Tagged: Stanford University-Engineering Toggle Comment Threads | Keyboard Shortcuts

  • richardmitnick 11:42 am on April 17, 2019 Permalink | Reply
    Tags: , , , , MIDEA-Meteoroid Impact Detection for Exploration of Asteroids, NASA Innovative Advanced Concepts Program, Stanford University-Engineering   

    From Stanford University Engineering: “How could we use space’s challenging environment to our advantage?” 

    From Stanford University Engineering

    March 14, 2019
    Taylor Kubota

    If we are going to be a space-faring species, we need to understand what’s out there.

    1
    Could plasma power new types of space missions? | Unsplash/Juskteez Vu

    When explorers venture into the great unknown of outer space, they must bring along everything they need.

    This adds expense and complexity to an already ambitious endeavor — and limits where spacecraft can go. As a way to ease that packing burden, Sigrid Close, associate professor of aeronautics and astronautics at Stanford University, is finding ways to treat the space environment as a collection of resources.

    “For us to be a space-faring species, we need to better understand what’s out there,” said Nicolas Lee, research engineer in Close’s lab and her former graduate student. “We want to open up access to the solar system in a way that takes advantage of the space environment, while also protecting our spacecraft from it.”

    The Space Environment and Satellite Systems lab members don’t expect to pluck food and water from the cosmos. Instead, they are focused on plasma — the collection of gaseous charged particles that surrounds planets and asteroids. They think plasma could power longer range spacecraft or enable a new way of surveying asteroids for mining, an application that could provide possible materials for use on Earth and in space.

    “We like ideas that verge on science fiction,” Close said. “We have to do work that’s revolutionary, rather than only evolutionary, if we’re going to get to that next step in space exploration.”

    Plasma power

    We can witness plasma as lightning and in neon signs but it’s also abundant throughout the universe in places with strong magnetic fields — the sun is big ball of plasma and the Earth’s upper atmosphere is plasma, too. The Close lab has set its sights on plasma because spacecraft are regularly immersed in it.

    One idea the researchers have is to power spacecraft or their subsystems with plasma. As spacecraft venture farther from the sun, they cannot rely on solar power. But in passing by certain planets, like Jupiter and Saturn, they can become surrounded by higher density plasma, which causes the vehicles to build up a negative charge. The researchers are hoping they could capture that charge to power spacecraft on their way out of the solar system.

    “If it works, it has the ability to expand the types of missions that we can actually fly,” said Sean Young, a graduate student working with Close on this project, which is part of a NASA Space Technology Research Fellowship. “We could do many missions with CubeSats — small, modular satellites — in the outer solar system that we wouldn’t be able to do now.”

    As for its role in asteroid mining, the lab scientists think the small plumes of plasma that an asteroid emits after a meteoroid strike could reveal the materials within. Working off this idea, they have proposed a parent spacecraft that distributes 10 to 20 small sensors around an asteroid to report the location, timing and speed of plasma that washes over them. These measurements could indicate whether the asteroid contains water, organics or any elements of interest.

    This set of spacecraft and sensors would weigh somewhere between one-fifth and half as much as systems currently sent to explore asteroids, which means one mission could send out several sets to explore multiple asteroids at once. The project is called Meteoroid Impact Detection for Exploration of Asteroids (MIDEA) and is part of the NASA Innovative Advanced Concepts Program, which funds radically innovative visions that are in the early stages of development.

    Our connection to space

    Close pictures her work as part of a larger story of aspirational space research that has previously led to versatile innovations, including GPS, laptops, water purifiers, wireless headsets and artificial limbs. Where some only see the hype around setting up colonies on the moon or Mars, Close sees technologies that could someday allow people to stay on Earth in the face of extreme environmental changes.

    “Many people don’t understand why we spend our resources on space research and exploration when we could use them on something else,” Close said. “But we’ve all benefited so much from the space program and there’s so much more to discover.”

    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stanford Engineering has been at the forefront of innovation for nearly a century, creating pivotal technologies that have transformed the worlds of information technology, communications, health care, energy, business and beyond.

    The school’s faculty, students and alumni have established thousands of companies and laid the technological and business foundations for Silicon Valley. Today, the school educates leaders who will make an impact on global problems and seeks to define what the future of engineering will look like.

    Mission

    Our mission is to seek solutions to important global problems and educate leaders who will make the world a better place by using the power of engineering principles, techniques and systems. We believe it is essential to educate engineers who possess not only deep technical excellence, but the creativity, cultural awareness and entrepreneurial skills that come from exposure to the liberal arts, business, medicine and other disciplines that are an integral part of the Stanford experience.

    Our key goals are to:

    Conduct curiosity-driven and problem-driven research that generates new knowledge and produces discoveries that provide the foundations for future engineered systems
    Deliver world-class, research-based education to students and broad-based training to leaders in academia, industry and society
    Drive technology transfer to Silicon Valley and beyond with deeply and broadly educated people and transformative ideas that will improve our society and our world.

    The Future of Engineering

    The engineering school of the future will look very different from what it looks like today. So, in 2015, we brought together a wide range of stakeholders, including mid-career faculty, students and staff, to address two fundamental questions: In what areas can the School of Engineering make significant world‐changing impact, and how should the school be configured to address the major opportunities and challenges of the future?

    One key output of the process is a set of 10 broad, aspirational questions on areas where the School of Engineering would like to have an impact in 20 years. The committee also returned with a series of recommendations that outlined actions across three key areas — research, education and culture — where the school can deploy resources and create the conditions for Stanford Engineering to have significant impact on those challenges.

    Stanford University

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
  • richardmitnick 12:00 pm on April 3, 2019 Permalink | Reply
    Tags: "The Robot Makers", , , , Stanford University-Engineering   

    From Stanford University Engineering: “The Robot Makers” 

    Stanford University Name
    From Stanford University Engineering

    All articles by By Taylor Kubota

    1
    Image courtesy of Frederic Osada and Teddy Seguin/DRASSM
    Oussama Khatib: My group has always been inspired by the human example
    From cooperative robots like Romeo and Juliet to the diving robot OceanOne, Khatib’s lab has brought human-centered artificial intelligence to the fore.
    See the full article here .

    Balance of photo credits L.A. Cicero
    2
    Allison Okamura: I wasn’t one of those kids that always loved robots
    Okamura discusses her first robotics project and the resurgence of creativity in robotics she’s witnessing — and influencing.
    See the full article here .

    3
    David Lentink: We want to fly anywhere, regardless of turbulence
    Lentink is known for his work on aerial vehicles that are inspired by birds, bats and flying insects.
    See the full article here .

    4
    Mark Cutkosky: The work in my lab centers around bio-inspired robots
    Cutkosky describes how his research turned from robots in manufacturing to robots that climb, stick, perch, grasp and push.
    See the full article here .

    5
    Andrew Ng: Deep learning has created a sea change in robotics
    Ng’s early work at Stanford focused on autonomous helicopters; now he’s working on applications for artificial intelligence in health care, education and manufacturing.
    See the full article here .

    five-ways-keep-your-child-safe-school-shootings

    Please help promote STEM in your local schools.

    Stem Education Coalition

    Stanford University

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
  • richardmitnick 2:20 pm on November 18, 2017 Permalink | Reply
    Tags: , , , , Stanford University-Engineering,   

    From Stanford University – Engineering: “An advance in stem-cell development could help lead to new therapies” 

    Stanford University Name
    Stanford University – Engineering

    November 02, 2017
    Andrew Myers

    1
    Stem cells hold the promise of being able to cure ills ranging from spinal cord injuries to cancers. | Image by: luismmolina/Getty Images

    In many ways, stem cells are the divas of the biological world. On the one hand, these natural shapeshifters can transform themselves into virtually any type of cell in the body. In that regard, they hold the promise of being able to cure ills ranging from spinal cord injuries to cancers.

    On the other hand, said associate professor of materials science and engineering Sarah Heilshorn, stem cells, like divas, are also mercurial and difficult to work with.

    “We just don’t know how to efficiently and effectively grow massive numbers of stem cells and keep them in their regenerative state,” Heilshorn said. “This has prevented us from making more progress in creating therapies.”

    Until now, that is. In a recent paper in Nature Materials, Heilshorn described a solution to the dual challenges of growing and preserving neural stem cells in a state where they are still able to mature into many different cell types. The first challenge is that growing stem cells in quantity requires space. Like traditional farming, it is a two-dimensional affair. If you want more wheat, corn or stem cells, you need more surface area. Culturing stem cells, therefore, requires a lot of relatively expensive laboratory real estate, not to mention the energy and nutrients necessary to pull it all off.

    The second challenge is that once they’ve divided many times in a lab dish, stem cells do not easily remain in the ideal state of readiness to become other types of cells. Researchers refer to this quality as “stemness.” Heilshorn found that for the neural stem cells she was working with, maintaining the cells’ stemness requires the cells to be touching.

    Heilshorn’s team was working with a particular type of stem cell that matures into neurons and other cells of the nervous system. These types of cells, if produced in sufficient quantities, could generate therapies to repair spinal cord injuries, counteract traumatic brain injury or cure some of the most severe degenerative disorders of the nervous system, like Parkinson’s and Huntington’s diseases.

    Seeking stemness

    Heilshorn’s solution involves the use of better materials in which to grow stem cells. Her lab has developed new polymer-based gels that allow the cells to be grown in three dimensions instead of two. This new 3-D process takes up less than 1 percent of the lab space required by current stem cell culturing techniques. And because cells are so tiny, the 3-D gel stack is just a single millimeter tall, roughly the thickness of a dime.

    “For a 3-D culture, we need only a 4-inch-by-4-inch plot of lab space, or about 16 square inches. A 2-D culture requires a plot four feet by four feet, or about 16 square feet,” more than 100-times the space, according to first author Chris Madl, a recent doctoral graduate in bioengineering from Heilshorn’s lab

    In addition to the dramatic savings of lab space, the new process demands fewer nutrients and less energy, as well.

    The gels the team developed allow the stem cells to remodel the long molecules and maintain physical contact with one another to preserve critical communication channels between cells. “The simple act of touching is key to communication between stem cells and to maintaining stemness. If stem cells can’t remodel the gels, they can’t touch one another,” Madl explained.

    “The stem cells don’t exactly die if they can’t touch, but they lose that ability to regenerate that we really need for therapeutic success,” Heilshorn added.

    Striking results

    This need for neural stem cell to remodel their environment differs from what Heilshorn has found in working with other types of stem cells. For those cells, it is the stiffness of the gels – not the ability to remodel – that is the key factor in maintaining stemness. It is as if for these other types of stem cells, gels must mimic the rigidity of the tissue in which the cells will eventually be transplanted. Not so with neural progenitors, said Heilshorn.

    “Neural cell stemness is not sensitive to stiffness and that was a big surprise to us,” she said.

    The result was so striking and unexpected that Heilshorn, at first, didn’t believe her own results. The lab ended up testing three entirely different gels to see if their conclusion held, an unusual supplementary step in this kind of research. With each new material, they saw that those that could be remodeled produced quality stem cells; those that could not be remodeled had a negative effect on stemness.

    Next up on Heilshorn’s research agenda is to create gels that can be injected directly from the lab dish into the body. The possibilities have her feeling optimistic about stem cell therapies again. For a time, she said, it felt as if the field had hit a wall, as initial excitement for regeneration gave way to uninspiring results in the clinic. With her new finding, she said, it feels like new things may be just around the corner.

    “There’s this convergence of biological knowledge and engineering principles in stem cell research that has me hopeful we might finally actually solve some big problems,” she said.

    See the full article here .

    Please help promote STEM in your local schools.
    STEM Icon

    Stem Education Coalition

    Leland and Jane Stanford founded the University to “promote the public welfare by exercising an influence on behalf of humanity and civilization.” Stanford opened its doors in 1891, and more than a century later, it remains dedicated to finding solutions to the great challenges of the day and to preparing our students for leadership in today’s complex world. Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto. Since 1952, more than 54 Stanford faculty, staff, and alumni have won the Nobel Prize, including 19 current faculty members

    Stanford University Seal

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: