Tagged: Stanford University Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 3:02 pm on December 14, 2018 Permalink | Reply
    Tags: , , In the Ediacaran period complex organisms including soft-bodied animals up to a meter long sprang to life in deep ocean waters, , Stanford University   

    From Stanford University: “Stanford researchers unearth why deep oceans gave life to the first big, complex organisms” 

    Stanford University Name
    From Stanford University

    December 12, 2018
    Josie Garthwaite
    (650) 497-0947
    josieg@stanford.edu

    In the beginning, life was small.

    For billions of years, all life on Earth was microscopic, consisting mostly of single cells. Then suddenly, about 570 million years ago, complex organisms including animals with soft, sponge-like bodies up to a meter long sprang to life. And for 15 million years, life at this size and complexity existed only in deep water.

    1
    More than 570 million years ago, in the Ediacaran period, complex organisms including soft-bodied animals up to a meter long sprang to life in deep ocean waters. (Image credit: Peter Trusler)

    Scientists have long questioned why these organisms appeared when and where they did: in the deep ocean, where light and food are scarce, in a time when oxygen in Earth’s atmosphere was in particularly short supply. A new study from Stanford University, published Dec. 12 in the peer-reviewed Proceedings of the Royal Society B, suggests that the more stable temperatures of the ocean’s depths allowed the burgeoning life forms to make the best use of limited oxygen supplies.

    All of this matters in part because understanding the origins of these marine creatures from the Ediacaran period is about uncovering missing links in the evolution of life, and even our own species. “You can’t have intelligent life without complex life,” explained Tom Boag, lead author on the paper and a doctoral candidate in geological sciences at Stanford’s School of Earth, Energy & Environmental Sciences (Stanford Earth).

    The new research comes as part of a small but growing effort to apply knowledge of animal physiology to understand the fossil record in the context of a changing environment. The information could shed light on the kinds of organisms that will be able to survive in different environments in the future.

    “Bringing in this data from physiology, treating the organisms as living, breathing things and trying to explain how they can make it through a day or a reproductive cycle is not a way that most paleontologists and geochemists have generally approached these questions,” said Erik Sperling, senior author on the paper and an assistant professor of geological sciences.

    Goldilocks and temperature change

    Previously, scientists had theorized that animals have an optimum temperature at which they can thrive with the least amount of oxygen. According to the theory, oxygen requirements are higher at temperatures either colder or warmer than a happy medium. To test that theory in an animal reminiscent of those flourishing in the Ediacaran ocean depths, Boag measured the oxygen needs of sea anemones, whose gelatinous bodies and ability to breathe through the skin closely mimic the biology of fossils collected from the Ediacaran oceans.

    “We assumed that their ability to tolerate low oxygen would get worse as the temperatures increased. That had been observed in more complex animals like fish and lobsters and crabs,” Boag said. The scientists weren’t sure whether colder temperatures would also strain the animals’ tolerance. But indeed, the anemones needed more oxygen when temperatures in an experimental tank veered outside their comfort zone.

    Together, these factors made Boag and his colleagues suspect that, like the anemones, Ediacaran life would also require stable temperatures to make the most efficient use of the ocean’s limited oxygen supplies.

    Refuge at depth

    It would have been harder for Ediacaran animals to use the little oxygen present in cold, deep ocean waters than in warmer shallows because the gas diffuses into tissues more slowly in colder seawater. Animals in the cold have to expend a larger portion of their energy just to move oxygenated seawater through their bodies.

    2
    Shallow waters offered sunlight and food supplies, but the deeper waters where large, complex organisms first evolved provided a refuge from wild swings in temperature. (Image credit: Shutterstock)

    But what it lacked in useable oxygen, the deep Ediacaran ocean made up for with stability. In the shallows, the passing of the sun and seasons can deliver wild swings in temperature – as much as 10 degrees Celsius in the modern ocean, compared to seasonal variations of less than 1 degree Celsius at depths below one kilometer (.62 mile). “Temperatures change much more rapidly on a daily and annual basis in shallow water,” Sperling explained.

    In a world with low oxygen levels, animals unable to regulate their own body temperature couldn’t have withstood an environment that so regularly swung outside their Goldilocks temperature.

    The Stanford team, in collaboration with colleagues at Yale University, propose that the need for a haven from such change may have determined where larger animals could evolve. “The only place where temperatures were consistent was in the deep ocean,” Sperling said. In a world of limited oxygen, the newly evolving life needed to be as efficient as possible and that was only possible in the relatively stable depths. “That’s why animals appeared there,” he said.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stanford University campus. No image credit

    Stanford University

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

    Advertisements
     
  • richardmitnick 12:41 pm on December 12, 2018 Permalink | Reply
    Tags: Design Team called Flexible Resources, Long Range Planning, more diverse, more flexible teams, Notes From the Quad, Powering the most innovative research, Stanford University, Trend #1: Changes in federal funding put innovation at risk., Trend #2: To answer the key questions of our time, Trend #3: State-of-the-art resources for research are becoming more impactful, we need even larger, yet too complex and expensive for individual use.   

    From Stanford University – Notes From the Quad: “Shared resources to accelerate 21st century research” 

    Stanford University Name
    From Stanford University -Notes from the Quad

    Thoughts and observations from Stanford leaders

    December 11, 2018
    1
    Kam Moler
    Vice Provost and Dean of Research; Professor of Applied Physics and Physics

    The intellectual horizons that constitute the special province of a research university draw students and scholars with curious, roving, original, and courageous minds. Stanford’s ecosystem should give our entire research community an environment in which we can explore to the limits of our talents and imaginations and thereby contribute to the human quest for understanding and innovation.

    Long Range Planning (LRP) gives us the opportunity to design our ecosystem with modern and future research trends in mind. As we reach the midpoint of the LRP Design Phase, I’d like to share three observations about the changing nature of research and the ways in which LRP Design Teams will help us to adapt.

    Trend #1: Changes in federal funding put innovation at risk. The university will continue to make the case in Washington for the importance of federal funding, which is the irreplaceable mainstay of funding for research. Funding trends in the past year were encouraging, but we worry that over the long term a growing federal deficit and other important spending priorities could constrain the federal investment in research. The changing nature of funding makes it more difficult to conduct early-stage or risky research. Our principal investigators write compelling proposals and spend taxpayer dollars effectively, but principal investigators often find that proposals are more likely to be funded and renewed when they include preliminary data and propose work that is likely to produce at least some tangible value. We can seek alternative forms of funding, not to replace federal funding, but to explore transformational ideas that might create a new field of scholarship, redefine the boundaries between existing fields, or provide a pathway to new frontiers.

    Trend #2: To answer the key questions of our time, we need even larger, more diverse, more flexible teams. Modern research questions often transcend traditional disciplinary boundaries and require dynamic approaches to team formation. To develop sustainable farming practices, for example, we may need historians and data scientists to identify long-term trends, earth and environmental scientists to explain those trends, engineers to develop better sensors, policy experts to recommend best practices, and farmers to define “actionable information.” We can solve societal problems only with teams that vary in composition, size, scope, and duration.

    Trend #3: State-of-the-art resources for research are becoming more impactful, yet too complex and expensive for individual use. Researchers in science, engineering, medicine, the arts, and the humanities cannot afford to acquire every advanced tool or dataset for the exclusive use of their own research groups. We must think in terms of shared resources—those that not only drive our own research but that also establish a scientific “watering hole” where scholars of different types can congregate and collaborate. Think of the traditional library. Since the beginning of human scholarship, libraries have brought scholars together to benefit all who teach and learn. We can create modern communal resources for data collection, imaging, making, and modeling.

    Stanford’s Long Range Planning process is responding to all three of these trends.

    Powering the most innovative research

    The Design Team called Flexible Resources seeks to create nimble, flexible structures that allow Stanford researchers to pursue their best ideas wherever they lead, whenever they occur. We imagine fellowships that will allow graduate students to pursue the most exciting ideas without constraints. We imagine seed grants that will support faculty to conduct early-stage or risky research. We imagine workshops and seminars where researchers can engage with potential collaborators to identify opportunities and challenges. And we imagine internal awards to support interdisciplinary teams that are pioneering new areas of research.

    Three Design Teams called Imaging, Making, and Nano, and one Discovery Team called Research Computation and Data Services, are developing plans to create and enhance shared “platforms” such as shared resources for data, computation, imaging, and making. We imagine remarkable datasets that scholars can access in a secure computing environment. We imagine state-of-the-art tools for imaging material and biological systems from the nanoscale to astronomical scales. We imagine spaces where designers and creators can make everything from art to new biomaterials. These Design Teams will address not only the opportunities and possibilities for platforms but also their structure and governance: we want experts to retain local control and some degree of autonomy, but we also want to assure that all members of the research community enjoy easy access to these platforms, just as generations of students have enjoyed easy access to the library.

    Stanford’s long-range planning process and its Design Teams will help us to succeed in a changing research environment. They will enhance the depth and breadth of our research enterprise. They will help us to solve societal problems and to unlock scientific mysteries. Their effects will ripple out beyond our campus by training the best professors, industrialists, and non-profit leaders in all sectors of society that depend on our research ecosystem.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stanford University campus. No image credit

    Stanford University

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
  • richardmitnick 12:16 pm on December 12, 2018 Permalink | Reply
    Tags: , , , Stanford researchers uncover startling insights into how human-generated carbon dioxide could reshape oceans, Stanford University   

    From Stanford University: “Stanford researchers uncover startling insights into how human-generated carbon dioxide could reshape oceans” 

    Stanford University Name
    From Stanford University

    December 11, 2018
    Nicole Kravec

    Volcanic carbon dioxide vents off the coast of Italy are rapidly acidifying nearby waters. This natural laboratory provides a crystal ball-view into potential future marine biodiversity impacts around the world.

    Something peculiar is happening in the azure waters off the rocky cliffs of Ischia, Italy. There, streams of gas-filled volcanic bubbles rising up to the surface are radically changing life around them by making seawater acidic. Stanford researchers studying species living near these gassy vents have learned what it takes to survive in acidic waters, providing a glimpse of what future oceans might look like as they grow more acidic.

    1
    Volcanic carbon dioxide seeps from the ocean floor near Ischia, Italy. (Image credit: Pasquale Vassallo, Stazione Zoologica Anton Dohrn)

    Their findings, published December 11 in Nature Communications, suggest that ocean acidification driven by human-caused carbon dioxide emissions could have a larger impact than previously thought.

    “When an organism’s environment becomes more acidic, it can dramatically impact not only that species, but the overall ecosystem’s resilience, function and stability,” said Stanford marine biologist Fiorenza Micheli, lead author on the paper. “These transformations ultimately impact people, especially our food chains.”

    A natural laboratory


    Pietro Sorvino and Pasquale Vassallo

    Overall, the researchers found that the active venting zones with the most acidic waters were home to not only the least number of species, but also the lowest amounts of “functional diversity” – the range of ecosystem-support services or roles that each species can provide.

    “Studying the natural carbon dioxide vents in Ischia allowed us to unravel which traits from different species, like snail shell strength, were more vulnerable to ocean acidification. These results illuminate how oceans will function under different acidification scenarios in the future,” said lead author Nuria Teixidó, a marine biologist from Stazione Zoologica Anton Dohrn in Italy, who was a visiting researcher at Stanford during the research.

    Acidification in the waters of Ischia displaced long-lived species, such as corals, that form habitat for other species – a process already often witnessed on reefs across the world. The researchers also found that high levels of carbon dioxide and more acidity favored species with short life spans and fast turnover as they are the only species that can resist these environmental conditions. This change could lead to further diversity loss and instability in the oceans, as biodiversity tends to increase an ecosystem’s stability.

    A broader application

    Localized case studies such as Ischia can shed light on how future global environmental conditions may affect ocean life. Beyond losing biodiversity, ocean acidification will threaten food security for millions of people who depend on seafood, along with tourism and other ocean-related economies.

    3
    Biodiversity loss is mapped along a natural CO2 gradient. (Image credit: Nuria Teixidó, Stazione Zoologica Anton Dohrn)

    “The effects of ocean acidification on whole ecosystems and their functioning are still poorly understood,” said Micheli, a professor of biology. “In Ischia, we have gained new insights into what future oceans will look like and what key services, like food production and coastal production, will be lost when there is more carbon dioxide in the water.”

    To read all stories about Stanford science, subscribe to the biweekly Stanford Science Digest.
    Micheli is the David and Lucile Packard Professor in Marine Sciences at Stanford’s School of Humanities and Sciences and is also also a senior fellow at the Stanford Woods Institute for the Environment and co-director of the Stanford Center for Ocean Solutions. Other co-authors are from Villa Dohrn Benthic Ecology Center of the Stazione Zoologica Anton Dohrn, University of Perpignan, University of California, Santa Cruz, University of Montpellier and Centre d’Estudis Avançats de Blanes- CSIC.

    Media Contacts

    Fiorenza Micheli, Stanford Center for Ocean Solutions and Hopkins Marine Station: (831) 917-7903, micheli@stanford.edu

    Nuria Teixidó, Hopkins Marine Station and Stazione Zoologica Anton Dohrn, present address: Sorbonne Université, CNRS, Laboratoire d’Océanographie de Villefranche, nuria.teixido@obs-vlfr.fr

    Nicole Kravec, Stanford Center for Ocean Solutions: (415) 825-0584, nkravec@stanford.edu

    The work was funded by National Geographic Society, the Total Foundation, a Maire Curie Cofund and by a Marie Sklodowska-Curie Global Fellowship.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stanford University campus. No image credit

    Stanford University

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
  • richardmitnick 10:45 am on December 10, 2018 Permalink | Reply
    Tags: , , Calditol, , Stanford researchers show that a protein in a microbe’s membrane helps it survive extreme environments, Stanford University, Sulfolobus acidocaldarius   

    From Stanford University: “Stanford researchers show that a protein in a microbe’s membrane helps it survive extreme environments” 

    Stanford University Name
    From Stanford University

    December 5, 2018
    Danielle Torrent Tucker
    (650) 497-9541
    dttucker@stanford.edu

    Scientists discovered a protein that modifies a microbe’s membrane and helps it survive in hot, acidic environments, proving a long-standing hypothesis that these structures have a protective effect.

    1
    The microorganism Sulfolobus acidocaldarius lives in extreme environments, such as Emerald Hot Spring in Yellowstone National Park. (Image credit: Rennett Stowe / flickr)

    Within harsh environments like hot springs, volcanic craters and deep-sea hydrothermal vents – uninhabitable by most life forms – microscopic organisms are thriving. How? It’s all in how they wrap themselves.

    Stanford University researchers have identified a protein that helps these organisms form a protective, lipid-linked cellular membrane – a key to withstanding extremely highly acidic habitats.

    Scientists had known that this group of microbes – called archaea – were surrounded by a membrane made of different chemical components than those of bacteria, plants or animals. They had long hypothesized that it could be what provides protection in extreme habitats. The team directly proved this idea by identifying the protein that creates the unusual membrane structure in the species Sulfolobus acidocaldarius.

    The structures of some organisms’ membranes are retained in the fossil record and can serve as molecular fossils or biomarkers, leaving hints of what lived in the environment long ago. Finding preserved membrane lipids, for example, could suggest when an organism evolved and how that may have been the circumstance of its environment. Being able to show how this protective membrane is created could help researchers understand other molecular fossils in the future, offering new evidence about the evolution of life on Earth. The results appeared the week of Dec. 3 in Proceedings of the National Academy of Sciences.

    “Our model is that this organism evolved the ability to make these membranes because it lives in an environment where the acidity changes,” said co-author Paula Welander, an assistant professor of Earth system science at Stanford’s School of Earth, Energy & Environmental Sciences (Stanford Earth). “This is the first time we’ve actually linked some part of a lipid to an environmental condition in archaea.”

    Rare chemistry

    The hot springs where S. acidocaldarius is found, such as those in Yellowstone National Park that are over 200 degrees Fahrenheit, can experience fluctuating acidity. This organism is also found in volcanic craters, deep-sea hydrothermal vents and other acidic environments with both moderate and cold temperatures.

    Welander became interested in studying this microbe because of its rare chemistry, including its unusual lipid membranes. Unlike plants and fungi, archaeal organisms do not produce protective outer walls of cellulose and their membranes do not contain the same chemicals as bacteria. Scientists had explored how the species produced its unusual membrane for about 10 years before experimentation stopped in 2006, she said.

    “I think we forget that some things just haven’t been done yet – I’ve been finding that a lot ever since I stepped into the geobiology world,” Welander said. “There are so many questions out there that we just need the basic knowledge of, such as, ‘What is the protein that’s doing this? Does this membrane structure really do what we’re saying it does?’”

    From previous research in archaea, Welander and her team knew that the organisms produce a membrane containing a ringed molecule called a calditol. The group thought this molecule might underlie the species’ ability to withstand environments where other organisms perish.

    To find out, they first went through the genome of S. acidocaldarius and identified three genes likely to be involved in making a calditol. They then mutated those genes one-by-one, eliminating any proteins the genes made. The experiments revealed one gene that, when mutated, produced S. acidocaldarius that lacked calditol in the membrane. That mutated organism was able to grow at high temperatures but withered in a highly acidic environment, suggesting that the protein is necessary to both make the unusual membrane and withstand acidity.

    The work was particularly challenging because Welander’s lab had to replicate those high temperature, acidic conditions in which the microbes thrive. Most of the incubators in her lab could only reach body temperature, so lead author Zhirui Zeng, a postdoctoral researcher in Welander’s lab, figured out how to imitate the organism’s home using a special small oven, she said.

    “That was really cool,” Welander said. “We did a lot of experimenting to try to figure out the chemistry.”

    Third domain of life

    This work is about more than just finding one protein, Welander said. Her research explores lipids found in present-day microbes with the goal of understanding Earth’s history, including ancient climatic events, mass extinctions and evolutionary transitions. But before scientists can interpret evolutionary characteristics, they need to understand the basics, like how novel lipids are created.

    Archaea are sometimes called the “third domain of life,” with one domain being bacteria and the other being a group that includes plants and animals – collectively known as eukaryotes. Archaea includes some of the oldest, most abundant lifeforms on the planet, without which the ecosystem would collapse. Archaea are particularly anomalous microbes, confused with bacteria one day and likened to plants or animals the next because of their unique molecular structures.

    The research is particularly interesting because the classification for archaea is still debated by taxonomists. They were only separated from the bacteria and eukaryote domains in the past two decades, following the development of genetic sequencing in the 1970s.

    “There are certain things about archaea that are different, like the lipids,” Welander said. “Archaea are a big area of research now because they are this different domain that we want to study, and understand – and they’re really cool.”

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stanford University campus. No image credit

    Stanford University

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
  • richardmitnick 9:27 am on November 12, 2018 Permalink | Reply
    Tags: , , Generating electricity and cooling buildings, , Revolutionizing energy-producing rooftop arrays, Stanford University, What they weren’t able to test is whether the device also produced electricity. The upper layer in this experiment lacked the metal foil normally found in solar cells that would have blocked the inf   

    From Stanford University: “Stanford researchers develop a rooftop device that can make solar power and cool buildings” 

    Stanford University Name
    From Stanford University

    November 8, 2018
    Tom Abate, Stanford Engineering
    (650) 736-2245,
    tabate@stanford.edu

    1
    Professor Shanhui Fan and postdoctoral scholar Wei Li atop the Packard Electrical Engineering building with the apparatus that is proving the efficacy of a double-layered solar panel. The top layer uses the standard semiconductor materials that go into energy-harvesting solar cells; the novel materials on the bottom layer perform the cooling task. (Image credit: L.A. Cicero)

    Stanford electrical engineer Shanhui Fan wants to revolutionize energy-producing rooftop arrays.

    Today, such arrays do one thing – they turn sunlight into electricity. But Fan’s lab has built a device that could have a dual purpose – generating electricity and cooling buildings.

    “We’ve built the first device that one day could make energy and save energy, in the same place and at the same time, by controlling two very different properties of light,” said Fan, senior author of an article appearing Nov. 8 in Joule.

    The sun-facing layer of the device is nothing new. It’s made of the same semiconductor materials that have long adorned rooftops to convert visible light into electricity. The novelty lies in the device’s bottom layer, which is based on materials that can beam heat away from the roof and into space through a process known as radiative cooling.

    In radiative cooling, objects – including our own bodies – shed heat by radiating infrared light. That’s the invisible light night-vision goggles detect. Normally this form of cooling doesn’t work well for something like a building because Earth’s atmosphere acts like a thick blanket and traps the majority of the heat near the building rather allowing it to escape, ultimately into the vast coldness of space.

    Holes in the blanket

    Fan’s cooling technology takes advantage of the fact that this thick atmospheric blanket essentially has holes in it that allow a particular wavelength of infrared light to pass directly into space. In previous work, Fan had developed materials that can convert heat radiating off a building into the particular infrared wavelength that can pass directly through the atmosphere. These materials release heat into space and could save energy that would have been needed to air-condition a building’s interior. That same material is what Fan placed under the standard solar layer in his new device.

    Zhen Chen, who led the experiments as a postdoctoral scholar in Fan’s lab, said the researchers built a prototype about the diameter of a pie plate and mounted their device on the rooftop of a Stanford building. Then they compared the temperature of the ambient air on the rooftop with the temperatures of the top and bottom layers of the device. The top layer device was hotter than the rooftop air, which made sense because it was absorbing sunlight. But, as the researchers hoped, the bottom layer of the device was significant cooler than the air on the rooftop.

    “This shows that heat radiated up from the bottom, through the top layer and into space,” said Chen, who is now a professor at the Southeast University of China.

    What they weren’t able to test is whether the device also produced electricity. The upper layer in this experiment lacked the metal foil, normally found in solar cells, that would have blocked the infrared light from escaping. The team is now designing solar cells that work without metal liners to couple with the radiative cooling layer.

    “We think we can build a practical device that does both things,” Fan said.

    Shanhui Fan is the director of the Edward L. Ginzton Laboratory, a professor of electrical engineering, a senior fellow at the Precourt Institute for Energy and a professor, by courtesy, of applied physics. Postdoctoral scholars Wei Li of Stanford and Linxiao Zhu of the University of Michigan, Ann Arbor, also co-authored the paper.

    The research was supported by the Stanford University Global Climate and Energy Project, the National Science Foundation and the National Natural Science Foundation of China.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stanford University campus. No image credit

    Stanford University

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
  • richardmitnick 8:54 am on October 8, 2018 Permalink | Reply
    Tags: , , Gender diversity is linked to research diversity Stanford historian says, Stanford University   

    From Stanford University: “Gender diversity is linked to research diversity, Stanford historian says” 

    Stanford University Name
    From Stanford University

    October 4, 2018
    Amy Adams
    (650) 497-5908
    amyadams@stanford.edu

    Gender diversity in science comes down to more than just who is on the team. The research approaches and types of questions the field addresses also shift – and lead to better science, according to Stanford historian Londa Schiebinger.

    Women and girls are increasingly encouraged to pursue STEM careers, potentially leading to greater gender diversity within research organizations. While Stanford historian Londa Schiebinger sees that as a positive step, she wants those organizations to go further by also supporting the changes to research itself brought on by the greater diversity.

    1
    Maria Filsinger Interrante, Christian Choe, and Zach Rosenthal, aka Team Lyseia, strategize about upcoming experiments to test their new antibiotics. (Image credit: L.A. Cicero)

    “Everybody supports diversity these days,” Schiebinger said. But for the most part that diversity refers to the people on the team, not the outcomes. “Our hypothesis is that if you bring diversity to the team, you get diversity in the kinds of questions people ask,” she said.

    And those new research directions could have their consequences. “If people are asking new questions we might also get new participants,” she said.

    Schiebinger and a team of researchers recently published a paper in Nature Human Behaviour proposing ways organizations can continue to encourage gender diversity while also supporting diversity in new research directions that may result. Their paper lays out how research organizations – from research teams to universities to the broader disciplines in which they are embedded – can create the conditions for diversity to flourish.

    Many types of diversity

    Schiebinger points out three kinds of diversity – diversity in research teams, diversity in research methods and diversity in the questions being asked.

    The first form of diversity refers to who is on the team, Schiebinger said. “The other two are about how we create knowledge.”

    Those three types of diversity are interrelated, Schiebinger said. “Improving one likely leads to improvements in the others.” In areas like engineering, where women are still poorly represented, paying more attention to diversity in methods and questions asked may result in more success in attracting women to the field, she said.

    In previous work [Nature Human Behaviour], Schiebinger and postdoctoral researcher Mathias Nielsen, now at Aarhus University in Denmark, showed that when women are involved in medical research they are more likely to take sex and gender into account in their work – looking at drug side effects in men versus women, for example, or including both sexes in a study and reporting the results by sex.

    The results of considering both sexes are wide-ranging, including finding significant osteoporosis risk in men over 75, which had been overlooked in the focus on women with the disease. Other examples include a new awareness of how heart attacks manifest differently in women compared with more frequently studied men, pregnant crash-test dummies, and how human biases may be amplified in machine learning. Schiebinger has an international project called Gendered Innovations that tracks these and other discoveries that come out of research that considers gender.

    Incentives for diversity

    Schiebinger said that although women are more likely to consider gender in their research, sex and gender analysis are technical skills that anyone can learn, especially with the right incentives, such as those recently put into place in at the European Commission, the U.S. National Institutes of Health, the Canadian Institute of Health Research, and the Germany Research Foundation, among others. “If research is funded by taxpayer monies, you need to integrate sex and gender into your work so that everyone in society benefits,” she said.

    The group’s members hope their analysis will encourage related policies at the U.S. National Science Foundation. “You can think of gender as a variable and if you leave it out, you potentially miss something important in scientific research with human outcomes,” Schiebinger said. “While our study focused on gender diversity, we hope it contributes to a better understanding of the possible benefits associated with other types of diversity as well.”

    Creating more diversity in people and in research methods are changes funding agencies or universities can directly encourage. Schiebinger said that when more men join fields like nursing or when more women join fields like computer science and engineering, those fields should be open to the changes in research directions and agendas newcomers are likely to introduce. They point to historians, who began exploring gender history, the history of sexuality and a host of new questions as women entered the field over the past 30 years.

    Schiebinger’s team, which includes Carter Bloch of Aarhus University in Denmark, points out that it’s not necessarily clear whether diversity among researchers spawned the expanding research directions, or if those directions came out of larger shifts in society, such as the women’s movement and the civil rights movement. Either way, Schiebinger said, society needs diverse teams asking the questions with the gender-inclusive data to get the best possible scientific outcomes.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stanford University campus. No image credit

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
  • richardmitnick 10:43 am on September 25, 2018 Permalink | Reply
    Tags: , , , Earthquakes and aftershocks, , , Stanford University   

    From Stanford University: “After the Big One: Understanding aftershock risk” 

    Stanford University Name
    From Stanford University

    1
    Cranes dismantle buildings damaged by the 2011 Christchurch earthquake. (Photo credit: iStock)

    September 21, 2018
    Josie Garthwaite

    Geophysicist Gregory Beroza discusses the culprits behind destructive aftershocks and why scientists are harnessing artificial intelligence to gain new insights into earthquake risks.

    In early September 2018, a powerful earthquake on the island of Hokkaido in northern Japan triggered landslides, toppled buildings, cut power, halted industry, killed more than 40 people and injured hundreds. The national meteorological agency warned that aftershocks could strike for up to a week following the main event.

    “A large earthquake will typically have thousands of aftershocks,” said Gregory Beroza, the Wayne Loel Professor of geophysics in the School of Earth, Energy & Environmental Sciences (Stanford Earth) at Stanford University. “We know that a big earthquake changes something in Earth’s crust that causes these aftershocks to happen.”

    The rarity of big quakes, however, makes it difficult to document and statistically model how large earthquakes interact with each other in space and time. Aftershocks could offer a workaround. “Aftershocks occur by the same mechanism, on the same geological faults and under the same conditions as other earthquakes,” Beroza explained in a recent article in the journal Nature. As a result, interactions between the largest earthquake in a sequence, known as a mainshock, and its aftershocks may hold clues to earthquake interactions more broadly, helping to explain how changes on a fault induced by one earthquake may affect the potential site of another.

    Here, Beroza discusses how scientists forecast aftershocks and why they’re turning to artificial intelligence to build better models for the future.

    What are the current methods for predicting foreshocks and where do they fall short?

    GREGORY BEROZA: When a large earthquake slips, that changes the forces throughout the Earth’s crust nearby. It’s thought that this stress change is most responsible for triggering aftershocks. The stress is what drives earthquakes.

    Scientists have noted a tendency for aftershocks to occur where two types of stress act on a fault change. The first type is called is normal stress, which is how strongly two sides of a fault are pushing together or pulling apart. The second type is called shear stress, or how strongly the two sides are being pushed past one another, parallel to the fault, by remote forces. Decreases in the normal stress and increases in the shear stress are expected to encourage subsequent earthquakes. Measures of these changes in the volume of rock around a fault are combined into a single metric called the Coulomb failure stress change.

    But it’s not a hard and fast rule. Some earthquakes occur where in a sense they shouldn’t, by that metric. There are components of stress that are different from shear stress and normal stress. There’s stress in other directions, and complex combinations. So we do okay at predicting where aftershocks will, and will not, occur after a mainshock, but not as well as we’d like.

    2
    This aerial view shows damaged houses in Mashiki town, Kumamoto prefecture, southern Japan, Friday, April 15, 2016, a day after a magnitude-6.5 earthquake. More than 100 aftershocks from Thursday night’s magnitude-6.5 earthquake continued to rattle the region as businesses and residents got a fuller look at the widespread damage from the unusually strong quake, which also injured about 800 people. (Koji Harada/Kyodo News via AP) JAPAN OUT, MANDATORY CREDIT

    What is an artificial neural network and how can scientists use this kind of artificial intelligence to predict earthquakes and aftershocks?

    BEROZA: Picture a machine that takes inputs from the left. Moving to the right you have a series of layers, each containing a bunch of connected neurons. And at the other end you have an outcome of some kind.

    One neuron can excite another. When you add lots of these layers with lots of different interactions, you very rapidly get an extremely large set of possible relationships. When people talk about “deep” neural networks, that means they have a lot of layers.

    In this case, your input is information about stress on a fault. The output is information about the locations of aftershocks. Scientists can take examples of observed earthquakes and use that data to train the neurons to interact in ways that produce an outcome that was observed in the real world. It’s a process called machine learning. Given this set of inputs, what’s the right answer? What did the Earth tell us for this earthquake?

    A pioneering effort to use artificial intelligence in this context published in Nature in August 2018. The authors fed a machine-learning algorithm estimates of stress changes and information on where aftershocks did or didn’t occur for a whole bunch of earthquakes. They’re not doing earthquake prediction in the usual sense, where you try to predict the time, place and magnitude of the earthquake. They’re just looking for where aftershocks occur. The model doesn’t capture the true complexity of the Earth, but it’s moving in the right direction.

    How might artificial intelligence approaches be applied to seismology more broadly?

    BEROZA: In the Earth sciences in general, we have complicated geological systems that interact strongly in ways we don’t understand. Machine learning and artificial intelligence can help us explore and maybe uncover the nature of some of those complicated relationships. It can help us explore and find relationships that scientists hadn’t thought of or tested.

    We also have very large data sets. The biggest seismic network I’ve worked with has something like 5,000 sensors in it. That’s 5,000 sensors, 100 samples per second, and it runs continuously for months. There’s so much data it’s hard to even look at it.

    The trend is for these data sets to be ever larger. Within a few years, we’re going to be working with data sets of over 10,000 sensors. How do you make sure you’re getting as much information as you can out of those massive data sets?

    Our usual way of doing business isn’t going to scale at some point. Techniques such as data mining and machine learning to help us extract as much information as we can from these very large data sets are going to be an essential part of understanding our planet in the future.

    Gregory Beroza co-directs the Stanford Center for Induced and Triggered Seismicity (SCITS).

    See the full article here .

    Earthquake Alert

    1

    Earthquake Alert

    Earthquake Network projectEarthquake Network is a research project which aims at developing and maintaining a crowdsourced smartphone-based earthquake warning system at a global level. Smartphones made available by the population are used to detect the earthquake waves using the on-board accelerometers. When an earthquake is detected, an earthquake warning is issued in order to alert the population not yet reached by the damaging waves of the earthquake.

    The project started on January 1, 2013 with the release of the homonymous Android application Earthquake Network. The author of the research project and developer of the smartphone application is Francesco Finazzi of the University of Bergamo, Italy.

    Get the app in the Google Play store.

    3
    Smartphone network spatial distribution (green and red dots) on December 4, 2015

    Meet The Quake-Catcher Network

    QCN bloc

    Quake-Catcher Network

    The Quake-Catcher Network is a collaborative initiative for developing the world’s largest, low-cost strong-motion seismic network by utilizing sensors in and attached to internet-connected computers. With your help, the Quake-Catcher Network can provide better understanding of earthquakes, give early warning to schools, emergency response systems, and others. The Quake-Catcher Network also provides educational software designed to help teach about earthquakes and earthquake hazards.

    After almost eight years at Stanford, and a year at CalTech, the QCN project is moving to the University of Southern California Dept. of Earth Sciences. QCN will be sponsored by the Incorporated Research Institutions for Seismology (IRIS) and the Southern California Earthquake Center (SCEC).

    The Quake-Catcher Network is a distributed computing network that links volunteer hosted computers into a real-time motion sensing network. QCN is one of many scientific computing projects that runs on the world-renowned distributed computing platform Berkeley Open Infrastructure for Network Computing (BOINC).

    The volunteer computers monitor vibrational sensors called MEMS accelerometers, and digitally transmit “triggers” to QCN’s servers whenever strong new motions are observed. QCN’s servers sift through these signals, and determine which ones represent earthquakes, and which ones represent cultural noise (like doors slamming, or trucks driving by).

    There are two categories of sensors used by QCN: 1) internal mobile device sensors, and 2) external USB sensors.

    Mobile Devices: MEMS sensors are often included in laptops, games, cell phones, and other electronic devices for hardware protection, navigation, and game control. When these devices are still and connected to QCN, QCN software monitors the internal accelerometer for strong new shaking. Unfortunately, these devices are rarely secured to the floor, so they may bounce around when a large earthquake occurs. While this is less than ideal for characterizing the regional ground shaking, many such sensors can still provide useful information about earthquake locations and magnitudes.

    USB Sensors: MEMS sensors can be mounted to the floor and connected to a desktop computer via a USB cable. These sensors have several advantages over mobile device sensors. 1) By mounting them to the floor, they measure more reliable shaking than mobile devices. 2) These sensors typically have lower noise and better resolution of 3D motion. 3) Desktops are often left on and do not move. 4) The USB sensor is physically removed from the game, phone, or laptop, so human interaction with the device doesn’t reduce the sensors’ performance. 5) USB sensors can be aligned to North, so we know what direction the horizontal “X” and “Y” axes correspond to.

    If you are a science teacher at a K-12 school, please apply for a free USB sensor and accompanying QCN software. QCN has been able to purchase sensors to donate to schools in need. If you are interested in donating to the program or requesting a sensor, click here.

    BOINC is a leader in the field(s) of Distributed Computing, Grid Computing and Citizen Cyberscience.BOINC is more properly the Berkeley Open Infrastructure for Network Computing, developed at UC Berkeley.

    Earthquake safety is a responsibility shared by billions worldwide. The Quake-Catcher Network (QCN) provides software so that individuals can join together to improve earthquake monitoring, earthquake awareness, and the science of earthquakes. The Quake-Catcher Network (QCN) links existing networked laptops and desktops in hopes to form the worlds largest strong-motion seismic network.

    Below, the QCN Quake Catcher Network map
    QCN Quake Catcher Network map

    ShakeAlert: An Earthquake Early Warning System for the West Coast of the United States

    The U. S. Geological Survey (USGS) along with a coalition of State and university partners is developing and testing an earthquake early warning (EEW) system called ShakeAlert for the west coast of the United States. Long term funding must be secured before the system can begin sending general public notifications, however, some limited pilot projects are active and more are being developed. The USGS has set the goal of beginning limited public notifications in 2018.

    Watch a video describing how ShakeAlert works in English or Spanish.

    The primary project partners include:

    United States Geological Survey
    California Governor’s Office of Emergency Services (CalOES)
    California Geological Survey
    California Institute of Technology
    University of California Berkeley
    University of Washington
    University of Oregon
    Gordon and Betty Moore Foundation

    The Earthquake Threat

    Earthquakes pose a national challenge because more than 143 million Americans live in areas of significant seismic risk across 39 states. Most of our Nation’s earthquake risk is concentrated on the West Coast of the United States. The Federal Emergency Management Agency (FEMA) has estimated the average annualized loss from earthquakes, nationwide, to be $5.3 billion, with 77 percent of that figure ($4.1 billion) coming from California, Washington, and Oregon, and 66 percent ($3.5 billion) from California alone. In the next 30 years, California has a 99.7 percent chance of a magnitude 6.7 or larger earthquake and the Pacific Northwest has a 10 percent chance of a magnitude 8 to 9 megathrust earthquake on the Cascadia subduction zone.

    Part of the Solution

    Today, the technology exists to detect earthquakes, so quickly, that an alert can reach some areas before strong shaking arrives. The purpose of the ShakeAlert system is to identify and characterize an earthquake a few seconds after it begins, calculate the likely intensity of ground shaking that will result, and deliver warnings to people and infrastructure in harm’s way. This can be done by detecting the first energy to radiate from an earthquake, the P-wave energy, which rarely causes damage. Using P-wave information, we first estimate the location and the magnitude of the earthquake. Then, the anticipated ground shaking across the region to be affected is estimated and a warning is provided to local populations. The method can provide warning before the S-wave arrives, bringing the strong shaking that usually causes most of the damage.

    Studies of earthquake early warning methods in California have shown that the warning time would range from a few seconds to a few tens of seconds. ShakeAlert can give enough time to slow trains and taxiing planes, to prevent cars from entering bridges and tunnels, to move away from dangerous machines or chemicals in work environments and to take cover under a desk, or to automatically shut down and isolate industrial systems. Taking such actions before shaking starts can reduce damage and casualties during an earthquake. It can also prevent cascading failures in the aftermath of an event. For example, isolating utilities before shaking starts can reduce the number of fire initiations.

    System Goal

    The USGS will issue public warnings of potentially damaging earthquakes and provide warning parameter data to government agencies and private users on a region-by-region basis, as soon as the ShakeAlert system, its products, and its parametric data meet minimum quality and reliability standards in those geographic regions. The USGS has set the goal of beginning limited public notifications in 2018. Product availability will expand geographically via ANSS regional seismic networks, such that ShakeAlert products and warnings become available for all regions with dense seismic instrumentation.

    Current Status

    The West Coast ShakeAlert system is being developed by expanding and upgrading the infrastructure of regional seismic networks that are part of the Advanced National Seismic System (ANSS); the California Integrated Seismic Network (CISN) is made up of the Southern California Seismic Network, SCSN) and the Northern California Seismic System, NCSS and the Pacific Northwest Seismic Network (PNSN). This enables the USGS and ANSS to leverage their substantial investment in sensor networks, data telemetry systems, data processing centers, and software for earthquake monitoring activities residing in these network centers. The ShakeAlert system has been sending live alerts to “beta” users in California since January of 2012 and in the Pacific Northwest since February of 2015.

    In February of 2016 the USGS, along with its partners, rolled-out the next-generation ShakeAlert early warning test system in California joined by Oregon and Washington in April 2017. This West Coast-wide “production prototype” has been designed for redundant, reliable operations. The system includes geographically distributed servers, and allows for automatic fail-over if connection is lost.

    This next-generation system will not yet support public warnings but does allow selected early adopters to develop and deploy pilot implementations that take protective actions triggered by the ShakeAlert notifications in areas with sufficient sensor coverage.

    Authorities

    The USGS will develop and operate the ShakeAlert system, and issue public notifications under collaborative authorities with FEMA, as part of the National Earthquake Hazard Reduction Program, as enacted by the Earthquake Hazards Reduction Act of 1977, 42 U.S.C. §§ 7704 SEC. 2.

    For More Information

    Robert de Groot, ShakeAlert National Coordinator for Communication, Education, and Outreach
    rdegroot@usgs.gov
    626-583-7225

    Learn more about EEW Research

    ShakeAlert Fact Sheet

    ShakeAlert Implementation Plan


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stanford University campus. No image credit

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
  • richardmitnick 9:16 am on September 17, 2018 Permalink | Reply
    Tags: , Energy & Environmental Sciences, Hurricane Florence: The science behind the storm, MORGAN O’NEILL-School of Earth, Stanford University   

    From Stanford University- “Hurricane Florence: The science behind the storm” 

    Stanford University Name
    From Stanford University

    September 14, 2018
    Josie Garthwaite

    Atmospheric scientist Morgan O’Neill discusses what’s driving Florence, why it’s unusual, and how it could be connected to climate change and other storms brewing in the Atlantic.

    Hurricane Florence began pummeling North Carolina with drenching rains, powerful winds, and the threat of catastrophic flooding after making landfall in the early hours of Friday, September 14. Moving inland at a dangerous crawl, the storm was forecast to dump up to 40 inches of rain in some parts of the Carolina coast and drive ocean water into storm surges taller than 10 feet if it struck at high tide.

    By Sunday, September 16, the storm had slowed to a tropical depression, but rain continued to fall and floodwaters continued to rise across the region. The death toll had reached at least 17, and officials warned of sustained risk from landslides, flash floods, and prolonged river flooding.

    When Hurricane Florence made landfall, it was the largest of four big storms brewing in the Atlantic. “This is an extraordinarily active month – not just for the Atlantic, which we tend to think of because of its concentration of American cities, ports and industry, but also the Pacific,” said atmospheric scientist Morgan O’Neill, a professor of Earth system science in the Stanford School of Earth, Energy & Environmental Sciences (Stanford Earth). Super Typhoon Mangkhut has barreled through Southeast Asia, killing dozens in the Philippines and slamming Hong Kong before reaching mainland China on September 16. Japan, meanwhile, has only begun to recover from Typhoon Jebi, the strongest typhoon to make landfall there in 25 years.

    O’Neill explains how simultaneous hurricanes can be connected, why Florence followed an unusual track through the Atlantic, and why flash floods are a particularly grave threat with this storm.

    How does this season’s activity compare to a normal year?

    MORGAN O’NEILL: Early September is the climatologically most active period for the Atlantic Basin, which includes the Atlantic as well as the Gulf of Mexico and the Caribbean Sea. This year is so far much more active than an average hurricane season.

    Storms get named once their peak wind speed reaches 39 mph or greater, and this is the first time in a decade that the Atlantic has four simultaneous “named” storms: Florence, Helene, Isaac and Joyce.

    The Pacific is similarly expected to be active from late-August to early-September. This year it has been not just active, but brutal. Typhoon Jebi made landfall in Japan last week, causing widespread, serious damage, and Typhoon Mangkhut is driving evacuations in the Philippines before its anticipated landfall at speeds equivalent to a Category 4 hurricane. The Pacific typically has larger, stronger, better organized and more deadly storms, and the western Pacific is the most active region for tropical cyclones on the planet.

    3
    Hurricane Florence.This satellite image was captured around 1:45 p.m. ET Wednesday. NOAA/STAR

    ___________________________________________
    Tropical cyclones

    The word hurricane is only used in the Atlantic, Caribbean Sea, Gulf of Mexico, and eastern Pacific, for storms that sustain winds at or above 74 miles per hour. Other basins have different names for the same phenomenon: tropical cyclone.
    ___________________________________________

    Does one hurricane beget or fuel another?

    O’NEILL: The short answer is, we don’t know. We do know that hurricanes can have both mitigating and compounding impacts on nearby or near-future hurricanes. Exactly how one hurricane influences another depends on factors ranging from the amount of upper-ocean mixing, how the steering winds of the two storms interact, and how air flows out of the hurricanes into the upper atmosphere.

    Understanding these varying effects in concert is a pretty exciting, open area of inquiry. Numerical modeling is a very economical way to study this, since we can turn on and off different levels of complexity in the “laboratory” of our numerical experiments. However, continued observations by satellite, plane, buoys, and air and sea drones are essential for ultimately testing whatever idealized mechanisms we find in our simulations.

    No tropical storm or hurricane has been recorded within 100 miles of where Florence was late last week and still made a U.S. landfall. Why is Hurricane Florence’s track so unusual?

    O’NEILL: It’s very unusual for a hurricane to move so consistently westward while at such a high latitude. Typically storms this poleward interact with the jet stream rather quickly and are sheared and consumed by midlatitude high- and low-pressure systems, losing their tropical characteristics and moving northeastward. However, this week the jet stream is quite northward of the Carolinas, with little influence on Florence, and Florence instead is being largely steered by the nearby Bermuda High – a subtropical area of high pressure in the Atlantic. It’s an unusual but by no means black swan kind of event.

    3
    GMS: Bermuda High
    NASA Scientific Visualization Studio

    Bermuda High is a subtropical area of high pressure in the Atlantic Ocean, off the East Coast of North America. During the Northern Hemisphere’s summer and fall, it migrates west to center over Bermuda. In the winter and early spring, it’s known as the Azores High because it moves east and tends to hover near the Azores.

    What is it about Florence and the Carolinas that could make for a particularly dangerous combination, and how does that compare to the damage caused by recent storms of similar intensity?

    O’NEILL: In some ways this hurricane has a lot in common with Hurricane Harvey from last year. It is expected to stall right upon landfall, and sit in the same general area for a few days while dropping a catastrophic amount of rainfall, in addition to the deadly storm surge expected from a hurricane of this size. And this is what kills people — water, not wind.

    What Florence does not have in common with Harvey is the topography of the landfall location. The Carolinas have substantial hills and valleys that will concentrate tens of inches of rain into narrow, devastating flash floods. In Houston, the flat topography meant that everyone flooded. With Florence, people may not anticipate or appreciate potentially historic flash flooding.

    This is extremely dangerous not just because of flash floods’ ferocity but the difficult problem of forecasting such spontaneous, hyper-local events with any amount of actionable lead time. Additionally, the storm surge – warm, salty ocean water that is pushed up onto the shore and inland from the winds and forward motion of the storm – will slow or block the ability of rivers overflowing with potentially record-breaking rainfall to drain into the ocean, out of populated areas.

    What does all of this mean in terms of climate? What do scientists know about the connection between climate change and storms like Hurricane Florence?

    Scientists are slowly converging on an at-least partial understanding: yes, climate change fuels stronger storms and makes those storms more likely. It doesn’t necessarily make all storms more likely, and indeed the total frequency may go down a bit or stay roughly the same, but the storms on the very strong end of the spectrum are increasingly likely to occur. This is in part because the heat stored in the upper tropical ocean, as measured by sea surface temperatures, is the primary fuel source for hurricanes, and it is increasing.

    The Clausius-Clapeyron relation is also at work: a warmer atmosphere contains more water vapor, which provides a more hospitable environment for the formation and intensification of tropical cyclones. Stronger storms can push more sea water as storm surge onto land, and this now occurs on a higher baseline due to sea level rise. So even though it’s extremely difficult to say which individual storm is impacted in what way by climate change, we are certainly tipping the scale in favor of more damaging storms by virtue of changing they environment in which they occur.

    On September 7, Florence weakened temporarily due to a strong wind shear. Shades of green to red represent liquid precipitation throughout the storm. Frozen precipitation can be seen in cyan and purple. (Credit: NASA / Greg Shirah)

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stanford University campus. No image credit

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
  • richardmitnick 9:25 am on September 14, 2018 Permalink | Reply
    Tags: , , Stanford University,   

    From Stanford University: “Exploring the landscape” 

    Stanford University Name
    From Stanford University

    September 14, 2018
    Ker Than

    1
    The String Theory Landscape is a divisive issue among physicists as they continue trying to prove or disprove its key elements. (Image credit: Eric Nyquist)

    Stanford physicists continue to survey the peaks and valleys of the String Theory Landscape that they helped discover nearly two decades ago, even as critics say the theory is ultimately untestable. This story is part 5 of a five-part series.

    Nearly two decades after its proposal, the String Theory Landscape remains divisive among physicists. “In the beginning there were people who hated it. Some hate it even now, and more strongly than before,” Andrei Linde said.

    Many view the Landscape as a kind of Faustian bargain: It elegantly explains why the universe appears to be so eerily fine-tuned for life – there are myriad universes and we just happen to live in one that’s tuned for us – but it does so by dashing Einstein’s dream of one day uncovering a “theory of everything” from which the precise values of nature’s laws and constants logically and inevitably arise.

    The idea that our universe must have laws suitable for life is called the anthropic principle, and it’s a notion many physicists despise. One U.S. Nobel laureate called it “defeatist” and “dangerous” and said it “smells of religion and intelligent design.”

    Even Landscape proponents accept anthropic selection only with a measure of resignation and ambivalence. “Anthropics is distasteful to most string theorists. You’d rather have a nice equation which you can solve to predict the mass of the electron, but that seems very unlikely to me,” Shamit Kachru said. “On the other hand, the Landscape offers in compensation a different kind of elegance: Over vast cosmological scales many solutions are realized; so in that sense, nothing is wasted.”

    Renata Kallosh conceded that the anthropic principle “would not be my first choice” for explaining why the universe is the way it is.

    2
    Renata Kallosh. Hypermultiplet

    “In science, the preference will always be given to non-anthropic explanations – unless, however, there is nothing better,” she said.

    And there is nothing better at present, according to Leonard Susskind. “It’s not enough to say, ‘I hate the idea.’ You have to say, ‘Here’s a better idea.’

    Leonard Susskind by Linda Cicero-Stanford News Service

    Every month or so somebody will come out with some screwball theory of why the cosmological constant is close to zero, but it won’t last for more than a week,” he said. “A legitimate controversy is when there are two more or less equally good ideas which are in conflict with each other. The simple fact is there is no competition.”

    Susskind also thinks that the reports of the death of Einstein’s dream of a unified field theory are greatly exaggerated, and he offers an analogy. “Imagine you live in a world where you only know about one or two different animal species,” he said. “If you were of a scientific bent, you might say, ‘I need to explain why those two species are exactly the way they are.’ Then it’s discovered that there are a lot more different kinds of species, zillions of them. Does that mean that the search for a grand unified theory of life is to be abandoned? No, it means that whatever the fundamental principles are, they shouldn’t be expected to only give rise to a very small number of possibilities. Whatever the ultimate theory for physics is, it should not lead to a conclusion that there’s only one universe. It should lead to the conclusion that there are lots of them.”

    After nearly 20 years, particle physicist Savas Dimopoulos is tired of the debate. “Nature doesn’t care about our wishes and hopes,” said Dimopoulos. “Our job is to find out what is true. The important thing is not whether we like these ideas or not, but how to test them. Because in the end, physics has two legs: theory and experiment. To find the truth, you need both.”

    Surveying the Landscape

    To that end, Dimopoulos’ group is currently designing ultra-precise “tabletop” experiments to search for millimeter-size extra dimensions that are consistent with string theory. “In string theory, there are six extra dimensions of space, and they can take a tremendous variety of forms,” Dimopoulos said. “This richness tells you that there are many universes, but it also predicts many new particles, including a class of light, weakly interacting massive particles, or WIMPs. If we discover several WIMPs, it will be the first observational evidence that we may have a very complex theory at work.”

    The String Theory Landscape will also inform the “Modern Inflationary Cosmology” project, a multi-institution endeavor funded by the Simons Foundation and coordinated by Eva Silverstein. A goal of the project will be to study the primordial seeds of galaxies and other cosmic structures for clues about physics in the early universe. According to inflationary cosmology, the early universe was filled with fields such as the inflaton field and the gravitational field. In some string theory-influenced models of inflation developed by Silverstein and others, fluctuations in these fields were frozen into patterns resembling triangles, rectangles and other shapes, which were preserved as the universe expanded and the fluctuations blossomed into galaxies and other cosmic structures. These patterns, or “non-Gaussianities,” could appear as unusual arrangements of hot spots in the all-sky temperature map produced by the Planck space observatory, as peculiar groupings of galaxies and galaxy clusters in other telescope surveys, or as deviations in the predicted number and type of black holes present in any given region of space.

    “Discovering or constraining non-Gaussianities in as systematic a way as possible will improve our knowledge of conditions in the universe roughly 14 billion years ago and help us distinguish between vastly different models of inflation,” Silverstein said, “including some classes that arose from the String Theory Landscape.

    _______________________________________________
    “Inflation once seemed like a wild-eyed fantasy but it now motivates $1 billion experimental proposals and continues to interact with highly theoretical ideas such as the String Theory Landscape. It’s become a part of the cosmological establishment. Whether the String Theory Landscape eventually attains a similar status as part of the standard paradigm, motivating useful experiments, remains to be seen.”
    —Shamit Kachru, Professor of Physics

    5
    Shamit Kachru, Professor of Physics. Stanford University

    _______________________________________________

    Meanwhile, the science of dark energy continues to evolve as part of astrophysics, independent of the question of whether or not dark energy is Einstein’s cosmological constant.

    Dark Energy Survey


    Dark Energy Camera [DECam], built at FNAL


    NOAO/CTIO Victor M Blanco 4m Telescope which houses the DECam at Cerro Tololo, Chile, housing DECam at an altitude of 7200 feet

    Experiments like the European Space Agency’s upcoming Euclid space mission and the ground-based Large Synoptic Survey Telescope (LSST) being assembled in Chile will measure the acceleration of the universe with unprecedented precision and chart the history of cosmic expansion over the past 10 billion years.

    ESA/Euclid spacecraft

    LSST


    LSST Camera, built at SLAC



    LSST telescope, currently under construction on the El Peñón peak at Cerro Pachón Chile, a 2,682-meter-high mountain in Coquimbo Region, in northern Chile, alongside the existing Gemini South and Southern Astrophysical Research Telescopes.

    “If we learn through Euclid and LSST that the cosmological constant is only approximately a constant, then we will have to rethink some of the underlying assumptions of the String Theory Landscape,” Kallosh said.

    In the end, there may always remain elements of the String Theory Landscape that are difficult or even impossible to test. But this is not unique in science, Silverstein said. “We never measure most of what any theory predicts, even empirically well-established ones,” she said. “It is logically possible to find local support that aspects of string theory are manifested in our observable universe, which would bolster the case that perhaps the more ‘out there’ predictions of the theory – like universes beyond our cosmic horizon – might also be plausible.”

    The history of science is littered with crazy-sounding ideas that have panned out, Kachru said. “Inflation once seemed like a wild-eyed fantasy but it now motivates $1 billion experimental proposals and continues to interact with highly theoretical ideas such as the String Theory Landscape. It’s become a part of the cosmological establishment,” he added. “Whether the String Theory Landscape eventually attains a similar status as part of the standard paradigm, motivating useful experiments, remains to be seen.”

    Perhaps, Kallosh reflected, physicists are just too impatient. She noted that it took 50 years to confirm the existence of the Higgs boson – the final piece of the Standard Model. “Maybe we just need more time,” she said.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stanford University campus. No image credit

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
  • richardmitnick 12:21 pm on September 13, 2018 Permalink | Reply
    Tags: , , Lambda leads the way, , , Stanford University, The Cosmic Landscape   

    From Stanford University: “Lambda leads the way” 

    Stanford University Name
    From Stanford University

    September 13, 2018
    Ker Than

    1
    Most physicists think that dark energy, the cosmological constant, and lambda all refer to a repulsive energy infused in empty space itself. (Image credit: Eric Nyquist)

    The discovery of dark energy in the 1990s marked a time of reckoning for string theorists: Either their theory had to account for the newfound force that was pushing space-time apart or they had to admit that string theory may never describe the universe we actually live in. This story is part 4 of a five-part series.

    In 1998, astronomers hunting halfway across the universe for the ebbing light of exploded stars announced they had discovered evidence that the universe’s expansion is speeding up and not, as had been suspected since 1929, slowing down.

    The realization came as “a thunderbolt to physicists, something so shocking that we are still reeling from the impact,” Leonard Susskind wrote in his book The Cosmic Landscape.

    Leonard Susskind by Linda Cicero-Stanford News Service

    “Physicists everywhere were asking, ‘Is the experiment wrong?’” Renata Kallosh recalled.

    But with every passing year, new experiments confirmed the results: Expansion is accelerating, not slowing down. For those results to be true, an elusive force that physicists had come to refer to as “dark energy” must be real.

    Dark Energy Survey


    Dark Energy Camera [DECam], built at FNAL


    NOAO/CTIO Victor M Blanco 4m Telescope which houses the DECam at Cerro Tololo, Chile, housing DECam at an altitude of 7200 feet

    Einstein had predicted the existence of dark energy in 1917 when he applied his general theory of relativity to the structure of space-time. He needed a hypothetical force to prevent the universe from collapsing, so he invented a repulsive, space-filling energy that he called the cosmological constant, or lambda. When astronomers discovered in the 1920s that the universe is expanding, Einstein realized that lambda was no longer necessary and he scrapped the idea, calling it his “biggest blunder.”

    But Einstein may have been too hard on himself. Today, most physicists think that dark energy, the cosmological constant and lambda all refer to a repulsive energy infused in empty space itself. Quantum mechanics predicts that the spontaneous creation and annihilation of ghostly “virtual particles” generates an anti-gravitational force whose influence grows with the age and size of the universe.

    When astronomers were able to measure lambda experimentally, they found it had a positive but bewilderingly tiny value that was about a trillion trillion trillion trillion trillion trillion trillion trillion trillion trillion times weaker than theory predicted. The Nobel Prize-winning physicist Steven Weinberg called this humiliating mismatch between observation and theory “the bone in our throat.”

    Equally perplexing, lambda’s tiny value lay just within the narrow range able to support life. If it were much larger, the universe would expand too quickly for galaxies and stars to form; much smaller, and creation would collapse back into a point.

    “Theoretical physics was upside down because of this experimental discovery,” Kallosh said. “We had no explanation whatsoever.”

    The cosmological constant problem

    The first tentative steps toward resolving what came to be known as the “cosmological constant problem” were taken in 2000 by theorists Joseph Polchinski of the University of California, Santa Barbara, and Raphael Bousso, a Stanford postdoc and a former student of Stephen Hawking. The pair published a paper showing that string theory could give rise to an enormous number of unique vacuum states – vastly more than previously thought. “The vacuum state is what remains if you remove all of the particles from the universe,” Andrei Linde explained. “The properties of a vacuum determine what its particles will look like and what the physics of their interactions will be if it were populated.”

    _______________________________________
    “Theoretical physics was upside down because of this experimental discovery. We had no explanation whatsoever.”
    —Renata Kallosh
    Professor of Physics
    _______________________________________

    Each vacuum described, in essence, a potential universe with its own singular take on particles and forces. “It was already known that string theory had lots of solutions,” Susskind said, “but their paper showed that it could have a vast number, and among them could be solutions that had these rare traits like a very low cosmological constant.”

    But despite offering tantalizing hints of string theory universes that could accommodate dark energy, Polchinski and Bousso, who is now at the University of California, Berkeley, stopped short of actually finding one. “They had a correct but imprecise collection of arguments for this diversity,” Susskind said. “They had no real examples of it.”

    In search of de Sitter

    The first reasonably concrete example was discovered by theoretical physicist Eva Silverstein, a professor at the Stanford Institute for Theoretical Physics who was motivated by dark energy’s discovery to search for a mechanism that could create a so-called “de Sitter” solution to string theory. De Sitter solutions (named after the Dutch astronomer Willem de Sitter) represent expanding universes with a positive cosmological constant similar to our own. Silverstein wanted to know if a solution existed in string theory that was compatible with the universe that astronomers actually observe. If none could be found, then string theorists had been wasting their time building castles in the air.

    Up to that point, string theorists had focused on solutions for universes with a negative lambda called anti-de Sitter space-time. “De Sitter solutions are more complex, and until the discovery of dark energy, no one bothered,” Silverstein said. “Some even argued that de Sitter solutions weren’t possible in string theory, and it remains a complicated subject. But these ‘no go’ arguments did not consider the leading contributions to the potential energy in string theory.”

    In 2001, Silverstein published a paper in which she proposed a mechanism for combining various ingredients from string theory – extra dimensions, orientifolds, fluxes and so on – in specific ways to create a de Sitter model. She also predicted that any de Sitter solutions would need to contain certain features. She argued, for example, that the path to positive lambda was indirect and would require making a negative contribution first. “One thing I pointed out early on is that negative contributions to the potential energy, in the right place to produce a local dip in it, would be needed,” Silverstein said, “and that this role could be played by orientifolds, which are defects in string theory’s extra dimensions that have a controlled amount of negative energy.”

    3
    Shamit Kachru, Renata Kallosh and Andrei Linde are three of the four authors of an influential paper that came to be known as KKLT. The paper helped lay the groundwork for the String Theory Landscape. (Image credit: L.A. Cicero)

    KKLT

    Early in 2003, Kallosh and Linde received an email from Shamit Kachru, who had been visiting the string theorist Sandip Trivedi in India. The quartet of physicists was engaged in a long-distance brainstorming session and Kachru’s message contained the kernel of an idea that had come to him during a flight layover in New Delhi.

    When Kallosh plotted data that Kachru had sent, up popped on her computer a chart with the same potential energy dip that Silverstein had predicted. However, this dip had been generated using different string theory ingredients and assumptions. “I knew we were onto something then,” Kallosh said.

    Later that year, the four of them published their results in a famous paper that would come to be known simply as KKLT (after the authors’ last initials). KKLT described a class of de Sitter solutions that incorporated a certain symmetry, called supersymmetry, that many physicists were expecting to see confirmed in particle collider experiments.

    “KKLT was a very important paper,” said particle physicist Savas Dimopoulos, the Hamamoto Family Professor in the School of Humanities and Sciences. “We don’t see supersymmetric particles in nature, so if symmetry did exist in the early universe, it’s been broken. What KKLT did was point out a breaking mechanism.”

    KKLT was also important for psychological reasons. “It was written by members from different parts of the physics community,” Kachru said. “Renata was a supergravity person, Andrei was an inflation person, and Sandip and I were more mathematical string theorists. All of us were saying that this kind of solution of string theory, which allows accelerated expansion due to dark energy, is something to take seriously.”

    For these reason, KKLT’s mathematical model, or “construction,” grabbed physicists’ attention in a way that earlier ones had not. Among those affected were Michael Douglas and Frederik Denef, both at Rutgers University at the time, who used the KKLT construction to famously calculate that there might exist as many as 10500 unique “vacua,” or possible universes, with a small cosmological constant. (For perspective, the total number of particles in the observable universe is estimated to be about 1090.)

    Around the same time, Susskind published a paper of his own expanding upon his colleagues’ findings. “I was more of a cheerleader than anything else,” Susskind said. “My paper was really just saying, ‘Hey guys, are you paying attention to this? This is happening.’”

    Susskind is also credited with naming the emerging concept within string theory of countless hypothetical universes with varying properties: He called it the “anthropic Landscape of string theory,” or the “String Theory Landscape” for short. “The Landscape doesn’t refer to a real place,” Susskind said. “It’s a scientific term borrowed from biology and physics that refers to an energy landscape with lots of hills and valleys. In string theory, the Landscape is incredibly rich, and our universe lies in one of the rare, habitable, low-lying valleys.”

    _______________________________________

    “In string theory, the Landscape is incredibly rich, and our universe lies in one of the rare, habitable, low-lying valleys.”
    —Leonard Susskind, Professor of Physics
    _______________________________________

    Susskind also reminded his fellow physicists that they already knew of a mechanism that could generate the tremendous diversity of universes predicted by string theory. This “natural candidate” had been pointed out by Bousso and Polchinski years earlier.

    Recalling his collaboration with Bousso in 2000, Polchinski, who died in February 2018, wrote in his memoir: “But when Bousso came back a few months later … he had added an important part of the story, the cosmology that allowed the theory to explore all these states. It was just Linde’s eternal chaotic inflation. … I had always assumed that such a thing would not be part of string theory, but in fact it arose quite naturally.”

    A Rube Goldberg construction

    If the measure of a theory’s beauty is the ratio of how many things it explains to how many assumptions it makes to explain them, then the constructions by Silverstein and KKLT are not pretty. Their authors rummaged through string theory’s pantry for exotic ingredients and combined them in wildly creative ways to concoct their imaginary universes. The KKLT construction in particular, Susskind said, was made up of “jury-rigged, Rube Goldberg contraptions” – a reference to the American inventor famous for his cartoon sketches of gadgets that performed simple tasks in convoluted ways.

    But the contrived nature of the de Sitter constructions mattered less to theorists than the fact that they existed at all. In a theory where infinite solutions are possible, Susskind argued, “simplicity and elegance are not considerations.” In all their long years of searching, KKLT and its kin were the clearest signs physicists had ever found that string theory could produce universes roughly resembling our own. The constructions the Stanford theorists produced gave powerful support to physicists’ hope that a mathematical version of our cosmos lay hidden somewhere within string theory’s labyrinthine equations and infinite solutions, and that – with ingenuity, luck and perhaps a late-night revelation or two – it might one day be found.

    See the full article here .


    five-ways-keep-your-child-safe-school-shootings
    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stanford University campus. No image credit

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: