sustainable Groundwater Management Act.

    Diffenbaugh also sees opportunities to increase water recycling throughout the state. “Our technology has advanced to a point now where we can create clean, safe water from waste water,” he said. “In fact, work here at Stanford shows that this can now be done using the organic matter in the waste water to provide an energy benefit.”

    Diffenbaugh stresses that reaping the full benefits of these investments requires a recognition that the climate of California and the West has changed, and will continue to change in the future as long as global warming continues.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
  • richardmitnick 9:10 am on March 13, 2017 Permalink | Reply
    Tags: , , , Stanford, Stanford engineers use soup additive to create a stretchable plastic electrode   

    From Stanford: “So long stiffness: Stanford engineers use soup additive to create a stretchable plastic electrode” 

    Stanford University Name
    Stanford University

    March 10, 2017
    Shara Tonn

    .
    Courtesy Bao Research Group
    Access mp4 video here .
    A robotic test instrument stretches over a curved surface a nearly transparent, flexible electrode based on a special plastic developed in the lab of Stanford chemical engineer. Zhenan Bao.

    Chemical engineer Zhenan Bao is trying to change that. For more than a decade, her lab has been working to make electronics soft and flexible so that they feel and operate almost like a second skin. Along the way, the team has started to focus on making brittle plastics that can conduct electricity more elastic.

    Now in Science Advances, Bao’s team describes how they took one such brittle plastic and modified it chemically to make it as bendable as a rubber band, while slightly enhancing its electrical conductivity. The result is a soft, flexible electrode that is compatible with our supple and sensitive nerves.

    “This flexible electrode opens up many new, exciting possibilities down the road for brain interfaces and other implantable electronics,” said Bao, a professor of chemical engineering. “Here, we have a new material with uncompromised electrical performance and high stretchability.”

    The material is still a laboratory prototype, but the team hopes to develop it as part of their long-term focus on creating flexible materials that interface with the human body.

    1
    A printed electrode pattern of the new polymer being stretched to several times of its original length (top), and a transparent, highly stretchy “electronic skin” patch forming an intimate interface with the human skin to potentially measure various biomarkers (bottom). (Image credit: Bao Lab)

    Flexible interface

    Electrodes are fundamental to electronics. Conducting electricity, these wires carry back and forth signals that allow different components in a device to work together. In our brains, special thread-like fibers called axons play a similar role, transmitting electric impulses between neurons. Bao’s stretchable plastic is designed to make a more seamless connection between the stiff world of electronics and the flexible organic electrodes in our bodies.

    “One thing about the human brain that a lot of people don’t know is that it changes volume throughout the day,” says postdoctoral research fellow Yue Wang, the first author on the paper. “It swells and deswells.” The current generation of electronic implants can’t stretch and contract with the brain and make it complicated to maintain a good connection.

    “If we have an electrode with a similar softness as the brain, it will form a better interface,” said Wang.

    To create this flexible electrode, the researchers began with a plastic that had two essential qualities: high conductivity and biocompatibility, meaning that it could be safely brought into contact with the human body. But this plastic had a shortcoming: It was very brittle. Stretching it even 5 percent would break it.

    Tightly wound and brittle

    As Bao and her team sought to preserve conductivity while adding flexibility, they worked with scientists at the SLAC National Accelerator Laboratory to use a special type of X-ray to study this material at the molecular level. All plastics are polymers; that is, chains of molecules strung together like beads. The plastic in this experiment was actually made up of two different polymers that were tightly wound together. One was the electrical conductor. The other polymer was essential to the process of making the plastic. When these two polymers combined they created a plastic that was like a string of brittle, sphere-like structures. It was conductive, but not flexible.

    The researchers hypothesized that if they could find the right molecular additive to separate these two tightly wound polymers, they could prevent this crystallization and give the plastic more stretch. But they had to be careful – adding material to a conductor usually weakens its ability to transmit electrical signals.

    After testing more than 20 different molecular additives, they finally found one that did the trick. It was a molecule similar to the sort of additives used to thicken soups in industrial kitchens. This additive transformed the plastic’s chunky and brittle molecular structure into a fishnet pattern with holes in the strands to allow the material to stretch and deform. When they tested their new material’s elasticity, they were delighted to find that it became slightly more conductive when stretched to twice its original length. The plastic remained very conductive even when stretched 800 percent its original length.

    “We thought that if we add insulating material, we would get really poor conductivity, especially when we added so much,” said Bao. But thanks to their precise understanding of how to tune the molecular assembly, the researchers got the best of both worlds: the highest possible conductivity for the plastic while at the same transforming it into a very robust and stretchy substance.

    “By understanding the interaction at the molecular level, we can develop electronics that are soft and stretchy like skin, while remaining conductive,” Wang says.

    Other authors include postdoctoral fellows Chenxin Zhu, Francisco Molina-Lopez, Franziska Lissel and Jia Liu; graduate students Shucheng Chen and Noelle I. Rabiah; Hongping Yan and Michael F. Toney, staff scientists at SLAC National Accelerator Laboratory; Christian Linder, an assistant professor of civil and environmental engineering who is also a member of Stanford Bio-X and of the Stanford Neurosciences Institute; Boris Murmann, a professor of electrical engineering and a member of the Stanford Neurosciences Institute; Lihua Jin, now an assistant professor of mechanical and aerospace engineering at the University of California, Los Angeles; Zheng Chen, now an assistant professor of nano engineering at the University of California, San Diego; and colleagues from the Materials Science Institute of Barcelona, Spain, and Samsung Advanced Institute of Technology.

    This work was funded by Samsung Electronics and the Air Force Office of Science Research.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
  • richardmitnick 9:45 am on March 6, 2017 Permalink | Reply
    Tags: , , , Fault Slip Potential (FSP) tool, Stanford, Stanford scientists develop new tool to reduce risk of triggering manmade earthquakes   

    From Stanford: “Stanford scientists develop new tool to reduce risk of triggering manmade earthquakes” 

    Stanford University Name
    Stanford University

    February 27, 2017
    Ker Than

    A new software tool can help reduce the risk of triggering manmade earthquakes by calculating the probability that oil and gas production activities will trigger slip in nearby faults.

    A new, freely available software tool developed by Stanford scientists will enable energy companies and regulatory agencies to calculate the probability of triggering manmade earthquakes from wastewater injection and other activities associated with oil and gas production.

    “Faults are everywhere in the Earth’s crust, so you can’t avoid them. Fortunately, the majority of them are not active and pose no hazard to the public. The trick is to identify which faults are likely to be problematic, and that’s what our tool does,” said Mark Zoback, professor of geophysics at Stanford’s School of Earth, Energy & Environmental Sciences. Zoback developed the approach with his graduate student Rall Walsh.

    1
    Four wells increase pressure in nearby faults. If a fault is stable, it is green. If a fault is pushed toward slipping, it is colored yellow or red depending on how sensitive it is, how much pressure is put on it, operational uncertainties and the tolerance of the operator. (Image credit: Courtesy Rall Walsh)

    Oil and gas operations can generate significant quantities of “produced water” – brackish water that needs to be disposed of through deep injection to protect drinking water. Energy companies also dispose of water that flows back after hydraulic fracturing in the same way. This process can increase pore pressure – the pressure of groundwater trapped within the tiny spaces inside rocks in the subsurface – which, in turn, increases the pressure on nearby faults, causing them to slip and release seismic energy in the form of earthquakes.

    The Fault Slip Potential (FSP) tool that Walsh and Zoback developed uses three key pieces of information to help determine the probability of a fault being pushed to slip. The first is how much wastewater injection will increase pore pressure at a site. The second is knowledge of the stresses acting in the earth. This information is obtained from monitoring earthquakes or already drilled wells in the area. The final piece of information is knowledge of pre-existing faults in the area. Such information typically comes from data collected by oil and gas companies as they explore for new resources.

    Testing the tool

    Zoback and Walsh have started testing their FSP tool in Oklahoma, which has experienced a sharp rise in the number of earthquakes since 2009, due largely to wastewater injection operations. Their analysis suggests that some wastewater injection wells in Oklahoma were unwittingly placed near stressed faults already primed to slip.

    “Our tool provides a quantitative probabilistic approach for identifying at-risk faults so that they can be avoided,” Walsh said. “Our aim is to make using this tool the first thing that’s done before an injection well is drilled.”

    Regulators could also use the tool to identify areas where proposed injection activities could prove problematic so that enhanced monitoring efforts can be implemented.

    The FSP software program will be made freely available for download at SCITS.stanford.edu on March 2.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
  • richardmitnick 2:33 pm on February 24, 2017 Permalink | Reply
    Tags: Electrochemistry, Nuclear energy may come from the sea, , Stanford   

    From physicsworld.com: “Nuclear energy may come from the sea” 

    physicsworld
    physicsworld.com.com

    Feb 23, 2017
    Sarah Tesh

    1
    Seawater supplies: carbon–polymer electrodes can extract the sea’s uranium. No image credit.

    Uranium has been extracted from seawater using electrochemical methods. A team at Stanford University in California has removed the radioactive material from seawater by using a polymer–carbon electrode and applying a pulsed electric field.

    Uranium is a key component of nuclear fuel. On land, there are about 7.6 million tonnes of identified uranium deposits around the world. This ore is mined, processed and used for nuclear energy. In contrast, there is 4.5 billion tonnes of the heavy metal in seawater as a result of the natural weathering of undersea deposits. If uranium could be extracted from seawater, it could be used to fuel nuclear power stations for hundreds of years. As well as taking advantage of an untapped energy resource, seawater extraction would also avoid the negative environmental impacts of mining processes.

    Tiny concentrations

    Scientists are therefore working on methods to remove and recover uranium from the sea. However, the oceans are vast, and the concentration of uranium is only 3 μg/l, making the development of practical extraction techniques a significant challenge. “Concentrations are tiny, on the order of a single grain of salt dissolved in a litre of water,” says team member Yi Cui. Furthermore, the high salt content of seawater limits traditional extraction methods.

    In water, uranium typically exists as a positively charged uranium oxide, or uranyl, ion (UO2+2). Most methods for extraction involve an adsorbent material where the uranyl ion attaches to the surface but does not chemically react with it. The current leading materials are amidoxime polymers. The performance of adsorbents is, however, limited by their surface area. As there are only a certain number of adsorption sites, and the concentration of uranium is extremely low compared with other positive ions like sodium and calcium, the uranium-adsorbent interaction is slow and sites are quickly taken up by other ions. Furthermore, the adsorbed ions still carry a positive charge and therefore repel other uranyl ions away from the material.

    Electrochemical answer

    Cui and his team turned to electrochemistry and deposition for a solution to this problem. In a basic electrochemical cell, there is an electrolyte solution and two submerged electrodes connected to a power supply. By providing the electrodes with opposite charges, an electrical current is driven through the liquid, forcing positive ions to the negative electrode, and electrons and negative ions to the positive electrode. At the negative electrode, called the anode, the positive ions are reduced, meaning they gain electrons. For most metallic ions, this causes the precipitation of the solid metal and is often deposited on the electrode surface.

    In their electrochemical cell, the team used an anode made of carbon coated with amidoxime polymer, and an inert partner electrode. The electrolyte was seawater, which for some tests contained added uranium. By applying a short pulse of current, the positive uranyl, calcium and sodium ions were drawn to the carbon–polymer electrode. The amidoxime film encouraged the uranyl ions to be preferentially adsorbed over the other ions. The adsorbed uranyl ions were reduced to solid, charge-neutral uranium oxide (UO2) and once the current was switched off, the unwanted ions returned to the bulk of the electrolyte. By repeating the pulsed process, the researchers were able to build up the deposited uranium oxide on the electrode surface, no matter what the initial concentration of the solution was.

    Removal and recovery

    In tests comparing the new method to plain adsorptive amidoxime, the electrochemical cell significantly outperformed the more traditional material. Within the time it took the amidoxime surface to become saturated, the carbon–polymer electrode had extracted nine times the amount of uranium. Furthermore, the team demonstrated that 96.6% of the metal could be recovered from the surface by applying a reverse current and an acidic electrolyte. For an adsorption material, only 76.0% can be recovered with acid elution.

    Despite the researchers’ success, there is a long way to go before large-scale application. To be commercially viable, the benefits of the extracted uranium must outweigh the cost and power demands of the process. Furthermore, the process needs to be streamlined to treat large quantities of water. “We have a lot of work to do still but these are big steps toward practicality,” Cui concludes.

    The extraction method is described in Nature Energy.

    See the full article here .

    Please help promote STEM in your local schools.

    STEM Icon

    Stem Education Coalition

    PhysicsWorld is a publication of the Institute of Physics. The Institute of Physics is a leading scientific society. We are a charitable organisation with a worldwide membership of more than 50,000, working together to advance physics education, research and application.

    We engage with policymakers and the general public to develop awareness and understanding of the value of physics and, through IOP Publishing, we are world leaders in professional scientific communications.
    IOP Institute of Physics

     
  • richardmitnick 2:23 pm on February 17, 2017 Permalink | Reply
    Tags: 10 global challenges, , , Stanford, Stanford Catalyst for Collaborative Solutions   

    From Stanford: “Stanford Catalyst for Collaborative Solutions focuses on 10 global challenges” 

    Stanford University Name
    Stanford University

    February 16, 2017
    Michael Freedman

    The Stanford Catalyst for Collaborative Solutions plans to award $12 million to four interdisciplinary teams, each committed to working in collaboration on projects that will make headway on one of 10 global challenges.

    1
    Senior research engineer Jennifer Hicks, right, in discussion with Ilenia Battiato, assistant professor of energy resources engineering, at a workshop in the d.school designed to help faculty meet one another and start to identify common research interests as part of the Stanford Catalyst for Collaborative Solutions. (Image credit: L.A. Cicero)

    When Stanford Engineering conducted its school-wide strategic planning program two years ago, one of the main outcomes was the identification of 10 major global challenges on which it would like to have a significant impact.

    10 Grand Challenges

    How can we ensure that humanity flourishes in the cities of the future?

    The world’s urban population is projected to increase from 3.9 billion to 6.3 billion by 2050, making up 66 percent of the entire global population. Today’s urban areas provide a disparate quality of life and quality of services to their populations, and they inflict a mostly adverse impact on our natural environment. Our challenge is to design and re-engineer our urban environments for the future to provide modern services in ways that allow humans and nature to flourish.

    How can we engineer matter from atomic to macro scales?

    The history of human civilization has always been associated with new materials. However, materials are necessary but not sufficient: They need to be affordably and safely manufactured at scale and integrated into engineered devices and systems to create value for society. We seek to engineer matter – at all scales – for affordable and sustainable energy conversion, storage and use; new ways to improve human health and quality of life; and new approaches to creating affordable, clean and drinkable water.

    How can we use autonomy to enable future technologies?

    In an era of continued industrialization, urbanization and globalization, much higher levels of autonomy in a variety of engineered systems are emerging. But the scientific, technological, legal and ethical knowledge required is not yet available to infuse higher levels of autonomy into many of these systems. Moreover, the societal implications of much higher levels of systems autonomy in our daily lives – such as the potential for significant loss in employment – are not well understood. To address such challenges and achieve effective solutions, it will be necessary to integrate engineering disciplines with expertise throughout the university.

    How can we use our strength in computation and data analysis to drive innovation?

    In recent decades, computation and data analysis (CDA) have become critically important in nearly every field of science and engineering. CDA is also increasingly widespread in medicine, the social sciences, the humanities and beyond. Our challenge is to harness domain expertise throughout the university, especially unique access to large data sets and high-performance computing, to provide opportunities for CDA-based innovation that cross traditional boundaries.

    How do we achieve effective yet affordable healthcare everywhere?

    Health care concerns pose tremendous challenges to humanity, but evolving technological trends present tremendous opportunities to address these challenges. New products and processes are emerging that will change how we deliver health care, and remote monitoring and telemedicine are creating a sea change in the role of the physician. Leveraging ongoing transformations in healthcare data, personalized medicine, and preventative care to provide low-cost, high-quality health care globally will require a new level of interdisciplinary collaboration.

    How do we create synergy between humans and engineered systems?

    Engineering exists to serve humanity, and as advances in information, communication and sensor technologies permeate our lives, the interface between us and our technology is becoming both richer and more complex. But how well do these technologies understand what we want? Our challenge is to manage the complex interface needed for technology to discover, understand and adapt to individual, social and cultural values over time.

    How do we secure everything?

    For all the good the digital revolution is producing, it also is bringing new threats and increasingly sophisticated attacks on everything from personal finances to national elections. We currently lack a deep enough understanding of how to engineer such systems securely, and yet many physical systems, once deployed, will remain in place for decades or longer. We must therefore figure out today how to ensure security into the future and how to rapidly deploy those solutions once they are developed.

    How do we sustain the exponential increase in information technology performance?

    Exponential advances in the performance, integration density and energy efficiency of computing systems fueled the information technology (IT) revolution of the 20th century. However, predicting the fate of IT systems from our current trajectory raises more questions than answers. For example, there is no clear roadmap for how we will manage the exponential growth of such data without consuming excessive amounts of power. Solving challenges such as this will require coordinated breakthroughs from materials to the underlying mathematics of computing.

    How do we provide humanity with the affordable energy it needs and stabilize the climate?

    One of the greatest challenges humanity will face this century is providing the world’s growing population and economy with the clean and affordable energy it needs. In a business-as-usual scenario, there are no solutions to provide this energy while reducing greenhouse emissions so that the global climate can be stabilized. Our challenge is to combine technology, financing, market structure, business models, policies and studies of consumer behavior to accelerate deployment of carbon-free energy generation while dramatically reducing consumption of electricity and transportation fuels.

    How good can we get at engineering living matter?

    A global research community has formed with the goal of making biology easy to engineer. We can now foresee achieving exponential improvements in our capacity to engineer living systems and more powerfully harness life’s intrinsic capacity for organizing atoms. Such capacities could be used to remake our civilization’s supply chains; open new frontiers in medicine; and enable the otherwise impossible, such as exploration on Mars. However, positive outcomes will require that ethical, political, and cultural implications of these new technologies are henceforth considered as an essential research activity alongside the science and engineering.

    But how? The issues highlighted were exceedingly complex, focusing on things like how to ensure humanity flourishes in the cities of the future and how to achieve effective yet affordable healthcare everywhere. Solving them would require not just ingenuity but the ability to bring together expertise from multiple disciplines and perspectives from Stanford, industry and the public sector.

    To help achieve this audacious goal, the school has now launched the Stanford Catalyst for Collaborative Solutions. To start, the initiative will provide up to $12 million to four teams, each of them committed to working in collaboration on projects that will make significant headway on one of the 10 grand challenges.

    This spring, Catalyst director John Dabiri and his team of advisors will identify and fund the first two projects, each receiving up to $3 million over three years, with two more teams to be identified for funding in early 2018.

    Leveraging expertise

    “This is an exciting opportunity to leverage Stanford’s expertise across all seven schools in collaborative pursuit of solutions to big challenges that are normally addressed piecemeal if at all,” said Dabiri, a professor of mechanical engineering and of civil and environmental engineering. “The Catalyst represents a bold investment by Stanford, and it has already proven to be a powerful convening force, bringing together faculty from nearly every discipline, most of whom are meeting for the first time.”

    The proposals, due March 17, will be evaluated in part on teams’ willingness to take risks and explore ideas beyond the bounds of traditional research, according to Dabiri, and to an equal measure on their plan to “initiate and sustain meaningful interdisciplinary collaborations within the School of Engineering, across the university and beyond.”

    Teams must include at least one member of the Stanford Engineering faculty as a member of the project leadership team. Beyond that, Dabiri said, teams should be composed of those best suited to working together to solve the problem rather than from any particular background. Teams are required in their proposals to address how every member of the team will interact with one another, and show how each individual is integral to the success of the project.

    2
    Jenny Suckale, assistant professor of geophysics, listens as law Professor Amalia Kessler shares during an exercise in the Catalyst seminar at the d.school. (Image credit: L.A. Cicero)

    To kickstart the initiative, Dabiri and his team recently held a series of workshops during which several dozen faculty members from throughout the university participated in a series of collaborative exercises to help faculty from different schools and departments meet one another and start to identify common research interests.

    “Communicating across disciplines is not always straightforward,” said d.school Executive Director Sarah Stein Greenberg, who led the workshops and serves on the Catalyst advisory board. “So we are engaging participants with a variety of tools to help foster unexpected connections and encourage new ideas to start to flow.”

    In one warm-up exercise, Stein Greenberg asked participants to share in small groups how they’re known in their fields and how they’d like to be known. The goal, she said, was to help participants accelerate the normal rate of getting to know one another and to have a forum to explore their own aspirations and motivations and expose themselves to potential collaborators.

    In another exercise, she asked participants to sketch out their disciplines to show the various intersections with other areas of expertise. In small-group discussions, participants explored how their individual disciplines combined, overlapped or stood apart from other fields. Participants began to see how the complex challenges of the world are most often solved in collaboration rather than in isolation.

    “The workshop was a great opportunity to meet fascinating people from other schools and departments across the university whom I would never encounter through the normal course of my research and teaching, given how specialized we all tend to be,” said law Professor Amalia Kessler.

    Meaningful collaboration, bold risks

    At the workshops, organizers asked participants to consider in small groups and bring their own expertise to bear on the issue of how humanity can flourish in the cities of the future. “It was very interesting to see that despite our disciplinary differences,” Kessler said, “colleagues specializing in civil engineering and risk management and I ended up agreeing that a core hindrance to meaningful change of any kind is deep-rooted, institutionalized forms of structural inequality.”

    4
    Doctoral candidate Chris Ford, Professor Larry Leifer and Assistant Professor Sindy Tang, all of the Department of Mechanical Engineering, work on one of the exercises in the Catalyst workshop. (Image credit: L.A. Cicero)

    Economist Garth Saloner, former dean of the Graduate School of Business, said that one important feature of the Catalyst initiative is that it will provide workshops, forums, conferences and dinners to facilitate the formation of cross-disciplinary teams that don’t already exist.

    “Many of the societal challenges that social scientists are interested in require a deep understanding of technology or have solutions that are in part implemented through technology. Enabling faculty in different schools who have different pieces of the puzzle to find one another will be a unique and core feature of the Catalyst model,” said Saloner, who serves on the Catalyst advisory board.

    Dabiri notes that the outcome of the projects will vary depending on the team. For some it may include development of a new technology; for others it may be the implementation of a policy mechanism. The key, he said, is that by providing funding that explicitly requires meaningful collaboration and encourages the kinds of bold risks that do not normally get funded, the Catalyst can be a model for high-impact and interdisciplinary research.

    An equally important outcome, he said, is that it will create a new network of faculty, staff and students working collaboratively to solve the world’s most urgent challenges.

    “Our primary goal at this stage is to encourage participation from all parts of the Stanford community through the program funding and other activities to come,” he said.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: